JP3735886B2 - Method for producing synthetic quartz powder and method for producing quartz glass molded body - Google Patents

Method for producing synthetic quartz powder and method for producing quartz glass molded body Download PDF

Info

Publication number
JP3735886B2
JP3735886B2 JP10588895A JP10588895A JP3735886B2 JP 3735886 B2 JP3735886 B2 JP 3735886B2 JP 10588895 A JP10588895 A JP 10588895A JP 10588895 A JP10588895 A JP 10588895A JP 3735886 B2 JP3735886 B2 JP 3735886B2
Authority
JP
Japan
Prior art keywords
powder
silica gel
rotary kiln
synthetic quartz
quartz powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10588895A
Other languages
Japanese (ja)
Other versions
JPH08301614A (en
Inventor
芳雄 勝呂
勝 下山
裕司 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10588895A priority Critical patent/JP3735886B2/en
Priority to EP96912278A priority patent/EP0823403B1/en
Priority to KR1019970707671A priority patent/KR19990008146A/en
Priority to PCT/JP1996/001176 priority patent/WO1996033950A1/en
Priority to DE69629111T priority patent/DE69629111T2/en
Priority to US08/945,318 priority patent/US6129899A/en
Publication of JPH08301614A publication Critical patent/JPH08301614A/en
Application granted granted Critical
Publication of JP3735886B2 publication Critical patent/JP3735886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

PURPOSE: To increase the bulk density of silica gel powder to be charged into a crucible and prevent the development of fine bubbles in the resultant silica glass molded form by heat treating silica gel powder in fluidization in a rotary kiln with its maximum stack height at a specified level or higher. CONSTITUTION: First, dry silica gel 10-1000μm in particle diameter is obtained by drying at 50-200 deg.C and pulverizing wet silica gel powder obtained by a sol-gel process such as hydrolysis or gelation of e.g. a tetraalkoxysilane. Secondly, the dry silica gel powder is heat-treated under fluidization in a rotary kiln with the core pipe made of quartz. In this case, there occurs no slippage between the powder 1 and the contact surface 3 of the core pipe 2 wall, the powder 1 is raised along the wall as the core pipe 2 is rotated and then allowed to fall (as indicated by arrows) off the wall at an angle of repose or above. To stabilize the fluid state of the powder 1, the maximum stack height of the powder 1 defined below is kept at >=75mm and the powder 1 is heated at 900-1100 deg.C (The maximum stack height is the maximum length of perpendiculars drawn from the powder surface 5 in contact with the space 4 inside the core pipe 2 toward the contact surface 3).

Description

【0001】
【産業上の利用分野】
本発明は、合成石英粉及び石英ガラス成形体の効率的な製造方法に関するものである。
【0002】
【従来の技術】
近年、光通信分野、半導体産業等で使用されるガラス製品に於いてはその微量不純物及び製品中の微小泡に関し非常に厳しい管理が行われている。このような高品質のガラスは主に、▲1▼天然石英を精製する方法、▲2▼四塩化珪素の酸水素炎中での分解で発生したヒュームを基体に付着・成長させる方法、▲3▼シリコンアルコキシド等を加水分解・ゲル化して得たシルカゲルを焼成して得られる合成石英粉を用い、これを溶融して成形体とする方法等によって製造される。
【0003】
【発明が解決しようとする課題】
しかしながら、▲1▼の方法では、微量不純物含有率の低減に限界があり、▲2▼の方法では、極めて製造コストが高い等の問題点がある。一方、▲3▼のシリカゲルの焼成による方法では、▲2▼の方法に比べると安価に微量不純物含有率が低い合成石英粉が得られるが、要求レベルを必ずしも満足しているとは言えない。また、この方法では、最終製品である成形体中に、微小泡が発生することがありこの微小泡は様々なトラブルの原因となることがある、という問題点がある。
【0004】
【課題を解決するための手段】
本発明者らは、上記▲3▼の、シリカゲルの焼成による合成石英粉の製造方法における課題、すなわちこれを溶融して得られる成形体における微小泡の発生が極めて少ない合成石英粉の製造を行うこと、更にはかかる製造を工業的に有利に行う方法を見いだすべく鋭意検討したところ、以下の点が判明した。即ち、シリカゲルの焼成は、容器からの不純物のコンタミを排除するために、石英製の容器にシリカゲルを仕込み、電気炉等で加熱して行う。特に、工業的な製造に際しては、大口径の石英るつぼ等を使用することになる。しかしながら、シリカゲルは石英粉に比べ嵩密度が低いために、焼成に用いる容器を効率的に利用できず、生産性が悪く、製造コストが高くなっている。従って、生産性の向上にはるつぼに仕込む粉体の嵩密度アップが重要な課題となる。
【0005】
また、石英粉を用いた成形体の製造において、成形体を製造する際の微小泡の発生は、石英粉製造時の焼成工程の昇温過程が影響を及ぼす。テトラアルコキシシランの加水分解により得られるシリカゲル粉末は、乾燥により副生したアルコールを除去しても未反応のアルコキシ基及び副生したアルコールの一部が残存する。実際、乾燥を施したシリカゲル粉末中のカーボン濃度を測定すると、乾燥条件によっても異なるが、1〜3%である。このシリカゲル粉末を酸素含有ガス中で焼成すると、大部分のカーボンは、昇温過程で燃焼除去されるが、一部が未燃カーボンとして合成石英粉中に閉じ込められることがある。この未燃カーボンを含有する合成石英粉を用いると、溶融成形の際にCOやCO2 ガスとなり、泡発生の原因となる。従って、シリカゲルの封孔前に、未燃カーボンを実質的に全量除去することが必要となり、昇温過程における昇温速度が重要となる。ところが、先述のように、合成石英粉の工業的な製造を図る場合、大口径のるつぼを使用することになり、昇温過程における、るつぼ内の温度が不均一となり、その結果、場合によってはカーボンが残存した合成石英粉が部分的に生成し、その合成石英粉を用いた成形体中に、微小泡が発生するという現象が生ずる。
【0006】
本発明者らは、上記課題に鑑み、更に鋭意検討を行った結果、シリカゲルを焼成前に適当な条件及び操作で加熱処理することにより、焼成に供する粉体の嵩密度を焼成後の石英粉と同等にすることができ、なおかつ、アルコキシ基及び水酸基を充分に除去することができることを見いだし、本発明を完成するに至った。即ち、本発明は、シリカゲル粉末をロータリーキルンを用い流動させながら加熱処理する工程を含む合成石英粉の製造方法において、ロータリーキルン内の粉体の最大層高を75mm以上とすることを特徴とする合成石英粉の製造方法、等にある。
【0007】
以下、本発明を詳細に説明する。
本発明の合成石英粉は、アルコキシシラン等の加水分解・ゲル化等により得られるシリカゲル粉末を、加熱し無孔化してなる合成石英粉である。シリカゲル粉末の製造法は特に限定されず、種々の公知技術を採用できるが、高純度を容易に達成できる等の点からアルコキシシラン等の加水分解・ゲル化による、いわゆるゾルゲル法によるものが好ましい。ゾルゲル法によるアルコキシシランの加水分解は、公知の方法に従って、アルコキシシランと水とを反応させることによって行われる。
【0008】
原料として用いられるアルコキシシランとしては加水分解・ゲル化可能なアルコキシシランであれば足りるが、テトラメトキシシラン、テトラエトキシシラン等の、C1〜C4の低級アルコキシシランであってケイ素に直結した炭化水素基によるSi−C結合を実質的に含まないアルコキシシラン、或いはそれらのオリゴマーが好適である。
【0009】
水の使用量は、通常、アルコキシシラン中のアルコキシ基の1倍当量以上から10倍当量以下の範囲から選択される。この際、必要に応じて、水と相溶性のあるアルコール類やエーテル類の有機溶媒を混合して使用してもよい。使用されるアルコールの代表例としては、メタノール、エタノール等の低脂肪族アルコールが挙げられる。
【0010】
この加水分解反応には、触媒として塩酸、酢酸等の酸や、アンモニア等のアルカリを添加してもよい。なお、当然のことながら、ここで使用する水、触媒等の、反応系に導入される物質はすべて高純度とする。
加水分解生成物のゲル化は、加熱下あるいは常温で実施することができる。加熱を行うと、ゲル化の速度を向上することができるので、加熱の程度を調節することにより、ゲル化時間を調節することができる。
【0011】
得られたゲルは水分を多量に含むウェットシリカゲルであり、これを細分化してから乾燥してもよいし、乾燥してから細分化してもよい。いずれにしても、乾燥して得られるドライシリカゲルの粒径が、10〜1000μm、好ましくは、100〜600μmとなるように細分化を行う。
【0012】
乾燥は、常圧、あるいは、減圧下で加熱しつつ行うのが効率的である。加熱温度は、条件によつても異なるが、通常、50〜200℃である。また、操作は、回分、連続のいずれによっても行うことができる。乾燥の程度は、通常、湿量標準水分で表した水の含有量で1〜30重量%まで行われる。
このようにして得られたシリカゲル粉末を、以下に述べる特定の条件下で加熱処理する。すなわち、シリカゲル粉末をロータリーキルン内で特定最大層高としロータリーキルンを回転してシリカゲル粉末を流動させながら、加熱処理する。
【0013】
ロータリーキルンの炉心管の材質は、処理を行った粉への材質のコンタミが発生しないものを選択する必要があり、特に石英製が好ましい。石英製の場合、製作上、炉心管のサイズに限界があるので、条件によつては、複数のロータリーキルンを用いて加熱処理を行うこともできる。また、原因は明確とはなっていないが、石英製の炉心管を用いた場合、粉体の最大層高が低いと、炉心管内の粉体がスリップし、粉体が流動しないことがある。そこで、ロータリーキルン内で流動する粉体の最大層高を75mm以上に保ちつつ加熱処理を行うことが本発明の特徴である。
【0014】
ここで本発明でいう粉体が「流動する」とは、例えば粉体を仕込んだ回転状態のロータリーキルンの断面を示す図2を用い静止状態のロータリーキルンの断面を示す図1と比較して説明すると、粉体(1)と炉心管(2)壁の接粉面(3)との間には実質的にすべりが生じておらず炉心管(2)の回転に従って粉体(1)が炉心管(2)壁で持ち上げられ、安息角以上で粉体(1)が壁を離れて管壁下部に流下している(図2中の黒矢印方向)状態をいい、ロータリーキルン内でシリカゲル粉末のこのような流動状態を安定して達成するには、以下に説明するように、シリカゲル粉末の最大層高を75mm以上に保つことにより容易に達成することができる。
【0015】
ここでいう最大層高とは、粉体(1)が炉心管内の空隙(4)と接触する粉体面(5)より、炉心管の接粉面(3)方向に垂線を引いた場合に最大となる距離のことをいう。
ロータリーキルンの管径は特に制限されないが、本発明者らが種々の管径のロータリーキルンについて検討を行った結果、その管の内径が100mm以上において特に本発明の効果が著しく、好ましくは120mm以上、より好ましくは150mm以上である。また、最大径については特段の制限はないが、その構造上と混合及び加熱の均一性等から管の内径は一般に600mm以下、より好ましくは500mm以下で用いられる。尚、150mm以下の場合は、それぞれの管端に特別の挿入、排出機構を設ける必要がある。
【0016】
本発明者らは、最大層高が75mmより低い値であると、炉心管内での粉体の流動性が悪化し、粉体の流動が間欠的となるが、75mm以上とすると、炉心管内の粉体は連続的に流動することを見いだした。流動が間欠的である場合、炉心管壁面での局部的な加熱が起こり、流動が開始すると、急激に水蒸気あるいはメタノールが発生するので、安定した操作を行うのが難しい。
【0017】
操作は、予め、乾燥シリカゲル粉末を最大層高を75mm以上になるようにロータリーキルンの炉心管に仕込んでおき加熱処理を行う回分法、或いは、ロータリーキルンの炉心管の片端より連続的に乾燥シリカゲル粉末を供給しつつ、最大層高を75mm以上になるように炉心管の粉体量を調節しつつ加熱処理を行い、処理が終了した粉を連続的に炉心管から排出する連続法のいずれでも行うことができるが、経済性、操作性の面から、後者の方法がより好ましい。
【0018】
特に、連続法の場合、流動が間欠的になると、炉心管からの粉の排出が間欠的になり、安定した運転を行うことができないので、粉の連続的な流動が必須である。
連続法で行う場合、複数のロータリーキルンを直列的に用いて加熱処理を行ってもよい。この際、いずれのロータリーキルンも粉体の最大層高が75mm以上となるように調節する。
尚、ロータリーキルンの回転数は、特に限定されず、実用的な範囲で選択すればよい。具体的には1〜20rpm、好ましくは3〜10rpm程度である。
【0019】
加熱処理を行う温度領域は、200〜1100℃である。特に、300〜600℃の領域で主に、シリカゲル中の残存カーボンの除去が進行するので、慎重に操作を行う。600℃以上となるとシリカゲルの封孔が開始するので、粉体温度がこの温度領域に到達するまでに、残存するカーボンのほぼ全量を消失させておかなければならない。さもなければ、得られた合成石英粉中に未燃カーボンが残存し、溶融成形の際に泡が発生する。
【0020】
シリカゲル中の残存カーボンの除去が進行する領域の昇温速度は1000℃/Hr以下、好ましくは、500℃/Hr以下である。また、400〜600℃の領域で、0.5〜5Hr程度の保持を行うのも効果的である。また、この加熱処理は、清浄な空気あるいは酸素含有ガス雰囲気下で行う。具体的には、炉心管の片端より清浄な空気あるいは、酸素含有ガスを供給し、他端より排出する方法をとることができる。ガスの供給量は、通常、回分法の場合は粉体1kg当たり、酸素換算で10〜100リットル/Hrであり、連続法の場合は連続的に供給する粉体1kg当たり、酸素換算で30〜300リットル/Hrである。本発明においては、この際ロータリーキルン内で流動するシリカゲル粉末の最大層高を75mm以上に保ちつつ加熱処理を行う。ロータリーキルンを用い最大層高を75mm以上に保ち、連続的にシリカゲル粉末を流動させつつ加熱処理を行うことにより、カーボンの減少が促進されるとともに、均質な処理粉体が得られる。この処理により、シリカゲル中のカーボン濃度は、50〜1000ppm程度に減少する。
【0021】
残存するカーボンがほぼ消失した処理粉体は、引き続き加熱され、最終的な粉体の温度は、900〜1100℃、好ましくは950〜1050℃まで高められる。この際の昇温速度は通常、100〜1000℃/Hrである。この温度領域における加熱処理も、清浄な空気あるいは酸素含有ガス雰囲気下で行う。この際も600℃までの温度域での加熱処理同様、炉心管の片端より清浄な空気あるいは酸素含有ガスを供給し、他端より排出する方法がとられる。ガスの供給量は、通常、回分法の場合は粉体1kg当たり、酸素換算で1〜50リットル/Hrであり、連続法の場合は連続的に供給する粉体1kg当たり、酸素換算で3〜50リットル/Hrである。またこの温度領域における加熱処理もロータリーキルン内で、粉体の最大層高を75mm以上に保ちつつ行う。ロータリーキルンを用い、粉体を流動させつつ加熱処理を行うことにより、均一な加熱が行われ、均一な処理粉体が得られる。この処理により、シリカゲルの封孔はほぼ終了し、0.7〜0.8g/ml程度であった粉体の嵩密度(以下、「嵩密度」と称す)は、1.0〜1.2g/ml程度まで上昇する。このような操作を回分で行う場合には、炉心管を回転しつつ、外部から直接あるいは間接的に全体を加熱し、時間とともに加熱強度を挙げて処理することとなる。一方、連続で操作を行う場合は、炉心管の加熱ゾーンを複数個に分割し、処理粉体の流れ方向に従い粉体の温度が所定の勾配で上昇するように加熱温度を制御する方法を採ることができる。
【0022】
なお、本発明者らが検討した結果、上記加熱処理に際してはロータリーキルンの傾斜角は3°以下、好ましくは1°以下とするのがよい。処理の対象であるシリカゲル粉末は、傾斜角をこの範囲とした場合にロータリーキルンの軸方向のバックミキシングを効果的に防ぐことができるためである。
本発明に従いシリカゲル粉末に上述の加熱処理を施すと合成石英粉が得られるが、通常、シラノールが1000ppm以上残存している。そこで、通常更に高められた温度領域での焼成を行うことによりシラノールを除去する。
【0023】
焼成に用いる容器は、合成石英粉への不純物のコンタミを発生させない材質、例えば、石英のるつぼを用いる。この焼成においては、すでに、焼成を施す粉体中のカーボンは実質的に全量除去されているので、昇温速度に特別な注意を払う必要はない。従って、容器内での昇温速度のばらつきが品質に影響を与えないので、均質な製品が得られ、従来に比べ、大容量の容器の使用も可能となる。また、予め粉体の嵩密度が充分に高められており、焼成前の粉体と焼成後の粉体の嵩密度に大きな変化がなく、容器を効率的に利用出来るので、生産性の向上が図られる。
【0024】
焼成温度は、通常、1100〜1300℃である。昇温速度は特に限定されず、100〜2000℃/Hrの範囲から適宜選択される。焼成時間は、焼成温度にもよるが、通常10〜100時間で、合成石英中のシラノール濃度が100ppm以下、好ましくは60ppm以下となるまで継続される。また、加熱の際に実質的に水分を含有しない空気、あるいは、不活性ガスを流通しつつ行うとシラノール基の減少速度が加速されるので好ましい。当然ながら、焼成後の合成石英粉中には、実質的にカーボンは存在しない。
【0025】
このようにして得られた合成石英粉は、成形体に成形することができる。その成形方法は、成形体の用途によって異なるが、例えば用途がるつぼである場合にはアークメルト法が、IC用治具である場合には、一旦、酸水素炎によるベルヌーイ法でインゴットに成形する方法や、炭素製の鋳型を用い真空下で加熱溶融するヒュージョン法等が挙げられる。
いずれの場合も、本発明によって得られた合成石英粉を用いることにより、泡の発生が極めて少ない成形体が得られるので、成形体の品質及び製品歩留りが大きく向上する。
【0026】
【実施例】
以下実施例により本発明を具体的に説明する。
実施例1
(ドライシリカゲル粉末の製造)
高純度テトラメトキシシランを水と反応させ、塊状の、水分含有量30重量%以上のシリカゲル(以下「ウェットシリカゲル」という)を得た。この塊状のウェットシリカゲルを網式粉砕機で粉砕した後、減圧下で加熱乾燥し、粉状のドライシリカゲルを得た。この粉状のドライシリカゲルを、振動篩別機で分級し500μm以下100μm以上のものを取得した。この分級後のドライシリカゲル(以下「ドライシリカゲル粉末」という)を分析したところ、含水率は19.5重量%で、カーボン濃度は1.1重量%であった。また、この粉体の嵩密度は、0.92g/mlであった。
【0027】
(加熱処理)
こうして得られたドライシリカゲル粉末を用い、加熱処理を、図3に示すロータリーキルンにより行った。図3において、6は、ドライゲルホッパー、7はテーブルフィーダー、8は炉心管、9は供給口、10は供給口ドーナツ状堰、11は空気供給管、12は排出口、13は排出口ドーナツ状堰、14は処理粉受器、15は第1加熱ヒーター、16は第2加熱ヒーター、17は第3加熱ヒーター、18は第4加熱ヒーター、19は第5加熱ヒーター、20はドライシリカゲル粉末である。炉心管は材質が石英で、加熱ゾーンの長さ:2m、内径:200mm、供給口ドーナツ状堰開口径:40mm、排出口ドーナツ状堰開口径:40mmの寸法とし、炉心管内に供給されるドライシリカゲル粉末の最大層高が80mmとなるように設定した。また、炉心管は、傾斜角度が0.5°になるように調節した。
【0028】
加熱処理は、まず、各加熱ヒーターを500℃に昇温し、炉心管を4rpmで回転させつつ、ドライシリカゲル粉末を9.3kg/Hrで、空気を6780リットル/Hrで供給口より供給した。炉心管内の粉体は、連続して、終始流動していた。供給操作開始後、4、6、8時間目に排出された粉を分析したところ、表1に示す値であった。尚、残存炭素濃度は、ホリバ製EMIA610 CS分析計を用い、試料粉末を融剤と共に溶融し、発生したCO2 を赤外吸光法で定量(COで発生したものは、触媒で全てCO2 にして定量)することにより求めたものである。
【0029】
【表1】

Figure 0003735886
【0030】
次に、同様のロータリーキルンを用い、上記操作で得られた粉を、以下に示す条件で更に加熱処理した。第1加熱ヒーター:600℃、第2加熱ヒーター:700℃、第3加熱ヒーター:850℃、第4加熱ヒーター:1000℃、第5加熱ヒーター:1060℃に昇温し、炉心管を4rpmで回転させつつ、粉体を6.5kg/Hrで、空気を1000リットル/Hrで供給口より供給した。
【0031】
上記加熱処理中、炉心管内の粉体は、連続して、終始流動していた。
供給操作開始後、4、6、8時間目に排出された合成石英粉を分析したところ、表2に示す値であった。尚、黒色粒子数は、製品10gをシャーレに約1mmの厚さに一様に敷きつめ、目視により黒点として確認されたものの個数である。
【0032】
【表2】
Figure 0003735886
【0033】
(焼成) 上述の加熱処理で得られた合成石英粉60kgを直径560mmの石英製るつぼに仕込み、電気炉内で加熱し焼成を行った。炉は昇温速度240℃/Hrで、到達温度1200℃まで昇温後、同温度で60時間保持した。この際、るつぼ上部に、露点が−50℃の清浄な乾燥空気を1900リットル/Hrで流通した。保持終了後、加熱を停止し、室温まで冷却した。冷却の際にも、清浄な空気を流通した。焼成後に得られた合成石英粉は、58kgであった。得られた合成石英粉を、サンプリング場所毎に分析したところ表3に示す値であった。
【0034】
【表3】
Figure 0003735886
【0035】
(成形) 焼成で得られた合成石英粉を、各々のサンプリング場所毎に、ベルヌーイ法で、インゴットに成形した。インゴット中に、泡の発生は見られなかった。
【0036】
比較例1
排出口ドーナツ状堰開口径を60mmの寸法とし、最大層高が70mmとなるように設定した以外は、実施例1同様のロータリーキルンを用い、実施例1(シリカゲル粉末の製造)で得られたドライシリカゲル粉末の加熱処理を行った。
供給開始後、4、6、8時間目に排出された粉を分析したところ、表4に示す値であった。
【0037】
【表4】
Figure 0003735886
【0038】
次に、同様に排出口ドーナツ状堰開口径を60mmの寸法とし、最大層高が70mmとなるように設定したロータリーキルンを用い、上記操作で得られた粉を、以下に示す条件で更に加熱処理した。第1加熱ヒーター:600℃、第2加熱ヒーター:700℃、第3加熱ヒーター:850℃、第4加熱ヒーター:1000℃、第5加熱ヒーター:1060℃に昇温し、炉心管を4rpmで回転させつつ、粉体を6.5kg/Hrで、空気を1000リットル/Hrで供給口より供給した。
【0039】
炉心管内の粉体は、後半部分は、連続して終始流動していたが,前半部分は、断続的に流動し、静止から流動に移行する際に通常以上のガスの発生が観察された。
供給操作開始後、4、6、8時間目に排出された合成石英粉を分析したところ、表5に示す値であった。
【0040】
【表5】
Figure 0003735886
【0041】
実施例2
実施例1の(ドライシリカゲル粉末の製造)により得られたドライシリカゲル粉末を用い、管の内径が400mmである以外は実施例1で用いたと同様のロータリーキルンを用いて実施例1同様の(加熱処理)を行った。 炉心管内の粉体は、連続して、終始流動していた。加熱処理で得られた合成石英粉を、実施例1の(焼成)におけるものと同様の操作により焼成し、焼成後の合成石英粉を実施例1(成形)同様の操作によりインゴットに成形した。何れのインゴットにおいても泡の発生は見られなかった。
【0042】
比較例2
管の内径が400mmである以外は実施例1で用いたと同様のロータリーキルンを用いて加熱処理を行った以外は比較例1同様の操作を行ったところ、加熱処理においては、炉心管内の粉体は、後半部分は、連続して終始流動していたが,前半部分は、断続的に流動し、静止から流動に移行する際に通常以上のガスの発生が観察され、比較例1同様の状態を示した。
【0043】
【発明の効果】
本発明により、溶融成形時に泡の発生のない合成石英粉を効率的に製造することができる。
【図面の簡単な説明】
【図1】粉体を仕込んだ静止状態のロータリーキルンの断面図
【図2】仕込んだ粉体が流動状態にある、回転状態のロータリーキルンの断面図
【図3】本発明で用いられるロータリーキルンの一例を示す図
【符号の説明】
1 粉体
2 炉心管
3 接粉面
4 炉心管内の空隙
5 粉体面
6 ドライゲルホッパー
7 テーブルフィーダー
8 炉心管
9 供給口
10 供給口ドーナツ状堰
11 空気供給管
12 排出口
13 排出口ドーナツ状堰
15 第1加熱ヒーター
16 第2加熱ヒーター
17 第3加熱ヒーター
18 第4加熱ヒーター
19 第5加熱ヒーター[0001]
[Industrial application fields]
The present invention relates to an efficient method for producing a synthetic quartz powder and a quartz glass molded body.
[0002]
[Prior art]
In recent years, glass products used in the optical communication field, the semiconductor industry, and the like have been subjected to very strict management regarding trace impurities and microbubbles in the products. Such high-quality glass mainly consists of (1) a method of refining natural quartz, (2) a method of attaching and growing fumes generated by decomposition of silicon tetrachloride in an oxyhydrogen flame, and (3) ▼ Manufactured by a method of using a synthetic quartz powder obtained by firing a silica gel obtained by hydrolyzing and gelling silicon alkoxide, etc., and melting it to form a molded body.
[0003]
[Problems to be solved by the invention]
However, the method (1) has a limit in reducing the content of trace impurities, and the method (2) has problems such as extremely high production costs. On the other hand, in the method (3) by firing silica gel, synthetic quartz powder having a low content of trace impurities can be obtained at a lower cost than in the method (2), but the required level is not always satisfied. In addition, this method has a problem that micro bubbles may be generated in the molded product as the final product, and the micro bubbles may cause various troubles.
[0004]
[Means for Solving the Problems]
The inventors of the present invention produce the synthetic quartz powder of the above (3) in the method for producing synthetic quartz powder by baking silica gel, that is, the production of synthetic quartz powder with extremely small generation of microbubbles in the molded product obtained by melting this. In addition, as a result of intensive studies to find out a method for industrially advantageous such production, the following points were found. That is, the silica gel is baked by charging silica gel into a quartz container and heating it in an electric furnace or the like in order to eliminate impurity contamination from the container. In particular, in industrial production, a large-diameter quartz crucible or the like is used. However, since silica gel has a lower bulk density than quartz powder, the container used for firing cannot be used efficiently, productivity is poor, and manufacturing cost is high. Therefore, increasing the bulk density of the powder charged in the crucible is an important issue for improving productivity.
[0005]
Further, in the production of a molded body using quartz powder, the generation of microbubbles during the production of the molded body is affected by the temperature rising process in the firing process during the production of quartz powder. In the silica gel powder obtained by hydrolysis of tetraalkoxysilane, unreacted alkoxy groups and a part of the by-produced alcohol remain even if the by-produced alcohol is removed by drying. In fact, when the carbon concentration in the dried silica gel powder is measured, it is 1 to 3%, although it varies depending on the drying conditions. When this silica gel powder is fired in an oxygen-containing gas, most of the carbon is burned and removed during the temperature rising process, but a part of the carbon may be trapped in the synthetic quartz powder as unburned carbon. If this synthetic quartz powder containing unburned carbon is used, it becomes CO or CO 2 gas at the time of melt molding, which causes bubbles. Therefore, it is necessary to remove substantially all of the unburned carbon before sealing the silica gel, and the rate of temperature increase during the temperature increase process is important. However, as mentioned above, when industrial production of synthetic quartz powder is intended, a large-diameter crucible will be used, and the temperature in the crucible during the temperature rising process becomes non-uniform. A synthetic quartz powder in which carbon remains is partially generated, and a phenomenon occurs in which fine bubbles are generated in a molded body using the synthetic quartz powder.
[0006]
As a result of further intensive studies in view of the above problems, the present inventors have conducted heat treatment under suitable conditions and operations before firing the silica gel, thereby determining the bulk density of the powder to be fired after firing. And the inventors have found that the alkoxy group and the hydroxyl group can be sufficiently removed, thereby completing the present invention. That is, the present invention provides a synthetic quartz powder manufacturing method including a step of heat-treating silica gel powder while flowing using a rotary kiln, wherein the maximum layer height of the powder in the rotary kiln is 75 mm or more. It is in the manufacturing method of powder.
[0007]
Hereinafter, the present invention will be described in detail.
The synthetic quartz powder of the present invention is a synthetic quartz powder obtained by heating silica gel powder obtained by hydrolysis / gelation of alkoxysilane or the like to make it nonporous. The production method of the silica gel powder is not particularly limited, and various known techniques can be adopted. However, from the viewpoint that high purity can be easily achieved, a so-called sol-gel method by hydrolysis and gelation of alkoxysilane or the like is preferable. Hydrolysis of alkoxysilane by the sol-gel method is performed by reacting alkoxysilane with water according to a known method.
[0008]
As the alkoxysilane used as a raw material, an alkoxysilane that can be hydrolyzed and gelled is sufficient, but a hydrocarbon group that is a C1-C4 lower alkoxysilane, such as tetramethoxysilane or tetraethoxysilane, directly bonded to silicon. Alkoxysilanes substantially free of Si—C bonds, or oligomers thereof are preferred.
[0009]
The amount of water used is usually selected from the range of 1 to 10 equivalents of alkoxy groups in alkoxysilane. Under the present circumstances, you may mix and use the organic solvent of alcohols and ethers compatible with water as needed. Representative examples of the alcohol used include low aliphatic alcohols such as methanol and ethanol.
[0010]
In this hydrolysis reaction, an acid such as hydrochloric acid or acetic acid or an alkali such as ammonia may be added as a catalyst. As a matter of course, all substances introduced into the reaction system such as water and catalyst used here have high purity.
The gelation of the hydrolysis product can be carried out under heating or at room temperature. Since the gelation speed can be improved by heating, the gelation time can be adjusted by adjusting the degree of heating.
[0011]
The obtained gel is wet silica gel containing a large amount of water, and may be subdivided and dried, or may be subdivided after drying. In any case, the dry silica gel obtained by drying is subdivided so as to have a particle size of 10 to 1000 μm, preferably 100 to 600 μm.
[0012]
It is efficient to perform drying while heating at normal pressure or under reduced pressure. Although heating temperature changes also with conditions, it is 50-200 degreeC normally. The operation can be performed either batchwise or continuously. The degree of drying is usually 1 to 30% by weight in terms of water content expressed as wet standard moisture.
The silica gel powder thus obtained is heat-treated under the specific conditions described below. That is, the silica gel powder is heated at a specific maximum layer height in the rotary kiln while the rotary kiln is rotated to flow the silica gel powder.
[0013]
The material of the furnace kiln of the rotary kiln needs to be selected so as not to cause contamination of the processed powder, and quartz is particularly preferable. In the case of quartz, since the size of the core tube is limited in production, heat treatment can be performed using a plurality of rotary kilns depending on conditions. Although the cause is not clear, when a quartz core tube is used, if the maximum layer height of the powder is low, the powder in the core tube may slip and the powder may not flow. Therefore, it is a feature of the present invention that the heat treatment is performed while maintaining the maximum layer height of the powder flowing in the rotary kiln at 75 mm or more.
[0014]
Here, the “fluid” of the powder as referred to in the present invention is, for example, described with reference to FIG. 2 showing a section of a rotary kiln in a rotating state charged with powder and comparing with FIG. 1 showing a section of a rotary kiln in a stationary state. There is substantially no slip between the powder (1) and the powder contact surface (3) of the wall of the core tube (2), and the powder (1) is in the core tube as the core tube (2) rotates. (2) The state where the powder (1) is lifted by the wall and flows above the repose angle and flows down to the lower part of the pipe wall (in the direction of the black arrow in FIG. 2). In order to achieve such a fluid state stably, it can be easily achieved by keeping the maximum layer height of the silica gel powder at 75 mm or more, as will be described below.
[0015]
The maximum layer height referred to here is when the vertical line is drawn in the direction of the powder contact surface (3) of the core tube from the powder surface (5) where the powder (1) contacts the gap (4) in the core tube. This is the maximum distance.
The pipe diameter of the rotary kiln is not particularly limited, but as a result of the study of the rotary kiln with various pipe diameters by the present inventors, the effect of the present invention is particularly remarkable when the pipe inner diameter is 100 mm or more, preferably 120 mm or more. Preferably it is 150 mm or more. The maximum diameter is not particularly limited, but the inner diameter of the tube is generally 600 mm or less, more preferably 500 mm or less because of its structure and uniformity of mixing and heating. In the case of 150 mm or less, it is necessary to provide a special insertion / discharge mechanism at each tube end.
[0016]
When the maximum bed height is lower than 75 mm, the inventors of the present invention deteriorate the fluidity of the powder in the furnace core tube, and the powder flow becomes intermittent. The powder was found to flow continuously. When the flow is intermittent, local heating on the wall surface of the core tube occurs, and when the flow starts, water vapor or methanol is rapidly generated, so that it is difficult to perform a stable operation.
[0017]
For the operation, dry silica gel powder is previously charged in a rotary kiln core tube so that the maximum layer height is 75 mm or more and heat treatment is performed, or dry silica gel powder is continuously applied from one end of the rotary kiln core tube. While supplying, heat treatment is performed while adjusting the amount of powder in the core tube so that the maximum layer height is 75 mm or more, and any of the continuous methods in which the finished powder is continuously discharged from the core tube. However, the latter method is more preferable in terms of economy and operability.
[0018]
In particular, in the case of the continuous method, if the flow becomes intermittent, the discharge of the powder from the furnace core tube becomes intermittent, and a stable operation cannot be performed. Therefore, the continuous flow of the powder is essential.
When performing by a continuous method, you may heat-process using several rotary kilns in series. At this time, all rotary kilns are adjusted so that the maximum layer height of the powder is 75 mm or more.
The rotational speed of the rotary kiln is not particularly limited and may be selected within a practical range. Specifically, it is about 1 to 20 rpm, preferably about 3 to 10 rpm.
[0019]
The temperature range which performs heat processing is 200-1100 degreeC. In particular, since the removal of residual carbon in the silica gel proceeds mainly in the region of 300 to 600 ° C., the operation is carefully performed. Since silica gel sealing starts when the temperature exceeds 600 ° C., almost all of the remaining carbon must be lost before the powder temperature reaches this temperature range. Otherwise, unburned carbon remains in the obtained synthetic quartz powder, and bubbles are generated during melt molding.
[0020]
The rate of temperature rise in the region where the removal of residual carbon in the silica gel proceeds is 1000 ° C./Hr or less, preferably 500 ° C./Hr or less. It is also effective to perform holding for about 0.5 to 5 Hr in the region of 400 to 600 ° C. Further, this heat treatment is performed in a clean air or oxygen-containing gas atmosphere. Specifically, a method of supplying clean air or oxygen-containing gas from one end of the core tube and discharging from the other end can be employed. The supply amount of the gas is usually 10 to 100 liters / hr in terms of oxygen in the case of the batch method, and 30 to 30 in terms of oxygen in the case of the continuous method. 300 liters / hr. In the present invention, the heat treatment is performed while maintaining the maximum layer height of the silica gel powder flowing in the rotary kiln at 75 mm or more. By using a rotary kiln and maintaining the maximum layer height at 75 mm or more and performing the heat treatment while continuously flowing the silica gel powder, the reduction of carbon is promoted and a uniform treated powder is obtained. By this treatment, the carbon concentration in the silica gel is reduced to about 50 to 1000 ppm.
[0021]
The treated powder from which the remaining carbon has almost disappeared is subsequently heated, and the final powder temperature is raised to 900 to 1100 ° C, preferably 950 to 1050 ° C. The temperature increase rate at this time is usually 100 to 1000 ° C./Hr. The heat treatment in this temperature range is also performed in a clean air or oxygen-containing gas atmosphere. At this time, like the heat treatment in the temperature range up to 600 ° C., a method of supplying clean air or oxygen-containing gas from one end of the core tube and discharging from the other end is used. The supply amount of the gas is usually 1 to 50 liters / hr in terms of oxygen in the case of the batch method, and 3 to 3 in terms of oxygen in the case of the continuous method. 50 liters / hr. The heat treatment in this temperature range is also performed in the rotary kiln while maintaining the maximum layer height of the powder at 75 mm or more. By using a rotary kiln and performing heat treatment while flowing the powder, uniform heating is performed and a uniform treated powder is obtained. By this treatment, the silica gel was almost completely sealed, and the bulk density (hereinafter referred to as “bulk density”) of the powder which was about 0.7 to 0.8 g / ml was 1.0 to 1.2 g. It rises to about / ml. When such an operation is performed batchwise, the whole is heated directly or indirectly from the outside while rotating the core tube, and the heating intensity is increased over time. On the other hand, in the case of continuous operation, a method is adopted in which the heating zone of the core tube is divided into a plurality of parts and the heating temperature is controlled so that the temperature of the powder rises with a predetermined gradient according to the flow direction of the treated powder. be able to.
[0022]
As a result of investigations by the present inventors, the tilt angle of the rotary kiln is 3 ° or less, preferably 1 ° or less during the heat treatment. This is because the silica gel powder to be treated can effectively prevent back mixing in the axial direction of the rotary kiln when the tilt angle is within this range.
When the above-mentioned heat treatment is applied to the silica gel powder according to the present invention, synthetic quartz powder is obtained, but usually 1000 ppm or more of silanol remains. Therefore, silanol is usually removed by firing in a further elevated temperature range.
[0023]
The container used for firing is made of a material that does not cause contamination of impurities in the synthetic quartz powder, for example, a quartz crucible. In this calcination, since carbon in the powder to be baked has already been substantially entirely removed, it is not necessary to pay special attention to the rate of temperature rise. Therefore, since the variation in the temperature rising rate within the container does not affect the quality, a homogeneous product can be obtained and a container with a larger capacity can be used compared to the conventional case. In addition, the bulk density of the powder is sufficiently increased in advance, and there is no significant change in the bulk density of the powder before firing and the powder after firing, and the container can be used efficiently, improving productivity. Figured.
[0024]
The firing temperature is usually 1100 to 1300 ° C. The rate of temperature increase is not particularly limited, and is appropriately selected from the range of 100 to 2000 ° C./Hr. The firing time is usually 10 to 100 hours, although it depends on the firing temperature, and is continued until the silanol concentration in the synthetic quartz is 100 ppm or less, preferably 60 ppm or less. In addition, it is preferable to carry out heating while circulating air that does not substantially contain water or an inert gas because the rate of reduction of silanol groups is accelerated. Of course, substantially no carbon is present in the synthetic quartz powder after firing.
[0025]
The synthetic quartz powder thus obtained can be molded into a molded body. The molding method varies depending on the usage of the molded body. For example, when the usage is a crucible, the arc melt method is used, and when the IC jig is used, it is once molded into an ingot by a Bernoulli method using an oxyhydrogen flame. And a fusion method in which a carbon mold is heated and melted under vacuum.
In any case, by using the synthetic quartz powder obtained according to the present invention, a molded body with very little generation of bubbles can be obtained, so that the quality and product yield of the molded body are greatly improved.
[0026]
【Example】
The present invention will be specifically described below with reference to examples.
Example 1
(Production of dry silica gel powder)
High purity tetramethoxysilane was reacted with water to obtain a bulky silica gel having a water content of 30% by weight or more (hereinafter referred to as “wet silica gel”). The massive wet silica gel was pulverized with a mesh pulverizer and then dried by heating under reduced pressure to obtain a powdery dry silica gel. This powdery dry silica gel was classified by a vibration sieving machine to obtain a powder having a particle size of 500 μm or less and 100 μm or more. When the classified dry silica gel (hereinafter referred to as “dry silica gel powder”) was analyzed, the water content was 19.5 wt% and the carbon concentration was 1.1 wt%. Moreover, the bulk density of this powder was 0.92 g / ml.
[0027]
(Heat treatment)
Using the dry silica gel powder thus obtained, heat treatment was performed by a rotary kiln shown in FIG. In FIG. 3, 6 is a dry gel hopper, 7 is a table feeder, 8 is a core tube, 9 is a supply port, 10 is a supply port donut-shaped weir, 11 is an air supply tube, 12 is a discharge port, and 13 is a discharge port donut. 14 is a treated powder receiver, 15 is a first heater, 16 is a second heater, 17 is a third heater, 18 is a fourth heater, 19 is a fifth heater, and 20 is dry silica gel powder. It is. The core tube is made of quartz, has a heating zone length of 2 m, an inner diameter of 200 mm, a supply port donut-shaped weir opening diameter of 40 mm, and a discharge port donut-shaped weir opening diameter of 40 mm, and is supplied into the core tube. The maximum layer height of the silica gel powder was set to 80 mm. The core tube was adjusted so that the inclination angle was 0.5 °.
[0028]
In the heat treatment, each heater was first heated to 500 ° C., dry silica gel powder was supplied at 9.3 kg / Hr, and air was supplied from the supply port at 6780 liter / Hr while rotating the core tube at 4 rpm. The powder in the core tube was continuously flowing from beginning to end. When the powder discharged | emitted at the 4th, 6th, and 8th hour after supply operation start was analyzed, it was the value shown in Table 1. The residual carbon concentration was determined by melting the sample powder together with the flux using a Horiba EMIA610 CS analyzer, and quantifying the generated CO 2 by infrared absorption (all the CO generated is converted to CO 2 by the catalyst. Quantified).
[0029]
[Table 1]
Figure 0003735886
[0030]
Next, using the same rotary kiln, the powder obtained by the above operation was further heat-treated under the following conditions. First heater: 600 ° C., second heater: 700 ° C., third heater: 850 ° C., fourth heater: 1000 ° C., fifth heater: 1060 ° C., and the core tube is rotated at 4 rpm The powder was supplied from the supply port at 6.5 kg / Hr and air at 1000 liter / Hr.
[0031]
During the heat treatment, the powder in the furnace core tube was continuously flowing from beginning to end.
The synthetic quartz powder discharged at 4, 6, and 8 hours after the start of the supply operation was analyzed, and the values shown in Table 2 were obtained. In addition, the number of black particles is the number of products in which 10 g of product is uniformly spread on a petri dish to a thickness of about 1 mm and visually confirmed as a black spot.
[0032]
[Table 2]
Figure 0003735886
[0033]
(Firing) 60 kg of the synthetic quartz powder obtained by the heat treatment described above was placed in a quartz crucible having a diameter of 560 mm, and heated in an electric furnace for firing. The furnace was heated at a heating rate of 240 ° C./Hr up to an ultimate temperature of 1200 ° C. and then held at that temperature for 60 hours. At this time, clean dry air having a dew point of −50 ° C. was circulated at 1900 liter / Hr in the upper part of the crucible. After the holding, heating was stopped and cooled to room temperature. Clean air was also circulated during cooling. The synthetic quartz powder obtained after firing was 58 kg. When the obtained synthetic quartz powder was analyzed for each sampling location, the values shown in Table 3 were obtained.
[0034]
[Table 3]
Figure 0003735886
[0035]
(Molding) The synthetic quartz powder obtained by firing was molded into an ingot by the Bernoulli method at each sampling location. No foam was observed in the ingot.
[0036]
Comparative Example 1
A dry kiln obtained in Example 1 (manufacture of silica gel powder) using a rotary kiln similar to Example 1 except that the diameter of the doughnut-shaped weir opening is set to 60 mm and the maximum layer height is set to 70 mm. The silica gel powder was heat-treated.
The powder discharged at 4, 6, and 8 hours after the start of supply was analyzed, and the values shown in Table 4 were obtained.
[0037]
[Table 4]
Figure 0003735886
[0038]
Next, the powder obtained by the above operation was further heated under the following conditions using a rotary kiln similarly set to a discharge donut-shaped weir opening diameter of 60 mm and a maximum layer height of 70 mm. did. First heater: 600 ° C., second heater: 700 ° C., third heater: 850 ° C., fourth heater: 1000 ° C., fifth heater: 1060 ° C., and the core tube is rotated at 4 rpm The powder was supplied from the supply port at 6.5 kg / Hr and air at 1000 liter / Hr.
[0039]
The powder in the reactor core tube flowed continuously throughout the latter half, but the first half flowed intermittently, and more gas than usual was observed when moving from stationary to flow.
The synthetic quartz powder discharged at 4, 6, and 8 hours after the start of the supply operation was analyzed, and the values shown in Table 5 were obtained.
[0040]
[Table 5]
Figure 0003735886
[0041]
Example 2
Using the dry silica gel powder obtained in Example 1 (production of dry silica gel powder) and using the same rotary kiln as in Example 1 except that the inner diameter of the tube is 400 mm (heating treatment) ) The powder in the core tube was continuously flowing from beginning to end. The synthetic quartz powder obtained by the heat treatment was fired by the same operation as that in Example 1 (firing), and the fired synthetic quartz powder was formed into an ingot by the same operation as in Example 1 (molding). No foam was observed in any ingot.
[0042]
Comparative Example 2
When the heat treatment was performed using the same rotary kiln as that used in Example 1 except that the inner diameter of the tube was 400 mm, the same operation as in Comparative Example 1 was performed. The second half part flowed continuously from start to finish, but the first half part flowed intermittently, and when the transition from stationary to flow was observed, generation of more gas than usual was observed, and the same state as in Comparative Example 1 was observed. Indicated.
[0043]
【The invention's effect】
According to the present invention, it is possible to efficiently produce synthetic quartz powder that does not generate bubbles during melt molding.
[Brief description of the drawings]
FIG. 1 is a sectional view of a rotary kiln in a stationary state in which powder is charged. FIG. 2 is a sectional view of a rotary kiln in a rotating state in which the charged powder is in a fluid state. FIG. 3 is an example of a rotary kiln used in the present invention. Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Powder 2 Core tube 3 Powder contact surface 4 Space | gap 5 in a core tube Powder surface 6 Dry gel hopper 7 Table feeder 8 Core tube 9 Supply port 10 Supply port donut-shaped weir 11 Air supply tube 12 Discharge port 13 Discharge port donut shape Weir 15 First heater 16 Second heater 17 Third heater 18 Fourth heater 19 Fifth heater

Claims (7)

シリカゲル粉末を、ロータリーキルンを用いて流動させながら加熱処理する工程を含む合成石英粉の製造方法において、ロータリーキルン内のシリカゲル粉末の最大層高を75mm以上として300〜600℃でシリカゲル中のカーボン濃度が50〜1000ppmに減少するように加熱処理し、その後1100〜1300℃で焼成することを特徴とする合成石英粉の製造方法。In the method for producing synthetic quartz powder, including the step of heat-treating the silica gel powder while flowing using a rotary kiln, the maximum layer height of the silica gel powder in the rotary kiln is 75 mm or more , and the carbon concentration in the silica gel is 50 to 300 ° C. A method for producing synthetic quartz powder, characterized by heat treatment so as to reduce to ˜1000 ppm, and thereafter firing at 1100 to 1300 ° C. ロータリーキルンの片端より連続的にシリカゲル粉末を供給しつつ加熱処理を行う請求項1記載の合成石英粉の製造方法。  The manufacturing method of the synthetic quartz powder of Claim 1 which heat-processes, supplying a silica gel powder continuously from the one end of a rotary kiln. 多段のロータリーキルンを用いて行う請求項1又は2記載の合成石英粉の製造方法。  The manufacturing method of the synthetic quartz powder of Claim 1 or 2 performed using a multistage rotary kiln. 300〜600℃でシリカゲル中のカーボン濃度が50〜1000ppmに減少するように加熱処理した後、900〜1100℃まで加熱処理する請求項1〜3のいずれかに記載の合成石英粉の製造方法。The manufacturing method of the synthetic quartz powder in any one of Claims 1-3 which heat-process to 900-1100 degreeC after heat-processing so that the carbon concentration in a silica gel may reduce to 50-1000 ppm at 300-600 degreeC . ロータリーキルンの炉心管の材質が石英である請求項1〜4のいずれかに記載の合成石英粉の製造方法。  The method for producing synthetic quartz powder according to any one of claims 1 to 4, wherein the material of the furnace core tube of the rotary kiln is quartz. シリカゲル粉末がテトラアルコキシシランの加水分解により得られたものである請求項1〜5のいずれかに記載の合成石英粉の製造方法。  The method for producing synthetic quartz powder according to any one of claims 1 to 5, wherein the silica gel powder is obtained by hydrolysis of tetraalkoxysilane. シリカゲル粉末を、ロータリーキルンを用いて流動させながら加熱処理する際ロータリーキルン内のシリカゲル粉末の最大層高を75mm以上として300〜600℃でシリカゲル中のカーボン濃度が50〜1000ppmに減少するように加熱処理し、その後1100〜1300℃で焼成することにより得られた合成石英粉を、更に溶融することを特徴とする石英ガラス成形体の製造方法。When the silica gel powder is heated using a rotary kiln while flowing, the maximum layer height of the silica gel powder in the rotary kiln is set to 75 mm or more so that the carbon concentration in the silica gel is reduced to 50 to 1000 ppm at 300 to 600 ° C. Then, the synthetic quartz powder obtained by baking at 1100-1300 degreeC after that is further fuse | melted, The manufacturing method of the quartz glass molded object characterized by the above-mentioned.
JP10588895A 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body Expired - Fee Related JP3735886B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10588895A JP3735886B2 (en) 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body
EP96912278A EP0823403B1 (en) 1995-04-28 1996-04-26 Processes for producing synthetic quartz powder and producing shaped quartz glass
KR1019970707671A KR19990008146A (en) 1995-04-28 1996-04-26 Manufacturing method of synthetic quartz powder and manufacturing method of quartz glass molded body
PCT/JP1996/001176 WO1996033950A1 (en) 1995-04-28 1996-04-26 Processes for producing synthetic quartz powder and producing shaped quartz glass
DE69629111T DE69629111T2 (en) 1995-04-28 1996-04-26 METHOD FOR PRODUCING A SYNTHETIC QUARTZ POWDER AND MOLDED QUARTZ GLASS
US08/945,318 US6129899A (en) 1995-04-28 1996-04-26 Processes for producing synthetic quartz powder and producing shaped quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10588895A JP3735886B2 (en) 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body

Publications (2)

Publication Number Publication Date
JPH08301614A JPH08301614A (en) 1996-11-19
JP3735886B2 true JP3735886B2 (en) 2006-01-18

Family

ID=14419468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10588895A Expired - Fee Related JP3735886B2 (en) 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body

Country Status (1)

Country Link
JP (1) JP3735886B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452518B2 (en) * 2004-12-28 2008-11-18 Momentive Performance Materials Inc. Process for treating synthetic silica powder and synthetic silica powder treated thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335411A (en) * 1986-07-29 1988-02-16 Tonen Sekiyukagaku Kk Production of high-purity synthetic quartz
GB8627735D0 (en) * 1986-11-20 1986-12-17 Tsl Group Plc Vitreous silica
JPH0624728A (en) * 1992-07-11 1994-02-01 Oomura Taika Kk Production of cristobalite
JPH0642876A (en) * 1992-07-22 1994-02-18 Nippon Steel Chem Co Ltd Indirect heating type rotary heating furnace
JPH06191824A (en) * 1992-12-24 1994-07-12 Mitsubishi Kasei Corp Rotary heating method for quartz powder
JPH07157308A (en) * 1993-12-07 1995-06-20 Mitsubishi Chem Corp Production of synthetic quartz glass powder
JPH08104531A (en) * 1994-09-29 1996-04-23 Mitsubishi Chem Corp Transporting device of synthetic quartz powder and granular material and transporting method using the same
JP3617153B2 (en) * 1995-09-29 2005-02-02 三菱化学株式会社 Method for producing synthetic quartz powder

Also Published As

Publication number Publication date
JPH08301614A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
JPH10287416A (en) Production of synthetic quartz powder
WO1996033950A1 (en) Processes for producing synthetic quartz powder and producing shaped quartz glass
JPH072513A (en) Production of synthetic quartz glass powder
EP0474158B1 (en) Silica glass powder and a method for its production and a silica glass body product made thereof
JPH09165214A (en) Production of synthetic quartz powder
JP3735887B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3617153B2 (en) Method for producing synthetic quartz powder
JP3735886B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
KR100414962B1 (en) Process for producing synthetic quartz powder
JP3875735B2 (en) Method for producing synthetic quartz powder
JP3806953B2 (en) Method for producing synthetic quartz powder
JP3832113B2 (en) Aluminum-containing synthetic quartz glass powder, aluminum-containing quartz glass molded body, and methods for producing them
JP3884783B2 (en) Method for producing synthetic quartz powder
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same
JPH05201718A (en) Production of silica glass powder and silica glass molten molding
JP4177908B2 (en) Manufacturing method of high purity powder
JPH10212115A (en) Production of high purity quartz glass powder and production of quartz glass molding
JP3859303B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
JPH10182140A (en) Production of synthetic quartz glass powder and formed quartz glass
JPH10101324A (en) Production of synthetic quartz powder and production of quartz glass formed body
JPH07157308A (en) Production of synthetic quartz glass powder
JPH11349340A (en) Production of synthetic silica glass powder and production of silica glass molded form
JPH10101322A (en) Silica gel, synthetic quartz glass powder, its production, and production of quartz glass formed body
JPH0986918A (en) Production of synthetic quartz glass powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees