JPH08301614A - Production of synthetic silica powder and production of silica glass molded form - Google Patents

Production of synthetic silica powder and production of silica glass molded form

Info

Publication number
JPH08301614A
JPH08301614A JP7105888A JP10588895A JPH08301614A JP H08301614 A JPH08301614 A JP H08301614A JP 7105888 A JP7105888 A JP 7105888A JP 10588895 A JP10588895 A JP 10588895A JP H08301614 A JPH08301614 A JP H08301614A
Authority
JP
Japan
Prior art keywords
powder
silica gel
rotary kiln
synthetic quartz
core tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7105888A
Other languages
Japanese (ja)
Other versions
JP3735886B2 (en
Inventor
Yoshio Suguro
芳雄 勝呂
Masaru Shimoyama
勝 下山
Yuji Maeda
裕司 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10588895A priority Critical patent/JP3735886B2/en
Priority to US08/945,318 priority patent/US6129899A/en
Priority to EP96912278A priority patent/EP0823403B1/en
Priority to PCT/JP1996/001176 priority patent/WO1996033950A1/en
Priority to DE69629111T priority patent/DE69629111T2/en
Priority to KR1019970707671A priority patent/KR19990008146A/en
Publication of JPH08301614A publication Critical patent/JPH08301614A/en
Application granted granted Critical
Publication of JP3735886B2 publication Critical patent/JP3735886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

PURPOSE: To increase the bulk density of silica gel powder to be charged into a crucible and prevent the development of fine bubbles in the resultant silica glass molded form by heat treating silica gel powder in fluidization in a rotary kiln with its maximum stack height at a specified level or higher. CONSTITUTION: First, dry silica gel 10-1000μm in particle diameter is obtained by drying at 50-200 deg.C and pulverizing wet silica gel powder obtained by a sol-gel process such as hydrolysis or gelation of e.g. a tetraalkoxysilane. Secondly, the dry silica gel powder is heat-treated under fluidization in a rotary kiln with the core pipe made of quartz. In this case, there occurs no slippage between the powder 1 and the contact surface 3 of the core pipe 2 wall, the powder 1 is raised along the wall as the core pipe 2 is rotated and then allowed to fall (as indicated by arrows) off the wall at an angle of repose or above. To stabilize the fluid state of the powder 1, the maximum stack height of the powder 1 defined below is kept at >=75mm and the powder 1 is heated at 900-1100 deg.C (The maximum stack height is the maximum length of perpendiculars drawn from the powder surface 5 in contact with the space 4 inside the core pipe 2 toward the contact surface 3).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合成石英粉及び石英ガ
ラス成形体の効率的な製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an efficient method for producing synthetic quartz powder and quartz glass moldings.

【0002】[0002]

【従来の技術】近年、光通信分野、半導体産業等で使用
されるガラス製品に於いてはその微量不純物及び製品中
の微小泡に関し非常に厳しい管理が行われている。この
ような高品質のガラスは主に、天然石英を精製する方
法、四塩化珪素の酸水素炎中での分解で発生したヒュ
ームを基体に付着・成長させる方法、シリコンアルコ
キシド等を加水分解・ゲル化して得たシルカゲルを焼成
して得られる合成石英粉を用い、これを溶融して成形体
とする方法等によって製造される。
2. Description of the Related Art In recent years, in glass products used in the fields of optical communication, semiconductor industry, etc., very strict control has been carried out regarding trace impurities and minute bubbles in the products. Such high quality glass is mainly used for refining natural quartz, for fume generated by decomposition of silicon tetrachloride in an oxyhydrogen flame to adhere to and grow on a substrate, and for hydrolysis and gel of silicon alkoxide. The synthetic silica powder obtained by firing the silica gel obtained by calcination is used, and it is manufactured by a method such as melting this to obtain a molded body.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、の方
法では、微量不純物含有率の低減に限界があり、の方
法では、極めて製造コストが高い等の問題点がある。一
方、のシリカゲルの焼成による方法では、の方法に
比べると安価に微量不純物含有率が低い合成石英粉が得
られるが、要求レベルを必ずしも満足しているとは言え
ない。また、この方法では、最終製品である成形体中
に、微小泡が発生することがありこの微小泡は様々なト
ラブルの原因となることがある、という問題点がある。
However, the method (1) has a limit in reducing the content of trace impurities, and the method (2) has a problem that the manufacturing cost is extremely high. On the other hand, with the method of firing silica gel, synthetic quartz powder having a low content of trace impurities can be obtained at a lower cost than the method of 1, but it cannot be said that the required level is necessarily satisfied. In addition, this method has a problem that minute bubbles may be generated in the molded product which is the final product, and the minute bubbles may cause various troubles.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記
の、シリカゲルの焼成による合成石英粉の製造方法にお
ける課題、すなわちこれを溶融して得られる成形体にお
ける微小泡の発生が極めて少ない合成石英粉の製造を行
うこと、更にはかかる製造を工業的に有利に行う方法を
見いだすべく鋭意検討したところ、以下の点が判明し
た。即ち、シリカゲルの焼成は、容器からの不純物のコ
ンタミを排除するために、石英製の容器にシリカゲルを
仕込み、電気炉等で加熱して行う。特に、工業的な製造
に際しては、大口径の石英るつぼ等を使用することにな
る。しかしながら、シリカゲルは石英粉に比べ嵩密度が
低いために、焼成に用いる容器を効率的に利用できず、
生産性が悪く、製造コストが高くなっている。従って、
生産性の向上にはるつぼに仕込む粉体の嵩密度アップが
重要な課題となる。
DISCLOSURE OF THE INVENTION The present inventors have found the above-mentioned problems in the method for producing synthetic quartz powder by firing silica gel, that is, the formation of fine bubbles in a molded product obtained by melting the synthetic silica powder is extremely small. As a result of diligent studies to find out a method for producing quartz powder and an industrially advantageous method for producing the quartz powder, the following points were found. That is, the silica gel is fired by charging the silica gel in a quartz container and heating it in an electric furnace or the like in order to eliminate impurities from the container. Particularly, in industrial production, a quartz crucible having a large diameter is used. However, since silica gel has a lower bulk density than quartz powder, the container used for firing cannot be efficiently used,
Productivity is poor and manufacturing costs are high. Therefore,
In order to improve productivity, increasing the bulk density of the powder charged in the crucible is an important issue.

【0005】また、石英粉を用いた成形体の製造におい
て、成形体を製造する際の微小泡の発生は、石英粉製造
時の焼成工程の昇温過程が影響を及ぼす。テトラアルコ
キシシランの加水分解により得られるシリカゲル粉末
は、乾燥により副生したアルコールを除去しても未反応
のアルコキシ基及び副生したアルコールの一部が残存す
る。実際、乾燥を施したシリカゲル粉末中のカーボン濃
度を測定すると、乾燥条件によっても異なるが、1〜3
%である。このシリカゲル粉末を酸素含有ガス中で焼成
すると、大部分のカーボンは、昇温過程で燃焼除去され
るが、一部が未燃カーボンとして合成石英粉中に閉じ込
められることがある。この未燃カーボンを含有する合成
石英粉を用いると、溶融成形の際にCOやCO2 ガスと
なり、泡発生の原因となる。従って、シリカゲルの封孔
前に、未燃カーボンを実質的に全量除去することが必要
となり、昇温過程における昇温速度が重要となる。とこ
ろが、先述のように、合成石英粉の工業的な製造を図る
場合、大口径のるつぼを使用することになり、昇温過程
における、るつぼ内の温度が不均一となり、その結果、
場合によってはカーボンが残存した合成石英粉が部分的
に生成し、その合成石英粉を用いた成形体中に、微小泡
が発生するという現象が生ずる。
Further, in the production of a molded body using quartz powder, the generation of fine bubbles during the production of the molded body is affected by the temperature rising process of the firing step during the production of the quartz powder. In the silica gel powder obtained by hydrolysis of tetraalkoxysilane, unreacted alkoxy groups and a part of by-produced alcohol remain even if the by-produced alcohol is removed by drying. Actually, when the carbon concentration in the dried silica gel powder is measured, it varies depending on the drying condition.
%. When this silica gel powder is fired in an oxygen-containing gas, most of the carbon is burned and removed during the temperature rising process, but some of it may be trapped as unburned carbon in the synthetic quartz powder. When this synthetic quartz powder containing unburned carbon is used, it becomes CO or CO 2 gas at the time of melt molding and causes bubbles. Therefore, it is necessary to remove substantially all unburned carbon before sealing the silica gel, and the rate of temperature increase in the temperature increasing process is important. However, as mentioned above, in the case of industrial production of synthetic quartz powder, a crucible with a large diameter is used, and the temperature in the crucible during the heating process becomes non-uniform, and as a result,
In some cases, synthetic quartz powder in which carbon remains is partially generated, and micro bubbles are generated in a molded body using the synthetic quartz powder.

【0006】本発明者らは、上記課題に鑑み、更に鋭意
検討を行った結果、シリカゲルを焼成前に適当な条件及
び操作で加熱処理することにより、焼成に供する粉体の
嵩密度を焼成後の石英粉と同等にすることができ、なお
かつ、アルコキシ基及び水酸基を充分に除去することが
できることを見いだし、本発明を完成するに至った。即
ち、本発明は、シリカゲル粉末をロータリーキルンを用
い流動させながら加熱処理する工程を含む合成石英粉の
製造方法において、ロータリーキルン内の粉体の最大層
高を75mm以上とすることを特徴とする合成石英粉の
製造方法、等にある。
In view of the above-mentioned problems, the present inventors have conducted further studies, and as a result, heat-treated silica gel under appropriate conditions and operations before firing to obtain the bulk density of the powder to be fired after firing. The inventors have found that the silica powder can be made equivalent to the quartz powder and the alkoxy group and the hydroxyl group can be sufficiently removed, and the present invention has been completed. That is, the present invention is a method for producing synthetic quartz powder, which comprises a step of heat-treating silica gel powder while flowing it using a rotary kiln, wherein the maximum layer height of the powder in the rotary kiln is 75 mm or more. The method for producing the powder, etc.

【0007】以下、本発明を詳細に説明する。本発明の
合成石英粉は、アルコキシシラン等の加水分解・ゲル化
等により得られるシリカゲル粉末を、加熱し無孔化して
なる合成石英粉である。シリカゲル粉末の製造法は特に
限定されず、種々の公知技術を採用できるが、高純度を
容易に達成できる等の点からアルコキシシラン等の加水
分解・ゲル化による、いわゆるゾルゲル法によるものが
好ましい。ゾルゲル法によるアルコキシシランの加水分
解は、公知の方法に従って、アルコキシシランと水とを
反応させることによって行われる。
Hereinafter, the present invention will be described in detail. The synthetic quartz powder of the present invention is a synthetic quartz powder obtained by heating silica gel powder obtained by hydrolysis / gelling of alkoxysilane etc. to make it non-porous. The method for producing the silica gel powder is not particularly limited, and various known techniques can be adopted, but the so-called sol-gel method by hydrolysis / gelling of alkoxysilane or the like is preferable from the viewpoint of easily achieving high purity. Hydrolysis of alkoxysilane by the sol-gel method is performed by reacting alkoxysilane with water according to a known method.

【0008】原料として用いられるアルコキシシランと
しては加水分解・ゲル化可能なアルコキシシランであれ
ば足りるが、テトラメトキシシラン、テトラエトキシシ
ラン等の、C1〜C4の低級アルコキシシランであって
ケイ素に直結した炭化水素基によるSi−C結合を実質
的に含まないアルコキシシラン、或いはそれらのオリゴ
マーが好適である。
As the alkoxysilane used as a raw material, an alkoxysilane capable of being hydrolyzed and gelled is sufficient, but it is a C1 to C4 lower alkoxysilane such as tetramethoxysilane or tetraethoxysilane which is directly bonded to silicon. Alkoxysilanes substantially free of Si-C bonds due to hydrocarbon groups, or oligomers thereof are preferred.

【0009】水の使用量は、通常、アルコキシシラン中
のアルコキシ基の1倍当量以上から10倍当量以下の範
囲から選択される。この際、必要に応じて、水と相溶性
のあるアルコール類やエーテル類の有機溶媒を混合して
使用してもよい。使用されるアルコールの代表例として
は、メタノール、エタノール等の低脂肪族アルコールが
挙げられる。
The amount of water used is usually selected from the range of 1 to 10 times the equivalent of the alkoxy groups in the alkoxysilane. At this time, organic solvents such as alcohols and ethers that are compatible with water may be mixed and used, if necessary. Typical examples of the alcohol used include low aliphatic alcohols such as methanol and ethanol.

【0010】この加水分解反応には、触媒として塩酸、
酢酸等の酸や、アンモニア等のアルカリを添加してもよ
い。なお、当然のことながら、ここで使用する水、触媒
等の、反応系に導入される物質はすべて高純度とする。
加水分解生成物のゲル化は、加熱下あるいは常温で実施
することができる。加熱を行うと、ゲル化の速度を向上
することができるので、加熱の程度を調節することによ
り、ゲル化時間を調節することができる。
In this hydrolysis reaction, hydrochloric acid as a catalyst,
An acid such as acetic acid or an alkali such as ammonia may be added. It should be understood that all substances introduced into the reaction system such as water and catalyst used here are of high purity.
Gelation of the hydrolysis product can be carried out under heating or at room temperature. When heating is performed, the rate of gelation can be improved, and thus the gelling time can be adjusted by adjusting the degree of heating.

【0011】得られたゲルは水分を多量に含むウェット
シリカゲルであり、これを細分化してから乾燥してもよ
いし、乾燥してから細分化してもよい。いずれにして
も、乾燥して得られるドライシリカゲルの粒径が、10
〜1000μm、好ましくは、100〜600μmとな
るように細分化を行う。
The obtained gel is wet silica gel containing a large amount of water, and it may be subdivided and dried, or it may be dried and subdivided. In any case, the particle size of the dry silica gel obtained by drying is 10
˜1000 μm, preferably 100 to 600 μm.

【0012】乾燥は、常圧、あるいは、減圧下で加熱し
つつ行うのが効率的である。加熱温度は、条件によつて
も異なるが、通常、50〜200℃である。また、操作
は、回分、連続のいずれによっても行うことができる。
乾燥の程度は、通常、湿量標準水分で表した水の含有量
で1〜30重量%まで行われる。このようにして得られ
たシリカゲル粉末を、以下に述べる特定の条件下で加熱
処理する。すなわち、シリカゲル粉末をロータリーキル
ン内で特定最大層高としロータリーキルンを回転してシ
リカゲル粉末を流動させながら、加熱処理する。
It is efficient to carry out the drying while heating at atmospheric pressure or under reduced pressure. The heating temperature varies depending on the conditions, but is usually 50 to 200 ° C. The operation can be performed either batchwise or continuously.
The degree of drying is usually from 1 to 30% by weight based on the content of water expressed as wet standard moisture. The silica gel powder thus obtained is heat-treated under the specific conditions described below. That is, the silica gel powder is heated to a specific maximum bed height in the rotary kiln while rotating the rotary kiln to cause the silica gel powder to flow.

【0013】ロータリーキルンの炉心管の材質は、処理
を行った粉への材質のコンタミが発生しないものを選択
する必要があり、特に石英製が好ましい。石英製の場
合、製作上、炉心管のサイズに限界があるので、条件に
よつては、複数のロータリーキルンを用いて加熱処理を
行うこともできる。また、原因は明確とはなっていない
が、石英製の炉心管を用いた場合、粉体の最大層高が低
いと、炉心管内の粉体がスリップし、粉体が流動しない
ことがある。そこで、ロータリーキルン内で流動する粉
体の最大層高を75mm以上に保ちつつ加熱処理を行う
ことが本発明の特徴である。
The material of the core tube of the rotary kiln must be selected so that the treated powder does not cause contamination of the material, and quartz is particularly preferable. In the case of quartz, since there is a limit in the size of the core tube in manufacturing, heat treatment can be performed using a plurality of rotary kilns depending on the conditions. Although the cause is not clear, when a quartz core tube is used and the maximum bed height of the powder is low, the powder in the core tube may slip and the powder may not flow. Therefore, it is a feature of the present invention that the heat treatment is performed while keeping the maximum bed height of the powder flowing in the rotary kiln at 75 mm or more.

【0014】ここで本発明でいう粉体が「流動する」と
は、例えば粉体を仕込んだ回転状態のロータリーキルン
の断面を示す図2を用い静止状態のロータリーキルンの
断面を示す図1と比較して説明すると、粉体(1)と炉
心管(2)壁の接粉面(3)との間には実質的にすべり
が生じておらず炉心管(2)の回転に従って粉体(1)
が炉心管(2)壁で持ち上げられ、安息角以上で粉体
(1)が壁を離れて管壁下部に流下している(図2中の
黒矢印方向)状態をいい、ロータリーキルン内でシリカ
ゲル粉末のこのような流動状態を安定して達成するに
は、以下に説明するように、シリカゲル粉末の最大層高
を75mm以上に保つことにより容易に達成することが
できる。
The term "flowing" of the powder in the present invention means that, for example, FIG. 2 showing the cross section of the rotary kiln in which the powder is charged is rotated and compared with FIG. 1 showing the cross section of the rotary kiln in the stationary state. That is, there is substantially no slip between the powder (1) and the powder-contacting surface (3) of the wall of the core tube (2), and the powder (1) follows the rotation of the core tube (2).
Is lifted by the wall of the core tube (2), and the powder (1) leaves the wall above the angle of repose and flows down to the lower part of the tube wall (in the direction of the black arrow in Fig. 2). The silica gel in the rotary kiln. The stable achievement of such a fluidized state of the powder can be easily achieved by keeping the maximum bed height of the silica gel powder at 75 mm or more, as described below.

【0015】ここでいう最大層高とは、粉体(1)が炉
心管内の空隙(4)と接触する粉体面(5)より、炉心
管の接粉面(3)方向に垂線を引いた場合に最大となる
距離のことをいう。ロータリーキルンの管径は特に制限
されないが、本発明者らが種々の管径のロータリーキル
ンについて検討を行った結果、その管の内径が100m
m以上において特に本発明の効果が著しく、好ましくは
120mm以上、より好ましくは150mm以上であ
る。また、最大径については特段の制限はないが、その
構造上と混合及び加熱の均一性等から管の内径は一般に
600mm以下、より好ましくは500mm以下で用い
られる。尚、150mm以下の場合は、それぞれの管端
に特別の挿入、排出機構を設ける必要がある。
The term "maximum bed height" as used herein means that a perpendicular line is drawn from the powder surface (5) where the powder (1) comes into contact with the void (4) in the core tube, in the direction of the powder contact surface (3) of the core tube. It means the maximum distance when The pipe diameter of the rotary kiln is not particularly limited, but as a result of the inventors of the present invention studying rotary kilns having various pipe diameters, the inner diameter of the pipe is 100 m.
When it is m or more, the effect of the present invention is particularly remarkable, preferably 120 mm or more, and more preferably 150 mm or more. The maximum diameter is not particularly limited, but the inner diameter of the tube is generally 600 mm or less, more preferably 500 mm or less, due to its structure, uniformity of mixing and heating, and the like. In the case of 150 mm or less, it is necessary to provide a special insertion and ejection mechanism at each pipe end.

【0016】本発明者らは、最大層高が75mmより低
い値であると、炉心管内での粉体の流動性が悪化し、粉
体の流動が間欠的となるが、75mm以上とすると、炉
心管内の粉体は連続的に流動することを見いだした。流
動が間欠的である場合、炉心管壁面での局部的な加熱が
起こり、流動が開始すると、急激に水蒸気あるいはメタ
ノールが発生するので、安定した操作を行うのが難し
い。
When the maximum bed height is lower than 75 mm, the present inventors deteriorate the fluidity of the powder in the core tube and cause the powder to flow intermittently. It was found that the powder in the core tube flowed continuously. When the flow is intermittent, local heating occurs on the wall surface of the core tube, and when the flow starts, steam or methanol is rapidly generated, which makes it difficult to perform stable operation.

【0017】操作は、予め、乾燥シリカゲル粉末を最大
層高を75mm以上になるようにロータリーキルンの炉
心管に仕込んでおき加熱処理を行う回分法、或いは、ロ
ータリーキルンの炉心管の片端より連続的に乾燥シリカ
ゲル粉末を供給しつつ、最大層高を75mm以上になる
ように炉心管の粉体量を調節しつつ加熱処理を行い、処
理が終了した粉を連続的に炉心管から排出する連続法の
いずれでも行うことができるが、経済性、操作性の面か
ら、後者の方法がより好ましい。
For the operation, a dry silica gel powder is preliminarily charged in a furnace core tube of a rotary kiln so that the maximum bed height is 75 mm or more, and heat treatment is carried out, or a continuous drying is performed from one end of the furnace core tube of the rotary kiln. A continuous method in which silica gel powder is supplied and heat treatment is performed while adjusting the amount of powder in the core tube so that the maximum bed height is 75 mm or more, and the powder after treatment is continuously discharged from the core tube. However, the latter method is more preferable in terms of economy and operability.

【0018】特に、連続法の場合、流動が間欠的になる
と、炉心管からの粉の排出が間欠的になり、安定した運
転を行うことができないので、粉の連続的な流動が必須
である。連続法で行う場合、複数のロータリーキルンを
直列的に用いて加熱処理を行ってもよい。この際、いず
れのロータリーキルンも粉体の最大層高が75mm以上
となるように調節する。尚、ロータリーキルンの回転数
は、特に限定されず、実用的な範囲で選択すればよい。
具体的には1〜20rpm、好ましくは3〜10rpm
程度である。
Particularly in the case of the continuous method, if the flow is intermittent, the powder is intermittently discharged from the core tube, and stable operation cannot be performed. Therefore, continuous flow of the powder is essential. . When carrying out by a continuous method, you may heat-process using a some rotary kiln in series. At this time, each rotary kiln is adjusted so that the maximum layer height of the powder is 75 mm or more. The rotation speed of the rotary kiln is not particularly limited and may be selected within a practical range.
Specifically, 1 to 20 rpm, preferably 3 to 10 rpm
It is a degree.

【0019】加熱処理を行う温度領域は、200〜11
00℃である。特に、300〜600℃の領域で主に、
シリカゲル中の残存カーボンの除去が進行するので、慎
重に操作を行う。600℃以上となるとシリカゲルの封
孔が開始するので、粉体温度がこの温度領域に到達する
までに、残存するカーボンのほぼ全量を消失させておか
なければならない。さもなければ、得られた合成石英粉
中に未燃カーボンが残存し、溶融成形の際に泡が発生す
る。
The temperature range for heat treatment is 200 to 11
It is 00 ° C. Especially in the range of 300 to 600 ° C,
Care should be taken as the removal of residual carbon in the silica gel proceeds. When the temperature exceeds 600 ° C., the silica gel starts to be sealed. Therefore, it is necessary to eliminate almost all the remaining carbon before the powder temperature reaches this temperature range. Otherwise, unburned carbon remains in the obtained synthetic quartz powder and bubbles are generated during melt molding.

【0020】シリカゲル中の残存カーボンの除去が進行
する領域の昇温速度は1000℃/Hr以下、好ましく
は、500℃/Hr以下である。また、400〜600
℃の領域で、0.5〜5Hr程度の保持を行うのも効果
的である。また、この加熱処理は、清浄な空気あるいは
酸素含有ガス雰囲気下で行う。具体的には、炉心管の片
端より清浄な空気あるいは、酸素含有ガスを供給し、他
端より排出する方法をとることができる。ガスの供給量
は、通常、回分法の場合は粉体1kg当たり、酸素換算
で10〜100リットル/Hrであり、連続法の場合は
連続的に供給する粉体1kg当たり、酸素換算で30〜
300リットル/Hrである。本発明においては、この
際ロータリーキルン内で流動するシリカゲル粉末の最大
層高を75mm以上に保ちつつ加熱処理を行う。ロータ
リーキルンを用い最大層高を75mm以上に保ち、連続
的にシリカゲル粉末を流動させつつ加熱処理を行うこと
により、カーボンの減少が促進されるとともに、均質な
処理粉体が得られる。この処理により、シリカゲル中の
カーボン濃度は、50〜1000ppm程度に減少す
る。
The temperature rising rate in the region where the removal of residual carbon in silica gel proceeds is 1000 ° C./Hr or less, preferably 500 ° C./Hr or less. Also, 400 to 600
It is also effective to maintain the temperature in the range of 0.5 to 5 hours. Further, this heat treatment is performed in a clean air or oxygen-containing gas atmosphere. Specifically, a method of supplying clean air or oxygen-containing gas from one end of the core tube and discharging it from the other end can be used. The amount of gas supplied is usually 10 to 100 liters / hr in terms of oxygen in the batch method in the case of batch method, and 30 to 30 in terms of oxygen in the continuous method per kg of powder continuously supplied.
It is 300 liters / Hr. In the present invention, the heat treatment is carried out while maintaining the maximum bed height of the silica gel powder flowing in the rotary kiln at 75 mm or more. By using a rotary kiln to keep the maximum bed height at 75 mm or more and performing heat treatment while continuously flowing silica gel powder, carbon reduction is promoted and a homogeneous treated powder is obtained. By this treatment, the carbon concentration in silica gel is reduced to about 50 to 1000 ppm.

【0021】残存するカーボンがほぼ消失した処理粉体
は、引き続き加熱され、最終的な粉体の温度は、900
〜1100℃、好ましくは950〜1050℃まで高め
られる。この際の昇温速度は通常、100〜1000℃
/Hrである。この温度領域における加熱処理も、清浄
な空気あるいは酸素含有ガス雰囲気下で行う。この際も
600℃までの温度域での加熱処理同様、炉心管の片端
より清浄な空気あるいは酸素含有ガスを供給し、他端よ
り排出する方法がとられる。ガスの供給量は、通常、回
分法の場合は粉体1kg当たり、酸素換算で1〜50リ
ットル/Hrであり、連続法の場合は連続的に供給する
粉体1kg当たり、酸素換算で3〜50リットル/Hr
である。またこの温度領域における加熱処理もロータリ
ーキルン内で、粉体の最大層高を75mm以上に保ちつ
つ行う。ロータリーキルンを用い、粉体を流動させつつ
加熱処理を行うことにより、均一な加熱が行われ、均一
な処理粉体が得られる。この処理により、シリカゲルの
封孔はほぼ終了し、0.7〜0.8g/ml程度であっ
た粉体の嵩密度(以下、「嵩密度」と称す)は、1.0
〜1.2g/ml程度まで上昇する。このような操作を
回分で行う場合には、炉心管を回転しつつ、外部から直
接あるいは間接的に全体を加熱し、時間とともに加熱強
度を挙げて処理することとなる。一方、連続で操作を行
う場合は、炉心管の加熱ゾーンを複数個に分割し、処理
粉体の流れ方向に従い粉体の温度が所定の勾配で上昇す
るように加熱温度を制御する方法を採ることができる。
The treated powder from which the remaining carbon has almost disappeared is continuously heated, and the temperature of the final powder is 900
~ 1100 ° C, preferably raised to 950-1050 ° C. The heating rate at this time is usually 100 to 1000 ° C.
/ Hr. The heat treatment in this temperature range is also performed in a clean air or oxygen-containing gas atmosphere. Also in this case, as in the heat treatment in the temperature range up to 600 ° C., a method of supplying clean air or oxygen-containing gas from one end of the core tube and discharging it from the other end is adopted. The amount of gas supplied is usually 1 to 50 liters / hr of oxygen per 1 kg of powder in the case of the batch method, and 3 to 10 per 1 kg of powder continuously supplied in the case of the continuous method. 50 liters / hr
Is. The heat treatment in this temperature range is also carried out in the rotary kiln while keeping the maximum layer height of the powder at 75 mm or more. By using a rotary kiln to perform heat treatment while flowing the powder, uniform heating is performed, and uniform treated powder is obtained. By this treatment, the sealing of the silica gel was almost completed, and the bulk density (hereinafter referred to as “bulk density”) of the powder, which was about 0.7 to 0.8 g / ml, was 1.0.
~ 1.2 g / ml. When such an operation is performed in batches, the whole is heated directly or indirectly from the outside while rotating the core tube, and the heating strength is increased over time for processing. On the other hand, in the case of continuous operation, a method is used in which the heating zone of the core tube is divided into a plurality of zones, and the heating temperature is controlled so that the temperature of the powder rises in a predetermined gradient according to the flow direction of the treated powder. be able to.

【0022】なお、本発明者らが検討した結果、上記加
熱処理に際してはロータリーキルンの傾斜角は3°以
下、好ましくは1°以下とするのがよい。処理の対象で
あるシリカゲル粉末は、傾斜角をこの範囲とした場合に
ロータリーキルンの軸方向のバックミキシングを効果的
に防ぐことができるためである。本発明に従いシリカゲ
ル粉末に上述の加熱処理を施すと合成石英粉が得られる
が、通常、シラノールが1000ppm以上残存してい
る。そこで、通常更に高められた温度領域での焼成を行
うことによりシラノールを除去する。
As a result of studies conducted by the present inventors, the inclination angle of the rotary kiln should be 3 ° or less, preferably 1 ° or less in the heat treatment. This is because the silica gel powder to be treated can effectively prevent back mixing in the axial direction of the rotary kiln when the tilt angle is within this range. When the silica gel powder is subjected to the above-mentioned heat treatment according to the present invention, synthetic quartz powder is obtained, but usually, 1000 ppm or more of silanol remains. Therefore, the silanol is usually removed by performing firing in a temperature range further raised.

【0023】焼成に用いる容器は、合成石英粉への不純
物のコンタミを発生させない材質、例えば、石英のるつ
ぼを用いる。この焼成においては、すでに、焼成を施す
粉体中のカーボンは実質的に全量除去されているので、
昇温速度に特別な注意を払う必要はない。従って、容器
内での昇温速度のばらつきが品質に影響を与えないの
で、均質な製品が得られ、従来に比べ、大容量の容器の
使用も可能となる。また、予め粉体の嵩密度が充分に高
められており、焼成前の粉体と焼成後の粉体の嵩密度に
大きな変化がなく、容器を効率的に利用出来るので、生
産性の向上が図られる。
The container used for firing is made of a material which does not generate contamination of synthetic quartz powder with impurities, for example, a quartz crucible. In this firing, since the carbon in the powder to be fired has been substantially completely removed,
No special attention needs to be paid to the heating rate. Therefore, since the variation in the temperature rising rate in the container does not affect the quality, a homogeneous product can be obtained, and a container having a large capacity can be used as compared with the conventional product. In addition, since the bulk density of the powder has been sufficiently increased in advance, there is no significant change in the bulk density of the powder before firing and the powder after firing, and the container can be used efficiently, improving productivity. Planned.

【0024】焼成温度は、通常、1100〜1300℃
である。昇温速度は特に限定されず、100〜2000
℃/Hrの範囲から適宜選択される。焼成時間は、焼成
温度にもよるが、通常10〜100時間で、合成石英中
のシラノール濃度が100ppm以下、好ましくは60
ppm以下となるまで継続される。また、加熱の際に実
質的に水分を含有しない空気、あるいは、不活性ガスを
流通しつつ行うとシラノール基の減少速度が加速される
ので好ましい。当然ながら、焼成後の合成石英粉中に
は、実質的にカーボンは存在しない。
The firing temperature is usually 1100 to 1300 ° C.
Is. The temperature rising rate is not particularly limited, and is 100 to 2000
It is appropriately selected from the range of ° C / Hr. Although the firing time depends on the firing temperature, it is usually 10 to 100 hours, and the silanol concentration in the synthetic quartz is 100 ppm or less, preferably 60.
It is continued until it becomes below ppm. Further, it is preferable that the heating is carried out while flowing air containing substantially no water or an inert gas, because the rate of reduction of silanol groups is accelerated. As a matter of course, substantially no carbon is present in the synthetic quartz powder after firing.

【0025】このようにして得られた合成石英粉は、成
形体に成形することができる。その成形方法は、成形体
の用途によって異なるが、例えば用途がるつぼである場
合にはアークメルト法が、IC用治具である場合には、
一旦、酸水素炎によるベルヌーイ法でインゴットに成形
する方法や、炭素製の鋳型を用い真空下で加熱溶融する
ヒュージョン法等が挙げられる。いずれの場合も、本発
明によって得られた合成石英粉を用いることにより、泡
の発生が極めて少ない成形体が得られるので、成形体の
品質及び製品歩留りが大きく向上する。
The synthetic quartz powder thus obtained can be molded into a molded body. The forming method varies depending on the use of the formed body. For example, when the use is a crucible, the arc melting method is used, and when the use is an IC jig,
Examples thereof include a method of once forming an ingot by Bernoulli method using an oxyhydrogen flame, and a fusion method of heating and melting under vacuum using a carbon mold. In any case, by using the synthetic quartz powder obtained by the present invention, a molded product with extremely few bubbles is obtained, and therefore the quality of the molded product and the product yield are greatly improved.

【0026】[0026]

【実施例】以下実施例により本発明を具体的に説明す
る。 実施例1 (ドライシリカゲル粉末の製造)高純度テトラメトキシ
シランを水と反応させ、塊状の、水分含有量30重量%
以上のシリカゲル(以下「ウェットシリカゲル」とい
う)を得た。この塊状のウェットシリカゲルを網式粉砕
機で粉砕した後、減圧下で加熱乾燥し、粉状のドライシ
リカゲルを得た。この粉状のドライシリカゲルを、振動
篩別機で分級し500μm以下100μm以上のものを
取得した。この分級後のドライシリカゲル(以下「ドラ
イシリカゲル粉末」という)を分析したところ、含水率
は19.5重量%で、カーボン濃度は1.1重量%であ
った。また、この粉体の嵩密度は、0.92g/mlで
あった。
The present invention will be described in detail with reference to the following examples. Example 1 (Production of dry silica gel powder) High-purity tetramethoxysilane was reacted with water to give a lumpy water content of 30% by weight.
The above silica gel (hereinafter referred to as "wet silica gel") was obtained. The lump-shaped wet silica gel was crushed with a net crusher and then dried by heating under reduced pressure to obtain powdery dry silica gel. The powdery dry silica gel was classified by a vibration sieving machine to obtain particles of 500 μm or less and 100 μm or more. When the dry silica gel (hereinafter referred to as "dry silica gel powder") after the classification was analyzed, the water content was 19.5% by weight and the carbon concentration was 1.1% by weight. The bulk density of this powder was 0.92 g / ml.

【0027】(加熱処理)こうして得られたドライシリ
カゲル粉末を用い、加熱処理を、図3に示すロータリー
キルンにより行った。図3において、6は、ドライゲル
ホッパー、7はテーブルフィーダー、8は炉心管、9は
供給口、10は供給口ドーナツ状堰、11は空気供給
管、12は排出口、13は排出口ドーナツ状堰、14は
処理粉受器、15は第1加熱ヒーター、16は第2加熱
ヒーター、17は第3加熱ヒーター、18は第4加熱ヒ
ーター、19は第5加熱ヒーター、20はドライシリカ
ゲル粉末である。炉心管は材質が石英で、加熱ゾーンの
長さ:2m、内径:200mm、供給口ドーナツ状堰開
口径:40mm、排出口ドーナツ状堰開口径:40mm
の寸法とし、炉心管内に供給されるドライシリカゲル粉
末の最大層高が80mmとなるように設定した。また、
炉心管は、傾斜角度が0.5°になるように調節した。
(Heat Treatment) Using the dry silica gel powder thus obtained, heat treatment was carried out by a rotary kiln shown in FIG. In FIG. 3, 6 is a dry gel hopper, 7 is a table feeder, 8 is a core tube, 9 is a supply port, 10 is a supply port donut-shaped weir, 11 is an air supply pipe, 12 is an exhaust port, and 13 is an exhaust port donut. Shaped weir, 14 treated powder receiver, 15 first heater, 16 second heater, 17 third heater, 18 fourth heater, 19 fifth heater, 20 dry silica gel powder Is. The core tube is made of quartz, the heating zone length: 2 m, inner diameter: 200 mm, supply port donut-shaped weir opening diameter: 40 mm, discharge port donut-shaped weir opening diameter: 40 mm
And the maximum layer height of the dry silica gel powder supplied into the core tube was set to 80 mm. Also,
The core tube was adjusted so that the inclination angle was 0.5 °.

【0028】加熱処理は、まず、各加熱ヒーターを50
0℃に昇温し、炉心管を4rpmで回転させつつ、ドラ
イシリカゲル粉末を9.3kg/Hrで、空気を678
0リットル/Hrで供給口より供給した。炉心管内の粉
体は、連続して、終始流動していた。供給操作開始後、
4、6、8時間目に排出された粉を分析したところ、表
1に示す値であった。尚、残存炭素濃度は、ホリバ製E
MIA610 CS分析計を用い、試料粉末を融剤と共
に溶融し、発生したCO2 を赤外吸光法で定量(COで
発生したものは、触媒で全てCO2 にして定量)するこ
とにより求めたものである。
In the heat treatment, first, each heating heater is set to 50.
The temperature was raised to 0 ° C., the core tube was rotated at 4 rpm, the dry silica gel powder was 9.3 kg / Hr, and the air was 678.
It was supplied from the supply port at 0 liter / Hr. The powder in the core tube was continuously flowing all the time. After starting the feeding operation,
When the powder discharged at 4, 6, and 8 hours was analyzed, the values shown in Table 1 were obtained. The residual carbon concentration is E
Obtained by melting a sample powder together with a flux using a MIA610 CS analyzer and quantitatively quantifying generated CO 2 by infrared absorption method (quantity of CO generated is converted to CO 2 with a catalyst) Is.

【0029】[0029]

【表1】 [Table 1]

【0030】次に、同様のロータリーキルンを用い、上
記操作で得られた粉を、以下に示す条件で更に加熱処理
した。第1加熱ヒーター:600℃、第2加熱ヒータ
ー:700℃、第3加熱ヒーター:850℃、第4加熱
ヒーター:1000℃、第5加熱ヒーター:1060℃
に昇温し、炉心管を4rpmで回転させつつ、粉体を
6.5kg/Hrで、空気を1000リットル/Hrで
供給口より供給した。
Next, using the same rotary kiln, the powder obtained by the above operation was further heat-treated under the following conditions. First heating heater: 600 ° C, second heating heater: 700 ° C, third heating heater: 850 ° C, fourth heating heater: 1000 ° C, fifth heating heater: 1060 ° C
The temperature was raised to 1, and while the core tube was rotated at 4 rpm, powder was supplied at 6.5 kg / Hr and air was supplied at 1000 liter / Hr from the supply port.

【0031】上記加熱処理中、炉心管内の粉体は、連続
して、終始流動していた。供給操作開始後、4、6、8
時間目に排出された合成石英粉を分析したところ、表2
に示す値であった。尚、黒色粒子数は、製品10gをシ
ャーレに約1mmの厚さに一様に敷きつめ、目視により
黒点として確認されたものの個数である。
During the above heat treatment, the powder in the core tube was continuously and continuously flowing. 4, 6, 8 after starting the feeding operation
Analysis of the synthetic quartz powder discharged at the hour
It was the value shown in. The number of black particles is the number of black spots visually confirmed by uniformly laying 10 g of the product on a petri dish to a thickness of about 1 mm.

【0032】[0032]

【表2】 [Table 2]

【0033】(焼成) 上述の加熱処理で得られた合成
石英粉60kgを直径560mmの石英製るつぼに仕込
み、電気炉内で加熱し焼成を行った。炉は昇温速度24
0℃/Hrで、到達温度1200℃まで昇温後、同温度
で60時間保持した。この際、るつぼ上部に、露点が−
50℃の清浄な乾燥空気を1900リットル/Hrで流
通した。保持終了後、加熱を停止し、室温まで冷却し
た。冷却の際にも、清浄な空気を流通した。焼成後に得
られた合成石英粉は、58kgであった。得られた合成
石英粉を、サンプリング場所毎に分析したところ表3に
示す値であった。
(Baking) 60 kg of synthetic quartz powder obtained by the above heat treatment was placed in a quartz crucible having a diameter of 560 mm, and heated in an electric furnace to be fired. The furnace has a heating rate of 24
After the temperature was raised to 1200 ° C. at 0 ° C./Hr, the temperature was maintained for 60 hours. At this time, the dew point is − on the upper part of the crucible.
Clean dry air at 50 ° C. was passed at 1900 liter / Hr. After the end of the holding, heating was stopped and the temperature was cooled to room temperature. Clean air was also circulated during cooling. The synthetic quartz powder obtained after firing was 58 kg. When the obtained synthetic quartz powder was analyzed at each sampling location, the values shown in Table 3 were obtained.

【0034】[0034]

【表3】 [Table 3]

【0035】(成形) 焼成で得られた合成石英粉を、
各々のサンプリング場所毎に、ベルヌーイ法で、インゴ
ットに成形した。インゴット中に、泡の発生は見られな
かった。
(Molding) The synthetic quartz powder obtained by firing was
An ingot was formed by the Bernoulli method at each sampling location. No bubbling was observed in the ingot.

【0036】比較例1 排出口ドーナツ状堰開口径を60mmの寸法とし、最大
層高が70mmとなるように設定した以外は、実施例1
同様のロータリーキルンを用い、実施例1(シリカゲル
粉末の製造)で得られたドライシリカゲル粉末の加熱処
理を行った。供給開始後、4、6、8時間目に排出され
た粉を分析したところ、表4に示す値であった。
Comparative Example 1 Example 1 was repeated, except that the opening diameter of the outlet donut-shaped weir was set to 60 mm and the maximum layer height was set to 70 mm.
Using the same rotary kiln, the dry silica gel powder obtained in Example 1 (production of silica gel powder) was heat-treated. The powder discharged at 4, 6, and 8 hours after the start of feeding was analyzed, and the values were as shown in Table 4.

【0037】[0037]

【表4】 [Table 4]

【0038】次に、同様に排出口ドーナツ状堰開口径を
60mmの寸法とし、最大層高が70mmとなるように
設定したロータリーキルンを用い、上記操作で得られた
粉を、以下に示す条件で更に加熱処理した。第1加熱ヒ
ーター:600℃、第2加熱ヒーター:700℃、第3
加熱ヒーター:850℃、第4加熱ヒーター:1000
℃、第5加熱ヒーター:1060℃に昇温し、炉心管を
4rpmで回転させつつ、粉体を6.5kg/Hrで、
空気を1000リットル/Hrで供給口より供給した。
Next, similarly, using a rotary kiln having a discharge donut-shaped weir opening diameter of 60 mm and a maximum bed height of 70 mm, the powder obtained by the above operation was treated under the following conditions. Further heat treatment was performed. 1st heating heater: 600 ° C, 2nd heating heater: 700 ° C, 3rd
Heater: 850 ° C, 4th heater: 1000
℃, 5th heater: heated to 1060 ℃, while rotating the core tube at 4 rpm, the powder at 6.5kg / Hr,
Air was supplied from the supply port at 1000 liter / Hr.

【0039】炉心管内の粉体は、後半部分は、連続して
終始流動していたが,前半部分は、断続的に流動し、静
止から流動に移行する際に通常以上のガスの発生が観察
された。供給操作開始後、4、6、8時間目に排出され
た合成石英粉を分析したところ、表5に示す値であっ
た。
In the powder in the core tube, the latter half of the powder was continuously flowing from beginning to end, but the first half was intermittently flowing, and generation of more than normal gas was observed when transitioning from stationary to flowing. Was done. When the synthetic quartz powder discharged 4, 6 and 8 hours after the start of the feeding operation was analyzed, the values were as shown in Table 5.

【0040】[0040]

【表5】 [Table 5]

【0041】実施例2 実施例1の(ドライシリカゲル粉末の製造)により得ら
れたドライシリカゲル粉末を用い、管の内径が400m
mである以外は実施例1で用いたと同様のロータリーキ
ルンを用いて実施例1同様の(加熱処理)を行った。
炉心管内の粉体は、連続して、終始流動していた。加熱
処理で得られた合成石英粉を、実施例1の(焼成)にお
けるものと同様の操作により焼成し、焼成後の合成石英
粉を実施例1(成形)同様の操作によりインゴットに成
形した。何れのインゴットにおいても泡の発生は見られ
なかった。
Example 2 The dry silica gel powder obtained in (Production of dry silica gel powder) of Example 1 was used, and the inner diameter of the tube was 400 m.
The same (heat treatment) as in Example 1 was performed using the same rotary kiln as that used in Example 1 except for m.
The powder in the core tube was continuously flowing all the time. The synthetic quartz powder obtained by the heat treatment was fired by the same operation as in (baking) of Example 1, and the fired synthetic quartz powder was molded into an ingot by the same operation as in Example 1 (molding). No foam was observed in any of the ingots.

【0042】比較例2 管の内径が400mmである以外は実施例1で用いたと
同様のロータリーキルンを用いて加熱処理を行った以外
は比較例1同様の操作を行ったところ、加熱処理におい
ては、炉心管内の粉体は、後半部分は、連続して終始流
動していたが,前半部分は、断続的に流動し、静止から
流動に移行する際に通常以上のガスの発生が観察され、
比較例1同様の状態を示した。
Comparative Example 2 The same operation as in Comparative Example 1 was carried out except that the same rotary kiln as that used in Example 1 was used except that the inner diameter of the tube was 400 mm. The powder in the core tube flowed continuously from beginning to end in the latter half, but in the first half, it intermittently flowed, and generation of more than normal gas was observed when transitioning from stationary to flowing,
The same state as in Comparative Example 1 was shown.

【0043】[0043]

【発明の効果】本発明により、溶融成形時に泡の発生の
ない合成石英粉を効率的に製造することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to efficiently produce synthetic quartz powder that does not generate bubbles during melt molding.

【図面の簡単な説明】[Brief description of drawings]

【図1】粉体を仕込んだ静止状態のロータリーキルンの
断面図
[Fig. 1] Cross-sectional view of a rotary kiln in a stationary state charged with powder.

【図2】仕込んだ粉体が流動状態にある、回転状態のロ
ータリーキルンの断面図
FIG. 2 is a sectional view of a rotary kiln in a rotating state in which the charged powder is in a fluid state.

【図3】本発明で用いられるロータリーキルンの一例を
示す図
FIG. 3 is a diagram showing an example of a rotary kiln used in the present invention.

【符号の説明】[Explanation of symbols]

1 粉体 2 炉心管 3 接粉面 4 炉心管内の空隙 5 粉体面 6 ドライゲルホッパー 7 テーブルフィーダー 8 炉心管 9 供給口 10 供給口ドーナツ状堰 11 空気供給管 12 排出口 13 排出口ドーナツ状堰 15 第1加熱ヒーター 16 第2加熱ヒーター 17 第3加熱ヒーター 18 第4加熱ヒーター 19 第5加熱ヒーター 1 powder 2 core tube 3 powder contact surface 4 void in core tube 5 powder surface 6 dry gel hopper 7 table feeder 8 core tube 9 supply port 10 supply port donut shaped weir 11 air supply pipe 12 discharge port 13 discharge port donut shape Weir 15 1st heater 16 2nd heater 17 3rd heater 18 4th heater 19 5th heater

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 シリカゲル粉末を、ロータリーキルンを
用いて流動させながら加熱処理する工程を含む合成石英
粉の製造方法において、ロータリーキルン内のシリカゲ
ル粉末の最大層高を75mm以上とすることを特徴とす
る合成石英粉の製造方法。
1. A method for producing a synthetic quartz powder, which comprises a step of heat-treating a silica gel powder while flowing it using a rotary kiln, wherein the maximum bed height of the silica gel powder in the rotary kiln is 75 mm or more. Method for producing quartz powder.
【請求項2】 ロータリーキルンの片端より連続的にシ
リカゲル粉末を供給しつつ加熱処理を行う請求項1記載
の合成石英粉の製造方法。
2. The method for producing synthetic quartz powder according to claim 1, wherein the heat treatment is carried out while continuously supplying silica gel powder from one end of the rotary kiln.
【請求項3】 多段のロータリーキルンを用いて行う請
求項1又は2記載の合成石英粉の製造方法。
3. The method for producing synthetic quartz powder according to claim 1, which is carried out using a multistage rotary kiln.
【請求項4】 加熱処理の最終温度が900〜1100
℃である請求項1〜3のいずれかに記載の合成石英粉の
製造方法。
4. The final temperature of the heat treatment is 900 to 1100.
The method for producing the synthetic quartz powder according to claim 1, which is at a temperature of ℃.
【請求項5】 ロータリーキルンの炉心管の材質が石英
である請求項1〜4のいずれかに記載の合成石英粉の製
造方法。
5. The method for producing synthetic quartz powder according to claim 1, wherein the material of the core tube of the rotary kiln is quartz.
【請求項6】 シリカゲル粉末がテトラアルコキシシラ
ンの加水分解により得られたものである請求項1〜5の
いずれかに記載の合成石英粉の製造方法。
6. The method for producing synthetic quartz powder according to claim 1, wherein the silica gel powder is obtained by hydrolysis of tetraalkoxysilane.
【請求項7】 加熱処理を1100℃以下で行った後、
更に1100℃を超える温度で焼成する請求項1〜6の
いずれかに記載の合成石英粉の製造方法。
7. After heat treatment at 1100 ° C. or lower,
Furthermore, the manufacturing method of the synthetic quartz powder in any one of Claims 1-6 baked at the temperature exceeding 1100 degreeC.
【請求項8】 シリカゲル粉末を、ロータリーキルンを
用いて流動させながら加熱処理する際ロータリーキルン
内のシリカゲル粉末の最大層高を75mm以上として加
熱処理を行い得られた合成石英粉を、更に溶融すること
を特徴とする石英ガラス成形体の製造方法。
8. When the silica gel powder is heat-treated while being fluidized using a rotary kiln, the synthetic silica powder obtained by heat-treatment with the maximum bed height of the silica gel powder in the rotary kiln being 75 mm or more is further melted. A method for producing a characterized quartz glass molded body.
JP10588895A 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body Expired - Fee Related JP3735886B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10588895A JP3735886B2 (en) 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body
US08/945,318 US6129899A (en) 1995-04-28 1996-04-26 Processes for producing synthetic quartz powder and producing shaped quartz glass
EP96912278A EP0823403B1 (en) 1995-04-28 1996-04-26 Processes for producing synthetic quartz powder and producing shaped quartz glass
PCT/JP1996/001176 WO1996033950A1 (en) 1995-04-28 1996-04-26 Processes for producing synthetic quartz powder and producing shaped quartz glass
DE69629111T DE69629111T2 (en) 1995-04-28 1996-04-26 METHOD FOR PRODUCING A SYNTHETIC QUARTZ POWDER AND MOLDED QUARTZ GLASS
KR1019970707671A KR19990008146A (en) 1995-04-28 1996-04-26 Manufacturing method of synthetic quartz powder and manufacturing method of quartz glass molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10588895A JP3735886B2 (en) 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body

Publications (2)

Publication Number Publication Date
JPH08301614A true JPH08301614A (en) 1996-11-19
JP3735886B2 JP3735886B2 (en) 2006-01-18

Family

ID=14419468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10588895A Expired - Fee Related JP3735886B2 (en) 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body

Country Status (1)

Country Link
JP (1) JP3735886B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188412A (en) * 2004-12-28 2006-07-20 General Electric Co <Ge> Process for treating synthetic silica powder and synthetic silica powder treated by the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500972A (en) * 1986-11-20 1990-04-05 ティーエスエル グループ ピーエルシー Improvements in and related to vitreous silica
JPH054925B2 (en) * 1986-07-29 1993-01-21 Tonen Kagaku Kk
JPH0624728A (en) * 1992-07-11 1994-02-01 Oomura Taika Kk Production of cristobalite
JPH0642876A (en) * 1992-07-22 1994-02-18 Nippon Steel Chem Co Ltd Indirect heating type rotary heating furnace
JPH06191824A (en) * 1992-12-24 1994-07-12 Mitsubishi Kasei Corp Rotary heating method for quartz powder
JPH07157308A (en) * 1993-12-07 1995-06-20 Mitsubishi Chem Corp Production of synthetic quartz glass powder
JPH08104531A (en) * 1994-09-29 1996-04-23 Mitsubishi Chem Corp Transporting device of synthetic quartz powder and granular material and transporting method using the same
JPH09156918A (en) * 1995-09-29 1997-06-17 Mitsubishi Chem Corp Production of powdery synthetic quartz

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054925B2 (en) * 1986-07-29 1993-01-21 Tonen Kagaku Kk
JPH02500972A (en) * 1986-11-20 1990-04-05 ティーエスエル グループ ピーエルシー Improvements in and related to vitreous silica
JPH0624728A (en) * 1992-07-11 1994-02-01 Oomura Taika Kk Production of cristobalite
JPH0642876A (en) * 1992-07-22 1994-02-18 Nippon Steel Chem Co Ltd Indirect heating type rotary heating furnace
JPH06191824A (en) * 1992-12-24 1994-07-12 Mitsubishi Kasei Corp Rotary heating method for quartz powder
JPH07157308A (en) * 1993-12-07 1995-06-20 Mitsubishi Chem Corp Production of synthetic quartz glass powder
JPH08104531A (en) * 1994-09-29 1996-04-23 Mitsubishi Chem Corp Transporting device of synthetic quartz powder and granular material and transporting method using the same
JPH09156918A (en) * 1995-09-29 1997-06-17 Mitsubishi Chem Corp Production of powdery synthetic quartz

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188412A (en) * 2004-12-28 2006-07-20 General Electric Co <Ge> Process for treating synthetic silica powder and synthetic silica powder treated by the same

Also Published As

Publication number Publication date
JP3735886B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JPH10287416A (en) Production of synthetic quartz powder
WO1996033950A1 (en) Processes for producing synthetic quartz powder and producing shaped quartz glass
US6849242B1 (en) Porous silica granule, method for producing the same, and method for producing synthetic quartz glass powder using the porous silica granule
JPH072513A (en) Production of synthetic quartz glass powder
JPH09165214A (en) Production of synthetic quartz powder
JP3735887B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3617153B2 (en) Method for producing synthetic quartz powder
KR100414962B1 (en) Process for producing synthetic quartz powder
JP3735886B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3875735B2 (en) Method for producing synthetic quartz powder
JP3806953B2 (en) Method for producing synthetic quartz powder
JP3884783B2 (en) Method for producing synthetic quartz powder
JP3724084B2 (en) Method for producing synthetic quartz powder and quartz glass molded body
JP3343923B2 (en) Manufacturing method of high purity silica glass powder
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same
JPH05201718A (en) Production of silica glass powder and silica glass molten molding
JPH10101324A (en) Production of synthetic quartz powder and production of quartz glass formed body
JP3859303B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
JPH10212115A (en) Production of high purity quartz glass powder and production of quartz glass molding
JPH10182140A (en) Production of synthetic quartz glass powder and formed quartz glass
JPH05246708A (en) Production for powdery dry gel, silica glass powder and silica glass fusion molded goods
JP4177908B2 (en) Manufacturing method of high purity powder
JPH10203821A (en) Production of synthetic quartz glass powder and quartz glass formed product
JPH0826741A (en) Production of synthetic quartz glass powder
JPH11139838A (en) Production of synthetic quartz powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees