JP2007308642A - Epoxy resin, curable resin composition and cured product thereof - Google Patents

Epoxy resin, curable resin composition and cured product thereof Download PDF

Info

Publication number
JP2007308642A
JP2007308642A JP2006140918A JP2006140918A JP2007308642A JP 2007308642 A JP2007308642 A JP 2007308642A JP 2006140918 A JP2006140918 A JP 2006140918A JP 2006140918 A JP2006140918 A JP 2006140918A JP 2007308642 A JP2007308642 A JP 2007308642A
Authority
JP
Japan
Prior art keywords
epoxy resin
formula
dihydroxybiphenylmethane
biphenol
bisphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006140918A
Other languages
Japanese (ja)
Other versions
JP5127160B2 (en
Inventor
Masataka Nakanishi
政隆 中西
Takao Sunaga
高男 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2006140918A priority Critical patent/JP5127160B2/en
Publication of JP2007308642A publication Critical patent/JP2007308642A/en
Application granted granted Critical
Publication of JP5127160B2 publication Critical patent/JP5127160B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin that is useful for an insulating material for electric/electronic components (such as a highly reliable semiconductor-sealing material), various composite materials including laminates (printed wiring boards, build-up substrates or the like) and CFRP, adhesives, coatings and the like, exhibits excellent flame retardancy and gives a cured product exhibiting excellent heat resistance and flexibility. <P>SOLUTION: The epoxy resin is obtained by causing a mixture of at least two selected from among 4,4'-dihydroxybiphenylmethane, 2,4'-dihydroxybiphenylmethane and 2,2'-dihydroxybiphenylmethane, biphenol and an epihalohydrin to react. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等、中でも特に積層板等の用途に有用であり、金属箔張り積層板、ビルドアップ基板用絶縁材料、フレキシブル基板材料など、更に詳しくは、本発明は電子回路基板に用いられる銅張り積層板の製造用の樹脂組成物として有用である硬化性樹脂組成物を与えるエポキシ樹脂及び該組成物の硬化物に関する。   The present invention relates to insulating materials for electrical and electronic parts (such as highly reliable semiconductor encapsulating materials) and laminates (printed wiring boards, build-up substrates, etc.), various composite materials including CFRP, adhesives, paints, etc. Useful for applications such as laminates, metal foil-clad laminates, insulating materials for build-up substrates, flexible substrate materials, etc. More specifically, the present invention is a resin for producing copper-clad laminates used for electronic circuit boards The present invention relates to an epoxy resin that provides a curable resin composition useful as a composition and a cured product of the composition.

エポキシ樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。   Epoxy resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It has been.

しかし近年、電気・電子分野においてはその発展に伴い、樹脂組成物の高純度化をはじめ耐湿性、密着性、誘電特性、フィラーを高充填させるための低粘度化、成型サイクルを短くするための反応性のアップ等の諸特性の一層の向上が求められている。又、構造材としては航空宇宙材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料が求められている。特に半導体封止分野、基板(基板自体、もしくはその周辺材料)においては薄型化が年々高度になり、材料に求められる特性として耐熱性はもちろんのこと、柔軟性が求められるようになってきている。更に環境問題から、近年、難燃剤としてハロゲン系エポキシ樹脂と三酸化アンチモンが特に電気電子部品の難燃剤として多用されているが、これらを使用した製品はその廃棄後の不適切な処理により、ダイオキシン等の有毒物質の発生に寄与することが指摘されている。上記の問題を解決する方法の一つとして、リン原子を骨格に有するエポキシ樹脂が提案されている。特に、通常のリン酸エステルタイプの化合物はその安定性が低いため、安定性の良い、環状リン酸エステル化合物が使用されている。またリン酸エステル化合物を使用しなくても、樹脂骨格を選ぶことで従来のエポキシ樹脂に比べ難燃性に優れたものが開発されてきている。現在、特に一般に「ハロゲンフリー、リンフリー」と呼ばれる難燃性が求められていている。このようなエポキシ樹脂としてはフェノール−ビフェニルアラルキル型エポキシ樹脂(具体的には日本化薬株式会社製NC−3000シリーズ)等が挙げられるが製造工程が複雑であり、より簡便で難燃性に優れるエポキシ樹脂の開発が望まれている。   However, in recent years, with the development in the electric and electronic fields, the resin composition is highly purified, moisture resistance, adhesion, dielectric properties, low viscosity for high filler filling, and shortening the molding cycle. There is a need for further improvements in various properties such as increased reactivity. Further, as a structural material, there is a demand for a material that is lightweight and has excellent mechanical properties in applications such as aerospace materials and leisure / sports equipment. Especially in the field of semiconductor encapsulation and substrates (substrate itself or its peripheral materials), thinning is becoming more and more sophisticated year by year, and heat resistance as well as flexibility is required as a characteristic required for materials. . In addition, due to environmental problems, halogen-based epoxy resins and antimony trioxide are recently widely used as flame retardants, especially as flame retardants for electric and electronic parts. It has been pointed out that it contributes to the generation of toxic substances such as As one method for solving the above problem, an epoxy resin having a phosphorus atom in the skeleton has been proposed. In particular, since a normal phosphate ester type compound has low stability, a cyclic phosphate compound having good stability is used. Even if a phosphoric acid ester compound is not used, those having excellent flame retardancy compared to conventional epoxy resins have been developed by selecting a resin skeleton. At present, there is a demand for flame retardancy generally called “halogen-free, phosphorus-free”. Examples of such an epoxy resin include a phenol-biphenyl aralkyl type epoxy resin (specifically, NC-3000 series manufactured by Nippon Kayaku Co., Ltd.) and the like, but the manufacturing process is complicated, and it is simpler and excellent in flame retardancy. Development of epoxy resin is desired.

特開2006−45261号公報JP 2006-45261 A

本発明の目的は、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用であるエポキシ樹脂であって、難燃性に優れた硬化物を与えるエポキシ樹脂、および、これを使用した硬化性樹脂組成物を提供することにある。   The object of the present invention is to provide insulating materials (such as highly reliable semiconductor encapsulating materials) for electrical and electronic parts, laminated plates (printed wiring boards, build-up substrates, etc.), various composite materials including CFRP, adhesives, paints, etc. It is an epoxy resin that is useful for the above, and provides an epoxy resin that gives a cured product excellent in flame retardancy, and a curable resin composition using the epoxy resin.

本発明者らは前記課題を解決するため鋭意研究の結果、本発明を完成した。即ち、本発明は、
(1)4,4’−ジヒドロキシビフェニルメタン、2,4’−ジヒドロキシビフェニルメタン及び2,2’−ジヒドロキシビフェニルメタンから選ばれる2種以上の混合物、ビフェノール及びエピハロヒドリンの三種を反応させ得られる平均分子量が500〜10000のエポキシ樹脂、
(2)下記式(1)

Figure 2007308642
(式中nは下記平均分子量にみあった繰り返し数を表す。複数あるArは下記式(1a)または(1b)を表し、それぞれ互いに同一であっても異なっていてもよいが、全てのArが式(1a)または式(1b)であることはない。)
Figure 2007308642
Figure 2007308642
で表されるエポキシ樹脂であって、酸素原子に対するメチレン結合の結合位置において下記式(2)、(3)、(4)
Figure 2007308642
Figure 2007308642
Figure 2007308642
で表される結合の含有量(モル)をそれぞれβ、γ、δとしたとき、0<β/(β+γ+δ)≦0.5であり、かつその平均分子量が500〜10000である事を特徴とするエポキシ樹脂、
(3)エポキシ当量が250〜2000g/eq.であり、かつ軟化点(もしくは融点)が45〜150℃であることを特徴とする(1)または(2)に記載のエポキシ樹脂、
(4)(1)〜(3)のいずれか1項に記載のエポキシ樹脂、および硬化剤を含有してなるエポキシ樹脂組成物、
(5)無機充填剤を組成物の総重量の20重量%以上含有することを特徴とするエポキシ樹脂組成物、
(6)(4)または(5)に記載の硬化性樹脂組成物を硬化してなる硬化物、
(7)(a)下記式(1’)
Figure 2007308642
(式中n'は平均分子量150〜500にみあった繰り返し数を表す。複数あるArは下記式(1a)または(1b)を表し、それぞれ互いに同一であっても異なっていてもよい。)
Figure 2007308642
Figure 2007308642
で表されるエポキシ樹脂に
(b)4,4’−ジヒドロキシビフェニルメタン、2,4’−ジヒドロキシビフェニルメタン及び2,2’−ジヒドロキシビフェニルメタンから選ばれる2種以上の混合物
及び/または
(c)ビフェノール
を反応させることを特徴とする下記式(1)
Figure 2007308642
(式中nは平均分子量500〜10000にみあった繰り返し数を表す。複数あるArは前記式(1a)または(1b)を表し、それぞれ互いに同一であっても異なっていてもよいが、全てのArが式(1a)または式(1b)であることはない。また、酸素原子に対するメチレン結合の結合位置において下記式(2)、(3)、(4)
Figure 2007308642
Figure 2007308642
Figure 2007308642
で表される結合の含有量(モル)をそれぞれβ、γ、δとしたとき、0<β/(β+γ+δ)≦0.5である。)
で表されるエポキシ樹脂の製造方法
(8)(a)のエポキシ樹脂がビスフェノールF型エポキシ樹脂であり、(b)がビフェノールである(7)記載の製造方法
に関する。 The present inventors have completed the present invention as a result of intensive studies in order to solve the above problems. That is, the present invention
(1) Average molecular weight obtained by reacting a mixture of two or more selected from 4,4′-dihydroxybiphenylmethane, 2,4′-dihydroxybiphenylmethane and 2,2′-dihydroxybiphenylmethane, biphenol and epihalohydrin An epoxy resin of 500 to 10000,
(2) The following formula (1)
Figure 2007308642
(In the formula, n represents the number of repetitions according to the following average molecular weight. Plural Ars represent the following formula (1a) or (1b), which may be the same or different from each other, but all Ar Is not formula (1a) or formula (1b).)
Figure 2007308642
Figure 2007308642
The following formulas (2), (3), (4) at the bonding position of the methylene bond to the oxygen atom
Figure 2007308642
Figure 2007308642
Figure 2007308642
When the content (moles) of the bond represented by β is β, γ, and δ, respectively, 0 <β / (β + γ + δ) ≦ 0.5 and the average molecular weight is 500 to 10,000. Epoxy resin,
(3) Epoxy equivalent is 250-2000 g / eq. And the softening point (or melting point) is 45 to 150 ° C., the epoxy resin according to (1) or (2),
(4) An epoxy resin composition comprising the epoxy resin according to any one of (1) to (3) and a curing agent,
(5) An epoxy resin composition comprising an inorganic filler at 20% by weight or more of the total weight of the composition,
(6) A cured product obtained by curing the curable resin composition according to (4) or (5),
(7) (a) The following formula (1 ′)
Figure 2007308642
(In the formula, n ′ represents the number of repetitions with an average molecular weight of 150 to 500. A plurality of Ars represents the following formula (1a) or (1b), which may be the same as or different from each other.)
Figure 2007308642
Figure 2007308642
(B) a mixture of two or more selected from 4,4′-dihydroxybiphenylmethane, 2,4′-dihydroxybiphenylmethane and 2,2′-dihydroxybiphenylmethane and / or (c) The following formula (1) characterized by reacting biphenol
Figure 2007308642
(In the formula, n represents the number of repetitions with an average molecular weight of 500 to 10000. A plurality of Ars represents the above formula (1a) or (1b), which may be the same as or different from each other. Ar in formula (1a) or formula (1b) is not limited to the following formula (2), (3), (4) at the bonding position of the methylene bond to the oxygen atom.
Figure 2007308642
Figure 2007308642
Figure 2007308642
And 0 <β / (β + γ + δ) ≦ 0.5, where β, γ, and δ are the content (moles) of bonds represented by: )
(8) It relates to the production method according to (7), wherein the epoxy resin of (a) is a bisphenol F type epoxy resin and (b) is biphenol.

本発明のエポキシ樹脂を使用するエポキシ樹脂組成物は難燃剤、リン系化合物を使用しなくても難燃性を発現し、組成物中の難燃剤、リン系化合物の低減に寄与するエポキシ樹脂であり、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。   The epoxy resin composition using the epoxy resin of the present invention is an epoxy resin that exhibits flame retardancy without using a flame retardant and a phosphorus compound and contributes to the reduction of the flame retardant and phosphorus compound in the composition. Yes, it is useful for insulating materials for electrical and electronic parts (highly reliable semiconductor encapsulating materials, etc.), laminated boards (printed wiring boards, build-up boards, etc.), various composite materials including CFRP, adhesives, paints, etc. .

本発明のエポキシ樹脂は、ビスフェノール骨格とビフェノール骨格を有するエポキシ樹脂である。反応方法には特に限定はないが、ビスフェノールFとビフェノールを一括、あるいは段階的にエピハロヒドリンと反応させることで得られる。   The epoxy resin of the present invention is an epoxy resin having a bisphenol skeleton and a biphenol skeleton. The reaction method is not particularly limited, but it can be obtained by reacting bisphenol F and biphenol with epihalohydrin all at once or stepwise.

本発明において使用できるビスフェノールFとはフェノールとホルマリン(もしくはその誘導体)との反応物を指す。このようなビスフェノールFにはいくつかの位置異性体が存在するが、下記(2a)〜(4a)から選ばれる2種以上の位置異性体を含むビスフェノールFを使用する。

Figure 2007308642
Figure 2007308642
Figure 2007308642
市販されているビスフェノールFはこれに相当する。なお、たとえば、4,4’−ビスフェノールFのみを原料として本発明のエポキシ樹脂を製造した場合、結晶性が非常に高くなり、融点が150℃を超えてしまうことから製造時のハンドリングを考えてもあまり好ましくはない。
好ましい位置異性体の含有量(モル)としては前記式(2a)、(3a)、(4a)の位置異性体の含有量をそれぞれ(β’)、(γ’)、(δ’)とすると、0<β’/(β’+γ’+δ’)≦0.5を満たすことが好ましく、さらにβ’×γ’×δ’≠0を満たすことが好ましい。
また本発明のエポキシ樹脂を得る反応において使用できる’エピハロヒドリンとしてはエピクロロヒドリン、エピブロモヒドリン、エピヨウ化ヒドリン等の化合物が挙げられ、市場からの入手の簡便さからエピクロロヒドリンが好ましい。 Bisphenol F that can be used in the present invention refers to a reaction product of phenol and formalin (or a derivative thereof). Such bisphenol F has several positional isomers, and bisphenol F containing two or more positional isomers selected from the following (2a) to (4a) is used.
Figure 2007308642
Figure 2007308642
Figure 2007308642
Commercially available bisphenol F corresponds to this. For example, when the epoxy resin of the present invention is produced using only 4,4′-bisphenol F as a raw material, the crystallinity becomes very high and the melting point exceeds 150 ° C. Is also not preferred.
The preferred positional isomer content (mole) is that the content of the positional isomers of the formulas (2a), (3a), and (4a) is (β ′), (γ ′), and (δ ′), respectively. 0 <β ′ / (β ′ + γ ′ + δ ′) ≦ 0.5 is preferably satisfied, and β ′ × γ ′ × δ ′ ≠ 0 is preferably satisfied.
Examples of the 'epihalohydrin that can be used in the reaction for obtaining the epoxy resin of the present invention include compounds such as epichlorohydrin, epibromohydrin, epiiodinated hydrin and the like, and epichlorohydrin is preferable because it is easily available from the market. .

以下に本発明のエポキシ樹脂の具体的な合成法に関して記載する。本発明のエポキシ樹脂の合成法は以下の合成法に限られたものではない。
本発明のエポキシ樹脂は1段法、もしくはフュージョン法(Advanced法、二段法とも言う。新エポキシ樹脂 垣内弘編著 24−25、30−31ページ参照)によって合成できる。以下、両者につきそれぞれ詳細に説明する。
The specific synthesis method of the epoxy resin of the present invention will be described below. The synthesis method of the epoxy resin of the present invention is not limited to the following synthesis method.
The epoxy resin of the present invention can be synthesized by the one-step method or the fusion method (also called the Advanced method or the two-step method. New epoxy resin edited by Hiroshi Kakiuchi, pages 24-25 and 30-31). Hereinafter, both will be described in detail.

(1段法)
本発明のエポキシ樹脂を、ビスフェノールF、ビフェノールとエピハロヒドリンとを混合し、アルカリ金属水酸化物の存在下で反応させることにより得る方法である。
(One-stage method)
In this method, the epoxy resin of the present invention is obtained by mixing bisphenol F, biphenol and epihalohydrin and reacting them in the presence of an alkali metal hydroxide.

ビスフェノールFとビフェノールの使用量としては得られるエポキシ樹脂のビスフェノールF由来のフラグメントのモル数を(F)、ビフェノール由来のフラグメントのモル数を(P)とした場合、0.1≦(F/P)≦10を満たすように仕込むことが好ましい。さらに好ましくは0.4≦(F/P)≦5であり、さらに好ましくは0.6≦(F/P)≦4である。(F/P)>0.1の場合、結晶性が高すぎるためにハンドリングが悪くなり、(F/P)<10の場合、難燃性への寄与が少なくなる。
またエピハロヒドリンの使用量はビスフェノールF、ビフェノールのトータルの水酸基1モルに対し通常1.0〜5.0モル、好ましくは1.0〜4.0モル、さらに好ましくは1.5〜3.0モルである。
The amount of bisphenol F and biphenol used is 0.1 ≦ (F / P) where the number of moles of the bisphenol F-derived fragment of the resulting epoxy resin is (F) and the number of moles of the biphenol-derived fragment is (P). ) It is preferable to charge to satisfy ≦ 10. More preferably, 0.4 ≦ (F / P) ≦ 5, and further preferably 0.6 ≦ (F / P) ≦ 4. In the case of (F / P)> 0.1, the crystallinity is too high, so that the handling becomes worse. In the case of (F / P) <10, the contribution to flame retardancy is reduced.
The amount of epihalohydrin used is usually 1.0 to 5.0 moles, preferably 1.0 to 4.0 moles, more preferably 1.5 to 3.0 moles per mole of total hydroxyl groups of bisphenol F and biphenol. It is.

本反応において使用しうるアルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム等が挙げられ、固形物を利用してもよく、その水溶液を使用してもよい。水溶液を使用する場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びエピハロヒドリンを留出させ、更に分液して水を除去し、エピハロヒドリンを反応系内に連続的に戻す方法でもよい。アルカリ金属水酸化物の使用量はビスフェノールF、ビフェノールのトータルの水酸基1モルに対して通常0.3〜2.5モルであり、好ましくは0.5〜2.0モルである。   Examples of the alkali metal hydroxide that can be used in this reaction include sodium hydroxide, potassium hydroxide, and the like, and a solid substance may be used or an aqueous solution thereof may be used. When using an aqueous solution, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system, and water and epihalohydrin are continuously distilled off under reduced pressure or normal pressure, and further separated to remove water. Alternatively, the epihalohydrin may be continuously returned to the reaction system. The usage-amount of an alkali metal hydroxide is 0.3-2.5 mol normally with respect to 1 mol of total hydroxyl groups of bisphenol F and biphenol, Preferably it is 0.5-2.0 mol.

反応を促進するためにテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加することは好ましい。4級アンモニウム塩の使用量としてはビスフェノールF、ビフェノールのトータルの水酸基1モルに対し通常0.1〜15gであり、好ましくは0.2〜10gである。   In order to accelerate the reaction, it is preferable to add a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride as a catalyst. The amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, relative to 1 mol of the total hydroxyl groups of bisphenol F and biphenol.

この際、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン等の非プロトン性極性溶媒などを添加して反応を行うことが反応進行上好ましい。   At this time, it is preferable for the reaction to proceed by adding an aprotic polar solvent such as alcohols such as methanol, ethanol and isopropyl alcohol, dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran and dioxane.

アルコール類を使用する場合、その使用量はエピハロヒドリンの使用量に対し通常2〜50重量%、好ましくは4〜20重量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの使用量に対し通常5〜200重量%、好ましくは10〜150重量%である。   When using alcohol, the amount of its use is 2-50 weight% normally with respect to the usage-amount of epihalohydrin, Preferably it is 4-20 weight%. Moreover, when using an aprotic polar solvent, it is 5-200 weight% normally with respect to the usage-amount of epihalohydrin, Preferably it is 10-150 weight%.

反応温度は通常30〜90℃であり、好ましくは35〜80℃である。反応時間は通常0.5〜10時間であり、好ましくは1〜8時間である。これらのエポキシ化反応の反応物を水洗後、または水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、回収したエポキシ樹脂をトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて反応を行い、閉環を確実なものにすることも出来る。この場合アルカリ金属水酸化物の使用量はエポキシ化に使用したビスフェノールF、ビフェノールのトータルの水酸基の水酸基1モルに対して通常0.01〜0.3モル、好ましくは0.05〜0.2モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜2時間である。   The reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C. The reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours. After the reaction product of these epoxidation reactions is washed with water or without washing with water, the epihalohydrin, the solvent and the like are removed under heating and reduced pressure. In order to make the epoxy resin less hydrolyzable halogen, the recovered epoxy resin is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added. The reaction can be carried out to ensure the ring closure. In this case, the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2, based on 1 mol of the total hydroxyl groups of bisphenol F and biphenol used for epoxidation. Is a mole. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.

反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下溶剤を留去することにより本発明のエポキシ樹脂が得られる。   After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin of the present invention.

(フュージョン法)
本手法は、ビスフェノールFおよび/またはビフェノールをグリシジル化して得られるエポキシ樹脂に対し、ビスフェノールFおよび/またはビフェノールを反応させる方法である。すなわち中間体エポキシ樹脂にさらにフェノール化合物を反応させるというものである。使用する中間体エポキシ樹脂とフェノール化合物は、得られるエポキシ樹脂が、ビスフェノールF骨格とビフェノール骨格を有する組み合わせになればよい。原料となるビスフェノールFおよび/またはビフェノールをグリシジル化して得られるエポキシ樹脂は、市販の化合物(後述)を使用しても、ビスフェノールFおよび/またはビフェノールをグリシジル化して使用してもよい。
(Fusion method)
This method is a method in which bisphenol F and / or biphenol are reacted with an epoxy resin obtained by glycidylating bisphenol F and / or biphenol. That is, a phenol compound is further reacted with the intermediate epoxy resin. The intermediate epoxy resin and phenol compound to be used may be a combination in which the obtained epoxy resin has a bisphenol F skeleton and a biphenol skeleton. The epoxy resin obtained by glycidylating bisphenol F and / or biphenol as a raw material may be a commercially available compound (described later) or may be used after glycidylating bisphenol F and / or biphenol.

市販品であるビスフェノールFとしては、日本化薬株式会社製RE−304S、RE−303S−L、RE−404S、RE−403S、など、ジャパンエポキシレジン株式会社製 jER−806、jER−806L、jER−807、など、東都化成工業株式会社製 YDF−170、YDF−175Sなどが挙げられる。   Examples of commercially available bisphenol F include RE-304S, RE-303S-L, RE-404S, and RE-403S manufactured by Nippon Kayaku Co., Ltd., such as jER-806, jER-806L, and jER manufactured by Japan Epoxy Resin Co., Ltd. -807, etc., Toto Kasei Kogyo Co., Ltd. YDF-170, YDF-175S etc. are mentioned.

また、中間体エポキシ樹脂を合成する場合、例えばビスフェノールFおよび/またはビフェノールとエピハロヒドリンとをアルカリ金属水酸化物の存在下に反応させる。エピハロヒドリンの使用量はビスフェノールFおよび/またはビフェノールのトータルの水酸基1モルに対し通常3.0〜20.0モル、好ましくは3.5〜10.0モルである。ここで使用できるビスフェノールFとしては、前記ビスフェノールF等が挙げられる。   When synthesizing the intermediate epoxy resin, for example, bisphenol F and / or biphenol and epihalohydrin are reacted in the presence of an alkali metal hydroxide. The amount of epihalohydrin used is usually 3.0 to 20.0 mol, preferably 3.5 to 10.0 mol, based on 1 mol of the total hydroxyl group of bisphenol F and / or biphenol. Examples of the bisphenol F that can be used here include the bisphenol F and the like.

上記反応において使用しうるアルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム等が挙げられ、固形物を利用してもよく、またその水溶液を使用してもよい。水溶液を使用する場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びエピハロヒドリンを留出させ、更に分液して水を除去し、エピハロヒドリンを反応系内に連続的に戻す方法でもよい。アルカリ金属水酸化物の使用量はビスフェノールFおよび/またはビフェノールの水酸基1モルに対して通常0.9〜2.5モルであり、好ましくは0.95〜2.0モルである。   Examples of the alkali metal hydroxide that can be used in the above reaction include sodium hydroxide, potassium hydroxide, and the like, and a solid substance may be used or an aqueous solution thereof may be used. When using an aqueous solution, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system, and water and epihalohydrin are continuously distilled off under reduced pressure or normal pressure, and further separated to remove water. Alternatively, the epihalohydrin may be continuously returned to the reaction system. The usage-amount of an alkali metal hydroxide is 0.9-2.5 mol normally with respect to 1 mol of hydroxyl groups of bisphenol F and / or biphenol, Preferably it is 0.95-2.0 mol.

反応を促進するためにテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加することは好ましい。4級アンモニウム塩の使用量としてはC−BPのトータルの水酸基1モルに対し通常0.1〜15gであり、好ましくは0.2〜10gである。   In order to accelerate the reaction, it is preferable to add a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride as a catalyst. The amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, relative to 1 mol of the total hydroxyl group of C-BP.

この際、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン等の非プロトン性極性溶媒などを添加して反応を行うことが反応進行上好ましい。   At this time, it is preferable for the reaction to proceed by adding an aprotic polar solvent such as alcohols such as methanol, ethanol and isopropyl alcohol, dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran and dioxane.

アルコール類を使用する場合、その使用量はエピハロヒドリンの使用量に対し通常2〜50重量%、好ましくは4〜20重量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの使用量に対し通常5〜100重量%、好ましくは10〜80重量%である。   When using alcohol, the amount of its use is 2-50 weight% normally with respect to the usage-amount of epihalohydrin, Preferably it is 4-20 weight%. Moreover, when using an aprotic polar solvent, it is 5-100 weight% normally with respect to the usage-amount of epihalohydrin, Preferably it is 10-80 weight%.

反応温度は通常30〜90℃であり、好ましくは35〜80℃である。反応時間は通常0.5〜10時間であり、好ましくは1〜8時間である。これらのエポキシ化反応の反応物を水洗後、または水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、回収したエポキシ樹脂をトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて反応を行い、閉環を確実なものにすることも出来る。この場合アルカリ金属水酸化物の使用量はグリシジル化に使用したビスフェノールFおよび/またはビフェノールのトータルの水酸基1モルに対して通常0.01〜0.3モル、好ましくは0.05〜0.2モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜2時間である。   The reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C. The reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours. After the reaction product of these epoxidation reactions is washed with water or without washing with water, the epihalohydrin, the solvent and the like are removed under heating and reduced pressure. In order to make the epoxy resin less hydrolyzable halogen, the recovered epoxy resin is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added. The reaction can be carried out to ensure the ring closure. In this case, the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2, based on 1 mol of the total hydroxyl group of bisphenol F and / or biphenol used for glycidylation. Is a mole. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.

反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下溶剤を留去することにより中間体エポキシ樹脂が得られる。このようにして得られる中間体エポキシ樹脂は一般にその平均分子量が150〜500であることが好ましく、さらに好ましくは155〜400である。なお、本発明において「平均分子量」は、エポキシ当量より算出された値である。
得られた中間体エポキシ樹脂とさらにビスフェノールFおよび/またはビフェノールを反応させることにより、本発明のエポキシ樹脂を得ることができる。
After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain an intermediate epoxy resin. The intermediate epoxy resin thus obtained generally has an average molecular weight of preferably 150 to 500, more preferably 155 to 400. In the present invention, the “average molecular weight” is a value calculated from the epoxy equivalent.
The epoxy resin of the present invention can be obtained by reacting the obtained intermediate epoxy resin with bisphenol F and / or biphenol.

本反応は必要により、触媒を使用する。使用できる触媒としては具体的にはテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩;トリフェニルエチホスホニウムクロライド、トリフェニルホスホニウムブロマイド等の4級ホスフォニウム塩;水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属塩;2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類;2−(ジメチルアミノメチル)フェノール、トリエチレンジアミン、トリエタノールアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等の第3級アミン類;、トリフェニルホスフィン、ジフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類;オクチル酸スズなどの金属化合物;テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート、N−メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩などが挙げられる。これら触媒は、その触媒の種類にもよるが、一般に中間体エポキシ樹脂とビスフェノールFおよび/またはビフェノールの総重量に対して通常10ppm〜30000ppm、好ましくは100ppm〜5000ppmが必要に応じて用いられる。本反応においては触媒を添加しなくても反応は進行するので、触媒は反応温度、反応溶剤量を勘案して適宜使用する。   This reaction uses a catalyst if necessary. Specific examples of catalysts that can be used include quaternary ammonium salts such as tetramethylammonium chloride, tetramethylammonium bromide and trimethylbenzylammonium chloride; quaternary phosphonium salts such as triphenylethiphosphonium chloride and triphenylphosphonium bromide; sodium hydroxide Alkali metal salts such as potassium hydroxide, potassium carbonate, cesium carbonate; imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole; 2- (dimethylaminomethyl) ) Tertiary amines such as phenol, triethylenediamine, triethanolamine, 1,8-diazabicyclo (5,4,0) undecene-7 ;, triphenylphosphine, diphenyl Organic phosphines such as sphin and tributylphosphine; metal compounds such as tin octylate; tetrasubstituted phosphonium / tetrasubstituted borates such as tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenylborate, 2-ethyl-4- Examples thereof include tetraphenylboron salts such as methylimidazole / tetraphenylborate and N-methylmorpholine / tetraphenylborate. These catalysts are generally used in an amount of 10 ppm to 30000 ppm, preferably 100 ppm to 5000 ppm, if necessary, based on the total weight of the intermediate epoxy resin and bisphenol F and / or biphenol, depending on the type of the catalyst. In this reaction, since the reaction proceeds without adding a catalyst, the catalyst is appropriately used in consideration of the reaction temperature and the amount of the reaction solvent.

このフュージョン法において、溶剤は使用しても使用しなくてもかまわない。溶剤を使用する場合は本反応に影響を与えない溶剤であればいずれの溶剤でも使用でき、例えば以下に示すような溶剤を用いることができる。
極性溶剤、エーテル類;ジメチルスルホキシド、N,N’−ジメチルホルムアミド、N−メチルピロリドン、テトラヒドロフラン、ジグライム、トリグライム、プロピレングリコールモノメチルエーテル等、
エステル系の有機溶剤;酢酸エチル、酢酸ブチル、乳酸ブチル、γ−ブチロラクトン等、
ケトン系有機溶剤;メチルイソブチルケトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等
芳香族系有機溶剤;トルエン、キシレン等
溶剤の使用量は中間体エポキシ樹脂とビスフェノールFおよび/またはビフェノールの総重量に対し、0〜300重量%、好ましくは0〜100重%である。
In this fusion method, a solvent may or may not be used. When a solvent is used, any solvent can be used as long as it does not affect the reaction. For example, the following solvents can be used.
Polar solvents, ethers; dimethyl sulfoxide, N, N′-dimethylformamide, N-methylpyrrolidone, tetrahydrofuran, diglyme, triglyme, propylene glycol monomethyl ether, etc.
Ester-based organic solvents; ethyl acetate, butyl acetate, butyl lactate, γ-butyrolactone, etc.
Ketone organic solvents; aromatic organic solvents such as methyl isobutyl ketone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; toluene, xylene, etc. The amount of solvent used is 0 with respect to the total weight of the intermediate epoxy resin and bisphenol F and / or biphenol. It is -300 weight%, Preferably it is 0-100 weight%.

フュージョン法は、中間体エポキシ樹脂を必要により触媒の存在下、ビスフェノールF及びまたはビフェノール(以下、両者をあわせて鎖延長剤という)と反応させる。なお、鎖延長剤は、得られるエポキシ樹脂が必ずビスフェノールフラグメントとビフェノールフラグメントを有するように選択するが、中間体エポキシ樹脂がビスフェノールF型エポキシ樹脂であり、鎖延長剤がビフェノールである組み合わせが好ましい。フュージョン法における中間体エポキシ樹脂と鎖延長剤の使用割合は、得られるエポキシ樹脂のF/Pが0.1≦(F/P)≦10を満たすように仕込むことが好ましい。さらに好ましくは0.4≦(F/P)≦5であり、さらに好ましくは0.6≦(F/P)≦4である。なお、得られたエポキシ樹脂のF/PはNMRで確認できる。フュージョン法における反応温度、反応時間は、使用する溶媒量や触媒の種類と量により、適宜選択する必要があり、一概に規定できないが、反応時間は通常1〜200時間、好ましくは1〜100時間である。生産性の問題からは反応時間が短いことが好ましい。また反応温度は0〜250℃、好ましくは30〜200℃である。   In the fusion method, an intermediate epoxy resin is reacted with bisphenol F and / or biphenol (hereinafter, both referred to as a chain extender) in the presence of a catalyst as necessary. The chain extender is selected so that the obtained epoxy resin always has a bisphenol fragment and a biphenol fragment, but a combination in which the intermediate epoxy resin is a bisphenol F type epoxy resin and the chain extender is biphenol is preferable. It is preferable to prepare the ratio of the intermediate epoxy resin and the chain extender used in the fusion method so that F / P of the resulting epoxy resin satisfies 0.1 ≦ (F / P) ≦ 10. More preferably, 0.4 ≦ (F / P) ≦ 5, and further preferably 0.6 ≦ (F / P) ≦ 4. In addition, F / P of the obtained epoxy resin can be confirmed by NMR. The reaction temperature and reaction time in the fusion method need to be appropriately selected depending on the amount of solvent used and the type and amount of the catalyst, and cannot be generally specified, but the reaction time is usually 1 to 200 hours, preferably 1 to 100 hours. It is. In view of productivity, it is preferable that the reaction time is short. The reaction temperature is 0 to 250 ° C, preferably 30 to 200 ° C.

反応終了後、必要に応じて水洗などにより触媒等を除去し、あるいは残したまま、更に加熱減圧下溶剤を留去することにより本発明のエポキシ樹脂が得られる。   After completion of the reaction, the epoxy resin of the present invention can be obtained by removing the catalyst or the like by washing with water or the like, if necessary, or by further distilling off the solvent under heating and reduced pressure.

このようにして得られる本発明のエポキシ樹脂は下記式(2)、(3)、(4)

Figure 2007308642
Figure 2007308642
Figure 2007308642
で表される結合の含有量(モル)をそれぞれ(β)、(γ)、(δ)としたとき、0<β/(β+γ+δ)≦0.5であるものが好ましく、β×γ×δ≠0であるものが特に好ましい。
このような関係を満たすには、一段法では、原料のビスフェノールF中の各結合異性体の含有割合が上記範囲を満たすようにすればよいし、フュージョン法では中間体エポキシ樹脂及びこれと反応させるビスフェノールFの各結合異性体のトータルの含有割合が上記範囲を満たせばよい。 The epoxy resin of the present invention thus obtained has the following formulas (2), (3), (4)
Figure 2007308642
Figure 2007308642
Figure 2007308642
Is preferably 0 <β / (β + γ + δ) ≦ 0.5 when the content (moles) of the bond represented by (β) is (β), (γ), and (δ), respectively, and β × γ × δ Those in which ≠ 0 are particularly preferred.
In order to satisfy such a relationship, in the one-step method, the content ratio of each bond isomer in the raw material bisphenol F may be set to satisfy the above range, and in the fusion method, the intermediate epoxy resin and this are reacted. It is only necessary that the total content ratio of each linking isomer of bisphenol F satisfies the above range.

また本発明エポキシ樹脂の平均分子量は、500〜10000である事が好ましい。さらに好ましくは500〜5000である。平均分子量が10000を超える場合、軟化点が非常に高くなり、取り扱いが困難になる。また本発明のエポキシ樹脂はエポキシ当量が250〜5000g/eq.であるが、250〜2500g/eq.であるものが好ましい。また軟化点(もしくは融点)が取り扱いのし易さから40〜160℃であることが好ましく、特に45〜150℃であることが好ましい。さらに好ましくは50〜130℃である。   Moreover, it is preferable that the average molecular weight of this invention epoxy resin is 500-10000. More preferably, it is 500-5000. When the average molecular weight exceeds 10,000, the softening point becomes very high and handling becomes difficult. The epoxy resin of the present invention has an epoxy equivalent of 250 to 5000 g / eq. But 250 to 2500 g / eq. Are preferred. The softening point (or melting point) is preferably 40 to 160 ° C., particularly 45 to 150 ° C., from the viewpoint of easy handling. More preferably, it is 50-130 degreeC.

こうして得られた本発明のエポキシ樹脂は、下記するエポキシ樹脂組成物の主成分として使用できる他、エポキシアクリレート、およびその誘導体、カーボネート樹脂、オキサゾリドン樹脂等へ誘導することができる。   The epoxy resin of the present invention thus obtained can be used as a main component of the epoxy resin composition described below, and can be derived into epoxy acrylate and derivatives thereof, carbonate resin, oxazolidone resin and the like.

以下、本発明のエポキシ樹脂組成物について説明する。
本発明のエポキシ樹脂組成物は本発明のエポキシ樹脂と硬化剤を含有する。本発明の硬化性樹脂組成物において、本発明のエポキシ樹脂は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、本発明のエポキシ樹脂のエポキシ樹脂中に占める割合は5重量%以上が好ましく、特に10重量%以上が好ましい。
Hereinafter, the epoxy resin composition of the present invention will be described.
The epoxy resin composition of the present invention contains the epoxy resin of the present invention and a curing agent. In the curable resin composition of the present invention, the epoxy resin of the present invention can be used alone or in combination with other epoxy resins. When used in combination, the proportion of the epoxy resin of the present invention in the epoxy resin is preferably 5% by weight or more, particularly preferably 10% by weight or more.

本発明のエポキシ樹脂と併用されうる他のエポキシ樹脂の具体例としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)、フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物、フェノール類と芳香族ジクロロメチル類(α,α’−ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物、フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物、アルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。   Specific examples of other epoxy resins that can be used in combination with the epoxy resin of the present invention include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.), phenols (phenol, alkyl-substituted phenol, aromatic substitution). Phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, croton Polycondensates with aldehydes, cinnamaldehyde, etc., phenols and various diene compounds (disi Polymers with lopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc., phenols and ketones (acetone, methyl ethyl ketone, methyl isobutyl) Ketones, acetophenones, benzophenones, etc.), polycondensates of phenols and aromatic dimethanols (benzene dimethanol, biphenyl dimethanol, etc.), phenols and aromatic dichloromethyls (α, α ' -Polycondensates with dichloroxylene, bischloromethylbiphenyl, etc.), phenols and aromatic bisalkoxymethyls (bismethoxymethylbenzene, bismethoxymethylbiphenyl, bisphenoxyme) Glycidyl ether epoxy resin, alicyclic epoxy resin, glycidyl amine epoxy resin, glycidyl ester epoxy resin obtained by glycidylation of alcohols, etc. However, the epoxy resin is not limited thereto as long as it is a commonly used epoxy resin. These may be used alone or in combination of two or more.

本発明のエポキシ樹脂組成物において硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)、フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物、フェノール類と芳香族ジクロロメチル類(α,α’−ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物、フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物、及びこれらの変性物、イミダゾ−ル、トリフルオロボラン−アミン錯体、グアニジン誘導体などが挙げられるがこれらに限定されることはない。   Examples of the curing agent in the epoxy resin composition of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride. Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.), phenols (phenol, alkyl substituted phenol, aromatic substituted phenol, naphthol, alkyl substituted naphthol, di Droxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.) Polycondensates, phenols and polymers of various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.) , Phenols and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone) , Acetophenone, benzophenone, etc.), polycondensates of phenols and aromatic dimethanols (benzene dimethanol, biphenyl dimethanol, etc.), phenols and aromatic dichloromethyls (α, α ' -Polycondensates with dichloroxylene, bischloromethylbiphenyl, etc.) Polycondensates with phenols and aromatic bisalkoxymethyls (bismethoxymethylbenzene, bismethoxymethylbiphenyl, bisphenoxymethylbiphenyl, etc.), bisphenols And polycondensates of aldehydes, and modified products thereof, imidazoles, trifluoroborane-amine complexes, guanidine derivatives, and the like, but are not limited thereto.

本発明のエポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.5〜1.5当量が好ましく、0.6〜1.2当量が特に好ましい。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全になり良好な硬化物性が得られない恐れがある。   In the epoxy resin composition of the present invention, the amount of the curing agent used is preferably 0.5 to 1.5 equivalents, particularly preferably 0.6 to 1.2 equivalents, based on 1 equivalent of the epoxy group of the epoxy resin. When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of an epoxy group, curing may be incomplete and good cured properties may not be obtained.

また上記硬化剤を用いる際に硬化促進剤を併用しても差し支えない。用いうる硬化促進剤としては、例えば、2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類、2−(ジメチルアミノメチル)フェノール、トリエチレンジアミン、トリエタノールアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン、ジフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類、オクチル酸スズなどの金属化合物、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート、N−メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩などが挙げられる。硬化促進剤を使用する場合の使用量はエポキシ樹脂100重量部に対して0.01〜15重量部が必要に応じ用いられる。   Moreover, when using the said hardening | curing agent, a hardening accelerator may be used together. Examples of the curing accelerator that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, triethylenediamine, Triethanolamine, tertiary amines such as 1,8-diazabicyclo (5,4,0) undecene-7, organic phosphines such as triphenylphosphine, diphenylphosphine and tributylphosphine, metal compounds such as tin octylate, Tetraphenylphosphonium / tetraphenylborate, tetrasubstituted phosphonium / tetrasubstituted borate such as tetraphenylphosphonium / ethyltriphenylborate, 2-ethyl-4-methylimidazole / tetraphenylborate, N-methylmol Such as tetraphenyl boron salts such as phosphorus-tetraphenylborate and the like. When the curing accelerator is used, the amount used is 0.01 to 15 parts by weight based on 100 parts by weight of the epoxy resin, if necessary.

更に、本発明のエポキシ樹脂組成物には、必要に応じて無機充填剤やシランカップリング材、離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤は、用途によりその使用量は異なるが、例えば半導体の封止剤用途に使用する場合はエポキシ樹脂組成物の硬化物の耐熱性、耐湿性、力学的性質、難燃性などの面からエポキシ樹脂組成物中で20重量%以上占める割合で使用するのが好ましく、より好ましくは30重量%以上であり、40〜95重量%を占める割合で使用するのがより好ましい。   Furthermore, an inorganic filler, a silane coupling material, a release agent, various compounding agents such as a pigment, and various thermosetting resins can be added to the epoxy resin composition of the present invention as necessary. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. However, the present invention is not limited to these. These may be used alone or in combination of two or more. These inorganic fillers may be used in different amounts depending on the application. For example, when used for semiconductor encapsulants, the heat resistance, moisture resistance, mechanical properties, flame retardancy, etc. of the cured epoxy resin composition From the aspect, it is preferably used in a proportion of 20% by weight or more in the epoxy resin composition, more preferably 30% by weight or more, and more preferably 40 to 95% by weight.

更に本発明のエポキシ樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネート樹脂(もしくはそのプレポリマー)、シリコーンゲル、シリコーンオイル、並びにシリカ、アルミナ、炭酸カルシウム、石英粉、アルミニウム粉末、グラファイト、タルク、クレー、酸化鉄、酸化チタン、窒化アルミニウム、アスベスト、マイカ、ガラス粉末、ガラス繊維、ガラス不織布または、カーボン繊維等の無機充填材、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。   Furthermore, a known additive can be blended in the epoxy resin composition of the present invention as necessary. Specific examples of additives that can be used include polybutadiene and its modified products, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluorine resin, maleimide compound, cyanate resin (or its prepolymer), silicone Gel, silicone oil, silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, glass powder, glass fiber, glass nonwoven fabric or carbon fiber Inorganic fillers such as, surface treatment agents for fillers such as silane coupling agents, release agents, colorants such as carbon black, phthalocyanine blue, and phthalocyanine green.

本発明のエポキシ樹脂組成物は、上記各成分を均一に混合することにより得られる。そして、本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば、エポキシ樹脂と硬化剤、並びに必要により硬化促進剤及び無機充填剤、配合剤、各種熱硬化性樹脂とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合することより本発明の硬化性樹脂組成物を得て、その硬化性樹脂組成物を溶融注型法あるいはトランスファー成型法やインジェクション成型法、圧縮成型法などによって成型し、更に80〜200℃で2〜10時間に加熱することにより硬化物を得ることができる。   The epoxy resin composition of the present invention can be obtained by uniformly mixing the above components. And the epoxy resin composition of this invention can be easily made into the hardened | cured material by the method similar to the method known conventionally. For example, an epoxy resin and a curing agent and, if necessary, a curing accelerator and an inorganic filler, a compounding agent, and various thermosetting resins are mixed thoroughly using an extruder, kneader, roll, etc. as necessary until uniform. Thus, the curable resin composition of the present invention is obtained, and the curable resin composition is molded by a melt casting method, a transfer molding method, an injection molding method, a compression molding method, or the like, and further at 80 to 200 ° C. A cured product can be obtained by heating for 10 hours.

また本発明のエポキシ樹脂組成物は場合により溶剤を含んでいてもよい。溶剤を含むエポキシ樹脂組成物(エポキシ樹脂ワニス)はガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のエポキシ樹脂組成物の硬化物とすることができる。このエポキシ樹脂組成物の溶剤含量は、本発明のエポキシ樹脂組成物と該溶剤の総量に対して通常10〜70重量%、好ましくは15〜70重量%程度である。また、該溶剤を含む硬化性樹脂組成物は下記ワニスとしても使用できる。該溶剤としては例えばγ−ブチロラクトン類、N−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド、N,N−ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、好ましくは低級アルキレングリコールモノ又はジ低級アルキルエーテル、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、好ましくは2つのアルキル基が同一でも異なってもよいジ低級アルキルケトン、トルエン、キシレンなどの芳香族系溶剤が挙げられる。これらは単独で合っても、また2以上の混合溶媒であってもよい。   Moreover, the epoxy resin composition of the present invention may optionally contain a solvent. An epoxy resin composition (epoxy resin varnish) containing a solvent is formed by hot press-molding a prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating. By this, it can be set as the hardened | cured material of the epoxy resin composition of this invention. The solvent content of the epoxy resin composition is usually about 10 to 70% by weight, preferably about 15 to 70% by weight, based on the total amount of the epoxy resin composition of the present invention and the solvent. Moreover, the curable resin composition containing this solvent can be used also as the following varnish. Examples of the solvent include amide solvents such as γ-butyrolactone, N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N, N-dimethylimidazolidinone, tetra Sulfones such as methylene sulfone, ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, preferably lower alkylene glycol mono or di-lower alkyl ether, methyl ethyl ketone, Ketone-based solvents such as methyl isobutyl ketone, preferably di-lower alkyl ketones in which two alkyl groups may be the same or different; Emissions, and aromatic solvents such as xylene. These may be used alone or in combination of two or more.

また、剥離フィルム上に前記ワニスを塗布し加熱下で溶剤を除去、Bステージ化を行うことによりシート状の接着剤を得ることが出来る。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。   Moreover, a sheet-like adhesive can be obtained by applying the varnish on a release film, removing the solvent under heating, and performing B-stage. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.

本発明で得られる硬化物は各種用途に使用できる。詳しくはエポキシ樹脂等の熱硬化性樹脂が使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。   The cured product obtained in the present invention can be used for various applications. Specifically, general applications in which a thermosetting resin such as an epoxy resin is used can be mentioned. For example, adhesives, paints, coating agents, molding materials (including sheets, films, FRPs, etc.), insulating materials (printed boards, In addition to sealing agents, etc., additives to other resins and the like can be mentioned.

接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。   Examples of the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).

封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。   As sealing agents, potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip For example, underfill for QFP, BGA, CSP, etc., and sealing (including reinforcing underfill) can be used.

次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。また実施例において、エポキシ当量はJIS K−7236、軟化点はJIS K−7234に準じた方法で測定した。   EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified. The present invention is not limited to these examples. Moreover, in the Example, the epoxy equivalent was measured by the method according to JIS K-7236, and the softening point according to JIS K-7234.

実施例1
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらビスフェノールF型エポキシ樹脂(日本化薬株式会社製 RE−304S エポキシ当量 171g/eq.)171部、4、4’−ビフェノール(本州化学工業株式会社製 p,p’−ビフェノール)93部、メチルイソブチルケトン70部、トリフェニルホスフィン0.25部を加え、100℃で1時間、120℃で3時間、130℃で5時間反応を行った。反応終了後、加熱減圧下、溶剤を留去することで本発明のエポキシ樹脂が264部得られた。得られたエポキシ樹脂のエポキシ当量は438g/eq.であり、その軟化点は54℃であった。また平均分子量は876であった。またβ/(β+γ+δ)≒0.24であり、F/P=2であった。
Example 1
A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen while bisphenol F type epoxy resin (Nippon Kayaku Co., Ltd. RE-304S epoxy equivalent 171 g / eq.) 171 parts, 4, 4′- Add 93 parts of biphenol (p, p'-biphenol, manufactured by Honshu Chemical Industry Co., Ltd.), 70 parts of methyl isobutyl ketone, and 0.25 part of triphenylphosphine, add 1 hour at 100 ° C, 3 hours at 120 ° C, 5 parts at 130 ° C. Time reaction was performed. After completion of the reaction, 264 parts of the epoxy resin of the present invention was obtained by distilling off the solvent under heating and reduced pressure. The epoxy equivalent of the obtained epoxy resin was 438 g / eq. The softening point was 54 ° C. The average molecular weight was 876. Β / (β + γ + δ) ≈0.24 and F / P = 2.

実施例2
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらビスフェノールF(三井化学ファイン株式会社製 BisF−ST)100部、4、4’−ビフェノール(本州化学工業株式会社製 p,p’−ビフェノール)20部、エピクロロヒドリン564部、ジメチルスルホキシド141部を加え、40℃にまで昇温した。次いでフレーク状の水酸化ナトリウム50部を90分かけて分割添加した後、更に40℃で2時間、60℃で1時間、70℃で1時間後反応を行った。反応終了後水洗を行い、油層からロータリーエバポレーターを用いて140℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチルケトン380部を加え溶解し、80℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液12部を加え、1時間反応を行った後、洗浄水が中性になるまで水洗を行い、得られた溶液を、ロータリーエバポレーターを用いて180℃で減圧下にメチルイソブチルケトン等を留去することで中間体エポキシ樹脂(NEP1)を182部得た。得られたエポキシ樹脂のエポキシ当量は164g/eq.、平均分子量は328であった。
さらに撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら得られた中間体エポキシ樹脂(NEP1)を164部、4、4’−ビフェノール(本州化学工業株式会社製 p,p’−ビフェノール)46.5部、トリフェニルホスフィン0.2部、シクロペンタノン30部を加え、100℃で1時間、120℃で3時間、130℃で5時間反応を行った。反応終了後、加熱減圧下、溶剤を留去することで本発明のエポキシ樹脂(EP2)が210部得られた。得られたエポキシ樹脂のエポキシ当量は440g/eq.であり、その軟化点は61℃であった。また平均分子量は880であった。またβ/(β+γ+δ)≒0.24であり、F/P≒1.4であった。
Example 2
A flask equipped with a stirrer, a reflux condenser, and a stirrer is purged with nitrogen, and 100 parts of bisphenol F (BisF-ST, Mitsui Chemicals Fine Co., Ltd.), 4,4'-biphenol (Popular Honshu Chemical Co., Ltd. p) , P'-biphenol), 564 parts of epichlorohydrin, and 141 parts of dimethyl sulfoxide were added, and the temperature was raised to 40 ° C. Next, 50 parts of flaky sodium hydroxide was added in portions over 90 minutes, and then the reaction was further performed at 40 ° C. for 2 hours, at 60 ° C. for 1 hour, and at 70 ° C. for 1 hour. After completion of the reaction, washing was performed, and excess solvent such as epichlorohydrin was distilled off from the oil layer under reduced pressure at 140 ° C. using a rotary evaporator. 380 parts of methyl isobutyl ketone was added to the residue and dissolved, and the temperature was raised to 80 ° C. Under stirring, 12 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was carried out for 1 hour, followed by washing with water until the washing water became neutral, and the resulting solution was obtained at 180 ° C. using a rotary evaporator. By distilling off methyl isobutyl ketone and the like under reduced pressure, 182 parts of intermediate epoxy resin (NEP1) was obtained. The epoxy equivalent of the obtained epoxy resin is 164 g / eq. The average molecular weight was 328.
Furthermore, in a flask equipped with a stirrer, a reflux condenser, and a stirrer, 164 parts of an intermediate epoxy resin (NEP1) obtained while performing a nitrogen purge, 4,4′-biphenol (p. p'-biphenol) (46.5 parts), triphenylphosphine (0.2 parts) and cyclopentanone (30 parts) were added, and the reaction was carried out at 100 ° C for 1 hour, at 120 ° C for 3 hours, and at 130 ° C for 5 hours. After completion of the reaction, 210 parts of the epoxy resin (EP2) of the present invention was obtained by distilling off the solvent under heating and reduced pressure. The epoxy equivalent of the obtained epoxy resin is 440 g / eq. The softening point was 61 ° C. The average molecular weight was 880. Further, β / (β + γ + δ) ≈0.24 and F / P≈1.4.

実施例3、4、比較例1
実施例1、2で得られた本発明のエポキシ樹脂(EP1)、(EP2)、比較例として市販の固形ビスフェノールF型エポキシ樹脂(EP3)(東都化成株式会社製 YDF−2004 エポキシ当量471g/eq. β/(β+γ+δ)≒0.25)についてKAYAHARD GPH−65(日本化薬株式会社製 フェノールアラルキル樹脂 水酸基当量199g/eq.)を硬化剤とし、硬化促進剤としてトリフェニルホスフィン(TPP)を下記表1に示す配合比(重量部)で配合した。またそれ以外の成分としては以下の成分を添加した。フィラーとしてMSR−2212を組成物の総重量に対し、83重量%、ワックスとしてカルナバ1号をフィラー量に対し、0.3重量%、カップリング剤としてKBM−303(信越化学工業株式会社)をフィラー量に対し、0.4重量%添加して組成物を調製し、トランスファー成型(175℃ 60秒)により樹脂成形体を得、これをさらに160℃で2時間、更に180℃で8時間かけて硬化させた。
Examples 3 and 4 and Comparative Example 1
Epoxy resins (EP1) and (EP2) of the present invention obtained in Examples 1 and 2, commercially available solid bisphenol F type epoxy resin (EP3) as a comparative example (YDF-2004 epoxy equivalent 471 g / eq, manufactured by Toto Kasei Co., Ltd.) Β / (β + γ + δ) ≈0.25) KAYAHARD GPH-65 (manufactured by Nippon Kayaku Co., Ltd., phenol aralkyl resin, hydroxyl group equivalent 199 g / eq.) As a curing agent, and triphenylphosphine (TPP) as a curing accelerator The blending ratio (parts by weight) shown in Table 1 was blended. In addition, the following components were added as other components. MSR-2212 as a filler is 83% by weight relative to the total weight of the composition, Carnauba No. 1 as a wax is 0.3% by weight relative to the filler amount, and KBM-303 (Shin-Etsu Chemical Co., Ltd.) is used as a coupling agent. A composition is prepared by adding 0.4% by weight to the amount of filler, and a resin molded body is obtained by transfer molding (175 ° C. 60 seconds), which is further heated at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours. And cured.

表1
実施例3 実施例4 比較例1
エポキシ樹脂 EP1 43.8
EP2 44.0
EP3 47.1
硬化剤 HD1 19.9 19.9 19.9
硬化促進剤 TPP 0.44 0.44 0.47
Table 1
Example 3 Example 4 Comparative Example 1
Epoxy resin EP1 43.8
EP2 44.0
EP3 47.1
Hardener HD1 19.9 19.9 19.9
Curing accelerator TPP 0.44 0.44 0.47

得られた硬化物の物性を測定した結果を表2に示す。なお、物性値の測定は以下の方法で行った。
ガラス転移点:
TMA 熱機械測定装置:真空理工(株)製 TM−7000
昇温速度:2℃/min.
難燃性 : UL−94に準拠
(評価値はトータル燃焼時間で記載 50秒以下でV−0)
The results of measuring the physical properties of the obtained cured product are shown in Table 2. The physical property values were measured by the following methods.
Glass transition point:
TMA thermomechanical measuring device: TM-7000 manufactured by Vacuum Riko Co., Ltd.
Temperature increase rate: 2 ° C./min.
Flame retardancy: Conforms to UL-94 (Evaluation value is described in total combustion time, V-0 within 50 seconds)

表2
実施例3 実施例4 比較例1
ガラス転移温度(℃)
TMA 105 112 76
難燃性(厚み0.8mm)
UL−94 V−0 V−0 V−1
トータル燃焼時間(秒) 48 42 95
Table 2
Example 3 Example 4 Comparative Example 1
Glass transition temperature (℃)
TMA 105 112 76
Flame resistance (thickness 0.8mm)
UL-94 V-0 V-0 V-1
Total burning time (seconds) 48 42 95

実施例5、6、比較例2
実施例1、2で得られた本発明のエポキシ樹脂(EP1)、(EP2)、比較例として市販の固形ビスフェノールF型エポキシ樹脂(EP3)(東都化成株式会社製 YDF−2004 エポキシ当量471g/eq. β/(β+γ+δ)≒0.25)についてKAYAHARD GPH−65(日本化薬株式会社製 フェノールアラルキル樹脂 水酸基当量199g/eq.)を硬化剤とし、硬化促進剤としてトリフェニルホスフィン(TPP)を下記表3に示す配合比(重量部)で配合した。トランスファー成型(175℃ 60秒)により樹脂成形体を得、これをさらに160℃で2時間、更に180℃で8時間かけて硬化させた。
Examples 5 and 6, Comparative Example 2
Epoxy resins (EP1) and (EP2) of the present invention obtained in Examples 1 and 2, commercially available solid bisphenol F type epoxy resin (EP3) as a comparative example (YDF-2004 epoxy equivalent 471 g / eq, manufactured by Toto Kasei Co., Ltd.) Β / (β + γ + δ) ≈0.25) KAYAHARD GPH-65 (manufactured by Nippon Kayaku Co., Ltd., phenol aralkyl resin, hydroxyl group equivalent 199 g / eq.) As a curing agent, and triphenylphosphine (TPP) as a curing accelerator The blending ratio (parts by weight) shown in Table 3 was blended. A resin molding was obtained by transfer molding (175 ° C. 60 seconds), and further cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours.

表3
実施例5 実施例6 比較例2
エポキシ樹脂 EP1 87.6
EP2 88.0
EP3 94.2
硬化剤 HD1 39.8 39.8 39.8
硬化促進剤 TPP 0.88 0.88 0.94
Table 3
Example 5 Example 6 Comparative Example 2
Epoxy resin EP1 87.6
EP2 88.0
EP3 94.2
Hardener HD1 39.8 39.8 39.8
Curing accelerator TPP 0.88 0.88 0.94

得られた硬化物の物性を測定した結果を表2に示す。なお、物性値の測定は以下の方法で行った。
HDT(熱変形温度):JIS K−6911
破壊靭性(K1C):JIS K−6911
吸水率;100℃の水中で24時間放置した時の重量増加量(%)
硬化収縮;JIS K−6911(成型収縮率)
The results of measuring the physical properties of the obtained cured product are shown in Table 2. The physical property values were measured by the following methods.
HDT (thermal deformation temperature): JIS K-6911
Fracture toughness (K1C): JIS K-6911
Water absorption rate: Weight increase (%) when left in water at 100 ° C for 24 hours
Curing shrinkage; JIS K-6911 (mold shrinkage)

表4
実施例5 実施例6 比較例2
熱変形温度
HDT(℃) 95 96 83
破壊靭性
K1C(MPa) 41 40 34
吸水率
100℃ 24hr, 2.2 2.1 2.6
硬化収縮(%) 1.1 1.1 1.5
Table 4
Example 5 Example 6 Comparative Example 2
Thermal deformation temperature HDT (° C) 95 96 83
Fracture toughness K1C (MPa) 41 40 34
Water absorption rate 100 ° C. 24 hr, 2.2 2.1 2.6
Curing shrinkage (%) 1.1 1.1 1.5

本発明の変性エポキシ樹脂は、難燃性に優れる(表2)だけでなく、耐熱性を保持し、靭性に優れたエポキシ樹脂硬化物を与える(表4)。また硬化の際の硬化収縮も小さい(表4)。したがって電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。   The modified epoxy resin of the present invention is not only excellent in flame retardancy (Table 2), but also retains heat resistance and gives a cured epoxy resin product excellent in toughness (Table 4). In addition, the curing shrinkage during curing is small (Table 4). Therefore, it is useful for insulating materials for electrical and electronic parts (such as highly reliable semiconductor encapsulating materials), laminated boards (printed wiring boards, build-up boards, etc.), various composite materials including CFRP, adhesives, paints, and the like.

Claims (8)

4,4’−ジヒドロキシビフェニルメタン、2,4’−ジヒドロキシビフェニルメタン及び2,2’−ジヒドロキシビフェニルメタンから選ばれる2種以上の混合物、ビフェノール及びエピハロヒドリンを反応させ得られる平均分子量が500〜10000のエポキシ樹脂。 The average molecular weight obtained by reacting a mixture of two or more selected from 4,4′-dihydroxybiphenylmethane, 2,4′-dihydroxybiphenylmethane and 2,2′-dihydroxybiphenylmethane, biphenol and epihalohydrin is 500 to 10,000. Epoxy resin. 下記式(1)
Figure 2007308642
(式中nは下記平均分子量にみあった繰り返し数を表す。複数あるArは下記式(1a)または(1b)を表し、それぞれ互いに同一であっても異なっていてもよいが、全てのArが式(1a)または式(1b)であることはない。)
Figure 2007308642
Figure 2007308642
で表されるエポキシ樹脂であって、酸素原子に対するメチレン結合の結合位置において下記式(2)、(3)、(4)
Figure 2007308642
Figure 2007308642
Figure 2007308642
で表される結合の含有量(モル)をそれぞれβ、γ、δとしたとき、0<β/(β+γ+δ)≦0.5であり、かつその平均分子量が500〜10000である事を特徴とするエポキシ樹脂。
Following formula (1)
Figure 2007308642
(In the formula, n represents the number of repetitions according to the following average molecular weight. Plural Ars represent the following formula (1a) or (1b), which may be the same or different from each other, but all Ar Is not formula (1a) or formula (1b).)
Figure 2007308642
Figure 2007308642
The following formulas (2), (3), (4) at the bonding position of the methylene bond to the oxygen atom
Figure 2007308642
Figure 2007308642
Figure 2007308642
When the content (moles) of the bond represented by β is β, γ, and δ, respectively, 0 <β / (β + γ + δ) ≦ 0.5 and the average molecular weight is 500 to 10,000. Epoxy resin.
エポキシ当量が250〜2000g/eq.であり、かつ軟化点(もしくは融点)が45〜150℃であることを特徴とする請求項1または2に記載のエポキシ樹脂。 Epoxy equivalent is 250-2000 g / eq. The epoxy resin according to claim 1 or 2, which has a softening point (or melting point) of 45 to 150 ° C. 請求項1〜3のいずれか1項にに記載のエポキシ樹脂、および硬化剤を含有してなるエポキシ樹脂組成物。 An epoxy resin composition comprising the epoxy resin according to any one of claims 1 to 3 and a curing agent. 無機充填剤を組成物の総重量の20重量%以上含有することを特徴とする請求項4に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 4, wherein the inorganic filler is contained in an amount of 20% by weight or more of the total weight of the composition. 請求項4または5に記載の硬化性樹脂組成物を硬化してなる硬化物。 Hardened | cured material formed by hardening | curing the curable resin composition of Claim 4 or 5. (a)下記式(1’)
Figure 2007308642
(式中n'は平均分子量150〜500にみあった繰り返し数を表す。複数あるArは下記式(1a)または(1b)を表し、それぞれ互いに同一であっても異なっていてもよい。)
Figure 2007308642
Figure 2007308642
で表されるエポキシ樹脂に
(b)4,4’−ジヒドロキシビフェニルメタン、2,4’−ジヒドロキシビフェニルメタン及び2,2’−ジヒドロキシビフェニルメタンから選ばれる2種以上の混合物
及び/または
(c)ビフェノール
を反応させることを特徴とする下記式(1)
Figure 2007308642
(式中nは平均分子量500〜10000にみあった繰り返し数を表す。複数あるArは前記式(1a)または(1b)を表し、それぞれ互いに同一であっても異なっていてもよいが、全てのArが式(1a)または式(1b)であることはない。また、酸素原子に対するメチレン結合の結合位置において下記式(2)、(3)、(4)
Figure 2007308642
Figure 2007308642
Figure 2007308642
で表される結合の含有量(モル)をそれぞれβ、γ、δとしたとき、0<β/(β+γ+δ)≦0.5である。)
で表されるエポキシ樹脂の製造方法。
(A) Formula (1 ′) below
Figure 2007308642
(In the formula, n ′ represents the number of repetitions with an average molecular weight of 150 to 500. A plurality of Ars represents the following formula (1a) or (1b), which may be the same as or different from each other.)
Figure 2007308642
Figure 2007308642
(B) a mixture of two or more selected from 4,4′-dihydroxybiphenylmethane, 2,4′-dihydroxybiphenylmethane and 2,2′-dihydroxybiphenylmethane and / or (c) The following formula (1) characterized by reacting biphenol
Figure 2007308642
(In the formula, n represents the number of repetitions with an average molecular weight of 500 to 10000. A plurality of Ars represents the above formula (1a) or (1b), which may be the same as or different from each other. Ar in formula (1a) or formula (1b) is not limited to the following formula (2), (3), (4) at the bonding position of the methylene bond to the oxygen atom.
Figure 2007308642
Figure 2007308642
Figure 2007308642
And 0 <β / (β + γ + δ) ≦ 0.5, where β, γ, and δ are the content (moles) of bonds represented by: )
The manufacturing method of the epoxy resin represented by these.
(a)のエポキシ樹脂がビスフェノールF型エポキシ樹脂であり、(b)がビフェノールである請求項7記載の製造方法。 The method according to claim 7, wherein the epoxy resin of (a) is a bisphenol F type epoxy resin, and (b) is biphenol.
JP2006140918A 2006-05-19 2006-05-19 Epoxy resin, curable resin composition, and cured product thereof Expired - Fee Related JP5127160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140918A JP5127160B2 (en) 2006-05-19 2006-05-19 Epoxy resin, curable resin composition, and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140918A JP5127160B2 (en) 2006-05-19 2006-05-19 Epoxy resin, curable resin composition, and cured product thereof

Publications (2)

Publication Number Publication Date
JP2007308642A true JP2007308642A (en) 2007-11-29
JP5127160B2 JP5127160B2 (en) 2013-01-23

Family

ID=38841801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140918A Expired - Fee Related JP5127160B2 (en) 2006-05-19 2006-05-19 Epoxy resin, curable resin composition, and cured product thereof

Country Status (1)

Country Link
JP (1) JP5127160B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043245A (en) * 2008-07-16 2010-02-25 Nippon Steel Chem Co Ltd Crystalline modified epoxy resin, epoxy resin composition, and crystalline cured product
WO2015060306A1 (en) * 2013-10-23 2015-04-30 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, prepreg, and cured article thereof
KR101752222B1 (en) * 2009-12-14 2017-06-29 신닛테츠 수미킨 가가쿠 가부시키가이샤 Epoxy resin, process for production thereof, epoxy resin composition using same, and cured product
CN112574392A (en) * 2020-12-14 2021-03-30 武汉金发科技有限公司 Application and preparation method of novel hyperbranched polyester chain extender

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228580A (en) * 1993-12-21 1995-08-29 Yuka Shell Epoxy Kk Modified polyvalent epoxy compound, production of the compound and epoxy resin composition
JPH08109242A (en) * 1994-10-07 1996-04-30 Yuka Shell Epoxy Kk Epoxy resin composition for sealing of semiconductor
JPH08319336A (en) * 1995-05-26 1996-12-03 Mitsui Petrochem Ind Ltd Production of high-purity epoxy resin
JPH09169949A (en) * 1995-12-19 1997-06-30 Kishimoto Akira Coating material for manufacturing can
JPH1095928A (en) * 1996-09-24 1998-04-14 Dainippon Ink & Chem Inc Powder coating for cast iron pipe
JPH11209652A (en) * 1998-01-29 1999-08-03 Dainippon Ink & Chem Inc Powder coating material for cast iron pipe
JPH11228670A (en) * 1998-02-19 1999-08-24 Hitachi Chem Co Ltd Epoxy resin composition, epoxy resin prepreg, epoxy resin laminate and metal-clad epoxy resin laminate
JP2001002756A (en) * 1999-06-23 2001-01-09 Yuka Shell Epoxy Kk Epoxy resin mixture and settable epoxy resin composition
JP2001064362A (en) * 1999-09-01 2001-03-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001261789A (en) * 2000-03-21 2001-09-26 Japan Epoxy Resin Kk High-molecular weight epoxy resin and resin composition for printed wiring board
JP2002356537A (en) * 2001-05-29 2002-12-13 Toto Kasei Co Ltd Method for purifying epoxy resin, epoxy resin obtained therefrom and composition for coating material using the same
JP2006045261A (en) * 2004-07-30 2006-02-16 Nippon Kayaku Co Ltd Modified epoxy resin, epoxy resin composition and cured product thereof
JP2007177180A (en) * 2005-12-28 2007-07-12 Nippon Kayaku Co Ltd Epoxy resin varnish, photosensitive resin composition and its cured product

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228580A (en) * 1993-12-21 1995-08-29 Yuka Shell Epoxy Kk Modified polyvalent epoxy compound, production of the compound and epoxy resin composition
JPH08109242A (en) * 1994-10-07 1996-04-30 Yuka Shell Epoxy Kk Epoxy resin composition for sealing of semiconductor
JPH08319336A (en) * 1995-05-26 1996-12-03 Mitsui Petrochem Ind Ltd Production of high-purity epoxy resin
JPH09169949A (en) * 1995-12-19 1997-06-30 Kishimoto Akira Coating material for manufacturing can
JPH1095928A (en) * 1996-09-24 1998-04-14 Dainippon Ink & Chem Inc Powder coating for cast iron pipe
JPH11209652A (en) * 1998-01-29 1999-08-03 Dainippon Ink & Chem Inc Powder coating material for cast iron pipe
JPH11228670A (en) * 1998-02-19 1999-08-24 Hitachi Chem Co Ltd Epoxy resin composition, epoxy resin prepreg, epoxy resin laminate and metal-clad epoxy resin laminate
JP2001002756A (en) * 1999-06-23 2001-01-09 Yuka Shell Epoxy Kk Epoxy resin mixture and settable epoxy resin composition
JP2001064362A (en) * 1999-09-01 2001-03-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001261789A (en) * 2000-03-21 2001-09-26 Japan Epoxy Resin Kk High-molecular weight epoxy resin and resin composition for printed wiring board
JP2002356537A (en) * 2001-05-29 2002-12-13 Toto Kasei Co Ltd Method for purifying epoxy resin, epoxy resin obtained therefrom and composition for coating material using the same
JP2006045261A (en) * 2004-07-30 2006-02-16 Nippon Kayaku Co Ltd Modified epoxy resin, epoxy resin composition and cured product thereof
JP2007177180A (en) * 2005-12-28 2007-07-12 Nippon Kayaku Co Ltd Epoxy resin varnish, photosensitive resin composition and its cured product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043245A (en) * 2008-07-16 2010-02-25 Nippon Steel Chem Co Ltd Crystalline modified epoxy resin, epoxy resin composition, and crystalline cured product
KR101752222B1 (en) * 2009-12-14 2017-06-29 신닛테츠 수미킨 가가쿠 가부시키가이샤 Epoxy resin, process for production thereof, epoxy resin composition using same, and cured product
WO2015060306A1 (en) * 2013-10-23 2015-04-30 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, prepreg, and cured article thereof
CN112574392A (en) * 2020-12-14 2021-03-30 武汉金发科技有限公司 Application and preparation method of novel hyperbranched polyester chain extender

Also Published As

Publication number Publication date
JP5127160B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5348740B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP6366590B2 (en) Epoxy resin mixture, epoxy resin composition, cured product, and semiconductor device
JP6366504B2 (en) Epoxy resin, epoxy resin composition and cured product
JP5273762B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
TWI425019B (en) Liquid epoxy resin, epoxy resin composition and hardened product
JP5127164B2 (en) Modified epoxy resin, epoxy resin composition, and cured product thereof
TWI438216B (en) Modified liquid epoxy resin, epoxy resin composition by using modified liquid epoxy resin and cured product thereof
JP5142180B2 (en) Epoxy resin composition and cured product thereof
JP6735097B2 (en) Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
JP2008195843A (en) Phenolic resin, epoxy resin, epoxy resin composition, and cured product of the same
JP5127160B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JP5319289B2 (en) Epoxy resin and method for producing the same, and epoxy resin composition and cured product using the same
JP5322143B2 (en) Phenol resin, epoxy resin, epoxy resin composition, and cured product thereof
TWI709581B (en) Substituted allyl ether resin, methallyl ether resin, epoxy resin, epoxy resin composition and hardened products thereof
JP5220488B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP4942384B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JP2010235823A (en) Epoxy resin, epoxy resin composition and cured product of the same
JP2008081546A (en) Epoxy resin, epoxy resin composition and cured product thereof
JP4776446B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2010053293A (en) Epoxy resin composition
JP6544815B2 (en) Epoxy resin, curable resin composition and cured product
JP2007045978A (en) Epoxy resin, epoxy resin composition, and cured product thereof
WO2008072668A1 (en) Phenol resin, epoxy resin, curable resin composition, cured product of the composition, and method for producing phenol resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Ref document number: 5127160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees