JP3735887B2 - Method for producing synthetic quartz powder and method for producing quartz glass molded body - Google Patents

Method for producing synthetic quartz powder and method for producing quartz glass molded body Download PDF

Info

Publication number
JP3735887B2
JP3735887B2 JP10588995A JP10588995A JP3735887B2 JP 3735887 B2 JP3735887 B2 JP 3735887B2 JP 10588995 A JP10588995 A JP 10588995A JP 10588995 A JP10588995 A JP 10588995A JP 3735887 B2 JP3735887 B2 JP 3735887B2
Authority
JP
Japan
Prior art keywords
powder
silica gel
rotary kiln
synthetic quartz
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10588995A
Other languages
Japanese (ja)
Other versions
JPH08301615A (en
Inventor
芳雄 勝呂
昭二 大石
裕司 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10588995A priority Critical patent/JP3735887B2/en
Priority to US08/945,318 priority patent/US6129899A/en
Priority to PCT/JP1996/001176 priority patent/WO1996033950A1/en
Priority to DE69629111T priority patent/DE69629111T2/en
Priority to KR1019970707671A priority patent/KR19990008146A/en
Priority to EP96912278A priority patent/EP0823403B1/en
Publication of JPH08301615A publication Critical patent/JPH08301615A/en
Application granted granted Critical
Publication of JP3735887B2 publication Critical patent/JP3735887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Silicon Compounds (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE: To prevent the development of fine bubbles in the resultant molded form during melt forming of silica gel powder and increase the bulk density of the powder to be charged into a crucible by heat treating silica gel powder while continuously feeding it via one end of a rotary kiln. CONSTITUTION: First, dry silica gel powder 10-1000&mu;m in particle diameter is obtained by drying and pulverizing a get obtained by hydrolysis or gelation of a tetraalkoxysilane. Secondly, the silica gel powder is heat-treated at 200-1100 deg.C in a core pipe made of quartz while continuously feeding it via one end of the core pipe in a rotary kiln and the final temperature is brought to 900-1100 deg.C at a rate of temperature rise of <=1000 deg.C/h. The heat treatment is conducted under clean air or an oxygen-contg. gas atmosphere. A gas feed nozzle is provided above the powder feed nozzle, the tilt angle of the rotary kiln is set at <=3 deg., there is afforded a doughnut-shaped shuttering board and the diameter of the silica gel feed port is made smaller than that of the discharge port to ensure silica get backflow not to occur.

Description

【0001】
【産業上の利用分野】
本発明は、合成石英粉及び石英ガラス成形体の効率的な製造方法に関するものである。
【0002】
【従来の技術】
近年、光通信分野、半導体産業等で使用されるガラス製品に於いてはその微量不純物及び製品中の微小泡に関し非常に厳しい管理が行われている。このような高品質のガラスは主に、▲1▼天然石英を精製する方法、▲2▼四塩化珪素の酸水素炎中での分解で発生したヒュームを基体に付着・成長させる方法、▲3▼シリコンアルコキシド等を加水分解・ゲル化して得たシリカゲルを焼成して得られる合成石英粉を用い、これを溶融して成形体とする方法等によって製造される。
【0003】
【発明が解決しようとする課題】
しかしながら、▲1▼の方法では、微量不純物含有率の低減に限界があり、▲2▼の方法では、極めて製造コストが高い等の問題点がある。一方、▲3▼のシリカゲルの焼成による方法では、▲2▼の方法に比べると安価に微量不純物含有率が低い合成石英粉が得られるが、要求レベルを必ずしも満足しているとは言えない。また、この方法では、最終製品である成形体中に、微小泡が発生することがありこの微小泡が様々なトラブルの原因となることがある、という問題点がある。
【0004】
【課題を解決するための手段】
本発明者らは、上記▲3▼の、シリカゲルの焼成による合成石英粉の製造方法における課題、すなわちこれを溶融して得られる成形体における微小泡の発生が極めて少ない合成石英粉の製造を行うこと、更にはかかる製造を工業的に有利に行う方法を見いだすべく鋭意検討した所、以下の点が判明した。即ち、シリカゲルの焼成は、容器からの不純物のコンタミを排除するために、石英製の容器にシリカゲルを仕込み、電気炉等で加熱する。特に、工業的に製造する場合、大口径の石英るつぼが使用される。しかしながら、シリカゲルは石英粉に比べ嵩密度が低いために、焼成に用いる容器を効率的に利用できず、生産性が悪く、製造コストが高くなっている。従って、生産性の向上にはるつぼに仕込む粉体の嵩密度アップが重要な課題となる。
【0005】
また、石英粉を用いた成形体の製造において、成形体を製造する際の微小泡の発生は、石英粉製造時の焼成工程の昇温過程が影響を及ぼす。テトラアルコキシシランの加水分解により得たシリカゲル粉末は、乾燥により副生したアルコールを除去しても未反応のアルコキシ基及び副生したアルコールの一部が残存する。実際、乾燥を施したシリカゲル粉末中のカーボン濃度を測定すると、乾燥条件によっても異なるが、1〜3%である。このシリカゲル粉末を酸素含有ガス中で焼成すると、大部分のカーボンは、昇温過程で燃焼除去されるが、一部が未燃カーボンとして合成石英粉中に閉じ込められることがある。この未燃カーボンを含有する合成石英粉を用いると、溶融成形の際にCOやCO2 ガスとなり、泡発生の原因となる。従って、シリカゲルの封孔前に、未燃カーボンを実質的に全量除去することが必要となり、昇温過程における昇温速度が重要となるわけである。ところが、先述のように、合成石英粉の工業的な製造を図る場合、大口径のるつぼを使用することになり、昇温過程における、るつぼ内の温度が不均一となり、その結果、場合によってはカーボンが残存した合成石英粉が部分的に生成し、その合成石英粉を用いた成形体中に、微小泡が発生するという現象が見られるのである。
【0006】
このような問題を解決し効率的に良質の合成石英粉を生成するために、回転円筒型加熱装置、いわゆるロータリーキルンを用いた加熱をも試みた。しかしながら、コンタミを防ぐ目的から炉心管の材質は石英等に限られるため、加熱処理における昇温工程が繰り返されることによるヒートショックから、炉心管の寿命が短くなってしまうという問題があった。また加熱処理によってシリカゲルから大量のガスが発生し、しかもガス発生量が時間とともに変化するため、ロータリーキルンでは排ガス処理も難しく、またピーク時に合わせると装置が大型となり、内部のシリカゲル粉末を吹き飛ばすこともある。
【0007】
またシリカゲルが次第に封孔する工程において、溶媒、付着水、残留有機基等の除去を充分且つ的確に行い、目的とする高品質の合成石英粉を得るには、加熱処理の条件、特に昇温工程を厳密に制御することを要し、多量の粉体を仕込んだロータリーキルンでこれを行うのは困難であり、更にロータリーキルンの軸方向に加熱強度の強弱が生じやすく製品のバラつきに繋がる、という問題もあった。更に、粉体の供給、取り出しの際のコンタミ防止、バッチごとの品質の均一化も、充分には達成し難かった。
【0008】
本発明者らは、上記課題に鑑み、更に鋭意検討を行った結果、シリカゲルを適当な条件及び操作で加熱処理して得られた粉体は、嵩密度が焼成後の石英粉と同等とすることができ、なおかつ、アルコキシ基及び水酸基を充分に除去されたものとすることができるため、かかる粉体を更に高温での焼成に供するのにも好都合であること、更に、かかる加熱処理方法により、合成石英粉製造に要するスペース、人手、加熱時の供給ガス量をも軽減でき、また加熱時のエアレーションも容易に行うことができ、生産性を大きく向上できることを見いだし、本発明を完成するに至った。即ち、本発明は、シリカゲル粉末を流動させながら加熱処理する工程を含む合成石英粉の製造方法において、シリカゲル粉末をロータリーキルンの片端より連続的に供給しつつ加熱処理することを特徴とする合成石英粉の製造方法、等にある。
【0009】
以下、本発明を詳細に説明する。
本発明の合成石英粉は、アルコキシシラン等の加水分解・ゲル化等により得られるシリカゲル粉末を、焼成することにより無孔化してなる合成石英粉である。シリカゲル粉末の製造法は特に限定されず、種々の公知技術によればよいが、高純度を容易に達成できる等の点からアルコキシシラン等の加水分解・ゲル化による、いわゆるゾルゲル法によるものが好ましい。ゾルゲル法によるアルコキシシランの加水分解は、公知の方法に従って、アルコキシシランと水とを反応させることによって行われる。
【0010】
原料として用いられるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン等のC1〜C4の低級アルコキシシラン或いはそのオリゴマーが好ましい。
水の使用量は、通常、アルコキシシラン中のアルコキシ基の1倍当量以上から10倍当量以下の範囲から選択される。この際、必要に応じて、水と相溶性のあるアルコール類やエーテル類等の有機溶媒を混合して使用してもよい。使用されるアルコールの代表例としては、メタノール、エタノール等の低脂肪族アルコールが挙げられる。
【0011】
この加水分解反応には、触媒として塩酸、酢酸等の酸や、アンモニア等のアルカリを添加してもよい。なお、当然のことながら、ここで使用する水、触媒等の、反応系に導入される物質はすべて高純度とする。
加水分解生成物のゲル化は、加熱下あるいは常温で実施することができる。加熱を行うと、ゲル化の速度を向上することができるので、加熱の程度を調節することにより、ゲル化時間を調節することができる。
【0012】
得られたゲルは、細分化してから乾燥してもよいし、乾燥してから細分化してもよい。いずれにしても、乾燥後の粒径が、10〜1000μm、好ましくは、100〜600μmとなるように細分化を行う。
乾燥は、常圧、あるいは、減圧下で加熱しつつ行うのが効率的である。加熱温度は、条件によつても異なるが、通常、50〜200℃である。また、操作は、回分、連続のいずれによつても行うことができる。乾燥の程度は、通常、湿量標準水分で表した水の含有量で、1〜30重量%まで行われる。
【0013】
このようにして得られた乾燥シリカゲル粉末を、以下に述べる特定の条件下で加熱処理する。すなわち、シリカゲル粉末を流動させながら、加熱処理する。そして、この際にシリカゲル粉末をロータリーキルンの片端より連続的に供給しつつ加熱処理を行うことが本発明の要件である。
【0014】
すなわち、ロータリーキルンの炉心管の片端より連続的に乾燥シリカゲルを供給しつつ、炉心管内で加熱処理を行い、処理が終了した粉を連続的に炉心管から排出する。
炉心管の材質は、処理を行った粉への材質のコンタミが発生しないものを選択する必要があり、特に石英製が好ましい。石英製の場合、製作上、炉心管のサイズに限界があるので、条件によっては、複数のロータリーキルンを直列に並べて加熱処理を行うこともできる。
【0015】
加熱処理を行う温度領域は、200〜1100℃である。特に、300〜600℃の領域で、主に、シリカゲル中の残存カーボンの除去が進行するので、慎重に操作を行う。600℃以上となるとシリカゲルの封孔が開始するので、粉体温度がこの温度領域に到達するまでに、残存するカーボンのほぼ全量を消失させておかなければならない。さもなければ、得られた合成石英粉中に未燃カーボンが残存し、溶融成形の際に泡が発生する。
【0016】
このように操作を連続で行うに際しては、炉心管の加熱ゾーンを複数個に分割し、処理粉体の進行方向に従い粉体の温度が所定の勾配で上昇するように加熱強度を制御する必要がある。供給した粉体がロータリーキルン内を進行方向に移動するに従い昇温させるのである。従って、粉体の昇温速度は、ロータリーキルン内の温度分布と粉体の進行方向に対する移動速度から自ずと求められる。例えば、温度測定点間の距離が1mで温度差が200℃であり、粉体の進行方向に対する移動速度が0.5m/Hrであると、昇温速度は400℃/Hrとなる。 シリカゲル中の残存カーボンの除去が進行する領域の昇温速度は1000℃/Hr以下、好ましくは、500℃/Hr以下とするのがよい。また、450〜600℃の領域で、温度変化のほとんどないゾーンを設け、そのゾーンの通過時間を0.5〜5時間とするのも効果的である。例えば、ヒーターをロータリーキルンの軸方向に複数個に分割して、軸方向の加熱強度を制御することができる。この場合室温付近から水の蒸発する温度、及び水の蒸発する温度領域では加熱強度を比較的強め、ゾーン範囲を狭くするのが望ましい。次に、シリカゲルの顕熱見合いの熱を供給し、粉体の温度を上げる温度領域では、極端な加熱は行わず、ゆっくりと粉体の温度が上昇するように制御するのが望ましい。
【0017】
一方、シリカゲル粉末のロータリーキルンへの供給速度は一定とするのが望ましい。粉体の加熱処理条件が一定でないと得られる処理粉体の品質にバラつきが生じることになるので、供給速度を一定とするのが望ましい。この為には、例えばテーブルフィーダー、ロータリーバルブ、チョークバルブ等の、定量性のある装置により供給するのが望ましい。
【0018】
加熱処理の雰囲気は、清浄な空気あるいは酸素含有ガス雰囲気下とする。具体的には、炉心管の片端より清浄な空気あるいは、酸素含有ガスを供給し、他端より排出する方法をとることができる。ガスの供給方法は、特に限定されないが、シリカゲルに含有される水分が蒸発する領域の加熱処理においては、ガスをシリカゲル粉末と同一の片端より供給し、これらを他端より排出するのが望ましい。粉体を供給する片端の温度は室温に近いので、向流で供給した場合、粉体の供給口近傍で水蒸気が凝縮し粉体がブック化し、流動性が悪化するおそれがあるからである。ガスの供給をノズル等で行う場合、ガス供給ノズルを粉体供給ノズルより上方に設け、ノズル方向を炉心管の軸と水平または上向きとするのが望ましい。同時に粉体の供給ノズルを炉心管の軸と水平または下向きとすれば、炉心管内での粉体のショートパスを防ぐことができるからである。供給ガスの炉心管内での線速を1m/s以下、好ましくは0.5m/s以下とし、転動する粉体が巻き上げられて気層部をショートパスすることを防ぐのが望ましい。
【0019】
加熱処理を経た処理粉体は、供給ガスとともに炉心管より排出されるので、処理粉体と供給ガスとの分離を行う。この際ガスの線速を1m/s以下、好ましくは0.5m/s以下となるようにサイクロン等のセパレーターを設計し、処理粉体の一部が排ガス中に同伴されることによる歩留り低下を防ぐのが望ましい。なお、製品へのコンタミ防止のため、供給ガスを予め精製しておくのが望ましい。特に、0.02μm以下をカットできるフィルターを通すのが望ましい。
【0020】
ガスの供給量は、通常、連続的に供給する粉体1kg当たり、酸素換算で30〜300リットル/Hrである。尚、かかる連続操作によるシリカゲルの加熱処理を実現するため、本発明においてはロータリーキルンの傾斜角を3°以下、好ましくは1°以下として行うのが好適である。意外なことに、シリカゲル粉末の加熱処理に際しては、傾斜角が実質的に0°、すなわち全く水平としても、連続加熱処理に支障がないばかりか、かえって望ましいことが判明した。この際、ドーナツ型堰等を設け、供給口の口径を、排出口の口径より小さくしておくのが望ましい。ロータリーキルンの傾斜角が3°を超すと、加熱処理を受けるシリカゲルがバックフローを生ずることがある。すなわちシリカゲルがロータリーキルン内を進行方向に対しピストンフロー的に移動しない。このような場合、シリカゲルの上滑り、ショートカット、及びこれらを原因とするシリカゲルの生焼けを生じやすい。
【0021】
上述した本発明の態様により、ロータリーキルン内の各点で、実質的に定常状態とすることができる。すなわち各点における処理粉体の物性が、時間に対し変化せず、物性は、ロータリーキルンの軸方向の関数となるのである。そして、上述した本発明の目的を達成することができるのである。
【0022】
また本発明においては、ロータリーキルン内でシリカゲル粉末を流動させつつ加熱処理する。ここで粉体が「流動する」とは、例えば粉体を仕込んだ回転状態のロータリーキルンの断面を示す図2を用い静止状態のロータリーキルンの断面を示す図1と比較して説明すると、粉体(1)と炉心管(2)壁の接粉面(3)との間には実質的に滑りが生じておらず、粉体が炉心管壁で持ち上げられ、安息角以上で粉体が壁面を離れて炉心管壁下部に流下している(図2中の黒矢印方向)状態をいう。ロータリーキルンにシリカゲル粉末を連続的に供給し、これを流動させつつ加熱処理を行うことにより、カーボンの減少が促進されるとともに、均質な処理粉体が得られる。かかる加熱処理により、シリカゲル中のカーボン濃度は、50〜1000ppm程度に減少する。
【0023】
残存するカーボンがほぼ消失した処理粉体は、引き続き加熱され、最終的な粉体の温度は、900〜1100℃、好ましくは950〜1050℃まで高められる。この際の昇温速度は通常、100〜1000℃/Hrである。この温度領域における加熱処理も、ロータリーキルンの片端よりシリカゲル粉末を連続的に供給しつつ行う。この際も、清浄な空気あるいは酸素含有ガス雰囲気下で加熱処理を行う。具体的には、炉心管の片端より清浄な空気あるいは酸素含有ガスを供給し、他端より排出する方法がとられる。ガスの供給量は、通常、連続的に供給する粉体1kg当たり、酸素換算で3〜50リットル/Hrである。またこの温度領域における加熱処理もロータリーキルンを用い、粉体を流動させつつ行う。ロータリーキルンを用い、粉体を流動させつつ加熱処理を行うことにより、均一な加熱が行われ、均一な処理粉体が得られる。この処理により、シリカゲルの封孔はほぼ終了し、0.7〜0.8g/ml程度であった粉体の嵩密度(以下、「嵩密度」と称す)は、1.0〜1.2g/ml程度まで上昇する。
【0024】
本発明に従いシリカゲル粉末に加熱処理を施すと合成石英粉が得られるが、通常、シラノールが1000ppm以上残存している。そこで、通常は更に高められた温度領域での焼成を行う。
焼成に用いる容器は、合成石英粉への不純物のコンタミを発生させない材質、例えば、石英のるつぼを用いる。この焼成においては、すでに、焼成を施す粉体中のカーボンは実質的に全量除去されているので、昇温速度に特別な注意を払う必要はない。従って、容器内での昇温速度のばらつきが品質に影響を与えないので、均質な製品が得られ、従来に比べ、大容量の容器の使用も可能となる。また、予め、粉体の嵩密度が充分に高められており、焼成前の粉体と焼成後の粉体の嵩密度に大きな変化がなく、容器を効率的に利用出来るので、生産性の向上が図られる。
【0025】
焼成温度は、通常、1100〜1300℃である。昇温速度は特に限定されず、100〜2000℃/Hrの範囲から適宜選択される。焼成時間は、焼成温度にもよるが、通常10〜100時間で、合成石英中のシラノール濃度が100ppm以下、好ましくは60ppm以下となるまで継続される。また、加熱の際に実質的に水分を含有しない空気、あるいは、不活性ガスを流通しつつ行うとシラノール基の減少速度が加速されるので好ましい。当然ながら、焼成後の合成石英粉中には、実質的にカーボンは存在しない。
【0026】
このようにして得られた合成石英粉は、成形体に成形することができる。その成形方法は、成形体の用途によっても異なるが、例えば、用途がるつぼである場合にはアークメルト法が、IC用治具である場合には、一旦、酸水素炎によるベルヌーイ法でインゴットに成形する方法や、炭素製の鋳型を用い真空下で加熱溶融するフュージョン法等が挙げられる。
いずれの場合も、本発明によって得られた合成石英粉を用いることにより、泡の発生が極めて少ない成形体が得られるので、成形体の品質及び製品歩留りが大きく向上する。
【0027】
【実施例】
以下実施例により本発明を具体的に説明するが、本発明はその要旨をこえない限り実施例に制約されるものではない。
実施例1
(ドライシリカゲル粉末の製造)
高純度テトラメトキシシランを水と反応させ、塊状の、水分含有量30重量%以上のシリカゲル(以下「ウェットシリカゲル」という)を得た。この塊状のウェットシリカゲルを網式粉砕機で粉砕した後、減圧下で加熱乾燥し、粉状のドライシリカゲルを得た。この粉状のドライシリカゲルを、振動篩別機で分級し500μm以下100μm以上のものを取得した。この分級後のドライシリカゲル(以下「ドライシリカゲル粉末」という)を分析したところ、含水率は19.5重量%で、カーボン濃度は1.1重量%であった。また、この粉体の嵩密度は、0.92g/mlであった。
【0028】
(加熱処理)
こうして得られたドライシリカゲル粉末を用い、図1に示すロータリーキルンを用い加熱処理を行った。図1中6は、ドライゲルホッパー、7はテーブルフィーダー、8は炉心管、9は供給口、10は供給口ドーナツ状堰、11は空気供給管、12は排出口、13は排出口ドーナツ状堰、14は処理粉受器、15は第1加熱ヒーター、16は第2加熱ヒーター、17は第3加熱ヒーター、18は第4加熱ヒーター、19は第5加熱ヒーター、20はドライシリカゲル粉末である。
【0029】
炉心管(3)は材質が石英で、長さ(加熱ゾーン):2m、内径:200mm、供給口ドーナツ状堰開口径:40mm、排出口ドーナツ状開口径:40mmの寸法を有する。また炉心管は、傾斜角度が0.5°になるように調節した。
まず、各加熱ヒーターを500℃に昇温し、炉心管を4rpmで回転させつつ、ドライシリカゲル粉末を6.2kg/Hrで、空気を4500リットル/Hrで供給口より供給し加熱処理を行った。供給操作開始後、4、6、8時間目に排出された粉を分析したところ、表1に示す値であった。
【0030】
【表1】

Figure 0003735887
【0031】
次に、同様のロータリーキルンを用い、上記操作で得られた処理粉を、以下に示す条件で加熱処理した。第1加熱ヒーター:600℃、第2加熱ヒーター:700℃、第3加熱ヒーター:850℃、第4加熱ヒーター:1000℃、第5加熱ヒーター:1060℃に昇温し、炉心管を4rpmで回転させつつ、粉体を6.5kg/Hrで、空気を1000リットル/Hrで供給口より供給した。
供給操作開始後、4、6、8時間目に排出された合成石英粉を分析したところ、表2に示す値であった。
【0032】
【表2】
Figure 0003735887
【0033】
(焼成) 加熱処理で得られた合成石英粉60kgを直径560mmの石英製るつぼに仕込み、電気炉内で加熱し焼成を行った。炉は昇温速度240℃/Hrで、到達温度1200℃まで昇温後、同温度で60時間保持した。この際、るつぼ上部に、露点が−50℃の清浄な乾燥空気を1900リットル/Hrで流通した。保持終了後、加熱を停止し、室温まで冷却した。冷却の際にも、清浄な空気を流通した。焼成後に得られた合成石英粉は、59kgであった。得られた合成石英粉を、サンプリング場所毎に分析したところ表3に示す値であった。
【0034】
【表3】
Figure 0003735887
【0035】
(成形) 焼成で得られた合成石英粉を、各々のサンプリング場所毎に、ベルヌーイ法で、インゴットに成形した。インゴット中に、泡の発生は見られなかった。
【0036】
比較例1
実施例1の(ドライシリカゲル粉末の作成)で得られたドライシリカゲル粉末60kgを、加熱処理を施すことなく、直接るつぼに仕込み、電気炉内で加熱し、実施例1の(焼成)と同様の操作で焼成を行った。こうして得られた合成石英粉は、47kgであった。この合成石英粉を、サンプリング場所毎に分析したところ表4に示す値であった。
この合成石英粉を、各々のサンプリング場所毎に、ベルヌーイ法で、インゴットに成形した。インゴット内の発泡状態を表4に示す。
【0037】
【表4】
Figure 0003735887
【0038】
【発明の効果】
本発明により、溶融成形時に発泡のない合成石英粉を効率的に製造することができる。
【図面の簡単な説明】
【図1】粉体を仕込んだ静止状態のロータリーキルンの断面図
【図2】仕込んだ粉体が流動状態にある、回転状態のロータリーキルンの断面
【図3】本発明で用いられるロータリーキルンの一例を示す図。
【符号の説明】
1 粉体
2 炉心管
3 接粉面
4 炉心管内の空隙
5 粉体面
6 ドライゲルホッパー
7 テーブルフィーダー
8 炉心管
9 供給口
10 供給口ドーナツ状堰
11 空気供給管
12 排出口
13 排出口ドーナツ状堰
15 第1加熱ヒーター
16 第2加熱ヒーター
17 第3加熱ヒーター
18 第4加熱ヒーター
19 第5加熱ヒーター[0001]
[Industrial application fields]
The present invention relates to an efficient method for producing a synthetic quartz powder and a quartz glass molded body.
[0002]
[Prior art]
In recent years, glass products used in the optical communication field, the semiconductor industry, and the like have been subjected to very strict management regarding trace impurities and microbubbles in the products. Such high-quality glass mainly consists of (1) a method of refining natural quartz, (2) a method of attaching and growing fumes generated by decomposition of silicon tetrachloride in an oxyhydrogen flame, and (3) ▼ Manufactured by a method of using a synthetic quartz powder obtained by baking silica gel obtained by hydrolyzing and gelling silicon alkoxide, etc., and melting it into a molded body.
[0003]
[Problems to be solved by the invention]
However, the method (1) has a limit in reducing the content of trace impurities, and the method (2) has problems such as extremely high production costs. On the other hand, in the method (3) by firing silica gel, synthetic quartz powder having a low content of trace impurities can be obtained at a lower cost than in the method (2), but the required level is not always satisfied. In addition, this method has a problem in that fine bubbles may be generated in a molded product as a final product, and the fine bubbles may cause various troubles.
[0004]
[Means for Solving the Problems]
The inventors of the present invention produce the synthetic quartz powder of the above (3) in the method for producing synthetic quartz powder by baking silica gel, that is, the production of synthetic quartz powder with extremely small generation of microbubbles in the molded product obtained by melting this. In addition, the following points have been found when intensive studies were conducted to find a method for industrially advantageous production. That is, in the firing of silica gel, silica gel is charged into a quartz container and heated in an electric furnace or the like in order to eliminate impurity contamination from the container. In particular, when manufacturing industrially, a large-diameter quartz crucible is used. However, since silica gel has a lower bulk density than quartz powder, the container used for firing cannot be used efficiently, productivity is poor, and manufacturing cost is high. Therefore, increasing the bulk density of the powder charged in the crucible is an important issue for improving productivity.
[0005]
Further, in the production of a molded body using quartz powder, the generation of microbubbles during the production of the molded body is affected by the temperature rising process in the firing process during the production of quartz powder. In the silica gel powder obtained by hydrolysis of tetraalkoxysilane, unreacted alkoxy groups and a part of the by-produced alcohol remain even if the by-produced alcohol is removed by drying. In fact, when the carbon concentration in the dried silica gel powder is measured, it is 1 to 3%, although it varies depending on the drying conditions. When this silica gel powder is fired in an oxygen-containing gas, most of the carbon is burned and removed during the temperature rising process, but a part of the carbon may be trapped in the synthetic quartz powder as unburned carbon. If this synthetic quartz powder containing unburned carbon is used, it becomes CO or CO 2 gas at the time of melt molding, which causes bubbles. Therefore, it is necessary to remove substantially all of the unburned carbon before sealing the silica gel, and the rate of temperature increase in the temperature increasing process is important. However, as mentioned above, when industrial production of synthetic quartz powder is intended, a large-diameter crucible will be used, and the temperature in the crucible during the temperature rising process becomes non-uniform. There is a phenomenon in which synthetic quartz powder in which carbon remains is partially generated, and fine bubbles are generated in a molded body using the synthetic quartz powder.
[0006]
In order to solve such problems and efficiently produce high-quality synthetic quartz powder, an attempt was also made to heat using a rotary cylindrical heating device, a so-called rotary kiln. However, since the material of the core tube is limited to quartz or the like for the purpose of preventing contamination, there has been a problem that the life of the core tube is shortened due to a heat shock caused by repeated heating steps in the heat treatment. In addition, heat treatment generates a large amount of gas from silica gel, and the amount of gas generated changes over time, so it is difficult to treat exhaust gas with a rotary kiln, and the apparatus becomes large when peaking, and the silica gel powder inside may be blown away. .
[0007]
In addition, in the step of gradually sealing the silica gel, the solvent, adhering water, residual organic groups, etc. are sufficiently and accurately removed to obtain the desired high-quality synthetic quartz powder. It is difficult to do this with a rotary kiln that requires a strict control of the process and a large amount of powder is charged, and the strength of the heating strength tends to increase and decrease in the axial direction of the rotary kiln, leading to product variations. There was also. Furthermore, it has been difficult to sufficiently prevent supply of powder, prevention of contamination during extraction, and uniform quality for each batch.
[0008]
In light of the above-mentioned problems, the present inventors have conducted further intensive studies. As a result, the powder obtained by heat-treating silica gel under appropriate conditions and operations has a bulk density equivalent to that of the fired quartz powder. In addition, since the alkoxy group and the hydroxyl group can be sufficiently removed, it is convenient to subject the powder to firing at a higher temperature. In order to complete the present invention, it was found that the space required for manufacturing synthetic quartz powder, manpower, the amount of gas supplied during heating can be reduced, aeration during heating can be easily performed, and productivity can be greatly improved. It came. That is, the present invention relates to a method for producing synthetic quartz powder comprising a step of heat-treating silica gel powder while flowing, wherein the silica gel powder is heat-treated while being continuously supplied from one end of a rotary kiln. In the manufacturing method, etc.
[0009]
Hereinafter, the present invention will be described in detail.
The synthetic quartz powder of the present invention is a synthetic quartz powder made non-porous by baking silica gel powder obtained by hydrolysis / gelation of alkoxysilane or the like. The method for producing the silica gel powder is not particularly limited, and may be based on various known techniques, but from the viewpoint that high purity can be easily achieved, the so-called sol-gel method by hydrolysis / gelation of alkoxysilane or the like is preferable. . Hydrolysis of alkoxysilane by the sol-gel method is performed by reacting alkoxysilane with water according to a known method.
[0010]
The alkoxysilane used as a raw material is preferably a C1-C4 lower alkoxysilane such as tetramethoxysilane or tetraethoxysilane or an oligomer thereof.
The amount of water used is usually selected from the range of 1 to 10 equivalents of alkoxy groups in alkoxysilane. At this time, if necessary, organic solvents such as alcohols and ethers compatible with water may be mixed and used. Representative examples of the alcohol used include low aliphatic alcohols such as methanol and ethanol.
[0011]
In this hydrolysis reaction, an acid such as hydrochloric acid or acetic acid or an alkali such as ammonia may be added as a catalyst. As a matter of course, all substances introduced into the reaction system such as water and catalyst used here have high purity.
The gelation of the hydrolysis product can be carried out under heating or at room temperature. Since the gelation speed can be improved by heating, the gelation time can be adjusted by adjusting the degree of heating.
[0012]
The obtained gel may be finely divided and then dried, or may be dried and then finely divided. In any case, the particle size after drying is subdivided so as to be 10 to 1000 μm, preferably 100 to 600 μm.
It is efficient to perform drying while heating at normal pressure or under reduced pressure. Although heating temperature changes also with conditions, it is 50-200 degreeC normally. The operation can be performed either batchwise or continuously. The degree of drying is usually 1 to 30% by weight in terms of water content expressed as wet standard moisture.
[0013]
The dry silica gel powder thus obtained is heat-treated under the specific conditions described below. That is, it heat-processes, making a silica gel powder flow. At this time, it is a requirement of the present invention to perform the heat treatment while continuously supplying the silica gel powder from one end of the rotary kiln.
[0014]
That is, while supplying dry silica gel continuously from one end of the core tube of the rotary kiln, heat treatment is performed in the core tube, and the finished powder is continuously discharged from the core tube.
It is necessary to select a material for the core tube that does not cause contamination of the processed powder, and quartz is particularly preferable. In the case of quartz, since there is a limit to the size of the core tube for manufacturing, depending on the conditions, a plurality of rotary kilns can be arranged in series to perform the heat treatment.
[0015]
The temperature range which performs heat processing is 200-1100 degreeC. In particular, in the region of 300 to 600 ° C., since the removal of residual carbon in the silica gel proceeds mainly, the operation is carefully performed. Since silica gel sealing starts when the temperature exceeds 600 ° C., almost all of the remaining carbon must be lost before the powder temperature reaches this temperature range. Otherwise, unburned carbon remains in the obtained synthetic quartz powder, and bubbles are generated during melt molding.
[0016]
When the operation is performed continuously in this way, it is necessary to divide the heating zone of the core tube into a plurality of parts and control the heating intensity so that the temperature of the powder rises with a predetermined gradient according to the traveling direction of the treated powder. is there. The temperature of the supplied powder is increased as it moves in the traveling direction in the rotary kiln. Therefore, the temperature rising rate of the powder is naturally determined from the temperature distribution in the rotary kiln and the moving speed with respect to the traveling direction of the powder. For example, if the distance between temperature measurement points is 1 m, the temperature difference is 200 ° C., and the moving speed of the powder in the traveling direction is 0.5 m / Hr, the temperature rising speed is 400 ° C./Hr. The temperature increase rate in the region where the removal of residual carbon in the silica gel proceeds is 1000 ° C./Hr or less, preferably 500 ° C./Hr or less. It is also effective to provide a zone with almost no temperature change in the region of 450 to 600 ° C. and set the passing time of the zone to 0.5 to 5 hours. For example, the heating intensity in the axial direction can be controlled by dividing the heater into a plurality of parts in the axial direction of the rotary kiln. In this case, it is desirable to relatively increase the heating intensity and narrow the zone range in the temperature where water evaporates from around room temperature and in the temperature range where water evaporates. Next, in the temperature range where the heat corresponding to the sensible heat of silica gel is supplied and the temperature of the powder is raised, it is desirable to control so that the temperature of the powder rises slowly without performing extreme heating.
[0017]
On the other hand, the supply rate of the silica gel powder to the rotary kiln is preferably constant. If the heat treatment conditions of the powder are not constant, the quality of the obtained processed powder will vary, so it is desirable to keep the supply rate constant. For this purpose, it is desirable to supply with a quantitative device such as a table feeder, a rotary valve, or a choke valve.
[0018]
The atmosphere for the heat treatment is a clean air or oxygen-containing gas atmosphere. Specifically, a method of supplying clean air or oxygen-containing gas from one end of the core tube and discharging from the other end can be employed. The method for supplying the gas is not particularly limited, but in the heat treatment of the region where the water contained in the silica gel evaporates, it is desirable to supply the gas from one end same as the silica gel powder and to discharge these from the other end. This is because the temperature at one end where the powder is supplied is close to room temperature, and when supplied in countercurrent, water vapor is condensed near the supply port of the powder and the powder becomes a book, which may deteriorate the fluidity. When gas is supplied by a nozzle or the like, it is desirable that the gas supply nozzle is provided above the powder supply nozzle and the nozzle direction is horizontal or upward with respect to the axis of the core tube. At the same time, if the powder supply nozzle is horizontal or downward with respect to the axis of the core tube, it is possible to prevent a short path of powder in the core tube. It is desirable that the linear velocity of the supply gas in the core tube is 1 m / s or less, preferably 0.5 m / s or less, to prevent the rolling powder from being wound up and short-passing the gas layer.
[0019]
Since the treated powder that has undergone the heat treatment is discharged from the furnace core tube together with the supply gas, the treated powder and the supply gas are separated. At this time, a separator such as a cyclone is designed so that the linear velocity of the gas is 1 m / s or less, preferably 0.5 m / s or less, and the yield decreases due to part of the treated powder being entrained in the exhaust gas. It is desirable to prevent. In order to prevent contamination of the product, it is desirable to purify the supply gas in advance. In particular, it is desirable to pass through a filter that can cut 0.02 μm or less.
[0020]
The supply amount of gas is usually 30 to 300 liters / hr in terms of oxygen per 1 kg of powder continuously supplied. In order to realize the heat treatment of silica gel by such a continuous operation, in the present invention, it is preferable to perform the tilt angle of the rotary kiln at 3 ° or less, preferably 1 ° or less. Surprisingly, it has been found that when the silica gel powder is heat-treated, even if the inclination angle is substantially 0 °, that is, completely horizontal, there is no problem in continuous heat treatment, but it is preferable. At this time, it is desirable to provide a donut-shaped weir or the like and make the diameter of the supply port smaller than the diameter of the discharge port. When the inclination angle of the rotary kiln exceeds 3 °, the silica gel subjected to the heat treatment may cause a backflow. That is, the silica gel does not move in a piston flow with respect to the traveling direction in the rotary kiln. In such a case, the silica gel tends to slip, shortcuts, and burnt silica gel due to these.
[0021]
According to the above-described aspect of the present invention, a substantially steady state can be obtained at each point in the rotary kiln. That is, the physical properties of the treated powder at each point do not change with time, and the physical properties are functions in the axial direction of the rotary kiln. And the objective of this invention mentioned above can be achieved.
[0022]
Moreover, in this invention, it heat-processes, making a silica gel powder flow within a rotary kiln. Here, the powder “flows” is described with reference to FIG. 2 showing a section of a rotary kiln in a rotating state charged with powder, for example, and compared with FIG. 1 showing a section of a rotary kiln in a stationary state. 1) and the powder contact surface (3) of the core tube (2) wall are not substantially slipped, and the powder is lifted by the core tube wall, and the powder passes the wall surface above the angle of repose. It means a state where it is separated and flows down to the lower part of the core tube wall (in the direction of the black arrow in FIG. 2). By continuously supplying silica gel powder to the rotary kiln and performing heat treatment while flowing it, the reduction of carbon is promoted and a homogeneously treated powder can be obtained. By such heat treatment, the carbon concentration in the silica gel is reduced to about 50 to 1000 ppm.
[0023]
The treated powder from which the remaining carbon has almost disappeared is subsequently heated, and the final powder temperature is raised to 900 to 1100 ° C, preferably 950 to 1050 ° C. The temperature increase rate at this time is usually 100 to 1000 ° C./Hr. The heat treatment in this temperature range is also performed while continuously supplying silica gel powder from one end of the rotary kiln. Also at this time, heat treatment is performed in a clean air or oxygen-containing gas atmosphere. Specifically, a method is adopted in which clean air or oxygen-containing gas is supplied from one end of the core tube and discharged from the other end. The supply amount of gas is usually 3 to 50 liters / hr in terms of oxygen per 1 kg of powder continuously supplied. The heat treatment in this temperature range is also performed using a rotary kiln while the powder is flowing. By using a rotary kiln and performing heat treatment while flowing the powder, uniform heating is performed and a uniform treated powder is obtained. By this treatment, the silica gel was almost completely sealed, and the bulk density (hereinafter referred to as “bulk density”) of the powder which was about 0.7 to 0.8 g / ml was 1.0 to 1.2 g. It rises to about / ml.
[0024]
When the silica gel powder is heat-treated according to the present invention, synthetic quartz powder is obtained, but usually 1000 ppm or more of silanol remains. Therefore, firing is usually performed in a further elevated temperature range.
The container used for firing is made of a material that does not cause contamination of impurities in the synthetic quartz powder, for example, a quartz crucible. In this calcination, since carbon in the powder to be baked has already been substantially entirely removed, it is not necessary to pay special attention to the rate of temperature rise. Therefore, since the variation in the temperature rising rate within the container does not affect the quality, a homogeneous product can be obtained and a container with a larger capacity can be used compared to the conventional case. In addition, the bulk density of the powder is sufficiently increased in advance, and there is no significant change in the bulk density of the powder before firing and the powder after firing, and the container can be used efficiently, improving productivity. Is planned.
[0025]
The firing temperature is usually 1100 to 1300 ° C. The rate of temperature increase is not particularly limited, and is appropriately selected from the range of 100 to 2000 ° C./Hr. The firing time is usually 10 to 100 hours, although it depends on the firing temperature, and is continued until the silanol concentration in the synthetic quartz is 100 ppm or less, preferably 60 ppm or less. In addition, it is preferable to carry out heating while circulating air that does not substantially contain water or an inert gas because the rate of reduction of silanol groups is accelerated. Of course, substantially no carbon is present in the synthetic quartz powder after firing.
[0026]
The synthetic quartz powder thus obtained can be molded into a molded body. The molding method varies depending on the usage of the molded body. For example, when the usage is a crucible, the arc melt method is used as an IC jig, and once the ingot is formed by the Bernoulli method using an oxyhydrogen flame. Examples thereof include a molding method and a fusion method in which a carbon mold is used for heating and melting under vacuum.
In any case, by using the synthetic quartz powder obtained according to the present invention, a molded body with very little generation of bubbles can be obtained, so that the quality and product yield of the molded body are greatly improved.
[0027]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the examples unless the gist thereof is exceeded.
Example 1
(Production of dry silica gel powder)
High purity tetramethoxysilane was reacted with water to obtain a bulky silica gel having a water content of 30% by weight or more (hereinafter referred to as “wet silica gel”). The massive wet silica gel was pulverized with a mesh pulverizer and then dried by heating under reduced pressure to obtain a powdery dry silica gel. This powdery dry silica gel was classified by a vibration sieving machine to obtain a powder having a particle size of 500 μm or less and 100 μm or more. When the classified dry silica gel (hereinafter referred to as “dry silica gel powder”) was analyzed, the water content was 19.5 wt% and the carbon concentration was 1.1 wt%. Moreover, the bulk density of this powder was 0.92 g / ml.
[0028]
(Heat treatment)
The dry silica gel powder thus obtained was used for heat treatment using the rotary kiln shown in FIG. In FIG. 1, 6 is a dry gel hopper, 7 is a table feeder, 8 is a core tube, 9 is a supply port, 10 is a supply port donut-shaped weir, 11 is an air supply tube, 12 is a discharge port, 13 is a donut shape of the discharge port Weir, 14 is a treated powder receiver, 15 is a first heater, 16 is a second heater, 17 is a third heater, 18 is a fourth heater, 19 is a fifth heater, and 20 is dry silica gel powder. is there.
[0029]
The core tube (3) is made of quartz, and has a length (heating zone): 2 m, an inner diameter: 200 mm, a supply port donut-shaped weir opening diameter: 40 mm, and a discharge port donut-shaped opening diameter: 40 mm. The core tube was adjusted so that the inclination angle was 0.5 °.
First, each heater was heated to 500 ° C., and the furnace core tube was rotated at 4 rpm, and heat treatment was performed by supplying dry silica gel powder at 6.2 kg / Hr and air from the supply port at 4500 liter / Hr. . When the powder discharged | emitted at the 4th, 6th, and 8th hour after supply operation start was analyzed, it was the value shown in Table 1.
[0030]
[Table 1]
Figure 0003735887
[0031]
Next, using the same rotary kiln, the treated powder obtained by the above operation was heat-treated under the following conditions. First heater: 600 ° C., second heater: 700 ° C., third heater: 850 ° C., fourth heater: 1000 ° C., fifth heater: 1060 ° C., and the core tube is rotated at 4 rpm The powder was supplied from the supply port at 6.5 kg / Hr and air at 1000 liter / Hr.
The synthetic quartz powder discharged at 4, 6, and 8 hours after the start of the supply operation was analyzed, and the values shown in Table 2 were obtained.
[0032]
[Table 2]
Figure 0003735887
[0033]
(Baking) 60 kg of the synthetic quartz powder obtained by the heat treatment was charged into a quartz crucible having a diameter of 560 mm and heated in an electric furnace for baking. The furnace was heated at a heating rate of 240 ° C./Hr up to an ultimate temperature of 1200 ° C. and then held at that temperature for 60 hours. At this time, clean dry air having a dew point of −50 ° C. was circulated at 1900 liter / Hr in the upper part of the crucible. After the holding, heating was stopped and cooled to room temperature. Clean air was also circulated during cooling. The synthetic quartz powder obtained after firing was 59 kg. When the obtained synthetic quartz powder was analyzed for each sampling location, the values shown in Table 3 were obtained.
[0034]
[Table 3]
Figure 0003735887
[0035]
(Molding) The synthetic quartz powder obtained by firing was molded into an ingot by the Bernoulli method at each sampling location. No foam was observed in the ingot.
[0036]
Comparative Example 1
The dry silica gel powder 60 kg obtained in Example 1 (preparation of dry silica gel powder) was directly charged into a crucible without heating, and heated in an electric furnace. Firing was performed by operation. The synthetic quartz powder thus obtained was 47 kg. When this synthetic quartz powder was analyzed for each sampling location, the values shown in Table 4 were obtained.
This synthetic quartz powder was formed into an ingot by the Bernoulli method at each sampling location. Table 4 shows the foamed state in the ingot.
[0037]
[Table 4]
Figure 0003735887
[0038]
【The invention's effect】
According to the present invention, synthetic quartz powder without foaming can be efficiently produced during melt molding.
[Brief description of the drawings]
FIG. 1 is a sectional view of a rotary kiln in a stationary state in which powder is charged. FIG. 2 is a sectional view of a rotary kiln in a rotating state where the charged powder is in a fluid state. FIG. 3 shows an example of a rotary kiln used in the present invention. Figure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Powder 2 Core tube 3 Powder contact surface 4 Space | gap 5 in a core tube Powder surface 6 Dry gel hopper 7 Table feeder 8 Core tube 9 Supply port 10 Supply port donut-shaped weir 11 Air supply tube 12 Discharge port 13 Discharge port donut shape Weir 15 First heater 16 Second heater 17 Third heater 18 Fourth heater 19 Fifth heater

Claims (9)

シリカゲル粉末を、流動させながら加熱処理する工程を含む合成石英粉の製造方法において、シリカゲル粉末をロータリーキルンの片端より連続的に供給しつつ300〜600℃でシリカゲル中のカーボン濃度が50〜1000ppmに減少するように加熱処理し、その後1100〜1300℃で焼成することを特徴とする合成石英粉の製造方法。In a method for producing synthetic quartz powder, including a step of heat-treating silica gel powder while flowing , the carbon concentration in the silica gel is reduced to 50 to 1000 ppm at 300 to 600 ° C. while continuously supplying the silica gel powder from one end of the rotary kiln. A method for producing a synthetic quartz powder, characterized in that the heat treatment is performed and then firing is performed at 1100 to 1300 ° C. 300〜600℃でシリカゲル中のカーボン濃度が50〜1000ppmに減少するように加熱処理した後、900〜1100℃まで加熱処理することを特徴とする請求項1記載の合成石英粉の製造方法。The method for producing a synthetic quartz powder according to claim 1, wherein the heat treatment is performed at 300 to 600 ° C so that the carbon concentration in the silica gel is reduced to 50 to 1000 ppm, and then the heat treatment is performed at 900 to 1100 ° C. ロータリーキルンの傾斜角が3°以下であることを特徴とする請求項1または2に記載の合成石英粉の製造方法。The method for producing a synthetic quartz powder according to claim 1 or 2 , wherein an inclination angle of the rotary kiln is 3 ° or less. 多段のロータリーキルンを用いて行う請求項1〜のいずれかに記載の合成石英粉の製造方法。The manufacturing method of the synthetic quartz powder in any one of Claims 1-3 performed using a multistage rotary kiln. ロータリーキルンの炉心管の材質が石英である請求項1〜のいずれかに記載の合成石英粉の製造方法。The method for producing synthetic quartz powder according to any one of claims 1 to 4 , wherein the material of the furnace core tube of the rotary kiln is quartz. シリカゲル粉末がテトラアルコキシシランの加水分解により得られたものである請求項1〜のいずれかに記載の合成石英粉の製造方法。The method for producing synthetic quartz powder according to any one of claims 1 to 5 , wherein the silica gel powder is obtained by hydrolysis of tetraalkoxysilane. ヒーターをロータリーキルンの軸方向に複数個設けることによりロータリーキルンの軸方向の加熱強度を制御することを特徴とする請求項1〜のいずれかに記載の合成石英粉の製造方法。The method for producing synthetic quartz powder according to any one of claims 1 to 6 , wherein the heating intensity in the axial direction of the rotary kiln is controlled by providing a plurality of heaters in the axial direction of the rotary kiln. シリカゲル粉末がテトラアルコキシシランの加水分解により得られたものである請求項1〜のいずれかに記載の合成石英粉の製造方法。The method for producing synthetic quartz powder according to any one of claims 1 to 7 , wherein the silica gel powder is obtained by hydrolysis of tetraalkoxysilane. シリカゲル粉末を、流動させながら加熱処理する際シリカゲル粉末をロータリーキルンの片端より連続的に供給しつつ300〜600℃でシリカゲル中のカーボン濃度を50〜1000ppmに減少するように加熱処理し、その後1100〜1300℃で焼成することにより得られた合成石英粉を、更に溶融することを特徴とする石英ガラス成形体の製造方法。When the silica gel powder is heat-treated while flowing, the silica gel powder is continuously supplied from one end of the rotary kiln while being heated at 300 to 600 ° C. so as to reduce the carbon concentration in the silica gel to 50 to 1000 ppm. A method for producing a quartz glass molded body, wherein the synthetic quartz powder obtained by firing at 1300 ° C is further melted.
JP10588995A 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body Expired - Fee Related JP3735887B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10588995A JP3735887B2 (en) 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body
US08/945,318 US6129899A (en) 1995-04-28 1996-04-26 Processes for producing synthetic quartz powder and producing shaped quartz glass
PCT/JP1996/001176 WO1996033950A1 (en) 1995-04-28 1996-04-26 Processes for producing synthetic quartz powder and producing shaped quartz glass
DE69629111T DE69629111T2 (en) 1995-04-28 1996-04-26 METHOD FOR PRODUCING A SYNTHETIC QUARTZ POWDER AND MOLDED QUARTZ GLASS
KR1019970707671A KR19990008146A (en) 1995-04-28 1996-04-26 Manufacturing method of synthetic quartz powder and manufacturing method of quartz glass molded body
EP96912278A EP0823403B1 (en) 1995-04-28 1996-04-26 Processes for producing synthetic quartz powder and producing shaped quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10588995A JP3735887B2 (en) 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body

Publications (2)

Publication Number Publication Date
JPH08301615A JPH08301615A (en) 1996-11-19
JP3735887B2 true JP3735887B2 (en) 2006-01-18

Family

ID=14419494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10588995A Expired - Fee Related JP3735887B2 (en) 1995-04-28 1995-04-28 Method for producing synthetic quartz powder and method for producing quartz glass molded body

Country Status (1)

Country Link
JP (1) JP3735887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter
EP3536667B1 (en) * 2016-11-01 2021-04-21 Basf Toda Battery Materials LLC Method for producing lithium hydroxide anhydride

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452518B2 (en) * 2004-12-28 2008-11-18 Momentive Performance Materials Inc. Process for treating synthetic silica powder and synthetic silica powder treated thereof
JP6718774B2 (en) * 2016-09-01 2020-07-08 三井金属鉱業株式会社 Lithium sulfide manufacturing method and manufacturing apparatus
CN116659238B (en) * 2023-07-28 2023-11-28 沈阳铝镁设计研究院有限公司 Box-type graphitizing furnace and production method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335411A (en) * 1986-07-29 1988-02-16 Tonen Sekiyukagaku Kk Production of high-purity synthetic quartz
GB8627735D0 (en) * 1986-11-20 1986-12-17 Tsl Group Plc Vitreous silica
JPH0624728A (en) * 1992-07-11 1994-02-01 Oomura Taika Kk Production of cristobalite
JPH0642876A (en) * 1992-07-22 1994-02-18 Nippon Steel Chem Co Ltd Indirect heating type rotary heating furnace
JPH06191824A (en) * 1992-12-24 1994-07-12 Mitsubishi Kasei Corp Rotary heating method for quartz powder
JPH08104531A (en) * 1994-09-29 1996-04-23 Mitsubishi Chem Corp Transporting device of synthetic quartz powder and granular material and transporting method using the same
JP3617153B2 (en) * 1995-09-29 2005-02-02 三菱化学株式会社 Method for producing synthetic quartz powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter
EP3536667B1 (en) * 2016-11-01 2021-04-21 Basf Toda Battery Materials LLC Method for producing lithium hydroxide anhydride
US11078086B2 (en) 2016-11-01 2021-08-03 Basf Toda Battery Materials Llc Method for producing lithium hydroxide anhydride and rotary kiln to be used therefor

Also Published As

Publication number Publication date
JPH08301615A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
US6129899A (en) Processes for producing synthetic quartz powder and producing shaped quartz glass
US6849242B1 (en) Porous silica granule, method for producing the same, and method for producing synthetic quartz glass powder using the porous silica granule
US9580348B2 (en) Method for producing synthetic quartz glass granules
JPH072513A (en) Production of synthetic quartz glass powder
US20150059407A1 (en) Method for producing synthetic quartz glass granules
US20150052948A1 (en) Method for producing a molded body from an electrically melted synthetic quartz glass
JPH09165214A (en) Production of synthetic quartz powder
JP2001089168A (en) Production of synthetic silica glass powder of high purity
JP3735887B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3617153B2 (en) Method for producing synthetic quartz powder
KR100414962B1 (en) Process for producing synthetic quartz powder
JP3875735B2 (en) Method for producing synthetic quartz powder
JP2001089166A (en) Production of tube type silica glass
JP3735886B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3806953B2 (en) Method for producing synthetic quartz powder
JP3884783B2 (en) Method for producing synthetic quartz powder
JPH10212115A (en) Production of high purity quartz glass powder and production of quartz glass molding
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same
JP3724084B2 (en) Method for producing synthetic quartz powder and quartz glass molded body
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPH05201718A (en) Production of silica glass powder and silica glass molten molding
JP4177908B2 (en) Manufacturing method of high purity powder
JPH10203821A (en) Production of synthetic quartz glass powder and quartz glass formed product
JPH07157308A (en) Production of synthetic quartz glass powder
JPH10101322A (en) Silica gel, synthetic quartz glass powder, its production, and production of quartz glass formed body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees