JPH10287416A - Production of synthetic quartz powder - Google Patents

Production of synthetic quartz powder

Info

Publication number
JPH10287416A
JPH10287416A JP8956797A JP8956797A JPH10287416A JP H10287416 A JPH10287416 A JP H10287416A JP 8956797 A JP8956797 A JP 8956797A JP 8956797 A JP8956797 A JP 8956797A JP H10287416 A JPH10287416 A JP H10287416A
Authority
JP
Japan
Prior art keywords
powder
silica gel
synthetic quartz
quartz powder
rotary kiln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8956797A
Other languages
Japanese (ja)
Inventor
Yoshio Suguro
芳雄 勝呂
Masaru Shimoyama
勝 下山
Shoji Oishi
昭二 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8956797A priority Critical patent/JPH10287416A/en
Publication of JPH10287416A publication Critical patent/JPH10287416A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a synthetic quartz powder that can enhance the productivity and can reduce the production cost by increasing a bulk density of the powder charged to a crucible, by successively charging silica gel from one end of a rotary kiln, heat treating the charged silica gel while fluidizing the silica gel, and further charging oxygen-containing gas thereto. SOLUTION: The objective synthetic quartz powder is obtained by firing a silica gel powder to make the silica gel powder have no pore. The production method is preferably a sol-gel method by hydrolysis and gelation of an alkoxysilane, etc. The alkoxysilane is preferably a 1-4C lower alkoxysilane or an oligomer thereof. The amount of water is 1-10 times as much as that of the alkoxy group. A highly pure water, a catalyst, etc., are introduced to a hydrolyzing reaction system, carrying out gelation of the product in a heated state or a normal temperature state to obtain wet silica gel containing an alcohol, and subdividing and drying the wet silica gel to provide dried silica gel powder having 10-1,000 μm diameter. Further, the obtained dried silica gel powder is thermally treated in a rotary kiln, and allowed to flow down by lifting the powder by the contact surface between the powder 1 and the wall of a reactor core pipe 2 and flowing down the powder over the angle of repose.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合成石英粉の効率
的な製造方法に関するものである。近年、光通信分野、
半導体産業等で使用されるガラス製品においては、その
微量不純物及び製品中の微小泡に関し非常に厳しい管理
が行われている。このような高品質のガラスは主に、
天然石英を精製する方法、四塩化珪素の酸水素炎中で
の分解で発生したヒュームを基体に付着・成長させる方
法、シリコンアルコキシド等の加水分解・ゲル化によ
り得たシリカゲルを焼成してガラス化する方法等によっ
て生成される。しかしながら、の方法では、微量不純
物含有率の低減に限界があり、の方法では、極めて製
造コストが高い等の問題点がある。一方、の、シリカ
ゲルを用いる方法、特に原料としてシリコンアルコキシ
ドを用いる方法では、の方法に比べると安価に微量不
純物含有率が低い合成石英粉が得られるが、要求レベル
を必ずしも満足しているとは言えないし、このシリコン
アルコキシドを用いる方法では、最終製品の成形体中
に、場合によっては、微小泡が発生すると言う問題点が
ある。
TECHNICAL FIELD The present invention relates to a method for efficiently producing synthetic quartz powder. In recent years, the optical communication field,
In glass products used in the semiconductor industry and the like, very strict control is performed on trace impurities and micro bubbles in the products. Such high quality glass is mainly
A method for purifying natural quartz, a method for attaching and growing fumes generated by decomposition of silicon tetrachloride in an oxyhydrogen flame to a substrate, and a method for sintering silica gel obtained by hydrolysis and gelation of silicon alkoxide and the like. Generated by such a method. However, the method (1) has a limit in reducing the content of trace impurities, and the method (2) has problems such as extremely high manufacturing cost. On the other hand, in the method using silica gel, in particular, the method using silicon alkoxide as a raw material, a synthetic quartz powder having a low trace impurity content can be obtained at a lower cost than the method, but it does not necessarily satisfy the required level. In other words, the method using the silicon alkoxide has a problem that, in some cases, microbubbles are generated in the molded product of the final product.

【0002】[0002]

【発明が解決しようとする課題】本発明者らの鋭意検討
により、シリコンアルコキシドを用いる合成石英粉の製
造方法で、従来に比べ安価で、かつ成形体を製造する際
に微小泡の発生が極めて少ない合成石英粉を工業的に製
造するには、次に示す課題を解決すればようことが判っ
た。
SUMMARY OF THE INVENTION As a result of the earnest study of the present inventors, a method for producing a synthetic quartz powder using silicon alkoxide is inexpensive compared with the conventional method, and extremely small bubbles are generated when producing a molded product. It has been found that the following problems can be solved in order to industrially produce a small amount of synthetic quartz powder.

【0003】即ち、シリカゲルの焼成は、容器からの不
純物のコンタミを排除するために、一般には、石英製の
容器にシリカゲルを仕込み、電気炉等で加熱する方法が
採用される。特に、工業的に製造する場合、大口径の石
英るつぼが使用される。しかしながら、シリカゲルは石
英粉に比べ嵩密度が低いために、焼成に用いる容器を効
率的に利用できず、生産性が悪く、製造コストが高くな
っている。従って、生産性の向上にはるつぼに仕込む粉
体の嵩密度アップが重要な課題となっている。
[0003] That is, the firing of silica gel is generally carried out by a method in which silica gel is charged into a quartz container and heated in an electric furnace or the like in order to eliminate contamination of impurities from the container. In particular, when industrially manufactured, a large-diameter quartz crucible is used. However, since silica gel has a lower bulk density than quartz powder, a container used for baking cannot be used efficiently, productivity is poor, and production cost is high. Therefore, increasing the bulk density of the powder charged into the crucible is an important issue for improving productivity.

【0004】一方、石英粉を用いた成形体の製造に於い
て、成形体を製造する際の微小泡の発生は、石英粉製造
時の焼成工程の昇温過程が影響を及ぼす。シリコンアル
コキシドの加水分解により得たシリカゲル粉末は、副生
したアルコールを乾燥により除去しても、未反応のアル
コキシ基及び副生したアルコールの一部が残存する。実
際、乾燥を施したシリカゲル粉末中のカーボン濃度を測
定すると、乾燥条件によっても異なるが、1〜3%であ
る。このシリカゲル粉末を酸素含有ガス中で焼成を行う
と、大部分のカーボンは、昇温過程で燃焼除去される
が、一部が未燃カーボンとして合成石英粉中に閉じ込め
られることがある。この未燃カーボンを含有する合成石
英粉を用いると、溶融成形の際にCOやCO2ガスとな
り、泡発生の原因となる。従って、シリカゲルの封孔前
に、未燃カーボンを実質的に全量除去することが必要と
なり、昇温過程における昇温速度が重要となるわけであ
る。
On the other hand, in the production of a molded body using quartz powder, the generation of microbubbles during the production of the molded body is affected by the heating process in the firing step in the production of quartz powder. The silica gel powder obtained by hydrolyzing the silicon alkoxide retains unreacted alkoxy groups and a part of the by-produced alcohol even if the by-produced alcohol is removed by drying. Actually, when the carbon concentration in the dried silica gel powder is measured, it is 1 to 3% depending on the drying conditions. When this silica gel powder is calcined in an oxygen-containing gas, most of the carbon is burned and removed in the course of raising the temperature, but part of the carbon is sometimes trapped as unburned carbon in the synthetic quartz powder. If synthetic quartz powder containing this unburned carbon is used, CO or CO 2 gas is generated during melt molding, which causes the generation of bubbles. Therefore, it is necessary to remove substantially all of the unburned carbon before sealing the silica gel, and the rate of temperature increase during the temperature increase process is important.

【0005】ところが、先述のように、合成石英粉を工
業的に製造する場合、大口径の石英るつぼが使用され、
昇温過程に置ける、るつぼ内の温度は不均一となるの
で、容器内の全ての部分を所定の温度パターンで昇温す
るのは困難である。その結果、場合によっては、カーボ
ンが残存した合成石英粉が部分的に生成しその合成石英
粉を用いた成形体中に、微小泡が発生するという現象が
見られるのである。
However, as described above, when synthetic quartz powder is manufactured industrially, a large-diameter quartz crucible is used.
Since the temperature in the crucible during the temperature raising process becomes uneven, it is difficult to raise the temperature of all parts in the container in a predetermined temperature pattern. As a result, in some cases, a phenomenon is observed in which synthetic quartz powder in which carbon remains is partially generated, and microbubbles are generated in a molded body using the synthetic quartz powder.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
に鑑み、更に鋭意検討を行った結果、シリカゲルを焼成
前に適当な条件及び操作で加熱処理することにより、焼
成に供する粉体の嵩密度を焼成後と同等にすることがで
き、なおかつ、アルコキシ基及び水酸基を十分に除去す
ることができることを見いだし、本発明を完成するに到
った。即ち、本発明は、シリカゲル粉末を、ロータリー
キルンの片端より連続的に供給しつつ、流動させながら
加熱処理することにより合成石英粉を製造する方法であ
って、酸素含有ガスをロータリーキルンに供給すること
を特徴とする合成石英粉の製造方法、にある。
Means for Solving the Problems In view of the above problems, the present inventors have conducted further intensive studies. As a result, the silica gel is subjected to heat treatment under appropriate conditions and operations before firing, so that the powder to be fired is obtained. It has been found that the bulk density can be made equal to that after firing, and that the alkoxy group and the hydroxyl group can be sufficiently removed, and the present invention has been completed. That is, the present invention is a method of producing a synthetic quartz powder by heating while flowing while continuously supplying silica gel powder from one end of a rotary kiln, and supplying an oxygen-containing gas to the rotary kiln. A method for producing a synthetic quartz powder.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で対象となる合成石英粉は、シリカゲル粉末を、
焼成することにより無孔化してなる合成石英粉である。
シリカゲル粉末の製造法は特に限定されず、種々の公知
方法を採用できるが、高純度を容易に達成できる等の観
点からアルコキシシラン等の加水分解・ゲル化による、
いわゆるゾルゲル法によるものが好ましい。ゾルゲル法
によるアルコキシシランの加水分解は、公知の方法にし
たがって、アルコキシシランと水とを反応させることに
よって行われる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
Synthetic quartz powder targeted in the present invention, silica gel powder,
It is a synthetic quartz powder made nonporous by firing.
The method for producing the silica gel powder is not particularly limited, and various known methods can be adopted, but from the viewpoint of easily achieving high purity, hydrolysis and gelation of alkoxysilane and the like,
The so-called sol-gel method is preferred. The hydrolysis of alkoxysilane by the sol-gel method is performed by reacting alkoxysilane with water according to a known method.

【0008】原料として用いられるアルコキシシランと
しては、テトラアルコキシシラン、テトラエトキシシラ
ン等のC1〜4の低級アルコキシシラン或いはそのオリ
ゴマーが好ましい。水の使用量は、通常、アルコキシシ
ラン中のアルコキシ基の1倍等量以上から10倍等量以
下の範囲から選択される。この際、必要に応じて、水と
相溶性のあるアルコール類やエーテル類等の有機溶媒を
混合して使用してもよい。使用されるアルコールの代表
例としては、メタノール・エタノール等の低級脂肪族ア
ルコールが挙げられる。
The alkoxysilane used as a raw material is preferably a C1-4 lower alkoxysilane such as tetraalkoxysilane and tetraethoxysilane or an oligomer thereof. The amount of water used is usually selected from the range of 1 to 10 equivalents of the alkoxy group in the alkoxysilane. At this time, if necessary, an organic solvent such as an alcohol or an ether which is compatible with water may be mixed and used. Representative examples of the alcohol used include lower aliphatic alcohols such as methanol and ethanol.

【0009】この加水分解反応には、触媒として塩酸・
酢酸等の酸や、アンモニア等のアルカリを触媒として添
加してもよい。なお、当然のことながら、ここで使用す
る水・触媒等の、反応系に導入される物質はすべて高純
度であることが必要である。加水分解生成物のゲル化
は、加熱下あるいは常温で実施される。加熱を行うと、
ゲル化の速度を向上することができるので、加熱の程度
を調節することにより、ゲル化時間を調節することがで
きる。
In this hydrolysis reaction, hydrochloric acid is used as a catalyst.
An acid such as acetic acid or an alkali such as ammonia may be added as a catalyst. It is needless to say that all substances to be introduced into the reaction system, such as water and catalyst used here, need to be of high purity. Gelation of the hydrolysis product is performed under heating or at room temperature. When heating,
Since the speed of gelation can be improved, the gelation time can be adjusted by adjusting the degree of heating.

【0010】得られたゲルは水及び加水分解により生成
したアルコールを多量に含むウェットシリカゲルであ
り、これを細分化してから乾燥してもよいし、乾燥して
から細分化してもよい。いずれにしても、乾燥後の粒径
が、10〜1000μm、好ましくは、100〜600
μmと成るように細分化を行う。乾燥は、常圧、或い
は、減圧下で加熱しつつ行われる。加熱温度は、条件に
よっても異なるが、通常、50〜200℃である。ま
た、操作は、回分・連続のいずれによっても行うことが
できる。乾燥の程度は、通常、含液率が1〜30重量%
まで行われる。ここで言う含液率とは、160℃におい
て恒量に達した時の重量減少率である。
The obtained gel is a wet silica gel containing a large amount of water and an alcohol formed by hydrolysis, and may be finely divided and then dried, or may be dried and then finely divided. In any case, the particle size after drying is 10 to 1000 μm, preferably 100 to 600 μm.
Subdivision is performed to a size of μm. Drying is performed while heating under normal pressure or reduced pressure. The heating temperature varies depending on the conditions, but is usually 50 to 200 ° C. The operation can be performed either batchwise or continuously. The degree of drying is usually 1 to 30% by weight.
Done until. The term “liquid content” as used herein refers to a weight reduction rate when a constant weight is reached at 160 ° C.

【0011】このようにして得られた乾燥シリカゲル粉
末を、以下に述べる特定の条件下で加熱処理する。即
ち、シリカゲル粉末をロータリーキルン内で特定のガス
供給条件下でロータリーキルンを回転してシリカゲル粉
末を流動させながら加熱処理する。この加熱処理は、複
数のロータリーキルンを用いて加熱処理を行ってもよ
い。ここで言う「粉体の流動」とは、例えば粉体を仕込
んだ回転状態のロータリーキルンの断面を示す図2を用
い静止状態のロータリーキルンの断面を示す図1と比較
して説明すると、粉体(1)と炉心管(2)壁の接粉面
(3)との間には実質的に滑りが生じておらず、炉心管
壁で持ち上げられ、安息角以上で粉体が壁面を離れて炉
心管壁下部に流下している状態(図2中の黒矢印方向)
をいう。
The dried silica gel powder thus obtained is heat-treated under the following specific conditions. That is, the silica gel powder is heated in a rotary kiln under a specific gas supply condition while rotating the rotary kiln to flow the silica gel powder. This heat treatment may be performed using a plurality of rotary kilns. The term “flow of powder” as used herein refers to, for example, the powder (see FIG. 2 which shows a cross section of a rotary kiln in a rotating state in which powder is charged, compared to FIG. 1 which shows a cross section of a stationary rotary kiln). There is substantially no slippage between 1) and the powder contact surface (3) of the core tube (2) wall, the powder is lifted by the core tube wall, and the powder leaves the wall surface at a repose angle or more, and the core leaves. Flowing down the bottom of the pipe wall (in the direction of the black arrow in FIG. 2)
Say.

【0012】炉心管の材質は、処理を行った粉への材質
のコンタミが発生しないものを選択する必要があり、石
英製が好ましい。石英製の場合、製作上、炉心管のサイ
ズに限界があるので、条件によっては、多段のロータリ
ーキルンを用いて加熱処理を行うこととなる。加熱処理
を行う温度領域は、50〜1100℃である。通常、加
熱はヒーターによって行われる。
It is necessary to select a material for the furnace tube that does not cause contamination of the material to the treated powder, and is preferably made of quartz. In the case of quartz, there is a limit in the size of the furnace tube in terms of manufacturing, so that heat treatment is performed using a multi-stage rotary kiln depending on conditions. The temperature range in which the heat treatment is performed is 50 to 1100 ° C. Usually, heating is performed by a heater.

【0013】加熱処理により、まず、シリカゲルが含有
する水及びアルコールが揮発する。続いて、残存するカ
ーボン成分の燃焼温度領域に昇温される。この温度領域
は、300〜600℃である。しかしながら、本発明者
らの検討によって、300〜430℃で、残存するカー
ボン成分を燃焼するための加熱をロータリーキルンで行
うと、ロータリーキルン内の粉体の流動性が極めて悪い
ことが判明した。そこで、残存するカーボン成分の燃焼
は450℃以上の温度で行われる。
[0013] By the heat treatment, first, water and alcohol contained in the silica gel are volatilized. Subsequently, the temperature is raised to the combustion temperature range of the remaining carbon component. This temperature range is 300 to 600 ° C. However, the present inventors have found that when heating at 300 to 430 ° C. for burning the remaining carbon component is performed in a rotary kiln, the fluidity of the powder in the rotary kiln is extremely poor. Therefore, the combustion of the remaining carbon component is performed at a temperature of 450 ° C. or higher.

【0014】450℃以上の温度領域に加熱された粉体
は、残存カーボンの減少が進行する。粉体温度が、60
0℃以上となるとシリカゲルの封孔が開始するので、こ
の温度領域に到達するまでに、残存するカーボンのほぼ
全量を消失させておかなければならない。さもなけれ
ば、得られた合成石英粉中に未燃カーボンが残存し、溶
融成形の際に泡が発生する。
In the powder heated to a temperature range of 450 ° C. or higher, the residual carbon decreases. If the powder temperature is 60
When the temperature reaches 0 ° C. or higher, sealing of the silica gel starts, so that almost all of the remaining carbon must be eliminated before the temperature reaches this temperature range. Otherwise, unburned carbon remains in the obtained synthetic quartz powder, and bubbles are generated during melt molding.

【0015】そのために、粉体が450〜550℃の温
度領域を通過する時間を適切に制御する必要がある。ロ
ータリーキルンでは、粉体は進行方向に対し、ほぼピス
トンフロー的に移動する。従って、所定温度ゾーンの通
過時間は、ロータリーキルン内の所定温度ゾーンの長さ
と粉体の進行方向に対する移動速度からおのずと求めら
れる。例えば、所定温度ゾーンの長さが1mで、粉体の
進行方向に対する移動速度が0.5m/Hrであると、
通過時間は2Hrとなる。
For this purpose, it is necessary to appropriately control the time during which the powder passes through the temperature range of 450 to 550 ° C. In a rotary kiln, powder moves in a piston flow substantially in the traveling direction. Therefore, the passage time in the predetermined temperature zone is naturally determined from the length of the predetermined temperature zone in the rotary kiln and the moving speed in the traveling direction of the powder. For example, if the length of the predetermined temperature zone is 1 m and the moving speed of the powder in the traveling direction is 0.5 m / Hr,
The passing time is 2 hours.

【0016】通常、この温度領域の通過時間を、0.5
〜10時間、好ましくは、1〜5時間とする。この範囲
より短いと、十分に未燃カーボンを減少させるのが非常
に困難であり、また、これ以上の通過時間では、未燃カ
ーボン量に差が見られず、装置が大型化し経済的ではな
い。次に、これまで述べた加熱処理の制御方法について
説明する。
Usually, the passage time in this temperature range is 0.5
10 to 10 hours, preferably 1 to 5 hours. If it is shorter than this range, it is very difficult to sufficiently reduce unburned carbon, and if the passage time is longer than this, there is no difference in the amount of unburned carbon, and the apparatus is large and not economical. . Next, a control method of the heat treatment described above will be described.

【0017】本発明では、操作を連続で行うので、処理
粉体の進行方向に従い炉心管の加熱ゾーンを複数個に分
割し、粉体の温度が所定領域になるように、各々のゾー
ンのヒーターの加熱強度を調節することにより達成され
る。本発明においては、酸素含有ガスをロータリーキル
ンに供給しつつ、粉体の加熱処理を行うことを特徴とす
る。具体的には、炉心管の片端より酸素含有ガスを供給
し、他端より排出する方法が採られる。酸素含有ガスの
供給端は、粉体の供給端あるいは排出端のいずれでもよ
いが、装置作成の面からは、粉体の供給端と酸素含有ガ
スの供給端は同一にするほうが容易であり好ましい。
In the present invention, since the operation is performed continuously, the heating zone of the furnace tube is divided into a plurality of zones in accordance with the traveling direction of the processing powder, and the heaters of each zone are set so that the temperature of the powder becomes a predetermined region. This can be achieved by adjusting the heating intensity. The present invention is characterized in that the powder is heated while supplying the oxygen-containing gas to the rotary kiln. Specifically, a method is employed in which the oxygen-containing gas is supplied from one end of the furnace tube and discharged from the other end. The supply end of the oxygen-containing gas may be either the supply end or the discharge end of the powder, but it is easier and preferable to make the supply end of the powder and the supply end of the oxygen-containing gas the same from the viewpoint of making the apparatus. .

【0018】酸素含有ガスを供給することにより、シリ
カゲル中に存在するカーボンの減少が促進され、得られ
た合成石英粉中の残存カーボンが実質的に消失するの
で、溶融成形の際に発生する泡が激減する。酸素含有ガ
スの酸素濃度は、通常、5〜50%が採用される。酸素
以外の成分は、通常、窒素、ヘリウム、アルゴン等の不
活性ガスである。酸素とこれらの不活性ガスを所定の比
率で混合して酸素含有ガスを調製することができるが、
空気を酸素含有ガスとして用いても良く、経済的には空
気の使用が好ましい。また、空気を不活性ガスで希釈し
て使用することも可能である。酸素濃度が5%より低い
とカーボン減少の速度向上効果が低くなり、50%より
高いとシリカゲルより揮発した有機成分と爆発組成を作
る場合があり好ましくない。
By supplying the oxygen-containing gas, the reduction of the carbon present in the silica gel is promoted, and the residual carbon in the obtained synthetic quartz powder is substantially disappeared. Decreases sharply. The oxygen concentration of the oxygen-containing gas is usually 5 to 50%. Components other than oxygen are usually inert gases such as nitrogen, helium, and argon. Oxygen-containing gas can be prepared by mixing oxygen and these inert gases at a predetermined ratio,
Air may be used as the oxygen-containing gas, and the use of air is economically preferable. It is also possible to use air diluted with an inert gas. If the oxygen concentration is lower than 5%, the effect of improving the speed of carbon reduction is reduced, and if the oxygen concentration is higher than 50%, an explosive composition may be formed with the organic component volatilized from silica gel, which is not preferable.

【0019】酸素含有ガスの供給量は、シリカゲルに含
まれるカーボン量と酸素含有ガスの酸素濃度により決定
される。すなわち、カーボンの完全酸化に必要な量の1
〜10倍で30〜300リットルを供給する。酸素含有
ガスは、予めフィルター等を用い、ダストを除去してお
くのが好ましい。ダストを除去していないと、処理する
粉体に付着し、合成石英粉の品質を大きく低下させるこ
とがある。ダスト除去の程度は好ましくは絶対濾過精度
10μm以下、好ましくは5μm以下、特に好ましくは
2μm以下のフィルターを通じてダストを除去するのが
望ましい。これにより合成石英粉の品質に悪影響を与え
るダストをほぼ完全に除去することができることが本発
明者らの検討により明らかとなった。
The supply amount of the oxygen-containing gas is determined by the amount of carbon contained in the silica gel and the oxygen concentration of the oxygen-containing gas. That is, 1 of the amount necessary for complete oxidation of carbon
Supply 30 to 300 liters at 10 to 10 times. It is preferable that dust is removed from the oxygen-containing gas using a filter or the like in advance. If the dust is not removed, the dust adheres to the powder to be treated, and the quality of the synthetic quartz powder may be greatly reduced. The degree of dust removal is desirably through a filter having an absolute filtration accuracy of preferably 10 μm or less, preferably 5 μm or less, particularly preferably 2 μm or less. As a result, the present inventors have made it clear that dust that adversely affects the quality of the synthetic quartz powder can be almost completely removed.

【0020】以上の加熱処理により、シリカゲル中のカ
ーボン濃度は、50〜1000ppm程度に減少する。
残存するカーボンがほぼ消失した処理粉体は、引き続き
加熱され、最終的な粉体の温度は、900〜1100
℃、好ましくは950〜1050℃まで高められる。こ
の際の昇温速度は通常、100〜1000℃/Hrであ
る。ロータリーキルンでは、粉体は進行方向に対し、ほ
ぼピストンフロー的に流れるので、供給した粉体はロー
タリーキルン内を進行方向に移動するに従い昇温される
こととなる。従って、粉体の昇温速度は、ロータリーキ
ルン内の温度測定点間の距離が1mで温度差が200℃
であり、粉体の進行方向に対する移動速度が0.5m/
Hrであると、昇温速度は400℃/Hrとなる。
By the above heat treatment, the carbon concentration in the silica gel is reduced to about 50 to 1000 ppm.
The treated powder from which the remaining carbon has almost disappeared is continuously heated, and the final powder temperature is 900 to 1100.
° C, preferably up to 950-1050 ° C. The heating rate at this time is usually 100 to 1000 ° C / Hr. In the rotary kiln, the powder flows substantially in a piston flow in the traveling direction, so that the temperature of the supplied powder increases as it moves in the rotary kiln in the traveling direction. Therefore, the temperature rise rate of the powder is such that the distance between the temperature measurement points in the rotary kiln is 1 m and the temperature difference is
And the moving speed in the traveling direction of the powder is 0.5 m /
In the case of Hr, the heating rate is 400 ° C./Hr.

【0021】この温度領域における加熱処理も、酸素含
有ガスをロータリーキルンに供給しつつ粉体を加熱処理
する。具体的には、炉心管片端より酸素含有ガスを供給
し、他端より排出する方法が採られる。この温度領域で
は、粉体中に残存するカーボンは50〜1000ppm
程度に減少しているが、酸素混合ガスを供給することに
より、理由はよく判らないが、得られた合成石英粉の溶
融成形の際に発生する泡が激減する。
In the heat treatment in this temperature range, the powder is also heat-treated while supplying the oxygen-containing gas to the rotary kiln. Specifically, a method is employed in which an oxygen-containing gas is supplied from one end of the core tube and discharged from the other end. In this temperature range, the amount of carbon remaining in the powder is 50 to 1000 ppm.
Although the reason is not clearly understood by supplying the oxygen mixed gas, the bubbles generated at the time of melt-molding the obtained synthetic quartz powder are drastically reduced.

【0022】酸素含有ガスの供給量は、シリカゲルに含
まれるカーボン量と酸素含有ガスの酸素濃度により決定
されるが、予めフィルター等を用い、ダストを除去して
おくのが好ましい。ダストを除去していないと、処理す
る粉体に付着し、合成石英粉の品質を大きく低下させ
る。ダスト除去の程度は好ましくは絶対濾過精度10μ
m以下、好ましくは5μm以下、特に好ましくは2μm
以下のフィルターを通じてダストを除去するのが望まし
い。これにより合成石英粉の品質に悪影響を与えるダス
トをほぼ完全に除去することができることが本発明者ら
の検討により明らかとなったものである。
The supply amount of the oxygen-containing gas is determined by the amount of carbon contained in the silica gel and the oxygen concentration of the oxygen-containing gas, but it is preferable to remove dust using a filter or the like in advance. If the dust is not removed, it adheres to the powder to be treated, greatly reducing the quality of the synthetic quartz powder. The degree of dust removal is preferably 10μ absolute filtration accuracy
m, preferably 5 μm or less, particularly preferably 2 μm
It is desirable to remove dust through the following filters. It has been clarified by the study of the present inventors that the dust which adversely affects the quality of the synthetic quartz powder can be almost completely removed.

【0023】またこの温度に於ける加熱処理もロータリ
ーキルンを用い粉体を流動させつつ行うことが望まし
い。ロータリーキルンを用い粉体を流動させつつ行うこ
とにより、均一な加熱が行われ、均質な処理粉体が得ら
れる。この処理によりシリカゲルの封孔はほぼ終了し、
0.7〜0.8g/ml程度であった粉体のタップ嵩密
度(以下、嵩密度と称す)は、1.0〜1.2g/ml
程度まで上昇する。
It is desirable that the heat treatment at this temperature is also performed while the powder is fluidized using a rotary kiln. By performing the process while the powder is flowing using a rotary kiln, uniform heating is performed, and a uniform processed powder is obtained. This treatment almost completes the sealing of the silica gel,
The tap bulk density of the powder, which was about 0.7 to 0.8 g / ml (hereinafter referred to as bulk density), is 1.0 to 1.2 g / ml.
Rise to the extent.

【0024】本発明に従いシリカゲル粉末に加熱処理を
施すと合成石英粉が得られるが、通常、シラノールが1
000ppm以上残存している。そこで、更に高められ
た温度領域での焼成を行う。焼成に用いる容器は、合成
石英粉への不純物のコンタミを発生させない材質、例え
ば、石英製のるつぼを用いる。この焼成に於いては、す
でに、焼成に用いる粉体中のカーボンは実質的に全量除
去されているので、昇温速度に特別な注意を払う必要は
ない。従って、容器内での昇温速度のばらつきが品質に
影響を与えないので、均質な製品が得られ、従来に比
べ、大容量の容器の使用も可能となる。また、予め、粉
体の嵩密度が十分に高められており、焼成前の粉体の嵩
密度と焼成後の粉体の嵩密度に大きな変化がなく、容器
を効率的に利用できるので、生産性の向上が図られる。
When the silica gel powder is subjected to a heat treatment according to the present invention, a synthetic quartz powder is obtained.
000 ppm or more remains. Therefore, firing is performed in a further elevated temperature range. As a container used for firing, a material that does not generate contamination of the synthetic quartz powder with impurities, for example, a crucible made of quartz is used. In this firing, it is not necessary to pay special attention to the heating rate because substantially all of the carbon in the powder used for firing has already been removed. Therefore, since the variation in the heating rate in the container does not affect the quality, a homogeneous product can be obtained, and a container having a larger capacity can be used as compared with the related art. In addition, since the bulk density of the powder has been sufficiently increased in advance, there is no significant change in the bulk density of the powder before firing and the bulk density of the powder after firing, and the container can be used efficiently. The performance is improved.

【0025】焼成温度は、通常、1100〜1300℃
である。昇温速度は特に限定されず、100〜2000
℃/Hrの範囲から適宜選択される。焼成時間は、焼成
温度にもよるが、通常10〜100時間で、合成石英粉
中のシラノール濃度が100ppm以下、好ましくは、
60ppm以下となるまで継続される。また、加熱の際
に実質的に水分を含有しない空気、あるいは不活性ガス
を流通しつつ行うとシラノール基の減少速度が加速され
るので好ましい。当然ながら、焼成後の合成石英粉中に
は、実質的にカーボンは存在しない。
The firing temperature is usually from 1100 to 1300 ° C.
It is. The heating rate is not particularly limited, and is 100 to 2000.
It is appropriately selected from the range of ° C / Hr. The calcination time depends on the calcination temperature, but is usually 10 to 100 hours, and the silanol concentration in the synthetic quartz powder is 100 ppm or less, preferably,
It is continued until it becomes 60 ppm or less. In addition, it is preferable that the heating be performed while flowing air or substantially inert gas which does not substantially contain water, since the reduction rate of the silanol group is accelerated. Naturally, carbon does not substantially exist in the synthetic quartz powder after firing.

【0026】このようにして得られた合成石英粉は、成
形体に成形される。その、成形方法は、成形体の用途に
よって異なるが、例えば、用途がるつぼである場合には
アークメルト法が、IC用治具である場合には、一旦、
酸・水素炎によるベルヌーイ法でインゴットに成形する
方法や、炭素製の鋳型を用い真空下で加熱溶融する方法
等が挙げられる。
The synthetic quartz powder thus obtained is formed into a compact. The molding method varies depending on the use of the molded body. For example, when the use is a crucible, the arc melt method is used, and when the use is an IC jig,
Examples thereof include a method of forming an ingot by the Bernoulli method using an acid / hydrogen flame, and a method of heating and melting under vacuum using a carbon mold.

【0027】いずれにしても、本発明の方法により得ら
れた合成石英粉を用いると、泡の発生が極めて少ない成
形体が得られるので、成形体の品質及び製品歩留まりが
大きく向上する。以下、実施例により本発明を更に具体
的に説明する。
In any case, when the synthetic quartz powder obtained by the method of the present invention is used, a molded article with very few bubbles can be obtained, so that the quality of the molded article and the product yield are greatly improved. Hereinafter, the present invention will be described more specifically with reference to examples.

【0028】[0028]

〔実施例1〕[Example 1]

(ドライシリカゲルの作成)高純度テトラメトキシシラ
ンを水と反応させ、塊状のウェットゲルを得た。続い
て、この塊状のウェトゲルを網式粉砕機で粉砕した後、
減圧下で加熱乾燥し、粉状のドライシリカゲルを得た。
この粉状のドライシリカゲルを、振動篩別機で分級し5
00μm以下及び100μm以上の粒子を取得した。こ
の粉状のドライシリカゲルを分析したところ、含液率は
16.7重量%で、カーボン濃度は1.0重量%であっ
た。また、この粉状のドライシリカゲルの嵩密度は、
0.90g/mlであった。
(Preparation of dry silica gel) High-purity tetramethoxysilane was reacted with water to obtain a lump wet gel. Subsequently, after crushing this massive wet gel with a mesh pulverizer,
The resultant was dried by heating under reduced pressure to obtain powdery dry silica gel.
This powdery dry silica gel is classified by a vibrating sieve to obtain 5
Particles of 00 μm or less and 100 μm or more were obtained. When the powdery dry silica gel was analyzed, the liquid content was 16.7% by weight and the carbon concentration was 1.0% by weight. The bulk density of this powdery dry silica gel is
0.90 g / ml.

【0029】概略を図3に示すロータリーキルンを用
い、以下の加熱処理を行った。図3中、6はドライゲル
ホッパー、7はテーブルフィーダー、8は炉心管、9は
供給口、10は供給口ドーナツ状堰、11は空気供給
管、12は排出口、13は排出口ドーナツ状堰、14は
処理粉受器、15は第1加熱ヒーター、16は第2加熱
ヒーター、17は第3加熱ヒーター、18は第4加熱ヒ
ーター、19は第5加熱ヒーターである。炉心管は材質
が石英で、長さ(加熱ゾーン):2m、内径:200m
m、供給口ドーナツ状堰開口径:15mm、排出口ナツ
状堰開口径: 22mmの寸法とし、最大層高が90m
mとなるように設定した。また、炉心管は、傾斜角度が
0.2°になるように調節した。
The following heat treatment was performed using a rotary kiln schematically shown in FIG. In FIG. 3, 6 is a dry gel hopper, 7 is a table feeder, 8 is a furnace tube, 9 is a supply port, 10 is a supply port donut-shaped weir, 11 is an air supply pipe, 12 is a discharge port, and 13 is a donut-shaped discharge port. Weir, 14 is a processing powder receiver, 15 is a first heater, 16 is a second heater, 17 is a third heater, 18 is a fourth heater, and 19 is a fifth heater. The furnace tube is made of quartz, length (heating zone): 2m, inner diameter: 200m
m, opening diameter of the supply port donut-shaped weir: 15 mm, opening diameter of the discharge-nut donut-shaped weir: 22 mm, and the maximum layer height is 90 m.
m. The core tube was adjusted so that the inclination angle was 0.2 °.

【0030】(加熱処理−前段)まず、加熱ヒーターを
昇温し(第1加熱ヒーター:330℃、第2加熱ヒータ
ー:330℃、第3加熱ヒーター:455℃、第4加熱
ヒーター:455℃、第5加熱ヒーター:455℃)、
炉心管を8rpmで回転させつつ粉状のドライシリカゲ
ルを11kg/時で、フィルター(アドバンテック社製
「MCG−045」型)を通した空気を100リットル
/分で供給口より供給した。炉心管内の粉体は、連続し
て、終始流動していた。供給操作開始後、4、6、8時
間目に排出された粉を分析したところ、表1に示す値で
あった。
(Heat treatment-previous stage) First, the heaters were heated (first heater: 330 ° C, second heater: 330 ° C, third heater: 455 ° C, fourth heater: 455 ° C, Fifth heater: 455 ° C),
While the furnace tube was rotated at 8 rpm, powdered dry silica gel was supplied at a rate of 11 kg / hour, and air passed through a filter (“MCG-045” manufactured by Advantech) at a rate of 100 liter / minute from a supply port. The powder in the furnace tube was flowing continuously and continuously. The powder discharged at 4, 6, and 8 hours after the start of the supply operation was analyzed.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から判るように、粉体の分析値は安定
していた。 (加熱処理−後段)続いて、同じロータリーキルンを用
い、上記操作で得られた粉を、以下に示す条件で加熱処
理した。第1加熱ヒーター:500℃、第2加熱ヒータ
ー:500℃、3加熱ヒーター:500℃、第4加熱ヒ
ーター:1000℃、第5加熱ヒーター:1030℃に
昇温し、炉心管を8rpmで回転させつつ、粉体を9.
2kg/Hrで、フィルター(アドバンテック社製「M
CG−045」型)を通した空気を110リットル/分
で供給口より供給した。
As can be seen from Table 1, the analytical values of the powder were stable. (Heat Treatment-Latter Stage) Subsequently, the powder obtained by the above operation was subjected to a heat treatment under the following conditions using the same rotary kiln. The first heater: 500 ° C., the second heater: 500 ° C., the third heater: 500 ° C., the fourth heater: 1000 ° C., the fifth heater: 1030 ° C., and the furnace tube was rotated at 8 rpm. While powdering 9.
At 2 kg / Hr, a filter (Advantech “M”
(CG-045 type) was supplied from the supply port at 110 liter / min.

【0033】加熱処理の粉体の最終温度は、1020℃
であった。炉心管内の粉体は、連続して、終始流動して
いた。供給操作開始後、4、6、8時間目に排出された
合成石英粉を分析したところ、表2に示す値であった。
The final temperature of the heat-treated powder is 1020 ° C.
Met. The powder in the furnace tube was flowing continuously and continuously. When the synthetic quartz powder discharged at 4, 6, and 8 hours after the start of the supply operation was analyzed, the values shown in Table 2 were obtained.

【0034】[0034]

【表2】 [Table 2]

【0035】(焼成)加熱処理で得られた合成石英粉1
30kgを直径550mmの石英るつぼに仕込み、電気
炉内で加熱し焼成を行った。炉は昇温速度 200℃/
Hrで到達温度1200℃まで昇温後、同温度で40時
間保持した。この際、るつぼに、露点が−60℃の清浄
な乾燥空気を780リットル/Hrで流通した。保持終
了後、加熱を停止し、室温まで冷却した。冷却の際にも
清浄な乾燥空気は流通した。焼成後得られた合成石英粉
は、115kgであった。得られた合成石英粉を、サン
プリング場所毎に分析したところ表3に示す値であっ
た。
(Firing) Synthetic quartz powder 1 obtained by heat treatment
30 kg was charged into a quartz crucible having a diameter of 550 mm, and heated and fired in an electric furnace. Furnace heating rate 200 ℃ /
After the temperature was increased to an ultimate temperature of 1200 ° C. with Hr, the temperature was maintained at the same temperature for 40 hours. At this time, clean dry air having a dew point of −60 ° C. was passed through the crucible at 780 liter / Hr. After the completion of the holding, the heating was stopped and the temperature was cooled to room temperature. During the cooling, clean dry air circulated. The amount of the synthetic quartz powder obtained after firing was 115 kg. When the obtained synthetic quartz powder was analyzed for each sampling location, the values shown in Table 3 were obtained.

【0036】[0036]

【表3】 [Table 3]

【0037】(成形)焼成で得られた合成石英粉を、各
々のサンプリング場所毎に、ベルヌーイ法で、インゴッ
トに成形した。インゴット中に、泡の発生は見られなか
った。
(Forming) The synthetic quartz powder obtained by firing was formed into an ingot by the Bernoulli method at each sampling location. No foaming was observed during the ingot.

【0038】実施例2 加熱処理の前段及び後段の空気供給量を50リットル/
分とした以外は実施例1で用いたと同様のロータリーキ
ルンを用い、実施例1で得られた粉状のドライシリカゲ
ルの加熱処理を行った。加熱処理−前段で得られた粉体
中の残存炭素濃度は1200ppmであった。加熱処理
−後段で得られた粉体中の残存炭素濃度は5ppm以下
で、黒色粒子数は1個/10gであった。加熱処理で得
られた合成石英粉を実施例1と同様の操作で、焼成及び
成形を行った。インゴット中に、1個/10gの微泡が
観察された。
Example 2 The air supply amount before and after the heat treatment was 50 liters /
The powdery dry silica gel obtained in Example 1 was subjected to a heat treatment using the same rotary kiln as used in Example 1 except that the amount was changed to minutes. Heat treatment-The residual carbon concentration in the powder obtained in the former stage was 1200 ppm. The heat treatment—the residual carbon concentration in the powder obtained in the latter stage was 5 ppm or less, and the number of black particles was 1/10 g. The synthetic quartz powder obtained by the heat treatment was fired and molded in the same operation as in Example 1. 1/10 g of fine bubbles were observed in the ingot.

【0039】実施例3 実施例1と同様のロータリーキルンを用い、加熱処理の
前段及び後段の空気供給量を25リットル/分とした以
外は実施例1と同様の操作により実施例1(ドライシリ
カゲルの作成)で得られた粉状のドライシリカゲルの加
熱処理を行った。
Example 3 Example 1 (dry silica gel) was prepared in the same manner as in Example 1 except that the same rotary kiln as in Example 1 was used, and the air supply rates at the first and second stages of the heat treatment were changed to 25 L / min. The heat treatment was performed on the powdery dry silica gel obtained in (Creation).

【0040】加熱処理−前段で得られた粉体中の残存炭
素濃度は、1350ppmであった。加熱処理−後段で
得られた粉体中の残存炭素濃度は5ppm以下で、黒色
粒子数は2個/10gであった。加熱処理で得られた合
成石英粉を用い実施例1と同様の操作により焼成及び成
形を行った。インゴット中に、5個/10gの微泡が観
察された。
Heat treatment-The residual carbon concentration in the powder obtained in the preceding stage was 1350 ppm. The heat treatment—the residual carbon concentration in the powder obtained in the latter stage was 5 ppm or less, and the number of black particles was 2/10 g. Firing and molding were performed by the same operation as in Example 1 using the synthetic quartz powder obtained by the heat treatment. 5/10 g of fine bubbles were observed in the ingot.

【0041】比較例1 実施例1で用いたと同様のロータリーキルンを用い、加
熱処理の前段及び後段の供給ガスとして空気に代えて窒
素を用いた以外は実施例1と同様の操作により実施例1
(ドライシリカゲルの作成)で得られた粉状のドライシ
リカゲルの加熱処理を行った。
Comparative Example 1 The same operation as in Example 1 was carried out except that the same rotary kiln as used in Example 1 was used, and nitrogen was used in place of air as the supply gas before and after the heat treatment.
The powdery dry silica gel obtained in (Preparation of dry silica gel) was subjected to a heat treatment.

【0042】加熱処理−前段で得られた粉体中の残存炭
素濃度は、3000ppmであった。加熱処理−後段で
得られた粉体中の残存炭素濃度は5ppm以下で、黒色
粒子数は25個/10gであった。加熱処理で得られた
合成石英粉を用い実施例1と同様の操作により焼成及び
成形を行った。インゴット中に、無数の微泡が観察され
た。
Heat treatment-The residual carbon concentration in the powder obtained in the former stage was 3000 ppm. The heat treatment—the residual carbon concentration in the powder obtained in the latter stage was 5 ppm or less, and the number of black particles was 25/10 g. Firing and molding were performed by the same operation as in Example 1 using the synthetic quartz powder obtained by the heat treatment. Countless microbubbles were observed in the ingot.

【0043】[0043]

【発明の効果】本発明により、溶融時に発泡の原因とな
る残存カーボン量の少ない合成石英粉を容易に得ること
ができる。
According to the present invention, it is possible to easily obtain a synthetic quartz powder having a small amount of residual carbon which causes foaming during melting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粉体を仕込んだ静止状態のロータリーキルンの
断面図
FIG. 1 is a cross-sectional view of a stationary rotary kiln charged with powder.

【図2】仕込んだ粉体が流動状態にある、回転状態のロ
ータリーキルンの断面図
FIG. 2 is a cross-sectional view of a rotating rotary kiln in which charged powder is in a flowing state.

【図3】本発明に用いることのできるロータリーキルン
の概略を示す図
FIG. 3 is a diagram schematically showing a rotary kiln that can be used in the present invention.

【符号の説明】[Explanation of symbols]

1:粉体 2:炉心管 3:接粉面 4:炉心管内の空隙 5:粉体表面 6:ドライゲルホッパー 7:テーブルフィーダー 8:炉心管 9:供給口 10:供給口ドーナツ状堰 11:空気供給管 12:排出口 13:排出口ドーナツ状堰 14:処理粉受器 15:第1加熱ヒーター 16:第2加熱ヒーター 17:第3加熱ヒーター 18:第4加熱ヒーター 19:第5加熱ヒーター 1: powder 2: furnace tube 3: powder contact surface 4: void in furnace tube 5: powder surface 6: dry gel hopper 7: table feeder 8: furnace tube 9: supply port 10: supply port donut weir 11: Air supply pipe 12: Outlet 13: Outlet donut-shaped weir 14: Processing powder receiver 15: First heater 16: Second heater 17: Third heater 18: Fourth heater 19: Fifth heater

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 シリカゲルを、ロータリーキルンの片端
より連続的に供給しつつ、流動させながら加熱処理する
ことにより合成石英粉を製造する方法であって、酸素含
有ガスをロータリーキルンに供給することを特徴とする
合成石英粉の製造方法。
1. A method for producing a synthetic quartz powder by continuously heating silica gel from one end of a rotary kiln and heating it while flowing, wherein oxygen-containing gas is supplied to the rotary kiln. Method for producing synthetic quartz powder.
【請求項2】 酸素含有ガスが、空気である請求項1記
載の合成石英粉の製造方法。
2. The method according to claim 1, wherein the oxygen-containing gas is air.
【請求項3】 酸素含有ガスが、ダストを除去した清浄
ガスである請求項1又は2記載の合成石英粉の製造方
法。
3. The method for producing synthetic quartz powder according to claim 1, wherein the oxygen-containing gas is a clean gas from which dust has been removed.
【請求項4】 加熱処理の最終温度が900〜1100
℃である請求項1〜3のいずれかに記載の合成石英粉の
製造方法。
4. The final temperature of the heat treatment is 900 to 1100.
The method for producing a synthetic quartz powder according to any one of claims 1 to 3, wherein the temperature is ℃.
【請求項5】 加熱処理を1100℃以下で行った後、
更に1100℃を超える温度で焼成することを特徴とす
る請求項1〜4のいずれかに記載の合成石英粉の製造方
法。
5. After performing the heat treatment at 1100 ° C. or less,
The method for producing synthetic quartz powder according to any one of claims 1 to 4, further comprising firing at a temperature exceeding 1100 ° C.
【請求項6】 多段のロータリーキルンを用いて行うこ
とを特徴とする請求項1〜5のいずれかに記載の合成石
英粉の製造方法。
6. The method for producing synthetic quartz powder according to claim 1, wherein the method is performed using a multi-stage rotary kiln.
【請求項7】 ロータリーキルンの炉心管材質が石英で
あることを特徴とする請求項1〜6のいずれかに記載の
合成石英粉の製造方法。
7. The method for producing synthetic quartz powder according to claim 1, wherein the material of the core tube of the rotary kiln is quartz.
【請求項8】 シリカゲル粉末がテトラアルコキシシラ
ンの加水分解により得られたものであることを特徴とす
る請求項1〜7のいずれかに記載の合成石英粉の製造方
法。
8. The method for producing synthetic quartz powder according to claim 1, wherein the silica gel powder is obtained by hydrolysis of tetraalkoxysilane.
JP8956797A 1997-04-08 1997-04-08 Production of synthetic quartz powder Pending JPH10287416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8956797A JPH10287416A (en) 1997-04-08 1997-04-08 Production of synthetic quartz powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8956797A JPH10287416A (en) 1997-04-08 1997-04-08 Production of synthetic quartz powder

Publications (1)

Publication Number Publication Date
JPH10287416A true JPH10287416A (en) 1998-10-27

Family

ID=13974399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8956797A Pending JPH10287416A (en) 1997-04-08 1997-04-08 Production of synthetic quartz powder

Country Status (1)

Country Link
JP (1) JPH10287416A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045957A1 (en) * 1999-12-21 2001-06-28 Citizen Watch Co., Ltd. Ink receiving element and method for printing
JP2003095677A (en) * 2001-07-19 2003-04-03 Mitsubishi Chemicals Corp High purity quartz powder and method for producing the same, and glass molding
US7736613B2 (en) 2001-11-26 2010-06-15 Japan Super Quartz Corporation Modification process of synthetic silica powder and its quartz glass product
WO2011147866A1 (en) * 2010-05-27 2011-12-01 Heraeus Quarzglas Gmbh & Co. Kg Method for producing quartz glass granules
WO2012056037A1 (en) 2010-10-28 2012-05-03 Heraeus Quarzglas Gmbh & Co. Kg Method for producing synthetic quartz glass granules
DE102012008437B3 (en) * 2012-04-30 2013-03-28 Heraeus Quarzglas Gmbh & Co. Kg Producing synthetic quartz glass granules, comprises vitrifying pourable silicon dioxide granules made of porous granules that is obtained by granulating pyrogenically produced silicic acid, in rotary kiln
WO2013149882A1 (en) 2012-04-05 2013-10-10 Heraeus Quarzglas Gmbh & Co. Kg Method for the production of a mold body from an electrically melted synthetic quartz glass
WO2013149831A1 (en) 2012-04-05 2013-10-10 Heraeus Quarzglas Gmbh & Co. Kg Method for producing synthetic quartz glass granules
DE102012008123A1 (en) 2012-04-25 2013-10-31 Heraeus Quarzglas Gmbh & Co. Kg Producing molded body, comprises producing quartz glass granules of granular particles with enclosed helium by granulating pyrogenically produced silicic acid and vitrifying, heating granules, and molding formed softened quartz glass mass
EP3000790A1 (en) 2014-09-29 2016-03-30 Heraeus Quarzglas GmbH & Co. KG Method for synthetic quartz-glass production from SiO2 granulate and SiO2 granulate suitable for the same
JP2016098430A (en) * 2014-11-26 2016-05-30 信越化学工業株式会社 Cvd apparatus for silicon based anode active substance material, silicon based anode active substance material, nonaqueous electrolyte secondary battery anode and lithium ion secondary battery
CN107533998A (en) * 2015-04-21 2018-01-02 株式会社Eugene科技 The method of substrate board treatment and wash chamber
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
JP2022056202A (en) * 2020-09-29 2022-04-08 株式会社フェローテックホールディングス Synthetic quartz powder and quartz formed body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045957A1 (en) * 1999-12-21 2001-06-28 Citizen Watch Co., Ltd. Ink receiving element and method for printing
JP2003095677A (en) * 2001-07-19 2003-04-03 Mitsubishi Chemicals Corp High purity quartz powder and method for producing the same, and glass molding
US7736613B2 (en) 2001-11-26 2010-06-15 Japan Super Quartz Corporation Modification process of synthetic silica powder and its quartz glass product
US8053080B2 (en) 2001-11-26 2011-11-08 Japan Super Quartz Corporation Modification process of synthetic silica powder and its quartz glass product
WO2011147866A1 (en) * 2010-05-27 2011-12-01 Heraeus Quarzglas Gmbh & Co. Kg Method for producing quartz glass granules
WO2012056037A1 (en) 2010-10-28 2012-05-03 Heraeus Quarzglas Gmbh & Co. Kg Method for producing synthetic quartz glass granules
DE102012006914B4 (en) * 2012-04-05 2018-01-18 Heraeus Quarzglas Gmbh & Co. Kg Process for the preparation of synthetic quartz glass grains
WO2013149882A1 (en) 2012-04-05 2013-10-10 Heraeus Quarzglas Gmbh & Co. Kg Method for the production of a mold body from an electrically melted synthetic quartz glass
WO2013149831A1 (en) 2012-04-05 2013-10-10 Heraeus Quarzglas Gmbh & Co. Kg Method for producing synthetic quartz glass granules
DE102012006914A1 (en) 2012-04-05 2013-10-10 Heraeus Quarzglas Gmbh & Co. Kg Process for the preparation of synthetic quartz glass grains
US9409810B2 (en) 2012-04-05 2016-08-09 Heraeus Quarzglas Gmbh & Co. Kg Method for producing synthetic quartz glass granules
DE102012008123A1 (en) 2012-04-25 2013-10-31 Heraeus Quarzglas Gmbh & Co. Kg Producing molded body, comprises producing quartz glass granules of granular particles with enclosed helium by granulating pyrogenically produced silicic acid and vitrifying, heating granules, and molding formed softened quartz glass mass
DE102012008123B4 (en) * 2012-04-25 2014-12-24 Heraeus Quarzglas Gmbh & Co. Kg Process for the production of a shaped body of electro-melted synthetic quartz glass
US9580348B2 (en) 2012-04-30 2017-02-28 Heraeus Quarzglas Gmbh & Co. Kg Method for producing synthetic quartz glass granules
WO2013164189A1 (en) 2012-04-30 2013-11-07 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a synthetic quartz glass grit
DE102012008437B3 (en) * 2012-04-30 2013-03-28 Heraeus Quarzglas Gmbh & Co. Kg Producing synthetic quartz glass granules, comprises vitrifying pourable silicon dioxide granules made of porous granules that is obtained by granulating pyrogenically produced silicic acid, in rotary kiln
US10029938B2 (en) 2014-09-29 2018-07-24 Heraeus Quarzglas Gmbh & Co. Kg Method for producing synthetic quartz glass of SiO2 granulate and SiO2 granulate suited therefor
EP3000790A1 (en) 2014-09-29 2016-03-30 Heraeus Quarzglas GmbH & Co. KG Method for synthetic quartz-glass production from SiO2 granulate and SiO2 granulate suitable for the same
JP2016098430A (en) * 2014-11-26 2016-05-30 信越化学工業株式会社 Cvd apparatus for silicon based anode active substance material, silicon based anode active substance material, nonaqueous electrolyte secondary battery anode and lithium ion secondary battery
CN107533998B (en) * 2015-04-21 2020-11-24 株式会社Eugene科技 Substrate processing apparatus and method of cleaning chamber
CN107533998A (en) * 2015-04-21 2018-01-02 株式会社Eugene科技 The method of substrate board treatment and wash chamber
JP2018514945A (en) * 2015-04-21 2018-06-07 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing apparatus and chamber cleaning method
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass
JP2022056202A (en) * 2020-09-29 2022-04-08 株式会社フェローテックホールディングス Synthetic quartz powder and quartz formed body

Similar Documents

Publication Publication Date Title
JPH10287416A (en) Production of synthetic quartz powder
US6129899A (en) Processes for producing synthetic quartz powder and producing shaped quartz glass
EP1088789A2 (en) Porous silica granule, its method of production and its use in a method for producing quartz glass
JP2006188412A (en) Process for treating synthetic silica powder and synthetic silica powder treated by the same
JPH072513A (en) Production of synthetic quartz glass powder
JPH09165214A (en) Production of synthetic quartz powder
JP2001089168A (en) Production of synthetic silica glass powder of high purity
JP2001220126A (en) Crystalline synthetic silica powder and glass compact using the same
JP3735887B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
KR100414962B1 (en) Process for producing synthetic quartz powder
JP3617153B2 (en) Method for producing synthetic quartz powder
JP3875735B2 (en) Method for producing synthetic quartz powder
JP3735886B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3806953B2 (en) Method for producing synthetic quartz powder
JP3884783B2 (en) Method for producing synthetic quartz powder
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JP3724084B2 (en) Method for producing synthetic quartz powder and quartz glass molded body
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same
JP3343923B2 (en) Manufacturing method of high purity silica glass powder
JPH10101324A (en) Production of synthetic quartz powder and production of quartz glass formed body
JPH10212115A (en) Production of high purity quartz glass powder and production of quartz glass molding
JPH05201718A (en) Production of silica glass powder and silica glass molten molding
JPH10203821A (en) Production of synthetic quartz glass powder and quartz glass formed product
JPH10182140A (en) Production of synthetic quartz glass powder and formed quartz glass
JPH07157308A (en) Production of synthetic quartz glass powder