JPH0826741A - Production of synthetic quartz glass powder - Google Patents

Production of synthetic quartz glass powder

Info

Publication number
JPH0826741A
JPH0826741A JP15875494A JP15875494A JPH0826741A JP H0826741 A JPH0826741 A JP H0826741A JP 15875494 A JP15875494 A JP 15875494A JP 15875494 A JP15875494 A JP 15875494A JP H0826741 A JPH0826741 A JP H0826741A
Authority
JP
Japan
Prior art keywords
powder
firing
quartz glass
synthetic quartz
glass powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15875494A
Other languages
Japanese (ja)
Inventor
Kazutomi Kimura
一臣 木村
Akira Utsunomiya
明 宇都宮
Takashi Yamaguchi
隆 山口
Haruo Asatani
治生 浅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP15875494A priority Critical patent/JPH0826741A/en
Publication of JPH0826741A publication Critical patent/JPH0826741A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1095Thermal after-treatment of beads, e.g. tempering, crystallisation, annealing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain synthetic quartz glass powder having a low silanol group content. CONSTITUTION:When powder of silica gel obtd. by hydrolyzing tetraalkoxysilane is filled into a heat resistant vessel and fired to produce synthetic quartz glass powder, the silica gel powder filled into the heat resistant vessel is fired while introducing dehumidified gas having <=-30 deg.C dew point into the interior of the powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造分野、とくに
1000℃以上の高温度域で使用される超高純度石英ガ
ラス製品の原料として好適な石英ガラス粉を提供するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a silica glass powder suitable as a raw material for an ultra-high purity silica glass product used in the semiconductor manufacturing field, particularly in a high temperature range of 1000 ° C. or higher.

【0002】[0002]

【従来の技術】近年、半導体産業等において使用される
各種ガラス製の治具・ルツボ等については、半導体の高
集積化に伴い、その構成ガラス材料の純度に関して非常
に厳しい管理が行われている。これらの用途に適用され
る高純度なガラス製品の製造方法として、従来、アルコ
キシシランを出発原料とし、これを加水分解し、ゾル−
ゲル法と称されるプロセスによりシリカ粉末を得、次い
で、これを焼成してガラス粉末とした後、溶融ガラス化
して目的とする所望のガラス製品を製造する方法が知ら
れている。この方法によれば、出発原料となるアルコキ
シシランを容易に蒸留精製することができるため、高純
度のガラス製品を得ることができる。
2. Description of the Related Art In recent years, with respect to various glass jigs and crucibles used in the semiconductor industry and the like, with the high integration of semiconductors, the purity of the constituent glass materials has been extremely strictly controlled. . As a method for producing a high-purity glass product applied to these applications, conventionally, alkoxysilane is used as a starting material, which is hydrolyzed to obtain a sol-
A method is known in which silica powder is obtained by a process called a gel method, which is then fired to give a glass powder, which is then melted and vitrified to produce a desired desired glass product. According to this method, since the starting alkoxysilane can be easily purified by distillation, a high-purity glass product can be obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では金属不純物については極めてその含有量の
少ないものが得られるが、加水分解・ゲル化時に有して
いたシラノール基が、焼成後も粒子中に残留シラノール
基として残るため、天然石英粉に比べ、高いシラノール
量を有する。シラノール含有量が多いと高温での粘性が
低いために、シリコン単結晶引き上げ用ルツボや半導体
拡散炉などには使用できない(特開平1−320232
号公報)。実際、この用途に使用するにはシラノール含
有量が100〜50ppm以下であることが好ましい。
このため、シラノール濃度を下げるため、水蒸気分圧の
低い雰囲気で焼成を行なうことによる低シラノールシリ
カの製造方法(特開平2−289416号公報)が知ら
れている。ところが、550mmφ×600mmHの耐
熱円筒容器にシリカゲル粉末を粉体層高500mmまで
充填して、表層部に露点−45℃の脱湿空気を流しなが
ら1200℃で50時間焼成したところ、容器底部のシ
ラノール含有量が、表層部で50ppmに対し、底部で
73ppmと、約1.5倍となっていることが判った。
粉体層高を高く仕込んだ場合でも、焼成時間を長くする
か、焼成温度を上げることにより、シラノール濃度を下
げることができるが、多大なコストを要す上、温度をあ
まり上げると粒子の焼結を起こし、焼成後に解砕等の後
工程が必要になってくる。そこで、生産能力を上げるた
めには、焼成1回当りの仕込量は出来るだけ多くした
く、なおかつ、如何にして焼成時間を短縮するかが課題
であった。
However, although the above-mentioned conventional method can obtain the metal impurities having a very small content, the silanol groups which were present at the time of hydrolysis / gelation are not suitable for the particles even after firing. Since it remains as a residual silanol group, it has a higher silanol content than natural quartz powder. If the silanol content is high, the viscosity at high temperature is low, so that it cannot be used in a crucible for pulling a silicon single crystal, a semiconductor diffusion furnace, etc.
Issue). In fact, it is preferable that the silanol content is 100 to 50 ppm or less for use in this application.
Therefore, in order to reduce the concentration of silanol, there is known a method for producing low silanol silica by firing in an atmosphere having a low water vapor partial pressure (JP-A-2-289416). However, a 550 mmφ × 600 mmH heat-resistant cylindrical container was filled with silica gel powder up to a powder layer height of 500 mm, and calcined at 1200 ° C. for 50 hours while flowing dehumidified air with a dew point of −45 ° C. to the silanol at the bottom of the container. It was found that the content was 50 ppm in the surface layer and 73 ppm in the bottom, about 1.5 times.
Even when the powder bed height is set high, the silanol concentration can be lowered by prolonging the firing time or raising the firing temperature. Post-processing such as crushing after calcination becomes necessary after firing. Therefore, in order to increase the production capacity, it has been a subject to increase the charging amount per firing and to shorten the firing time.

【0004】[0004]

【課題を解決するための手段】発明者等は、上記課題を
解決すべく、鋭意研究を重ねた結果、仕込み層高の増加
に伴い、容器の表層部と底部において、シラノール濃度
の格差が生じるのは、焼成中に粉体から発生した水蒸気
の表層部への拡散・脱湿ガスとの置換に時間がかかり、
表層部から底部にいくに従い、粉体周囲の水蒸気圧が高
くなり、これが粒子内部からのシラノール基の拡散・脱
離を抑制しているらしいことが明らかとなった。このこ
とから、脱湿ガスの供給を耐熱容器に仕込んだドライゲ
ル粉末の表層部へではなく、粉体層の内部、好ましく
は、最下層部より供給し、粉体表層部へ向けてガスの流
れを作ることにより、焼成時に発生した水蒸気がスムー
ズにパージされ、個々の粉体粒子が常に脱湿ガスと接触
し、結果としてシラノール基の拡散・脱離を促進し、大
幅に焼成時間を短縮できることを見いだし、本発明に到
達した。すなわち、本発明の要旨はテトラアルコキシシ
ランの加水分解により得たシリカゲルの粉末を耐熱容器
に入れて焼成することにより合成石英ガラス粉末を製造
するにあたり、該耐熱容器に充填したシリカゲル粉末の
内部に露点−30℃以下の脱湿ガスを導入しながら焼成
することを特徴とする、合成石英ガラス粉末の製造方
法、に存する。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the inventors have found that a difference in silanol concentration occurs between the surface layer and the bottom of a container as the height of the stock layer increases. Is because it takes time to disperse the steam generated from the powder during firing into the surface layer and replace it with dehumidified gas,
It was clarified that the water vapor pressure around the powder increases from the surface layer to the bottom, which seems to suppress diffusion and desorption of silanol groups from inside the particle. From this, the supply of dehumidifying gas is not supplied to the surface layer part of the dry gel powder charged in the heat-resistant container, but inside the powder layer, preferably, supplied from the lowermost layer part, and the gas flow toward the powder surface layer part. By making the, the steam generated during firing is smoothly purged, and individual powder particles are constantly in contact with the dehumidifying gas, resulting in the promotion of diffusion and elimination of silanol groups, and the firing time can be greatly shortened. They have found the present invention and reached the present invention. That is, the gist of the present invention is to produce a synthetic quartz glass powder by putting a silica gel powder obtained by hydrolysis of tetraalkoxysilane in a heat-resistant container and firing it, and the dew point is inside the silica gel powder filled in the heat-resistant container. A method for producing a synthetic quartz glass powder, which comprises firing while introducing a dehumidifying gas at −30 ° C. or lower.

【0005】以下、本発明につき、更に詳細に説明す
る。本発明で対象となる合成石英ガラス粉は、アルコキ
シシランを加水分解して得られるシリカゲルを乾燥、焼
成することにより得られるシリカガラス粉である。ゾル
ゲル法によるアルコキシシランの加水分解は、周知の方
法に従って、アルコキシシランと水を反応させることに
よって行なわれる。原料として用いられるアルコキシシ
ランとしては、テトラメトキシシラン、テトラエトキシ
シラン等の、炭素数1〜4の低級アルコキシシランある
いはそのオリゴマーが好ましい。
The present invention will be described in more detail below. The synthetic quartz glass powder targeted by the present invention is silica glass powder obtained by drying and firing silica gel obtained by hydrolyzing alkoxysilane. Hydrolysis of alkoxysilane by the sol-gel method is performed by reacting alkoxysilane with water according to a well-known method. As the alkoxysilane used as a raw material, a lower alkoxysilane having 1 to 4 carbon atoms such as tetramethoxysilane and tetraethoxysilane or an oligomer thereof is preferable.

【0006】水の使用量は通常、アルコキシシラン中の
アルコキシ基の1倍当量以上10倍当量以下から選択す
る。この際、必要に応じて水と相溶性のあるアルコール
類やエーテル類等の有機溶媒を混合してもよい。使用さ
れるアルコールの具体例としては、メタノール、エタノ
ール等の低級脂肪族アルコールが挙げられ、これらの有
機溶媒の使用により反応系を均一で安定なものとするこ
とが出来る。ただし、加水分解反応の進行につれてアル
コキシシランに結合していたアルコキシ基が、アルコー
ルとして遊離するため、ゲル化する以前に反応液が均一
な状態となる場合には、アルコールの添加を行なわなく
とも実際上支障なく反応を行なわせることができる。
The amount of water used is usually selected from 1 to 10 equivalents of the alkoxy groups in the alkoxysilane. At this time, organic solvents such as alcohols and ethers which are compatible with water may be mixed if necessary. Specific examples of the alcohol used include lower aliphatic alcohols such as methanol and ethanol, and the use of these organic solvents can make the reaction system uniform and stable. However, as the hydrolysis reaction progresses, the alkoxy groups bound to the alkoxysilane are liberated as alcohols, so if the reaction solution is in a uniform state before gelation, it may be necessary to add alcohol. The reaction can be performed without any trouble.

【0007】この加水分解反応には、触媒として塩酸、
酢酸のような酸や、アンモニアのようなアルカリを用い
てもよい。なお、当然のことながら、高純度のシリカゲ
ル粉末を得るには、ここで使用する原料アルコキシシラ
ン、水、溶媒等の、この反応系に導入される物質は、す
べて高純度であることが必要である。
For this hydrolysis reaction, hydrochloric acid as a catalyst,
An acid such as acetic acid or an alkali such as ammonia may be used. In addition, as a matter of course, in order to obtain a high-purity silica gel powder, it is necessary that all the substances to be introduced into this reaction system such as the raw material alkoxysilane, water, and solvent used here are of high purity. is there.

【0008】加水分解生成物をゲル化させるには、加熱
すればそれだけ速くゲルを得ることができるが、常温で
放置しても数時間でゲル化するので、加温の程度を調節
することによってゲル化時間を調節することができる。
得られたゲルは細分化してから乾燥してもよいし、乾燥
してから細分化しても良い。乾燥シリカゲルの平均粒径
は、通常100〜1000μmである。
In order to gelate the hydrolysis product, the gel can be obtained faster by heating, but even if it is left at room temperature, it gels in several hours, so by adjusting the degree of heating. The gel time can be adjusted.
The obtained gel may be subdivided and then dried, or may be dried and subdivided. The average particle size of dried silica gel is usually 100 to 1000 μm.

【0009】ゲルの乾燥の程度については、H2 Oの含
有量で通常、1〜30重量%であり、通常、ゲルを減圧
下、あるいは、不活性ガス雰囲気中で100〜200℃
に加熱することによって行なわれる。上記のようにして
製造した乾燥シリカゲル粉末を、以下に述べる特定の焼
成条件下で焼成する。すなわち、耐熱容器に入れて焼成
中の、乾燥シリカゲル粉末の仕込み粉体層高の中央より
も下部、好ましくは、最下層部より脱湿ガスを供給しな
がら焼成を行なう。ここで、粉体下層部にガスを供給す
る方法としては、図1に示すように、耐熱性の円筒型セ
ラミックフィルター2を耐熱容器1の中央部に挿入する
方法(3:ドライゲル粉末)、図2に示すように、耐熱
容器1の下部に耐熱性多孔板4を設け、これを通して耐
熱管5から脱湿ガスを供給する方法等が考えられるが、
これに限定されるものではなく、単に耐熱性の単管を、
粉体中心部に挿入するだけでも、効果が期待できる。こ
のような脱湿ガスの供給方法によって、焼成時にゲルか
ら発生した水蒸気は、粉体層内部に滞留する事無く、表
層部に向かって拡散・除去することができ、引いては、
常に粉体粒子周囲の雰囲気を低い水蒸気分圧に維持する
ことができ、短時間で目標のシラノール量を有する合成
石英ガラス粉末を得ることが出来る。なお、この時用い
る脱湿ガスの種類としては、少なくとも、ゲルに残存し
ているカーボンの除去が終了する600℃付近までは、
酸素含有雰囲気であることが必要であるが、その後は、
不活性ガス雰囲気であっても構わない。また、用いる脱
湿ガスの露点は、要求されるシラノール濃度によって異
なるが、−30℃以下の露点のガスを用いることによ
り、シラノール濃度50ppm以下のものを得ることが
できる。これは、石英ガラス中の残留シラノールが、粉
末周囲の水蒸気と平衡関係にあるため、この温度より高
い露点のガスを用いると、焼成に長時間を要するだけで
なく、場合によっては、高温用途として要求される目標
シラノール濃度に下げることができなくなる。焼成温度
としては、ゲルが完全に無孔化する900℃以上、14
00℃以下で行う。これより温度が高いと、粒子間の焼
結を起こし、焼成後に解砕が必要となるため好ましくな
い。
The degree of drying of the gel is usually 1 to 30% by weight based on the content of H 2 O, and the gel is usually dried under reduced pressure or in an inert gas atmosphere at 100 to 200 ° C.
By heating to. The dried silica gel powder produced as described above is fired under the specific firing conditions described below. That is, the firing is performed while supplying the dehumidifying gas from below the center of the charged powder layer height of the dry silica gel powder, preferably from the bottommost layer, during the firing in the heat-resistant container. Here, as a method of supplying gas to the powder lower layer portion, as shown in FIG. 1, a method of inserting a heat-resistant cylindrical ceramic filter 2 into the center portion of the heat-resistant container 1 (3: dry gel powder), As shown in FIG. 2, a method of providing a heat resistant porous plate 4 in the lower portion of the heat resistant container 1 and supplying dehumidified gas from the heat resistant tube 5 through the heat resistant porous plate 4 can be considered.
It is not limited to this, just a heat resistant single tube,
The effect can be expected by just inserting it in the center of the powder. By such a dehumidifying gas supply method, the water vapor generated from the gel during firing can be diffused and removed toward the surface layer portion without staying inside the powder layer.
The atmosphere around the powder particles can always be maintained at a low water vapor partial pressure, and synthetic quartz glass powder having a target silanol amount can be obtained in a short time. As the kind of dehumidifying gas used at this time, at least up to around 600 ° C. at which removal of carbon remaining in the gel is completed,
An oxygen-containing atmosphere is required, but after that,
It may be an inert gas atmosphere. The dew point of the dehumidifying gas used varies depending on the required silanol concentration, but by using a gas having a dew point of −30 ° C. or lower, a silanol concentration of 50 ppm or lower can be obtained. This is because the residual silanol in the quartz glass is in equilibrium with the water vapor around the powder, so using a gas with a dew point higher than this temperature not only requires a long time for firing, but in some cases, as a high temperature application. It will not be possible to reduce to the required target silanol concentration. The firing temperature is 900 ° C or higher at which the gel becomes completely non-porous, 14
It is performed at 00 ° C or lower. If the temperature is higher than this, sintering between particles occurs and crushing is required after firing, which is not preferable.

【0010】このようにして得られた合成石英ガラス粉
末は、シリコン単結晶引き上げ用ルツボ、拡散炉のチュ
ーブや治具等の半導体製造分野に使用される種々の高温
強度の要求される超高純度シリカガラス製品の原料とし
て好適に用いることが出来る。
The synthetic quartz glass powder thus obtained is used in the semiconductor manufacturing field such as a crucible for pulling a silicon single crystal, a tube of a diffusion furnace, a jig, etc. It can be suitably used as a raw material for silica glass products.

【0011】[0011]

【実施例】以下実施例によって本発明を具体的に説明す
るが、本発明はその要旨を越えないかぎり、以下の実施
例に限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

【0012】[0012]

【実施例1】攪拌槽にテトラメトキシシランと、これに
対して5倍当量の水を仕込み、30℃の温度で1時間攪
拌し加水分解反応によって均一なゾル溶液を得た。さら
にこれを塩化ビニル製のバットに移し、5時間放置して
ゲル化させた。このゲルを140℃の真空乾燥機を用い
て12時間乾燥を行った後、100〜500μmの粒径
に粒度調製を行った。このようにして得られた乾燥シリ
カゲル粉末を図2に示すような、底部に耐熱性多孔板
(4)を有する550mmφ×600mmHの石英ガラ
ス製ルツボに100kg仕込んだ。焼成前の仕込み層高
は50cmであった。そして、多孔板を通して露点−4
5℃の脱湿空気を40 l/minで供給しながら、1
220℃まで5時間かけて昇温し、その温度で50時間
保持した。焼成終了後、室温まで冷却し、粉体を回収し
た。なお、焼成後の層高は36cmあり、これを表層部
から0〜12cm(上部)、12〜24cm(中部)、
24〜36cm(下部)の3箇所にわけて回収した。そ
れぞれの部分のシラノール濃度を赤外吸光法により測定
したところ、上部で28ppm、中部で34ppm、下
部で29ppmであった。
Example 1 Tetramethoxysilane and water in an amount of 5 times the amount of tetramethoxysilane were charged into a stirring tank and stirred at a temperature of 30 ° C. for 1 hour to obtain a uniform sol solution by hydrolysis reaction. Further, this was transferred to a vinyl chloride vat and left for 5 hours for gelation. After drying this gel for 12 hours using a vacuum dryer at 140 ° C., particle size was adjusted to a particle size of 100 to 500 μm. 100 kg of the dried silica gel powder thus obtained was placed in a 550 mmφ × 600 mmH quartz glass crucible having a heat resistant porous plate (4) at the bottom as shown in FIG. The height of the charged layer before firing was 50 cm. And dew point -4 through the perforated plate
While supplying dehumidified air at 5 ° C at 40 l / min, 1
The temperature was raised to 220 ° C. over 5 hours, and the temperature was maintained for 50 hours. After the firing, the powder was collected by cooling to room temperature. The layer height after firing is 36 cm, which is 0 to 12 cm (upper part), 12 to 24 cm (middle part) from the surface layer part,
It was collected in three places of 24 to 36 cm (lower part). When the silanol concentration of each part was measured by the infrared absorption method, it was 28 ppm in the upper part, 34 ppm in the middle part and 29 ppm in the lower part.

【0013】[0013]

【実施例2】実施例1と同様の方法で作製した、乾燥シ
リカゲル粉末100kgを550mmφ×600mmH
の石英ガラス製ルツボに仕込んだ。この粉体中央部に1
0mmφの石英ガラス管を、粉体表層部から30cmの
位置まで挿入し、この石英管を通して露点−45℃の脱
湿空気を40 l/minで供給しながら、1220℃
まで5時間で昇温し、その温度で50時間保持した。焼
成終了後、実施例1と同様に粉体をを回収し、シラノー
ル濃度を赤外吸光法により測定したところ、上部で40
ppm、中部で45ppm、下部で55ppmであっ
た。
Example 2 100 kg of dried silica gel powder produced by the same method as in Example 1 was 550 mmφ × 600 mmH.
It was placed in a quartz glass crucible. 1 in the center of this powder
Insert a 0 mmφ quartz glass tube to a position 30 cm from the powder surface layer, and supply dehumidified air with a dew point of −45 ° C. at 40 l / min through the quartz tube at 1220 ° C.
Up to 5 hours and kept at that temperature for 50 hours. After firing, the powder was recovered in the same manner as in Example 1 and the silanol concentration was measured by an infrared absorption method.
ppm, 45 ppm in the middle part and 55 ppm in the lower part.

【0014】[0014]

【比較例1】実施例1と同様の方法で作製した、乾燥シ
リカゲル粉末100kgを、550mmφ×600mm
Hの石英ガラス製ルツボに仕込んだ。このルツボの周上
部に切り込みをいれ、横方向から10mmφの石英ガラ
ス管を挿入し、粉体表層部に露点−45℃の脱湿空気を
40 l/minで供給しながら、1220℃まで5時
間で昇温し、その温度で50時間保持した。焼成終了
後、実施例1と同様に粉体を回収し、赤外吸光法により
シラノール濃度を測定したところ、上部で50ppm、
中部で64ppm、下部で73ppmであった。
Comparative Example 1 100 kg of dried silica gel powder prepared by the same method as in Example 1 was 550 mmφ × 600 mm
It was placed in a quartz glass crucible of H. Make a cut in the upper part of the periphery of this crucible, insert a 10 mmφ quartz glass tube from the lateral direction, and supply dehumidified air with a dew point of −45 ° C. to the powder surface layer at 40 l / min for 5 hours up to 1220 ° C. And the temperature was maintained for 50 hours. After the firing, the powder was recovered in the same manner as in Example 1 and the silanol concentration was measured by the infrared absorption method.
It was 64 ppm in the middle part and 73 ppm in the lower part.

【0015】[0015]

【発明の効果】以上で述べたように、本発明の方法によ
れば、目標のシラノール濃度の合成石英ガラス粉末を、
生産性良く、短時間で得ることが出来る。
As described above, according to the method of the present invention, the synthetic silica glass powder having the target silanol concentration is
Good productivity and can be obtained in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる焼成方法の一例。FIG. 1 shows an example of a firing method used in the present invention.

【図2】本発明で用いる焼成方法の一例FIG. 2 is an example of a firing method used in the present invention

【符号の説明】[Explanation of symbols]

1 耐熱容器 2 セラミックフィルター 3 ドライゲル粉末 4 耐熱性多孔板 5 耐熱管 1 Heat-resistant container 2 Ceramic filter 3 Dry gel powder 4 Heat-resistant porous plate 5 Heat-resistant tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅谷 治生 神奈川県横浜市緑区鴨志田町1000番地 三 菱化成株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Haruo Asaya 1000, Kamoshida-cho, Midori-ku, Yokohama-shi, Kanagawa Sanryo Kasei Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 テトラアルコキシシランの加水分解によ
り得たシリカゲルの粉末を、耐熱容器に入れて焼成する
ことにより合成石英ガラス粉末を製造するにあたり、該
耐熱容器に充填したシリカゲル粉末の内部に露点−30
℃以下の脱湿ガスを導入しながら焼成することを特徴と
する、合成石英ガラス粉末の製造方法。
1. When producing a synthetic quartz glass powder by placing a silica gel powder obtained by hydrolysis of tetraalkoxysilane in a heat-resistant container and firing it, a dew point inside the silica-gel powder filled in the heat-resistant container is- Thirty
A method for producing synthetic quartz glass powder, which comprises firing while introducing a dehumidifying gas at a temperature of not higher than 0 ° C.
JP15875494A 1994-07-11 1994-07-11 Production of synthetic quartz glass powder Pending JPH0826741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15875494A JPH0826741A (en) 1994-07-11 1994-07-11 Production of synthetic quartz glass powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15875494A JPH0826741A (en) 1994-07-11 1994-07-11 Production of synthetic quartz glass powder

Publications (1)

Publication Number Publication Date
JPH0826741A true JPH0826741A (en) 1996-01-30

Family

ID=15678615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15875494A Pending JPH0826741A (en) 1994-07-11 1994-07-11 Production of synthetic quartz glass powder

Country Status (1)

Country Link
JP (1) JPH0826741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7140201B2 (en) 1999-12-28 2006-11-28 M. Watanabe & Co., Ltd. Method for producing silica particles
WO2023182511A1 (en) * 2022-03-25 2023-09-28 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7140201B2 (en) 1999-12-28 2006-11-28 M. Watanabe & Co., Ltd. Method for producing silica particles
WO2023182511A1 (en) * 2022-03-25 2023-09-28 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same

Similar Documents

Publication Publication Date Title
US5516350A (en) Process for producing synthetic quartz glass powder
EP0474158B1 (en) Silica glass powder and a method for its production and a silica glass body product made thereof
US6129899A (en) Processes for producing synthetic quartz powder and producing shaped quartz glass
AU684167B2 (en) Synthetic silica glass powder
WO1988003914A1 (en) Vitreous silica
JP2001089168A (en) Production of synthetic silica glass powder of high purity
JPH09165214A (en) Production of synthetic quartz powder
US6110852A (en) Process for producing synthetic quartz glass powder
JPH0826741A (en) Production of synthetic quartz glass powder
JP3735887B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JPH03275527A (en) Porous silica glass powder
JP3617153B2 (en) Method for producing synthetic quartz powder
JP3724084B2 (en) Method for producing synthetic quartz powder and quartz glass molded body
JP3884783B2 (en) Method for producing synthetic quartz powder
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same
JP3735886B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3875735B2 (en) Method for producing synthetic quartz powder
JPH07157308A (en) Production of synthetic quartz glass powder
JP3806953B2 (en) Method for producing synthetic quartz powder
JPH08175821A (en) Production of synthetic quartz glass powder
JPH10101322A (en) Silica gel, synthetic quartz glass powder, its production, and production of quartz glass formed body
JPH11310418A (en) Production of synthetic quartz glass powder containing aluminum and molded product of the glass powder
JP4075193B2 (en) Niobium-containing synthetic quartz glass powder, quartz glass molded body, and production method thereof
JPH05246708A (en) Production for powdery dry gel, silica glass powder and silica glass fusion molded goods
JPH10101324A (en) Production of synthetic quartz powder and production of quartz glass formed body