JP4177908B2 - Manufacturing method of high purity powder - Google Patents

Manufacturing method of high purity powder Download PDF

Info

Publication number
JP4177908B2
JP4177908B2 JP28025897A JP28025897A JP4177908B2 JP 4177908 B2 JP4177908 B2 JP 4177908B2 JP 28025897 A JP28025897 A JP 28025897A JP 28025897 A JP28025897 A JP 28025897A JP 4177908 B2 JP4177908 B2 JP 4177908B2
Authority
JP
Japan
Prior art keywords
powder
heat
gas
heat treatment
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28025897A
Other languages
Japanese (ja)
Other versions
JPH11114406A (en
Inventor
彰裕 高澤
昭二 大石
明 宇都宮
初男 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP28025897A priority Critical patent/JP4177908B2/en
Publication of JPH11114406A publication Critical patent/JPH11114406A/en
Application granted granted Critical
Publication of JP4177908B2 publication Critical patent/JP4177908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高温で加熱することにより得られる高純度粉体の製造方法に関する。
【0002】
【従来技術】
従来、高純度セラミックス粉末、高純度希土粉末等の、高温での加熱処理により得られる高純度粉体の製造においては、様々な熱処理方法が提案されている。例えば、ロータリーキルンで連続処理する方法や、ルツボ等の耐熱容器内で回分式で熱処理する方法が挙げられる。特に高純度粉体においては加熱装置からのコンタミが問題となる場合があり、例えば耐熱性且つ高純度の炉心管を用いる等の手段により対応が図られている。
【0003】
【発明が解決しようとする課題】
前述の加熱処理において、例えば酸素含有ガスを通気しながら、酸化反応を促進させる様な用途の場合、出来るだけ均一にガスを流通させる方が好ましい。しかしながら、ルツボ等に被加熱粉体を仕込んで加熱処理する場合には、その表層部分だけにガスを流通させても、ルツボ底部にはガスがなかなか拡散せず、焼成に長時間を要したり、得られた加熱処理済みの粉体に品質ムラが生じたりする事があった。これを回避するため、例えばルツボ下部に多孔板を設けたり、散気管を挿入して、ルツボの底部よりガスを供給しながら加熱処理する方法が考えられる。ところが、ルツボ底部よりガスを供給しながら加熱処理を行うと、供給ガス流量の変動、昇温課程でのガス線速の変化、粉体物性の変化等により、ガスが粉体内を均一に流通せず、偏流が生じたり、粉体がルツボから外へ吹きこぼれたりする現象が見られる事があり、品質不良、生産性の低下が生じるという問題があった。
【0004】
特に、高純度粉体である合成シリカガラス粉は半導体治具、単結晶引き上げ用ルツボ等、1000℃以上の高温で使用される用途が多く、熱変形しにくい事が求められるが、特に、ゾルゲル法で得られた合成石英ガラス粉末中にはシラノール基が残留し、これが高温での粘性を低下させる要因となる。このため、露点の低いガスを流通させながら、1100〜1300℃の高温で長時間(通常、数時間〜数十時間)の加熱処理を実施する事により、この残留シラノール濃度を低減させ、高温粘性を向上させる必要がある。ちなみに、高温(1000℃以上)で使用される用途に於いて要求されるシラノール残存量は100ppm以下、好ましくは50ppm以下である。
【0005】
しかしながら、特に生産性を重視し、ある程度の粉体量を仕込んで加熱処理を行った場合、粉体表面のガスを低い露点で制御しても、これが拡散により粉体内部から発生する水蒸気と置換するのには時間を要し、結果として、非常に長時間の熱処理が必要となる。この問題を解決するため、従来、例えば加熱処理の際の低露点ガスの導入方法として、粉体層の内部に低露点ガスを導入する事により、焼成時間を短縮する方法(特開平4−83711号公報)、更には、この導入ガス量を一定領域に制御する事により、粉体内部でのガスの偏流(ショートパス)による、得られた粉体のルツボ中の場所によるシラノール濃度の不均一性、バブリングによる粉体の吹きこぼれを抑制し、より短時間で均一な低シラノール化を可能とした方法(特開平9−118513号公報)が考案されている。このような条件により、低シラノール合成シリカガラス粉末を、短時間で大量に生産する事が可能となったが、前述のガス量の制御範囲が狭く、実際にはガスの元圧変動等により、ガスの偏流(ショートパス)による、シラノール濃度の不均一性、バブリングによる粉体の吹きこぼれを完全に抑える事は困難であった。
【0006】
【課題を解決するための手段】
本発明者らは上記課題に鑑み鋭意検討した。その結果、粉体の仕込み層高と耐熱容器の直径とを特定割合とする、すなわち耐熱容器の直径よりも粉体の仕込み層高を高くして被加熱粉体を加熱処理することにより、この問題点を解決する事が出来ると同時に、生産性も大幅に向上する事が出来る事を見出したのである。
【0007】
かかる本発明により、通気ガスの偏流、粉体の吹きこぼれによるロスもなく、安定した運転を継続できることを見出し、本発明に到達した。すなわち、本発明は、底を有する部材と、その上に乗っている輪状の部材とから構成されている耐熱容器を用い、粉体の仕込み層高を耐熱容器の直径の1.1〜5.0倍とした状態で、バッチ式で被加熱粉末にガスを供給しながら加熱処理する工程を含むことを特徴とする高純度粉体の製造方法に存する。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
まず、本発明の対象となる高純度粉体としては、高純度セラミックス、希土類粉末、蛍光体粉末、合成シリカガラス粉末等が挙げられる。
また、本発明で熱処理に供せられる被加熱粉体としては、これら高純度粉体の前駆体が代表的である。例えば高純度セラミックスの前駆体、希土類酸化物粉末の前駆体の各種金属の炭酸塩、硝酸塩、水酸化物等や、各種耐熱性ガラスやセラミックスであるアルミナ、シリカ、シリカ−アルミナ、シリカ−ジルコニア、シリカ−チタニア等複合酸化物の前駆体である、ゾルゲル反応により得られたゲル体等が挙げられる。
【0009】
これらの中でも、バッチ式の焼成でシリカゲル粉末を加熱して無孔化することにより合成シリカガラス粉を製造する際に、本発明は極めて有用である。
特に、ゾルゲル法で得られたシリカゲル粉末由来の合成石英ガラス粉末は、上述のようにシラノール基の残留が高温での粘性を低下させる要因となるため、ガスを流通での高温・長時間の加熱処理が必要となる。しかしながら、この際のガス拡散を、粉体内部でのガスの偏流や粉体の吹きこぼれを抑えつつ効率的に行うことは、シラノール脱離反応に関連する因子や被処理粉体の形状、物性にも依存して影響を受けうるため従来技術では制御が困難であった。本発明により加熱処理を行えば、上記の問題を解決して効率的な加熱処理を行うことができるため、工業的な価値が極めて高い。
【0010】
本発明においては、これら高純度粉体の前駆体等の被加熱粉体を、耐熱容器内に仕込んで加熱処理する。耐熱容器の材質、形状は特に制限されないが、加熱により被加熱物へのコンタミを生じない材質のものが望ましい。耐熱容器としては、代表的にはルツボが挙げられる。
加熱の温度は、目的とする高純度粉体の製造に関する従来技術により適宜選択すればよい。例えば、合成シリカ粉末を製造するには、1000〜1300℃、好ましくは1100〜1300℃が一般的である。また、高純度粉体の製造における加熱以外の工程は、従来技術を適宜選択して行えばよく、特に限定されるものではない。
【0011】
本発明においては、加熱処理に際し、被加熱粉体の仕込み層高を特定の範囲内とする。すなわち、耐熱容器の直径を超える高さとする。
ここで言う耐熱容器の直径とは、耐熱容器の内径を指す。粉体層高とは耐熱容器内の底面から粉体表層部の最も高い部分迄の鉛直距離である。
尚、耐熱容器の断面が円でない場合には、長径その他耐熱容器の水平断面の周上の2点を結ぶ最長距離を、耐熱容器の直径とみなす。
【0012】
直径より粉体層高が大きければ、各々の長さは特に制限されないが、好ましくは高さが直径の1.1〜5.0倍、好ましくは1.2〜3.0倍とするのが良い。
粉体層高が直径以下であるとガス導入量の運転範囲が狭くなり、本発明の効果が十分に得られず、また粉体層高が高すぎると、高温で焼成した際のルツボ自身の熱変形・耐久性が問題となり、ルツボのサポート材等の付帯設備が必要となる。
【0013】
また、使用するルツボの大きさとしては、生産性、作業効率等を考慮すると、直径で150〜1200mm、特に好ましくは200〜1000mm程度のものが好ましい。
このように本発明により粉体の仕込み層高を、耐熱容器の直径より高くして加熱を行うには、直径より高さのほうが長い耐熱容器を用いることが前提となるが、ここでいう耐熱容器としては、必ずしも一体物である必要はなく、例えば、高さの低いルツボの上に、ドーナツ状のリングをセットする事により、粉体仕込み層高をアップする方法(図1)等、底を有する部材と、その上に乗っている輪状の部材や、レンガ状の部材とから耐熱容器を構成することもできる。図1中、1は底を有する部材、2は輪状の部材である。
【0014】
このような態様により耐熱容器の形状を設定し、粉体の仕込み層高を特定のものとすることにより、粉体内部への導入ガス圧力の変動等による、ガスの偏流、粉体の吹きこぼれ等が生じる事が皆無となり、安定的に、均一な低シラノール合成シリカガラス粉の生産が可能となる。このような効果はおそらく、低露点ガス導入管を粉体層内部へ、より深く挿入できるため、粉体圧力が増し、結果として導入ガス量の運転範囲が拡大するものとも考えられる。また、ルツボ高を高くする事により、1バッチ当たりの焼成能力も大幅に向上させることができる。
【0015】
以下、実施例により、本発明を詳細に説明する。
【0016】
【実施例】
(実施例)
テトラメトキシシランを加水分解、ゲル化し、これを粉砕、乾燥、分級工程を得て、粒度分布100〜500μm、平均粒径230μmの、シリカゲル粉末を得た。この粉末を、内径550mm、高さ850mmの石英ガラス製ルツボ中に、底部より750mmの高さまで110kg仕込み、図2に示すように、その粉体層底部から20mmの位置まで10mmφの石英ガラス製ガス吹き込み管を挿入して、電気炉内にセットした。図2は実施例における加熱処理の態様を示す概略図であり、図2中、3はルツボ、4は蓋、5はシリカゲル粉末、6はガス吹き込み管、7は乾燥空気である。
【0017】
このガス吹き込み管を通して、露点−45℃の乾燥空気を 1.1リットル/minで供給しながら、1200℃迄10時間かけて昇温し、1200℃で45時間保持して加熱処理を行った。同じ条件で、のべ100個分のルツボによる加熱処理を実施したが、加熱処理後のルツボ内部の粉体状況を確認したところ、ガスが偏流したような形跡は確認されなかった。また、各回の加熱処理で得られた粉体について、図3に黒丸で示したルツボ中の各場所におけるシラノール濃度を赤外吸光法により測定したが、いずれも45〜55ppmの範囲内でり、バラツキは小さかった。
(比較例)
実施例1と同様の方法で得られたシリカゲル粉末を、内径550mm、高さ600mmの石英ガラス製ルツボ中に、底部より500mmの高さまで仕込み、実施例1と同様の吹き込み管セッティング条件、昇温条件で焼成処理を行った。この条件で、のべ100個分のルツボによる加熱処理を実施したところ、のべ3個のルツボにおける粉体について、ガスの偏流が生じたと思われる粉体層のクラック、偏りが確認された。この3個のルツボにおける粉体について、図3に黒丸で示した位置におけるシラノール濃度を測定したところ、45〜75ppmと、バラツキが大きかった。
【0018】
図3は、実施例及び比較例におけるシラノール測定部位を示す図である。
【0019】
【発明の効果】
本発明により、高純度粉体の加熱処理を、効率的に行うことができる。
【図面の簡単な説明】
【図1】粉体仕込み層高をアップする方法を示す図
【図2】実施例における加熱処理の態様を示す概略図
【図3】実施例及び比較例におけるシラノール測定部位を示す図
【符号の説明】
3 ルツボ
4 蓋
5 シリカゲル粉末
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-purity powder obtained by heating at a high temperature.
[0002]
[Prior art]
Conventionally, various heat treatment methods have been proposed in the production of high-purity powders obtained by heat treatment at high temperatures, such as high-purity ceramic powders and high-purity rare earth powders. For example, the method of continuously processing with a rotary kiln and the method of heat-processing batchwise in heat-resistant containers, such as a crucible, are mentioned. In particular, in high-purity powders, contamination from the heating device may become a problem, and measures are taken by means such as using a heat-resistant and high-purity furnace core tube.
[0003]
[Problems to be solved by the invention]
In the above-described heat treatment, for example, in an application that promotes an oxidation reaction while ventilating an oxygen-containing gas, it is preferable to distribute the gas as uniformly as possible. However, when the powder to be heated is charged in a crucible or the like and heat-treated, the gas does not diffuse easily at the bottom of the crucible even if the gas is circulated only on the surface layer portion, and it takes a long time for firing. In some cases, the obtained heat-treated powder may have uneven quality. In order to avoid this, for example, a method of performing a heat treatment while providing a gas from the bottom of the crucible by providing a porous plate at the lower part of the crucible or inserting a diffuser tube can be considered. However, if heat treatment is performed while supplying gas from the bottom of the crucible, the gas can flow uniformly in the powder due to fluctuations in the flow rate of the supply gas, changes in the gas linear velocity during the heating process, changes in powder properties, etc. However, there is a problem that uneven flow occurs or a powder spills out from the crucible, resulting in poor quality and reduced productivity.
[0004]
In particular, synthetic silica glass powder, which is a high-purity powder, has many uses such as semiconductor jigs and crucibles for pulling single crystals and is used at high temperatures of 1000 ° C. or more, and is required to be resistant to thermal deformation. Silanol groups remain in the synthetic quartz glass powder obtained by this method, which causes a decrease in viscosity at high temperatures. For this reason, by carrying out heat treatment at a high temperature of 1100 to 1300 ° C. for a long time (usually several hours to several tens of hours) while circulating a gas having a low dew point, the residual silanol concentration is reduced and the high temperature viscosity is reduced. It is necessary to improve. Incidentally, the residual amount of silanol required in applications used at high temperatures (1000 ° C. or higher) is 100 ppm or less, preferably 50 ppm or less.
[0005]
However, when emphasizing productivity, when heat treatment is performed with a certain amount of powder, even if the gas on the powder surface is controlled with a low dew point, this replaces the water vapor generated from the inside of the powder by diffusion. It takes time to do so, and as a result, a very long heat treatment is required. In order to solve this problem, conventionally, for example, as a method for introducing a low dew point gas at the time of heat treatment, a method for shortening the firing time by introducing a low dew point gas into the powder layer (JP-A-4-83711). In addition, by controlling the amount of introduced gas within a certain range, non-uniform silanol concentration due to the location of the obtained powder in the crucible due to gas drift (short path) inside the powder. And a method (Japanese Patent Laid-Open No. 9-118513) has been devised that suppresses powder spillage due to bubbling and enables uniform silanol reduction in a shorter time. Under such conditions, low silanol synthetic silica glass powder can be produced in a large amount in a short time, but the control range of the gas amount described above is narrow, due to fluctuations in the gas source pressure, etc. It was difficult to completely suppress silanol concentration non-uniformity due to gas drift (short path) and powder spillage due to bubbling.
[0006]
[Means for Solving the Problems]
The present inventors have intensively studied in view of the above problems. As a result, the powder preparation layer height and the diameter of the heat-resistant container are set to a specific ratio, that is, the powder to be heated is heated to a temperature higher than the diameter of the heat-resistant container. They found that the problem could be solved and at the same time the productivity could be greatly improved.
[0007]
With the present invention, it has been found that stable operation can be continued without any loss due to drifting of aeration gas and spilling of powder, and the present invention has been achieved. That is, the present invention uses a heat-resistant container composed of a member having a bottom and a ring-shaped member on the bottom, and the charged layer height of the powder is 1.1-5. The present invention resides in a method for producing a high-purity powder characterized by including a step of performing heat treatment while supplying a gas to a powder to be heated in a batch type in a state of 0 times.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
First, examples of the high-purity powder that is an object of the present invention include high-purity ceramics, rare earth powder, phosphor powder, and synthetic silica glass powder.
Moreover, as the powder to be heated to be subjected to the heat treatment in the present invention, these high-purity powder precursors are typical. For example, precursors of high-purity ceramics, precursors of rare earth oxide powder, carbonates, nitrates, hydroxides of various metals, alumina, silica, silica-alumina, silica-zirconia, which are various heat-resistant glasses and ceramics, Examples thereof include a gel body obtained by a sol-gel reaction, which is a precursor of a composite oxide such as silica-titania.
[0009]
Among these, the present invention is extremely useful in producing synthetic silica glass powder by heating the silica gel powder to make it nonporous by batch-type firing.
In particular, in synthetic silica glass powder derived from silica gel powder obtained by the sol-gel method, residual silanol groups cause a decrease in viscosity at high temperatures as described above. Processing is required. However, efficient gas diffusion at this time while suppressing gas drift and powder spillage inside the powder depends on factors related to the silanol elimination reaction, the shape and physical properties of the treated powder. However, it is difficult to control with the prior art because it can be influenced depending on the situation. When heat treatment is performed according to the present invention, the above problems can be solved and efficient heat treatment can be performed, and thus industrial value is extremely high.
[0010]
In the present invention, a powder to be heated such as a precursor of these high-purity powders is charged in a heat-resistant container and heat-treated. The material and shape of the heat-resistant container are not particularly limited, but a material that does not cause contamination to the object to be heated by heating is desirable. A typical example of the heat-resistant container is a crucible.
What is necessary is just to select the temperature of a heating suitably with the prior art regarding manufacture of the target high purity powder. For example, in order to produce synthetic silica powder, the temperature is generally 1000 to 1300 ° C, preferably 1100 to 1300 ° C. Further, the steps other than heating in the production of the high-purity powder may be performed by appropriately selecting conventional techniques, and are not particularly limited.
[0011]
In the present invention, in the heat treatment, the charged layer height of the powder to be heated is set within a specific range. That is, the height exceeds the diameter of the heat-resistant container.
The diameter of the heat-resistant container here refers to the inner diameter of the heat-resistant container. The powder layer height is a vertical distance from the bottom surface in the heat-resistant container to the highest part of the powder surface layer part.
When the cross section of the heat-resistant container is not a circle, the longest distance connecting two points on the circumference of the horizontal section of the heat-resistant container is regarded as the diameter of the heat-resistant container.
[0012]
If the height of the powder layer is larger than the diameter, the length of each is not particularly limited, but preferably the height is 1.1 to 5.0 times, preferably 1.2 to 3.0 times the diameter. good.
If the powder layer height is less than the diameter, the operating range of the gas introduction amount becomes narrow, the effect of the present invention is not sufficiently obtained, and if the powder layer height is too high, the crucible itself when firing at a high temperature. Thermal deformation / durability becomes a problem, and ancillary facilities such as crucible support materials are required.
[0013]
Further, the size of the crucible to be used is preferably about 150 to 1200 mm, particularly preferably about 200 to 1000 mm in diameter in consideration of productivity, work efficiency, and the like.
As described above, in order to perform heating with the charged layer height of the powder higher than the diameter of the heat-resistant container according to the present invention, it is assumed that a heat-resistant container having a longer height than the diameter is used. The container does not necessarily have to be a single object. For example, the bottom of the powder charging layer height setting method (FIG. 1) by setting a donut-shaped ring on a low crucible A heat-resistant container can also be configured from a member having a ring-shaped member and a brick-like member riding on the member. In FIG. 1, 1 is a member having a bottom, and 2 is a ring-shaped member.
[0014]
By setting the shape of the heat-resistant container according to such an embodiment and specifying the charged layer height of the powder, gas drift, powder spillage, etc. due to fluctuations in the gas pressure introduced into the powder, etc. Therefore, it is possible to stably and uniformly produce a low silanol synthetic silica glass powder. Such an effect is presumably because the low dew point gas introduction tube can be inserted deeper into the powder layer, so that the powder pressure increases and as a result, the operating range of the introduced gas amount is expanded. Further, by increasing the crucible height, the baking ability per batch can be greatly improved.
[0015]
Hereinafter, the present invention will be described in detail by way of examples.
[0016]
【Example】
(Example)
Tetramethoxysilane was hydrolyzed and gelled, and this was pulverized, dried and classified to obtain silica gel powder having a particle size distribution of 100 to 500 μm and an average particle size of 230 μm. 110 kg of this powder was charged in a quartz glass crucible having an inner diameter of 550 mm and a height of 850 mm from the bottom to a height of 750 mm, and as shown in FIG. A blow tube was inserted and set in an electric furnace. FIG. 2 is a schematic view showing an embodiment of the heat treatment in the example. In FIG. 2, 3 is a crucible, 4 is a lid, 5 is silica gel powder, 6 is a gas blowing tube, and 7 is dry air.
[0017]
Through this gas blowing tube, while supplying dry air with a dew point of −45 ° C. at 1.1 liter / min, the temperature was raised to 1200 ° C. over 10 hours and kept at 1200 ° C. for 45 hours for heat treatment. Under the same conditions, heat treatment was carried out with a total of 100 crucibles, but when the powder state inside the crucible after heat treatment was confirmed, there was no evidence of gas drifting. In addition, for the powder obtained by each heat treatment, the silanol concentration at each location in the crucible indicated by a black circle in FIG. 3 was measured by infrared absorption, but both were within the range of 45 to 55 ppm, The variation was small.
(Comparative example)
The silica gel powder obtained by the same method as in Example 1 was charged into a quartz glass crucible having an inner diameter of 550 mm and a height of 600 mm up to a height of 500 mm from the bottom. Firing treatment was performed under the conditions. When heat treatment was performed with a total of 100 crucibles under these conditions, cracks and unevenness in the powder layer where gas drift was thought to have occurred were confirmed for the powders in all three crucibles. Regarding the powders in these three crucibles, when the silanol concentration at the position indicated by the black circle in FIG. 3 was measured, the variation was as large as 45 to 75 ppm.
[0018]
FIG. 3 is a diagram showing silanol measurement sites in Examples and Comparative Examples.
[0019]
【The invention's effect】
According to the present invention, heat treatment of high-purity powder can be performed efficiently.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for increasing a powder charge layer height. FIG. 2 is a schematic diagram showing an aspect of heat treatment in Examples. FIG. 3 is a diagram showing silanol measurement sites in Examples and Comparative Examples. Explanation】
3 Crucible 4 Lid 5 Silica gel powder

Claims (2)

底を有する部材と、その上に乗っている輪状の部材とから構成されている耐熱容器を用い、粉体の仕込み層高を耐熱容器の直径の1.1〜5.0倍とした状態で、バッチ式で被加熱粉末にガスを供給しながら加熱処理する工程を含むことを特徴とする高純度粉体の製造方法。Using a heat-resistant container composed of a member having a bottom and a ring-shaped member riding on the member, in a state where the charged layer height of the powder is 1.1 to 5.0 times the diameter of the heat-resistant container A method for producing a high-purity powder, comprising a step of performing a heat treatment while supplying gas to a powder to be heated in a batch type. 耐熱容器の直径が200〜1000mmである請求項1記載の高純度粉体の製造方法。  The method for producing a high-purity powder according to claim 1, wherein the heat-resistant container has a diameter of 200 to 1000 mm.
JP28025897A 1997-10-14 1997-10-14 Manufacturing method of high purity powder Expired - Fee Related JP4177908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28025897A JP4177908B2 (en) 1997-10-14 1997-10-14 Manufacturing method of high purity powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28025897A JP4177908B2 (en) 1997-10-14 1997-10-14 Manufacturing method of high purity powder

Publications (2)

Publication Number Publication Date
JPH11114406A JPH11114406A (en) 1999-04-27
JP4177908B2 true JP4177908B2 (en) 2008-11-05

Family

ID=17622495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28025897A Expired - Fee Related JP4177908B2 (en) 1997-10-14 1997-10-14 Manufacturing method of high purity powder

Country Status (1)

Country Link
JP (1) JP4177908B2 (en)

Also Published As

Publication number Publication date
JPH11114406A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
US6129899A (en) Processes for producing synthetic quartz powder and producing shaped quartz glass
US9409810B2 (en) Method for producing synthetic quartz glass granules
US6360563B1 (en) Process for the manufacture of quartz glass granulate
US20130219963A1 (en) Method for producing synthetic quartz glass granules
JPH10287416A (en) Production of synthetic quartz powder
KR20010074714A (en) Process and apparatus for manufacturing a glass ingot from synthetic silica
EP0630863A1 (en) Process for producing synthetic quartz glass powder
JPH09165214A (en) Production of synthetic quartz powder
JP4177908B2 (en) Manufacturing method of high purity powder
DE102010021696A1 (en) Process for the production of a quartz glass crucible with a transparent inner layer of synthetically produced quartz glass
JP3735887B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3617153B2 (en) Method for producing synthetic quartz powder
EP0801026B1 (en) Process for producing synthetic quartz powder
JPS62176936A (en) Method and device for producing optical fiber preform
JP3735886B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3875735B2 (en) Method for producing synthetic quartz powder
JP3806953B2 (en) Method for producing synthetic quartz powder
JP3724084B2 (en) Method for producing synthetic quartz powder and quartz glass molded body
US6923021B2 (en) Method and apparatus for fused silica production
JP3884783B2 (en) Method for producing synthetic quartz powder
JPH0478567B2 (en)
JP4417590B2 (en) Atmospheric firing furnace and firing method
JPH0517123A (en) Production of high-purity silica glass powder
JP4497333B2 (en) Method for producing synthetic quartz glass powder
JPH10212115A (en) Production of high purity quartz glass powder and production of quartz glass molding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees