JPH08319336A - Production of high-purity epoxy resin - Google Patents

Production of high-purity epoxy resin

Info

Publication number
JPH08319336A
JPH08319336A JP12796095A JP12796095A JPH08319336A JP H08319336 A JPH08319336 A JP H08319336A JP 12796095 A JP12796095 A JP 12796095A JP 12796095 A JP12796095 A JP 12796095A JP H08319336 A JPH08319336 A JP H08319336A
Authority
JP
Japan
Prior art keywords
epoxy resin
aqueous solution
boric acid
polyhydric phenol
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12796095A
Other languages
Japanese (ja)
Inventor
Taira Harada
田 平 原
Ryoko Itagaki
垣 良 子 板
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP12796095A priority Critical patent/JPH08319336A/en
Publication of JPH08319336A publication Critical patent/JPH08319336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

PURPOSE: To obtain a high-purity epoxy resin extremely low in the content of water-soluble impurities containing α-diols etc., suitable for e.g. electronic equipment, by bringing an epoxy resin made up of a polyhydric phenol diglycidyl ether into contact with an aqueous solution of a specific compound. CONSTITUTION: This high-purity epoxy resin is obtained by bringing (A) an epoxy resin made up of a polyhydric phenol diglycidyl ether into contact with (B) an aqueous solution of a compound selected from boric acid and its salts (e.g. lithium metaborate) pref. at 50-100 deg.C for 10-30min. The component A is obtained, in general, by ring opening addition reaction between a polyhydric phenol such as bisphenol A and epichlorohydrin in the presence of a catalyst while or followed by carrying out a ring opening with an alkali metal hydroxide. The solution B contains pref. 0.1-10 wt.% of a compound selected from boric acid and its salts, and it is preferable that the amount of the solution B to be used be 0.05-0.3wt. times the component A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高純度エポキシ樹脂の
製造方法に関し、特に、高い信頼性の要求される電気・
電子部品の分野、特に電子部品封止材、積層板などの材
料として、あるいは高度な機械物性を要求される塗料分
野におけるエポキシ樹脂成分として有用な高純度エポキ
シ樹脂の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity epoxy resin, and particularly to an electric / electrical resin which requires high reliability.
The present invention relates to a method for producing a high-purity epoxy resin which is useful as a material for an electronic component encapsulant, a laminated plate, or the like, or as an epoxy resin component in a coating field requiring high mechanical properties.

【0002】[0002]

【従来の技術】一般に、エポキシ樹脂は、耐熱性、接着
性、耐薬品性、電気特性、機械特性等に優れているた
め、接着剤、塗料、電気絶縁材料等の用途に幅広く利用
されている。前記用途において使用される従来のエポキ
シ樹脂は、その末端基が全てエポキシ基ではなく、例え
ば、α−ジオール基、加水分解性塩素、フェノール性水
酸基等の官能基あるいは構造未確認のポリグリセリンな
どをかなり含むものであることが知られている。
2. Description of the Related Art Generally, epoxy resins are widely used for adhesives, paints, electrical insulating materials, etc. because they are excellent in heat resistance, adhesiveness, chemical resistance, electrical properties, mechanical properties, etc. . In the conventional epoxy resin used in the above-mentioned applications, the terminal groups are not all epoxy groups, and for example, α-diol groups, hydrolyzable chlorine, functional groups such as phenolic hydroxyl groups, or polyglycerin whose structure has not been confirmed are considerably contained. It is known to include.

【0003】これらの不純物の中でも、エポキシ樹脂を
硬化させて得られる硬化物の特性に最も強い影響を与え
る不純物は、α−ジオール基含有化合物である。例え
ば、エポキシ樹脂が電子材料用途に使用される場合に
は、回路信頼性を確保するために高度な耐熱性、耐水
性、耐薬品性が要求されるが、エポキシ樹脂中のα−ジ
オール基含有化合物量が増えるに従い、エポキシ樹脂と
硬化剤から形成される架橋密度が低下するとともに、架
橋構造に分子自由度の高い極性基が導入されることによ
り、これらの性能低下を招くことが知られている(特公
平3−7205号公報その他参照)。一方、エポキシ樹
脂を粉体塗料用途において使用する場合は、エポキシ樹
脂中のα−ジオール基含有化合物量が増えるに従い、前
記と同じ理由によってエポキシ樹脂と硬化剤から形成さ
れる塗膜の引張強度、耐衝撃性が著しく低下することが
報告されている(特開昭59−152964号公報)。
Among these impurities, the one which has the strongest influence on the properties of the cured product obtained by curing the epoxy resin is the α-diol group-containing compound. For example, when an epoxy resin is used for electronic materials, high heat resistance, water resistance, and chemical resistance are required to ensure circuit reliability, but the epoxy resin contains α-diol group It is known that as the amount of the compound increases, the crosslink density formed from the epoxy resin and the curing agent decreases, and the introduction of a polar group having a high degree of molecular freedom into the crosslinked structure leads to a decrease in these performances. (See Japanese Patent Publication No. 3-7205, etc.). On the other hand, when using the epoxy resin in powder coating applications, as the amount of the α-diol group-containing compound in the epoxy resin increases, the tensile strength of the coating film formed from the epoxy resin and the curing agent for the same reason as above, It has been reported that the impact resistance is remarkably reduced (Japanese Patent Laid-Open No. 59-152964).

【0004】ところで、前記用途で使用されるエポキシ
樹脂として、一般に市場に出回っているものは、通常、
一段法または二段法によって製造されている[垣内 弘
編著「新エポキシ樹脂」(昭晃堂)30頁(昭和60
年)]。
By the way, as the epoxy resin used for the above-mentioned applications, those generally available on the market are usually
Manufactured by a one-step method or a two-step method [Hiroshi Kakiuchi, "New Epoxy Resin", Shokodo, p. 30 (Showa 60)
Year)].

【0005】一段法は、所定量の多価フェノールとエピ
クロロヒドリンとを、水酸化ナトリウム等のアルカリお
よび水の存在下で一度に反応させてエポキシ樹脂を製造
する方法である。しかし、この方法においては、反応中
にエピクロロヒドリンが水酸化ナトリウムによる加水分
解反応を受けるチャンスが多く、その結果、種々のα−
ジオール基含有化合物を副生する。ここで、α−ジオー
ル基含有化合物とは、例えば、下記式:
The one-step method is a method in which a predetermined amount of polyhydric phenol and epichlorohydrin are reacted at once in the presence of an alkali such as sodium hydroxide and water to produce an epoxy resin. However, in this method, epichlorohydrin often undergoes a hydrolysis reaction with sodium hydroxide during the reaction, and as a result, various α-
A diol group-containing compound is produced as a by-product. Here, the α-diol group-containing compound is, for example, the following formula:

【0006】[0006]

【化1】 Embedded image

【0007】に示す反応(なお、上記式では便宜上フェ
ノールを例にした反応式を示した。)によって副生す
る、化合物(1)、グリセリン(2)、ポリグリセリン
(2)等の分子中に式: −CH2 −CH(OH)−CH2 −OH で表される基を有する化合物である。事実、このような
一段法によって得られるエポキシ樹脂中のα−ジオール
基の含有量は、通常、10〜20meq/100g程度
であり、エポキシ当量が500前後のビスフェノールA
型エポキシ樹脂の場合には、全末端官能基に占める割合
は約5〜10%となる。
In the molecules of compound (1), glycerin (2), polyglycerin (2) and the like, which are by-produced by the reaction shown in (wherein, for convenience, phenol is used as an example in the above formula). A compound having a group represented by the formula: —CH 2 —CH (OH) —CH 2 —OH. In fact, the content of the α-diol group in the epoxy resin obtained by such a one-step method is usually about 10 to 20 meq / 100 g, and the epoxy equivalent is about 500 bisphenol A.
In the case of the type epoxy resin, the ratio of all the terminal functional groups is about 5 to 10%.

【0008】一方、もう一つの製造法である二段法は、
多価フェノールに対して過剰のエピクロロヒドリンを使
用し、アルカリの存在下で反応させ、一旦、低分子量の
エポキシ樹脂を製造し、さらにその低分子量のエポキシ
樹脂と多価フェノールを付加反応させて高分子量エポキ
シ樹脂を製造することが行われる。
On the other hand, the other manufacturing method, the two-step method, is
Using an excess of epichlorohydrin with respect to polyhydric phenol, reacting in the presence of alkali, once producing a low molecular weight epoxy resin, and then further reacting the low molecular weight epoxy resin and polyhydric phenol To produce a high molecular weight epoxy resin.

【0009】この二段法においては、低分子量のエポキ
シ樹脂を製造する工程で過剰のエピクロロヒドリンが存
在し、また付加(エーテル化)工程が実質的に無水条件
下で行われるため、グリシドールが生成し難く、その結
果として末端のα−ジオール基含有量が少ない高分子量
エポキシ樹脂が得られる。このような二段法によって得
られるエポキシ樹脂中のα−ジオール基含有量は、通
常、3〜6meq/100g程度である。
In this two-step process, there is an excess of epichlorohydrin in the process of producing the low molecular weight epoxy resin, and the addition (etherification) process is performed under substantially anhydrous conditions, so that glycidol is used. Is less likely to be produced, and as a result, a high molecular weight epoxy resin having a low content of terminal α-diol groups can be obtained. The content of α-diol group in the epoxy resin obtained by such a two-step method is usually about 3 to 6 meq / 100 g.

【0010】[0010]

【発明が解決しようとする課題】しかし、従来、α−ジ
オール基含有化合物を、1段法による樹脂においては9
meq/100g以下、2段法による樹脂においては2
meq/100g以下に低減する合理的な方法は知られ
ていなかった。
However, conventionally, in the resin prepared by the one-step method, an α-diol group-containing compound was used in an amount of 9%.
meq / 100g or less 2 in the two-step method resin
No rational method of reducing to less than or equal to meq / 100 g was known.

【0011】そこで、本発明の目的は、α−ジオール基
等を含有する水溶性不純物の含有量が極めて少なく、電
子機器用途、塗料用途に好適に用いられる高純度エポキ
シ樹脂を得ることができる方法を提供することにある。
Therefore, an object of the present invention is to provide a high-purity epoxy resin having a very small content of water-soluble impurities containing an α-diol group or the like, which is suitable for use in electronic devices and coatings. To provide.

【0012】[0012]

【課題を解決するための手段】そこで、本発明者らはエ
ポキシ樹脂中のα−ジオール基含有化合物の量を低減化
するための方法を鋭意検討することにした。その結果、
エポキシ樹脂を、特定の無機化合物水溶液と処理すると
いう極めて簡単な操作により、従来の一段法エポキシ樹
脂の場合はα−ジオール基含有量を10(meq/10
0g)以下に、また従来の二段法エポキシ樹脂の場合に
おいては3(meq/100g)未満に低減化できるこ
とを見い出し、本発明に至った。
Therefore, the present inventors have made intensive studies on a method for reducing the amount of the α-diol group-containing compound in the epoxy resin. as a result,
In the case of the conventional one-step method epoxy resin, the α-diol group content is 10 (meq / 10) by an extremely simple operation of treating the epoxy resin with an aqueous solution of a specific inorganic compound.
It was found that the amount can be reduced to 0 g) or less, and in the case of the conventional two-step method epoxy resin, to less than 3 (meq / 100 g), and the present invention has been completed.

【0013】すなわち、本発明は、多価フェノールのジ
グリシジルエーテルからなるエポキシ樹脂を、ホウ酸お
よびホウ酸塩から選ばれる少なくとも1種の水溶液と接
触させる工程を有する高純度エポキシ樹脂の製造方法を
提供するものである。
That is, the present invention provides a method for producing a high-purity epoxy resin, which comprises a step of bringing an epoxy resin composed of a diglycidyl ether of a polyhydric phenol into contact with at least one aqueous solution selected from boric acid and borate. It is provided.

【0014】以下、本発明の高純度エポキシ樹脂の製造
方法(以下、「本発明の方法」という)について詳細に
説明する。
The method for producing the high-purity epoxy resin of the present invention (hereinafter referred to as the "method of the present invention") will be described in detail below.

【0015】本発明の方法において、使用されるエポキ
シ樹脂は、多価フェノールのジグリシジルエーテルから
なるものである。このエポキシ樹脂を構成する多価フェ
ノールとしては、例えば、ハイドロキノン、レゾルシン
等の単環多価フェノール、2,2−ビス(4−ヒドロキ
シフェニル)プロパン[ビスフェノールA]、1,1−
ビス(4−ヒドロキシフェニル)エタン[ビスフェノー
ルAD]、ビス(4−ヒドロキシフェニル)メタン[ビ
スフェノールF]、ビス(4−ヒドロキシフェニル)ス
ルフォン、2,2−ビス(3,5−ジブロモ−4−ヒド
ロキシフェニル)プロパン、1−〔α−メチル−α
(4’−ヒドロキシフェニル)エチル〕−4−〔α’,
α’−ビス(4’−ヒドロキシフェニル)エチル〕ベン
ゼン、1,1,3−トリス(2−メチル−4−ヒドロキ
シ−5−tert−ブチルフェニル)ブタン、フェノー
ルノボラック、クレゾールノボラック等の多環多価フェ
ノールなどを挙げることができるが、勿論これに限定さ
れるものではない。
In the method of the present invention, the epoxy resin used is composed of diglycidyl ether of polyphenol. Examples of polyhydric phenols constituting this epoxy resin include monocyclic polyhydric phenols such as hydroquinone and resorcin, 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], 1,1-
Bis (4-hydroxyphenyl) ethane [bisphenol AD], bis (4-hydroxyphenyl) methane [bisphenol F], bis (4-hydroxyphenyl) sulfone, 2,2-bis (3,5-dibromo-4-hydroxy) Phenyl) propane, 1- [α-methyl-α
(4'-Hydroxyphenyl) ethyl] -4- [α ',
α'-bis (4'-hydroxyphenyl) ethyl] benzene, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, phenol novolac, cresol novolac and other polycyclic poly Examples of the phenol include, but are not limited to.

【0016】本発明において、上述したエポキシ樹脂
は、上記の多価フェノールとエピクロロヒドリンを触媒
存在下で開環付加(エーテル化)反応させて多価フェノ
ールのクロロヒドリンエーテル化合物を形成させ、次い
で、またはエーテル化と同時にアルカリ金属水酸化物に
より閉環(脱塩化水素)することによって得られる。こ
の場合、一般的にはエポキシ樹脂の一部にクロロヒドリ
ンエーテル基に起因する加水分解性塩素が残存するが、
この量をさらに低減するためアルカリ金属水酸化物を反
応させて再閉環(再脱塩化水素)が行われ粗製エポキシ
樹脂が得られる。この後、一般的には粗製エポキシ樹脂
に微量残存するアルカリ金属水酸化物および副生塩を除
去するために、粗製エポキシ樹脂をトルエン、キシレン
などの芳香族溶媒に希釈した後、水洗、中和処理が施さ
れ前記溶媒濃縮後、精密ろ過を経て製品であるエポキシ
樹脂が単離される。
In the present invention, the above-mentioned epoxy resin is subjected to ring-opening addition (etherification) reaction of the above polyhydric phenol and epichlorohydrin in the presence of a catalyst to form a chlorohydrin ether compound of polyhydric phenol. , Then, or simultaneously with etherification, by ring closure (dehydrochlorination) with an alkali metal hydroxide. In this case, generally, the hydrolyzable chlorine due to the chlorohydrin ether group remains in a part of the epoxy resin,
In order to further reduce this amount, alkali metal hydroxide is reacted to perform ring closure (redehydrochlorination) again to obtain a crude epoxy resin. After that, in general, in order to remove the trace amount of alkali metal hydroxide and by-product salt remaining in the crude epoxy resin, the crude epoxy resin is diluted with an aromatic solvent such as toluene or xylene, and then washed with water and neutralized. After the treatment and concentration of the solvent, the product epoxy resin is isolated through microfiltration.

【0017】本発明の方法は、前記のとようにして得ら
れるエポキシ樹脂と、ホウ酸およびホウ酸塩から選ばれ
る少なくとも1種の水溶液(以下、「接触処理液」とい
う)と接触させて処理する工程によって、エポキシ樹脂
を精製する方法である。接触処理液による処理は、上記
の粗製エポキシ樹脂に対して行うことも可能であるし、
製品状態のエポキシ樹脂およびこのエポキシ樹脂を二価
フェノール類とのヒュージョン反応によってさらに高分
子量化された、いわゆる二段法樹脂に対して行っても良
い。
In the method of the present invention, treatment is carried out by bringing the epoxy resin obtained as described above into contact with at least one aqueous solution selected from boric acid and borate (hereinafter referred to as "contact treatment liquid"). Is a method of purifying an epoxy resin. The treatment with the contact treatment liquid can also be performed on the above-mentioned crude epoxy resin,
The epoxy resin in a product state and a so-called two-step method resin in which the epoxy resin has a higher molecular weight by a fusion reaction with a dihydric phenol may be used.

【0018】粗製エポキシ樹脂、製品形態のエポキシ樹
脂と、接触処理液との接触は、一旦、エポキシ樹脂を、
トルエン、キシレン等の芳香族溶媒、メチルイソブチル
ケトン、シクロヘキサノン等のケトン系溶媒などで希釈
した後、接触させる方法が行われる。溶剤希釈する場合
の溶剤量は、特に限定されないが、一般的には固形分濃
度が70重量%以下となる溶媒量とすると接触処理後の
分液スピードが速く、経済的である。
The contact between the crude epoxy resin, the product type epoxy resin, and the contact treatment liquid is carried out by temporarily removing the epoxy resin,
A method is used in which the solvent is diluted with an aromatic solvent such as toluene or xylene, a ketone solvent such as methyl isobutyl ketone or cyclohexanone, and then contacted. The amount of solvent in the case of diluting with a solvent is not particularly limited, but generally, when the amount of the solvent is such that the solid content concentration is 70% by weight or less, the liquid separation speed after the contact treatment is fast, which is economical.

【0019】本発明の方法で接触処理液に用いられるホ
ウ酸およびホウ酸塩としては、例えば、ホウ酸、無水ホ
ウ酸、メタホウ酸リチウム、メタホウ酸ナトリウム、四
ホウ酸二カリウム、四ホウ酸リチウム、四ホウ酸ナトリ
ウム、四ホウ酸カリウム等を挙げることができる。これ
らは1種単独で使用しても良いし、2種以上を組み合わ
せて使用しても良い。
Examples of the boric acid and borate used in the contact treatment liquid in the method of the present invention include boric acid, boric anhydride, lithium metaborate, sodium metaborate, dipotassium tetraborate, lithium tetraborate. , Sodium tetraborate, potassium tetraborate and the like. These may be used alone or in combination of two or more.

【0020】また、接触処理液は、ホウ酸およびホウ酸
塩から選ばれる少なくとも1種を通常、20重量%以
下、好ましくは0.1〜10.0重量%含有するもので
ある。
The contact treatment liquid usually contains at least one selected from boric acid and a borate salt in an amount of 20% by weight or less, preferably 0.1 to 10.0% by weight.

【0021】また、本発明の方法において、接触処理液
に、前記のホウ酸およびホウ酸塩から選ばれる少なくと
も1種以外に、他の無機化合物を溶解して使用すること
も可能である。用いられる他の無機化合物としては、例
えば、塩化ナトリウム、塩化カリウム等のアルカリ金属
塩、リン酸、あるいはリン酸二ナトリウム、リン酸一ナ
トリウム、リン酸三ナトリウム、リン酸二カリウム、リ
ン酸−カリウム等のリン酸塩を1種単独または2種以上
添加して使用することもできる。特に、リン酸、リン酸
一ナトリウム、リン酸一カリウム等の水溶液が酸性を示
す無機化合物を共存させて、粗製エポキシ樹脂と接触さ
せる場合は、中和機能も同時に働き、有効である。
In the method of the present invention, it is also possible to dissolve and use other inorganic compounds in the contact treatment liquid in addition to at least one selected from the above boric acid and borate. Examples of other inorganic compounds used include alkali metal salts such as sodium chloride and potassium chloride, phosphoric acid, disodium phosphate, monosodium phosphate, trisodium phosphate, dipotassium phosphate, and potassium phosphate. It is also possible to use one of these phosphates or a mixture of two or more thereof. In particular, when an aqueous solution of phosphoric acid, monosodium phosphate, monopotassium phosphate or the like is allowed to coexist with an acidic inorganic compound and brought into contact with the crude epoxy resin, the neutralizing function also works and is effective.

【0022】エポキシ樹脂と接触処理液とを接触させる
場合の温度は、エポキシ樹脂を希釈する溶剤種にも依存
するが、通常、50〜100℃の範囲である。また、接
触時間は、通常、5分〜60分程度、好ましくは10分
〜30分程度である。
The temperature at which the epoxy resin and the contact treatment liquid are brought into contact with each other depends on the kind of solvent used to dilute the epoxy resin, but is usually in the range of 50 to 100 ° C. The contact time is usually about 5 minutes to 60 minutes, preferably about 10 minutes to 30 minutes.

【0023】接触処理液の使用量は、通常、エポキシ樹
脂に対して0.01〜0.5倍重量、好ましくは0.0
5〜0.3倍重量の割合である。0.01倍重量以下で
は水溶性不純物の低減効果がほとんど無く、一方、0.
5倍重量を超えると、低減効果が一定となる。
The amount of the contact treatment liquid used is usually 0.01 to 0.5 times the weight of the epoxy resin, preferably 0.0.
It is a ratio of 5 to 0.3 times the weight. If it is 0.01 times or less by weight, there is almost no effect of reducing water-soluble impurities.
When the weight exceeds 5 times, the reduction effect becomes constant.

【0024】また、本発明の方法において、エポキシ樹
脂の溶剤希釈品と接触処理液との接触は、特に制限され
ず、一般的な攪拌・混合方法にしたがって行うことがで
きる。エポキシ樹脂の溶剤希釈品と接触処理液とを接触
させた後、必要に応じて中和、水洗操作を施した後、溶
剤留去、精密ろ過などの工程を経て水溶性不純物量の少
ないエポキシ樹脂を得ることができる。
Further, in the method of the present invention, the contact between the solvent-diluted product of the epoxy resin and the contact treatment liquid is not particularly limited, and it can be carried out according to a general stirring / mixing method. After contacting the solvent-diluted product of the epoxy resin with the contact treatment liquid, neutralizing and washing with water if necessary, and then distilling off the solvent and passing through steps such as microfiltration. Can be obtained.

【0025】[0025]

【実施例】以下、実施例および比較例により本発明を具
体的に説明するが、本発明はこれらの実施例によって限
定されるものではない。なお、実施例中のエポキシ当
量、粘度、加水分解性塩素量、α−ジオール量、および
抽出水中のCODMn量は、以下の方法にしたがって測定
した。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. The epoxy equivalent, the viscosity, the amount of hydrolyzable chlorine, the amount of α-diol, and the amount of CODMn in the extracted water in the examples were measured according to the following methods.

【0026】1)エポキシ当量;エポキシ樹脂0.2〜
5gを精秤し、200mlの三角フラスコに入れた後、
ジオキサン25mlを加えて溶解させる。1/5規定の
塩酸溶液(ジオキサン溶媒)25mlを加え、密栓して
十分混合した後、30分間静置する。次に、トルエン−
エタノール混合溶液(1:1容量比)50mlを加えた
後、クレゾールレッドを指示薬として1/10規定水酸
化ナトリウム水溶液で滴定する。滴定結果に基づいて、
下記式に従ってエポキシ当量を求める。
1) Epoxy equivalent; epoxy resin 0.2 to
After precisely weighing 5 g and putting it in a 200 ml Erlenmeyer flask,
Add 25 ml of dioxane and dissolve. Add 25 ml of a 1/5 N hydrochloric acid solution (dioxane solvent), stopper tightly, mix well, and let stand for 30 minutes. Next, toluene-
After adding 50 ml of an ethanol mixed solution (1: 1 volume ratio), the mixture is titrated with 1/10 N sodium hydroxide aqueous solution using cresol red as an indicator. Based on the titration results,
Epoxy equivalent is calculated according to the following formula.

【0027】[0027]

【数1】 [Equation 1]

【0028】W:試料採取量(g) B:空試験に要した1/10規定水酸化ナトリウム水溶
液(ml) S:試料の試験に要した1/10規定水酸化ナトリウム
水溶液(ml) N:水酸化ナトリウム水溶液の規定度 F:1/10規定水酸化ナトリウム水溶液の力価
W: sampled amount (g) B: 1/10 normal sodium hydroxide aqueous solution (ml) required for blank test S: 1/10 normal sodium hydroxide aqueous solution (ml) required for sample test N: Normality of sodium hydroxide aqueous solution F: Titer of 1/10 normal sodium hydroxide aqueous solution

【0029】2)粘 度:比重を測定した後、JIS
K−7233に準拠して求めた。 3)加水分解性塩素量:エポキシ樹脂技術協会「技術報
告書第1号−エポキシ樹脂の可けん化塩素量測定法」
(昭和52年9月発行)に記載されているASTM De
signation :D1276−73法に準拠して測定した。
2) Viscosity : After measuring specific gravity, JIS
It was determined according to K-7233. 3) Hydrolyzable chlorine content : Epoxy Resin Technical Association "Technical Report No. 1-Method for measuring the amount of saponifiable chlorine in epoxy resin"
ASTM De listed in (Published September 1972)
signation: measured according to the D1276-73 method.

【0030】4)α−ジオール基含有量:エポキシ樹脂
試料1〜2gを精秤し、300ml容のヨウ素フラスコ
に入れ、クロロフォルム25mlを加えて完全に溶解さ
せる。次に、1/5規定過ヨウ素酸ベンジルトリエチル
アンモニウムメタノール溶液25mlを加えて混合した
後、室温で2時間放置する。冷水100mlを加えて激
しく混合後、(1+10)硫酸5ml、20%ヨウ化カ
リウム水溶液20mlを加えて十分に混合した後、1/
10規定チオ硫酸ナトリウム水溶液でヨウ素が無くなる
まで滴定する。空試験を並行して行い、以下の計算式に
よりα−ジオール基含有量を求める。
4) α-diol group content : 1 to 2 g of an epoxy resin sample is precisely weighed and placed in a 300 ml iodine flask, and 25 ml of chloroform is added to completely dissolve it. Then, 25 ml of a 1/5 normal benzyltriethylammonium periodate methanol solution was added and mixed, and then the mixture was allowed to stand at room temperature for 2 hours. After 100 ml of cold water was added and mixed vigorously, 5 ml of (1 + 10) sulfuric acid and 20 ml of 20% potassium iodide aqueous solution were added and thoroughly mixed, and then 1 /
Titrate with 10N aqueous sodium thiosulfate solution until the iodine is gone. A blank test is conducted in parallel, and the α-diol group content is determined by the following calculation formula.

【0031】[0031]

【数2】 [Equation 2]

【0032】B:空試験で消費された1/10規定チオ
硫酸ナトリウム水溶液(ml) S:試料試験で消費された1/10規定チオ硫酸ナトリ
ウム水溶液(ml) N:チオ硫酸ナトリウム水溶液の規定度 F:1/10規定チオ硫酸ナトリウム水溶液の力価 W:エポキシ樹脂の試料採取重量(g)
B: 1/10 normal sodium thiosulfate aqueous solution consumed in blank test (ml) S: 1/10 normal sodium thiosulfate aqueous solution consumed in sample test (ml) N: Normality of sodium thiosulfate aqueous solution F: titer of 1/10 normal sodium thiosulfate aqueous solution W: sampling weight of epoxy resin (g)

【0033】(参考例1)ビスフェノールAとエピクロ
ロヒドリンとを、仕込みモル比:1:10で開環反応さ
せた後、引き続き水酸化ナトリウムを加えて脱塩化水素
反応を行った。反応終了後、未反応のエピクロロヒドリ
ンを減圧下に留去した。次いで、副生した塩化ナトリウ
ムを水洗除去したところ、加水分解性塩素を0.8重量
%含有するエポキシ樹脂を得た。次に、加水分解性塩素
に対して、2.5倍当量の6重量%水酸化ナトリウム水
溶液を加え、再び95℃で脱塩化水素反応を行った。さ
らに、反応混合物にトルエンを固形分濃度が50重量%
になるように添加後、分液した。分離したトルエン溶液
の上層部分を、以下の実施例1〜3および比較例1〜2
の原料樹脂として使用した。
Reference Example 1 Bisphenol A and epichlorohydrin were subjected to a ring-opening reaction at a charged molar ratio of 1:10, and sodium hydroxide was subsequently added to carry out a dehydrochlorination reaction. After completion of the reaction, unreacted epichlorohydrin was distilled off under reduced pressure. Then, sodium chloride produced as a by-product was washed and removed to obtain an epoxy resin containing 0.8% by weight of hydrolyzable chlorine. Then, 2.5 times equivalent of 6 wt% sodium hydroxide aqueous solution was added to the hydrolyzable chlorine, and dehydrochlorination reaction was performed again at 95 ° C. Further, toluene was added to the reaction mixture so that the solid concentration was 50% by weight.
After the addition, the liquid was separated. The upper layer portion of the separated toluene solution was treated with the following Examples 1-3 and Comparative Examples 1-2.
Used as a raw material resin.

【0034】(参考例2)ビスフェノールAとエピクロ
ロヒドリンの仕込みモル比を1:2とした以外は、参考
例と同様にしてエポキシ樹脂を製造した。副生塩化ナト
リウムを水洗除去した段階で加水分解性塩素量が0.0
03重量%であったため、これに固形分濃度が50重量
%になるようにキシレンを添加し、以下の実施例4〜5
および比較例3の原料樹脂として使用した。
Reference Example 2 An epoxy resin was produced in the same manner as in Reference Example except that the charged molar ratio of bisphenol A and epichlorohydrin was 1: 2. The amount of hydrolyzable chlorine was 0.0 when the by-product sodium chloride was removed by washing with water.
Since it was 03% by weight, xylene was added thereto so that the solid content concentration became 50% by weight, and the following Examples 4 to 5 were performed.
And used as a raw material resin in Comparative Example 3.

【0035】(実施例1〜3)参考例1で得られたエポ
キシ樹脂のトルエン溶液に、表1に示すホウ酸またはホ
ウ酸塩水溶液を加えて、80℃で15分間攪拌混合し
た。静置後、分離水層を除去した後、有機層からトルエ
ンを減圧下で留去してろ過し、精製エポキシ樹脂を得
た。この精製エポキシ樹脂のエポキシ当量、α−ジオー
ル基含有量、粘度、軟化点および加水分解性塩素量を測
定した。結果を表1に示す。
Examples 1 to 3 To the toluene solution of the epoxy resin obtained in Reference Example 1, the boric acid or borate aqueous solution shown in Table 1 was added, and the mixture was stirred and mixed at 80 ° C. for 15 minutes. After standing, the separated water layer was removed, toluene was distilled off from the organic layer under reduced pressure, and filtration was performed to obtain a purified epoxy resin. The epoxy equivalent, α-diol group content, viscosity, softening point and hydrolyzable chlorine content of this purified epoxy resin were measured. The results are shown in Table 1.

【0036】(実施例4〜5)参考例2で得られたエポ
キシ樹脂のキシレン溶液に、表1に示すホウ酸またはホ
ウ酸塩水溶液を加えて、90℃で15分間攪拌混合し
た。静置後、分離水層を除去した後、有機層からトルエ
ンを減圧下で留去してろ過し、精製エポキシ樹脂を得
た。この精製エポキシ樹脂のエポキシ当量、α−ジオー
ル基含有量、粘度、軟化点および加水分解性塩素量を測
定した。結果を表1に示す。
(Examples 4 to 5) To the xylene solution of the epoxy resin obtained in Reference Example 2, the boric acid or borate aqueous solution shown in Table 1 was added and mixed with stirring at 90 ° C for 15 minutes. After standing, the separated water layer was removed, toluene was distilled off from the organic layer under reduced pressure, and filtration was performed to obtain a purified epoxy resin. The epoxy equivalent, α-diol group content, viscosity, softening point and hydrolyzable chlorine content of this purified epoxy resin were measured. The results are shown in Table 1.

【0037】(比較例1)実施例1〜3において、ホウ
酸またはホウ酸塩の水溶液との接触処理を行わない以外
は、実施例1〜3と同様な操作によってエポキシ樹脂を
単離した。得られたエポキシ樹脂のエポキシ当量、α−
ジオール基含有量、粘度、軟化点および加水分解性塩素
量を測定した。結果を表1に示す。
(Comparative Example 1) Epoxy resins were isolated in the same manner as in Examples 1 to 3 except that the contact treatment with the aqueous solution of boric acid or borate was not carried out. Epoxy equivalent of the obtained epoxy resin, α-
The diol group content, viscosity, softening point and hydrolyzable chlorine content were measured. The results are shown in Table 1.

【0038】(比較例2)実施例4〜5において、ホウ
酸またはホウ酸塩の水溶液との接触処理を行わない以外
は、実施例4〜5と同様な操作によってエポキシ樹脂を
単離した。得られたエポキシ樹脂のエポキシ当量、α−
ジオール基含有量、粘度、軟化点および加水分解性塩素
量を測定した。結果を表1に示す。
Comparative Example 2 The epoxy resin was isolated in the same manner as in Examples 4 to 5 except that the contact treatment with the aqueous solution of boric acid or borate was not performed in Examples 4 to 5. Epoxy equivalent of the obtained epoxy resin, α-
The diol group content, viscosity, softening point and hydrolyzable chlorine content were measured. The results are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】(実施例6)攪拌翼、温度計、窒素導入
口、および冷却管を備えた500mlのセパラブルフラ
スコに、実施例1で得られたエポキシ樹脂254.9
g、テトラブロモビスフェノールA145.1gおよび
キシレン80mlを仕込み、窒素雰囲気下で昇温させ
た。内温が80℃に到達したときに、1重量%塩化テト
ラメチルアンモニウム水溶液0.8gを添加し、さらに
昇温させた。内温が130℃に到達したときに、反応系
内を減圧にして、キシレンと水を系外に抜き出した。反
応温度を150℃に維持しながら反応を行い、1時間
後、窒素により反応系内を常圧に戻した。さらに150
℃で4時間攪拌を続けた後、反応混合物を約70℃まで
冷却後、メチルエチルケトン133gを添加して希釈し
て溶剤希釈エポキシ樹脂を得た。得られた溶剤希釈エポ
キシ樹脂の性状は、下記の通りであった。 固形分濃度;75.3重量% 粘度;470cps/25℃ 樹脂換算のエポキシ当量;493g/eq 樹脂換算の臭素含量;21.0重量% 樹脂換算のα−ジオール基含有量;1meq/100g
以下 樹脂換算の加水分解性塩素量;0.013重量%
Example 6 The epoxy resin 254.9 obtained in Example 1 was placed in a 500 ml separable flask equipped with a stirring blade, a thermometer, a nitrogen inlet, and a cooling tube.
g, tetrabromobisphenol A 145.1 g and xylene 80 ml were charged and the temperature was raised under a nitrogen atmosphere. When the internal temperature reached 80 ° C., 0.8 g of a 1 wt% tetramethylammonium chloride aqueous solution was added, and the temperature was further raised. When the internal temperature reached 130 ° C., the pressure inside the reaction system was reduced and xylene and water were taken out of the system. The reaction was carried out while maintaining the reaction temperature at 150 ° C., and after 1 hour, the inside of the reaction system was returned to normal pressure with nitrogen. Further 150
After continuing stirring at ℃ for 4 hours, the reaction mixture was cooled to about 70 ℃ and diluted with 133 g of methyl ethyl ketone to obtain a solvent-diluted epoxy resin. The properties of the solvent-diluted epoxy resin obtained were as follows. Solid content concentration: 75.3 wt% Viscosity: 470 cps / 25 ° C. Resin equivalent epoxy equivalent; 493 g / eq Resin equivalent bromine content: 21.0 wt% Resin equivalent α-diol group content: 1 meq / 100 g
The amount of hydrolyzable chlorine in terms of resin below: 0.013% by weight

【0041】(実施例7)攪拌翼、温度計、窒素導入
口、および冷却管を備えた1000mlのセパラブルフ
ラスコに、実施例5で得られたエポキシ樹脂732g、
ビスフェノールA68gおよびキシレン1500mlを
仕込み、窒素雰囲気下で昇温させた。反応混合物が均一
化して、内温が100℃に到達したところで、トリフェ
ニルフォスフィンのキシレン溶液(5重量%)1.6g
を添加し、さらに昇温させた。内温が130℃に到達し
たところで、反応系内を減圧にして、キシレンを系外に
抜き出した。次に、反応温度を160℃に維持しながら
反応を行い、1時間後に窒素を反応系内に導入して反応
系内圧力を常圧に戻した。さらに、160℃で6時間攪
拌を続けた後、反応混合物を抜き出した。得られたエポ
キシ樹脂の性状は、下記の通りであった。 軟化点;94℃、エポキシ当量;930 α−ジオール基含有量;1meq/100g 加水分解性塩素量;0.002重量%
Example 7 In a 1000 ml separable flask equipped with a stirring blade, a thermometer, a nitrogen inlet, and a cooling tube, 732 g of the epoxy resin obtained in Example 5 was added.
68 g of bisphenol A and 1500 ml of xylene were charged and the temperature was raised under a nitrogen atmosphere. When the reaction mixture was homogenized and the internal temperature reached 100 ° C., 1.6 g of xylene solution of triphenylphosphine (5 wt%) was added.
Was added and the temperature was further raised. When the internal temperature reached 130 ° C, the pressure inside the reaction system was reduced, and xylene was taken out of the system. Next, the reaction was performed while maintaining the reaction temperature at 160 ° C., and 1 hour later, nitrogen was introduced into the reaction system to return the pressure inside the reaction system to normal pressure. Furthermore, after continuing stirring at 160 ° C. for 6 hours, the reaction mixture was extracted. The properties of the obtained epoxy resin were as follows. Softening point; 94 ° C., epoxy equivalent; 930 α-diol group content; 1 meq / 100 g amount of hydrolyzable chlorine; 0.002% by weight

【0042】(比較例3)実施例6において、実施例1
で得られたエポキシ樹脂の代わりに比較例1で得られた
エポキシ樹脂を用いた以外は、実施例6と同様にして、
溶剤希釈エポキシ樹脂を得た。得られたエポキシ樹脂の
性状値は、下記の通りであった。 固形分濃度;74.8重量% 粘度;490cps/25℃ 樹脂換算のエポキシ当量;494 樹脂換算の臭素含量;21.0重量% 樹脂換算のα−ジオール基含有量;5meq/100g 樹脂換算の加水分解性塩素量;0.013重量%
(Comparative Example 3) In Example 6, in Example 1
In the same manner as in Example 6 except that the epoxy resin obtained in Comparative Example 1 was used instead of the epoxy resin obtained in 1.
A solvent diluted epoxy resin was obtained. The property values of the obtained epoxy resin were as follows. Solid content concentration: 74.8% by weight Viscosity: 490 cps / 25 ° C. Resin equivalent epoxy equivalent: 494 Resin equivalent bromine content: 21.0% by weight Resin equivalent α-diol group content: 5 meq / 100 g Resin equivalent water Degradable chlorine amount: 0.013% by weight

【0043】(比較例4)実施例7において、実施例5
で得られたエポキシ樹脂の代わりに比較例3で得られた
エポキシ樹脂を用いた以外は、実施例7と同様にしてエ
ポキシ樹脂を得た。得られたエポキシ樹脂の性状値は、
下記の通りであった。 軟化点:93℃ エポキシ当量:929 α−ジオール基含有量:14meq/100g 加水分解性塩素量:0.003重量%
Comparative Example 4 In Example 7, Example 5
An epoxy resin was obtained in the same manner as in Example 7 except that the epoxy resin obtained in Comparative Example 3 was used instead of the epoxy resin obtained in 1. The property value of the obtained epoxy resin is
It was as follows. Softening point: 93 ° C. Epoxy equivalent: 929 α-diol group content: 14 meq / 100 g Hydrolyzable chlorine content: 0.003% by weight

【0044】実施例6および比較例3で得られたメチル
エチルケトン希釈エポキシ樹脂をそれぞれ133g、ジ
シアンジアミドのメチルセロソルブ/DMF溶液(ジシ
アンジアミド濃度=12重量%)27g、ベンジルジメ
チルアミンのメチルエチルケトン溶液(濃度=10重量
%)0.18mlを均一混合して、2種のエポキシ樹脂
組成物を得た。これらの2種のエポキシ樹脂組成物のそ
れぞれを、ガラスクロス(日東紡製品WE−18K−B
Z2)に含浸させ、150℃で5分間加熱してプリプレ
グを作製した。このプリプレグを9枚重ねて、170
℃、10Kgf/mm2 の条件で60分間加熱加圧し
て、厚み1.6mmの積層板を作製した。得られた積層
板を5時間煮沸して吸水させた後、260℃半田浴に3
0秒間浸漬し”ハガレ”、”ミーズリング”等の異常の
有無を調べた。その結果、実施例6で得られたメチルエ
チルケトン希釈エポキシ樹脂を用いて作製された積層板
については、全く異常が認められなかったが、比較例3
で得られたメチルエチルケトン希釈エポキシ樹脂を用い
て作製された積層板については、全面に”ミーズリン
グ”および”フクレ”が発生することが分かった。
133 g of each of the methyl ethyl ketone diluted epoxy resins obtained in Example 6 and Comparative Example 3, 27 g of a dicyandiamide methylcellosolve / DMF solution (dicyandiamide concentration = 12% by weight), and a benzyldimethylamine methylethylketone solution (concentration = 10% by weight). %) 0.18 ml were uniformly mixed to obtain two kinds of epoxy resin compositions. Each of these two kinds of epoxy resin compositions was mixed with glass cloth (WE-18K-B
Z2) was impregnated and heated at 150 ° C. for 5 minutes to prepare a prepreg. 170 pieces of this prepreg are piled up
The laminate was heated and pressed for 60 minutes at a temperature of 10 ° C. and 10 kgf / mm 2 to produce a laminated plate having a thickness of 1.6 mm. The obtained laminated plate was boiled for 5 hours to absorb water, and then placed in a solder bath at 260 ° C for 3 hours.
It was immersed for 0 seconds and examined for abnormalities such as "peeling" and "measling". As a result, no abnormality was found in the laminated plate produced using the methyl ethyl ketone diluted epoxy resin obtained in Example 6, but Comparative Example 3
It was found that "measling" and "blister" were generated on the entire surface of the laminated plate prepared by using the epoxy resin diluted with methyl ethyl ketone obtained in 1.

【0045】実施例7および比較例4で得られたエポキ
シ樹脂をそれぞれ100g、硬化剤ジシアンジアミド4
g、充填剤ルチル型酸化チタン50g、ならびに流れ調
製剤としてアクリル樹脂1.2gを配合し、この配合物
を粉砕機で粉砕、混合した後、105℃に加熱された8
インチ2本ロールで8分間混練した。混練物を冷却後、
ハンマーミルで粉砕し、標準篩で150〜250メッシ
ュの粒径の粒子を主成分とする粉体を調製した。
100 g each of the epoxy resins obtained in Example 7 and Comparative Example 4 and a curing agent dicyandiamide 4
g, 50 g of rutile type titanium oxide as a filler, and 1.2 g of acrylic resin as a flow adjusting agent, and the mixture was pulverized and mixed by a pulverizer and then heated to 105 ° C.
It was kneaded for 8 minutes with a two-inch roll. After cooling the kneaded material,
It was crushed with a hammer mill and a powder having a particle size of 150 to 250 mesh as a main component was prepared with a standard sieve.

【0046】この粉体を、静電塗装機を用いて、予め1
80〜200℃に加熱した厚さ9mmの鉄板(SS−4
1、♯120サンダー研磨)に塗装し、200℃で10
分間のポストキュアーを行うことにより、膜厚約300
〜350μの塗膜を得た。この塗膜について、デュポン
衝撃試験機を用いて、室温下、5/8インチの撃ついに
2Kgのおもりを落下させた。その結果、実施例7で得
られたエポキシ樹脂を用いて得られた塗膜については、
50cm以上、一方、比較例4で得られたエポキシ樹脂
を用いて得られた塗膜については、25cmであった。
This powder was preliminarily applied to 1 by using an electrostatic coating machine.
Iron plate with a thickness of 9 mm heated to 80-200 ° C (SS-4
1, # 120 sander polishing) and apply at 200 ° C for 10
By performing post cure for about 3 minutes, the film thickness is about 300.
A coating film of ˜350 μ was obtained. With respect to this coating film, a 2 kg weight was dropped at a room temperature of 5/8 inch using a DuPont impact tester. As a result, regarding the coating film obtained by using the epoxy resin obtained in Example 7,
50 cm or more, while the coating film obtained using the epoxy resin obtained in Comparative Example 4 was 25 cm.

【0047】[0047]

【発明の効果】本発明の方法によれば、α−ジオール基
等を含有する水溶性不純物の含有量が極めて少ない高純
度エポキシ樹脂を得ることができる。そのため、本発明
の方法によって得られる高純度エポキシ樹脂は、電子機
器用途、塗料用途に好適に用いられる。
According to the method of the present invention, it is possible to obtain a high-purity epoxy resin having a very small content of water-soluble impurities containing an α-diol group or the like. Therefore, the high-purity epoxy resin obtained by the method of the present invention is suitable for use in electronic devices and coatings.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多価フェノールのジグリシジルエーテルか
らなるエポキシ樹脂を、ホウ酸およびホウ酸塩から選ば
れる少なくとも1種の水溶液と接触させる工程を有する
高純度エポキシ樹脂の製造方法。
1. A method for producing a high-purity epoxy resin, which comprises a step of bringing an epoxy resin composed of a diglycidyl ether of a polyhydric phenol into contact with an aqueous solution of at least one selected from boric acid and borate.
JP12796095A 1995-05-26 1995-05-26 Production of high-purity epoxy resin Pending JPH08319336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12796095A JPH08319336A (en) 1995-05-26 1995-05-26 Production of high-purity epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12796095A JPH08319336A (en) 1995-05-26 1995-05-26 Production of high-purity epoxy resin

Publications (1)

Publication Number Publication Date
JPH08319336A true JPH08319336A (en) 1996-12-03

Family

ID=14972927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12796095A Pending JPH08319336A (en) 1995-05-26 1995-05-26 Production of high-purity epoxy resin

Country Status (1)

Country Link
JP (1) JPH08319336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254579A (en) * 2006-03-23 2007-10-04 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and cured material thereof
JP2007308642A (en) * 2006-05-19 2007-11-29 Nippon Kayaku Co Ltd Epoxy resin, curable resin composition and cured product thereof
JP2007332196A (en) * 2006-06-13 2007-12-27 Nippon Kayaku Co Ltd Modified epoxy resin, epoxy resin composition, and cured form thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254579A (en) * 2006-03-23 2007-10-04 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and cured material thereof
JP2007308642A (en) * 2006-05-19 2007-11-29 Nippon Kayaku Co Ltd Epoxy resin, curable resin composition and cured product thereof
JP2007332196A (en) * 2006-06-13 2007-12-27 Nippon Kayaku Co Ltd Modified epoxy resin, epoxy resin composition, and cured form thereof

Similar Documents

Publication Publication Date Title
JP5860151B2 (en) Epoxy resin composition, epoxy resin, and cured product
KR101794366B1 (en) Method for producing a phosphorus-containing epoxy resin, epoxy resin composition, and cured product thereof
US7268192B2 (en) Process for producing high-purity epoxy resin and epoxy resin composition
JP4735297B2 (en) Composite in which epoxy resin hardened layer and structural component material are integrated
JP5142180B2 (en) Epoxy resin composition and cured product thereof
JP5153000B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
WO2008047613A1 (en) Epoxy resin, method for producing the epoxy resin, epoxy resin composition using the epoxy resin, and cured product of the epoxy resin composition
JPH08319336A (en) Production of high-purity epoxy resin
JP2020105436A (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2001214037A (en) Epoxy resin composition
JPH0948839A (en) Epoxy resin composition and semiconductor sealer
JP4363048B2 (en) Epoxy resin composition and cured product thereof
JP3915938B2 (en) Epoxy resin composition, method for producing epoxy resin, and semiconductor sealing material
JP3100234B2 (en) Phenolic resin, method for producing the same, epoxy resin composition and epoxy resin composition for encapsulating semiconductor
JP3995244B2 (en) Epoxy resin, method for producing epoxy resin, epoxy resin composition and cured product thereof
JP3436794B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2017137374A (en) Epoxy resin and method for producing the same, and epoxy resin composition based on the resin
JPH04275317A (en) New novolak type resin and its production
JPH08325361A (en) Phenolic resin, epoxy resin, epoxy resin composition and its cured product
JPH11140069A (en) Epoxy resin, production of the epoxy resin, composition containing the epoxy resin, and epoxy resin composition for sealing semiconductor comprising the composition
JPH08301973A (en) Production of epoxy resin, and epoxy resin composition and its cured item
JPH09157351A (en) Epoxy resin, epoxy resin composition and its cured product
JPH0892347A (en) Epoxy resin, epoxy resin composition and its cured material
JPH11209584A (en) Epoxy resin composition and semiconductor-sealing material
JPH06345846A (en) Epoxy resin, its production, resin composition and its cured material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040309

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706