JPH08288174A - Multilayer ceramic capacitor for high frequency power - Google Patents
Multilayer ceramic capacitor for high frequency powerInfo
- Publication number
- JPH08288174A JPH08288174A JP7113650A JP11365095A JPH08288174A JP H08288174 A JPH08288174 A JP H08288174A JP 7113650 A JP7113650 A JP 7113650A JP 11365095 A JP11365095 A JP 11365095A JP H08288174 A JPH08288174 A JP H08288174A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic capacitor
- capacitor
- frequency power
- conductive adhesive
- high frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003985 ceramic capacitor Substances 0.000 title claims abstract description 30
- 239000000853 adhesive Substances 0.000 claims abstract description 33
- 230000001070 adhesive effect Effects 0.000 claims abstract description 33
- 239000003990 capacitor Substances 0.000 claims abstract description 21
- 239000003822 epoxy resin Substances 0.000 claims description 9
- 229920000647 polyepoxide Polymers 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- 239000005011 phenolic resin Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229920001721 polyimide Polymers 0.000 claims description 5
- 239000009719 polyimide resin Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 2
- 230000008646 thermal stress Effects 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 abstract description 3
- 230000003252 repetitive effect Effects 0.000 abstract 2
- 229910000679 solder Inorganic materials 0.000 description 11
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000012790 adhesive layer Substances 0.000 description 6
- 238000005476 soldering Methods 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 5
- 239000011231 conductive filler Substances 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、大電力容量、大静電
容量、大電流容量を有する、高周波電力用積層セラミッ
クコンデンサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency power monolithic ceramic capacitor having a large power capacity, a large electrostatic capacity and a large current capacity.
【0002】[0002]
【従来の技術】現在、金属の焼き入れ、溶接加工等に使
用されている誘導加熱装置は、真空管方式から半導体素
子方式に変わりつつあり、半導体素子方式では、共振回
路用コンデンサに耐電圧1kV程度の大電力容量、大静
電容量、大電流容量のものが必要とされている。2. Description of the Related Art At present, an induction heating apparatus used for quenching and welding metal is changing from a vacuum tube system to a semiconductor element system. In the semiconductor element system, a withstand voltage of about 1 kV is applied to a resonance circuit capacitor. A large power capacity, a large electrostatic capacity, and a large current capacity are required.
【0003】この共振回路用コンデンサには、フィルム
コンデンサ、マイカコンデンサや積層セラミックコンデ
ンサをブロック化したモジュール等が用いられる。As the resonance circuit capacitor, a film capacitor, a mica capacitor, a module obtained by blocking a laminated ceramic capacitor, or the like is used.
【0004】図3は、従来の積層セラミックコンデンサ
をブロック化したモジュールを示し、2枚の電極板1、
1間に複数の積層セラミックコンデンサ2を並列に配置
し、前記コンデンサ2のそれぞれの外部電極を対応する
電極板1、1に半田付け3、3によって、電気的に接続
した状態で固定化し、該コンデンサ2群の外側を外装樹
脂4で覆った構造になっている。FIG. 3 shows a module in which a conventional monolithic ceramic capacitor is formed into a block, and two electrode plates 1,
A plurality of monolithic ceramic capacitors 2 are arranged in parallel between the two, and the external electrodes of the capacitors 2 are fixed to the corresponding electrode plates 1, 1 by soldering 3, 3 in an electrically connected state. It has a structure in which the outside of the group of capacitors 2 is covered with an exterior resin 4.
【0005】[0005]
【発明が解決しようとする課題】ところで、積層セラミ
ックコンデンサには大電力が負荷されるため、発熱が多
く、モジュールは水冷した状態で使用されている。実際
には水冷時でも、20〜30℃程度周囲温度より高く、
しかも、稼働時のみ発熱するため、高温と低温に繰り返
し曝されることになる。By the way, since a large amount of electric power is applied to the monolithic ceramic capacitor, a large amount of heat is generated and the module is used in a water-cooled state. Actually, even with water cooling, the temperature is higher than the ambient temperature by about 20 to 30 ° C,
Moreover, since it generates heat only during operation, it is repeatedly exposed to high and low temperatures.
【0006】従来の共振回路用積層セラミックコンデン
サモジュールは、積層コンデンサを半田付けで金属電極
板に固定保持しているため、半田付け部分に、高温と低
温での、金属とセラミックの熱膨張差による熱応力がか
かり、このため、半田付け部分に繰り返しの応力が加わ
り、ヒートショックによりクラックが発生しやすく、導
電不良が発生したり、ついには破断して電極板と積層セ
ラミックコンデンサが外れてしまうという問題がある。In the conventional monolithic ceramic capacitor module for resonance circuit, the monolithic capacitor is fixedly held on the metal electrode plate by soldering. Thermal stress is applied, so repeated stress is applied to the soldered part, cracks are likely to occur due to heat shock, conductive failure occurs, and eventually it breaks and the electrode plate and the laminated ceramic capacitor come off. There's a problem.
【0007】そこで、この発明の課題は、積層セラミッ
クコンデンサと電極板の固定部分に繰り返し熱応力が加
わっても劣化の発生が少なく、信頼性の高い高周波電力
用積層セラミックコンデンサを提供することにある。Therefore, an object of the present invention is to provide a highly reliable high frequency power multilayer ceramic capacitor which is less likely to be deteriorated even if thermal stress is repeatedly applied to a fixed portion of the multilayer ceramic capacitor and the electrode plate. .
【0008】[0008]
【課題を解決するための手段】上記のような課題を解決
するため、この発明は、2枚の電極板間に複数の積層セ
ラミックコンデンサを並列に配置し、前記コンデンサの
それぞれの外部電極を対応する電極板に電気的に接続し
た状態で固定するために、厚みが500μm以下の導電
性接着剤を使用した構成を採用したものである。In order to solve the above-mentioned problems, the present invention arranges a plurality of laminated ceramic capacitors in parallel between two electrode plates, and makes the external electrodes of the capacitors correspond to each other. In order to fix it in a state of being electrically connected to the electrode plate to be used, a structure using a conductive adhesive having a thickness of 500 μm or less is adopted.
【0009】この発明において、導電性接着剤は、エポ
キシ系樹脂、フェノール系樹脂、ポリイミド系樹脂など
の内の何れか一つと、銀、銅、アルミニウムの粒子の内
の少なくとも一つ以上を混合したものを用いることがで
きる。In the present invention, the conductive adhesive is a mixture of any one of epoxy resin, phenol resin, polyimide resin and the like, and at least one of silver, copper and aluminum particles. Any thing can be used.
【0010】[0010]
【作用】電極板と積層セラミックコンデンサの固定に、
導電性接着剤を使用することで、初期引張応力は半田付
けよりやや低いが、繰り返しの熱応力がかかっても劣化
の発生が少なく、半田による銀喰われ現象がなくなり、
接続の信頼性が向上すると共に、導電性接着剤に含まれ
る金属粒子を導電率の高いものを使用することにより、
半田に比較し、導電性は同等となる。[Operation] For fixing the electrode plate and the monolithic ceramic capacitor,
By using a conductive adhesive, the initial tensile stress is slightly lower than that of soldering, but there is little deterioration even when repeated thermal stress is applied, and the silver erosion phenomenon due to solder disappears,
By improving the reliability of connection, by using metal particles with high conductivity contained in the conductive adhesive,
Compared with solder, it has the same conductivity.
【0011】[0011]
【実施例】以下、この発明の実施例を添付図面の図1と
図2に基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. 1 and 2 of the accompanying drawings.
【0012】図示のように、この発明の高周波電力用積
層セラミックコンデンサは、2枚の電極板11と11間
に複数の積層セラミックコンデンサ12を並列に配置
し、該コンデンサ12のそれぞれの外部電極13、13
を対応する電極板11、11に導電性接着剤14、14
を用いて電気的に接続した状態で固定し、コンデンサ1
2群の外側を外装樹脂15で覆った構造になっている。As shown in the figure, the monolithic ceramic capacitor for high frequency power of the present invention has a plurality of monolithic ceramic capacitors 12 arranged in parallel between two electrode plates 11 and 11 and external electrodes 13 of each of the capacitors 12. , 13
To the corresponding electrode plates 11, 11 with conductive adhesives 14, 14
Fixed in an electrically connected state using a capacitor 1
The outside of the second group is covered with the exterior resin 15.
【0013】上記導電性接着剤14は、エポキシ系樹
脂、フェノール系樹脂、ポリイミド系樹脂などの内の何
れか一つと、導電性フィラーとして、銀、銅、アルミニ
ウムの粒子の内の少なくとも一つ以上を混合した熱硬化
性の接着剤であり、その厚みが500μm以下となるよ
うに塗布使用する。The conductive adhesive 14 is any one of epoxy resin, phenol resin, polyimide resin and the like, and at least one of silver, copper and aluminum particles as a conductive filler. Is a thermosetting adhesive that is mixed and used so that its thickness is 500 μm or less.
【0014】この導電性接着剤に含まれる樹脂として、
エポキシ系樹脂やフェノール系樹脂は、100℃で連続
使用できると共に、ポリイミド系樹脂を使用した場合は
更に効果が高い。As the resin contained in this conductive adhesive,
Epoxy resins and phenol resins can be used continuously at 100 ° C., and when polyimide resins are used, the effect is even higher.
【0015】また、上記した導電性フィラーとして例示
した高い導電率の金属粒子を使用することで、接着剤の
導電率を高くし、かつ高周波で低損失となり、半田に比
較し、導電性は同等となる。Further, by using the metal particles having high conductivity exemplified as the above-mentioned conductive filler, the conductivity of the adhesive is increased and the loss becomes high at high frequency, and the conductivity is equivalent to that of the solder. Becomes
【0016】なお、導電性接着剤層14の厚みが500
μmより厚くなると、破壊時に接着剤層内部より亀裂が
進展するようになり、接着強度が低くなる。また、熱伝
導性も低下して、コンデンサの放熱が妨げられ、コンデ
ンサの温度上昇が顕著になる。The thickness of the conductive adhesive layer 14 is 500.
If it is thicker than μm, cracks will grow from the inside of the adhesive layer at the time of breakage and the adhesive strength will decrease. Further, the thermal conductivity is also lowered, the heat dissipation of the capacitor is hindered, and the temperature rise of the capacitor becomes remarkable.
【0017】実施例1 次に、導電性接着剤を用い、その厚みの異なるコンデン
サモジュールと半田付けによるコンデンサモジュールを
作製し、発熱温度や引張強度を比較した結果を説明す
る。作製方法は以下の通りである。Example 1 Next, the results of comparing the heat generation temperature and the tensile strength of a capacitor module prepared by soldering with a capacitor module having a different thickness using a conductive adhesive will be described. The manufacturing method is as follows.
【0018】1つのモジュール当たり、静電容量6.8
nFの積層セラミックコンデンサ30個を使用し、静電
容量200nFのコンデンサモジュールを作製した。Capacitance of 6.8 per module
A capacitor module having an electrostatic capacity of 200 nF was manufactured by using 30 nF multilayer ceramic capacitors.
【0019】積層セラミックコンデンサのサイズは、長
さ5.7mm×幅5.0mm×厚み2.0mmであり、
積層セラミックコンデンサの外部電極間方向は5.7m
mである。The size of the monolithic ceramic capacitor is 5.7 mm in length × 5.0 mm in width × 2.0 mm in thickness,
The distance between the external electrodes of the monolithic ceramic capacitor is 5.7 m.
m.
【0020】組立工程としては、まず、図2に示すよう
に積層セラミックコンデンサ同士を密接配置させて、シ
リコン系樹脂接着剤で接着し、室温乾燥して、一体化し
たブロックを作製した。In the assembling step, first, as shown in FIG. 2, the monolithic ceramic capacitors were placed in close contact with each other, adhered with a silicone resin adhesive, and dried at room temperature to produce an integrated block.
【0021】積層セラミックコンデンサ同士の接着には
シリコーン系樹脂接着剤の他、エポキシ系樹脂接着剤、
無機材質接着剤等の絶縁性のある接着剤ならば、何れも
使用可能である。In order to bond the monolithic ceramic capacitors to each other, in addition to the silicone resin adhesive, an epoxy resin adhesive,
Any insulative adhesive such as an inorganic adhesive can be used.
【0022】次に、銀粒子とエポキシ系樹脂からなる導
電性接着剤で、図1に示すように、前記ブロックを挟ん
で、幅30mm×長さ70mm×厚み1mmの銅板より
なる電極板2枚を対応するように接着させ、150℃に
1時間保持し導電性接着剤を硬化させた。最後に、ワー
クを金型にセットし、エポキシ系樹脂からなる外装樹脂
を注型し、150℃に2時間保持し外装樹脂を硬化さ
せ、コンデンサモジュールを完成させた。Next, as shown in FIG. 1, two electrode plates made of a copper plate having a width of 30 mm, a length of 70 mm and a thickness of 1 mm are sandwiched between the blocks by a conductive adhesive composed of silver particles and an epoxy resin. Were adhered in a corresponding manner, and were held at 150 ° C. for 1 hour to cure the conductive adhesive. Finally, the work was set in a mold, the exterior resin made of epoxy resin was cast, and the exterior resin was cured by holding it at 150 ° C. for 2 hours to complete the capacitor module.
【0023】電極板には銅の他、銀、アルミニウム、お
よび銅合金、アルミニウム合金等の高周波低抵抗導体な
らば何れも使用可能である。In addition to copper, any of high frequency low resistance conductors such as silver, aluminum, copper alloys and aluminum alloys can be used for the electrode plate.
【0024】外装樹脂にはエポキシ系樹脂の他、シリコ
ーン系樹脂、ウレタン系樹脂、フェノール系樹脂など絶
縁性があり、密着性に優れ、100℃までの耐熱性があ
るものならば、何れも使用可能である。As the exterior resin, in addition to epoxy resin, any silicone resin, urethane resin, phenol resin, etc. having insulation properties, excellent adhesion, and heat resistance up to 100 ° C. can be used. It is possible.
【0025】表1に電極板に銅板を使用したモジュール
における、半田と導電性接着剤の比較、および接着剤層
の厚みの違いによる試料の発熱、及び引張強度の結果を
示す。負荷は周波数300kHz、皮相電力25kVA
であり、試料には水冷をおこなっている。表1の発熱温
度は内蔵した積層コンデンサの表面温度と周囲温度との
差である。Table 1 shows the results of the comparison between solder and a conductive adhesive and the heat generation and tensile strength of the sample due to the difference in the thickness of the adhesive layer in the module using the copper plate as the electrode plate. Load is frequency 300kHz, apparent power 25kVA
The sample is water-cooled. The heat generation temperature in Table 1 is the difference between the surface temperature of the built-in multilayer capacitor and the ambient temperature.
【0026】発熱温度は接着剤層厚さ500μm以下で
は導電性接着剤と半田を使用した場合では、発熱温度は
同等であり、放熱性に差はなかった。With respect to the exothermic temperature, when the thickness of the adhesive layer was 500 μm or less, the exothermic temperature was the same when the conductive adhesive and the solder were used, and there was no difference in heat dissipation.
【0027】引張強度は接着剤層厚さ500μm以下で
は導電性接着剤と半田を使用した場合では、半田を使用
した方が高いが、導電性接着剤を使用したものでも十分
に有効であった。When the adhesive layer thickness is 500 μm or less, the tensile strength is higher when the conductive adhesive and the solder are used, but the conductive adhesive is sufficiently effective. .
【0028】また、接着剤を使用した場合、接着剤層の
厚さが500μmを越えると引張強度の低下と発熱温度
の上昇が起き、使用に適さなくなった。When an adhesive is used and the thickness of the adhesive layer exceeds 500 μm, the tensile strength is lowered and the exothermic temperature is increased, which is not suitable for use.
【0029】[0029]
【表1】 [Table 1]
【0030】次にヒートサイクル試験の結果を表2に示
す。試験条件は温度範囲−30℃〜85℃、1サイクル
当たり3時間である。対向する電極板を反対方向に引っ
張った時の引張強度を測定した。Next, the results of the heat cycle test are shown in Table 2. The test conditions are a temperature range of −30 ° C. to 85 ° C. and 3 hours per cycle. The tensile strength was measured when the opposing electrode plates were pulled in the opposite direction.
【0031】引張強度は初期値では半田の方が高いが、
少ないサイクル数で低下し、長期的には導電性接着剤の
方が強度が高い。Although the initial tensile strength of solder is higher,
It decreases in a small number of cycles, and in the long term, the conductive adhesive has higher strength.
【0032】[0032]
【表2】 [Table 2]
【0033】実施例2 導電性接着剤に樹脂として、エポキシ樹脂、フェノール
樹脂、ポリイミド樹脂と導電フィラーとして、銀、銅、
アルミニウムを用いてそれぞれ一種類ごと組み合わせ、
電極板に銅を使用して、実施例1と同様にして、コンデ
ンサモジュールを作製した。Example 2 Epoxy resin, phenol resin, polyimide resin as a resin for the conductive adhesive and silver, copper, as a conductive filler,
Each combination is made using aluminum,
A capacitor module was produced in the same manner as in Example 1 using copper for the electrode plate.
【0034】試料の発熱試験、ヒートサイクル試験の結
果を合わせて表3に示す。The results of the exothermic test and the heat cycle test of the sample are shown in Table 3 together.
【0035】発熱試験の負荷は周波数300kHz、皮
相電力25kVAであり、試料には水冷をおこなってい
る。発熱温度は内蔵した積層コンデンサの表面温度と周
囲温度との差である。The load of the heat generation test was a frequency of 300 kHz and an apparent power of 25 kVA, and the sample was water-cooled. The heat generation temperature is the difference between the surface temperature of the built-in multilayer capacitor and the ambient temperature.
【0036】ヒートサイクル試験条件は温度範囲−30
℃〜85℃、1サイクル当たり3時間である。対向する
電極板を反対方向に引っ張った時の引張強度を測定し
た。The heat cycle test condition is temperature range -30.
C-85 C, 3 hours per cycle. The tensile strength was measured when the opposing electrode plates were pulled in the opposite direction.
【0037】どの導電性接着剤においても発熱は20d
eg以下であり、使用に適していた。また、5000回
ヒートサイクル後の引張強度についても半田より強度は
高く有効であった。The heat generated by any conductive adhesive is 20d.
It was less than eg and was suitable for use. Also, the tensile strength after 5000 heat cycles was higher than that of solder and effective.
【0038】[0038]
【表3】 [Table 3]
【0039】[0039]
【発明の効果】以上のように、この発明によると、電極
板と積層セラミックコンデンサの外部電極の固定を、半
田に代えて導電性接着剤を使用することで、繰り返し熱
応力に対する劣化の少ない高周波電力用積層セラミック
コンデンサを提供できる。As described above, according to the present invention, a conductive adhesive is used instead of solder for fixing the electrode plate and the external electrode of the monolithic ceramic capacitor. A monolithic ceramic capacitor for electric power can be provided.
【0040】また、半田に代えて導電性接着剤とするこ
とで、積層セラミックコンデンサの外部電極を半田付け
する際に問題となっていた、半田による外部電極の銀喰
われ現象もなくなり、接続の信頼性も向上する。Further, by using a conductive adhesive instead of solder, the phenomenon of silver erosion of the external electrode due to solder, which was a problem when soldering the external electrode of the monolithic ceramic capacitor, is eliminated, and the connection is prevented. Reliability is also improved.
【0041】更に、半田付けの場合のような後洗浄が不
要となり、鉛元素の不使用など、環境に対しても悪影響
が少なくなる。Furthermore, post-cleaning as in the case of soldering is not necessary, and adverse effects on the environment such as the use of no lead element are reduced.
【図1】この発明に係る高周波電力用積層セラミックコ
ンデンサモジュールの一部切欠正面図。FIG. 1 is a partially cutaway front view of a high frequency power multilayer ceramic capacitor module according to the present invention.
【図2】同上の組立工程を示す説明図。FIG. 2 is an explanatory view showing an assembling process of the same.
【図3】従来の高周波電力用積層セラミックコンデンサ
モジュールを示す一部切欠正面図。FIG. 3 is a partially cutaway front view showing a conventional high frequency power multilayer ceramic capacitor module.
11 電極板 12 積層セラミックコンデンサ 13 外部電極 14 導電性接着剤 15 外装樹脂 11 Electrode Plate 12 Multilayer Ceramic Capacitor 13 External Electrode 14 Conductive Adhesive 15 Exterior Resin
Claims (2)
コンデンサを並列に配置し、前記コンデンサのそれぞれ
の外部電極を対応する電極板に電気的に接続した状態で
固定するために、厚みが500μm以下の導電性接着剤
を使用したことを特徴とする高周波電力用積層セラミッ
クコンデンサ。1. A plurality of monolithic ceramic capacitors are arranged in parallel between two electrode plates, and each external electrode of the capacitors is fixed in a state of being electrically connected to a corresponding electrode plate. A multilayer ceramic capacitor for high-frequency power, characterized by using a conductive adhesive having a thickness of 500 μm or less.
ノール系樹脂、ポリイミド系樹脂の内の何れか一つと、
銀、銅、アルミニウムの粒子の内の少なくとも一つ以上
を混合したものである請求項1記載の高周波電力用積層
セラミックコンデンサ。2. The conductive adhesive is any one of an epoxy resin, a phenol resin, and a polyimide resin,
The monolithic ceramic capacitor for high frequency power according to claim 1, which is a mixture of at least one of particles of silver, copper and aluminum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7113650A JPH08288174A (en) | 1995-04-13 | 1995-04-13 | Multilayer ceramic capacitor for high frequency power |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7113650A JPH08288174A (en) | 1995-04-13 | 1995-04-13 | Multilayer ceramic capacitor for high frequency power |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08288174A true JPH08288174A (en) | 1996-11-01 |
Family
ID=14617651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7113650A Pending JPH08288174A (en) | 1995-04-13 | 1995-04-13 | Multilayer ceramic capacitor for high frequency power |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08288174A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008205380A (en) * | 2007-02-22 | 2008-09-04 | Toyota Motor Corp | Semiconductor module |
JP2009055067A (en) * | 2005-03-07 | 2009-03-12 | Samsung Electro Mech Co Ltd | Embedded multilayer chip capacitor and print circuit board having the same |
JP2010245381A (en) * | 2009-04-08 | 2010-10-28 | Maruwa Co Ltd | Block type composite electronic component |
DE102013102278A1 (en) * | 2013-03-07 | 2014-09-11 | Epcos Ag | capacitor arrangement |
CN105428065A (en) * | 2016-01-26 | 2016-03-23 | 株洲宏达陶电科技有限公司 | Open-circuit-mode multicore combined ceramic capacitor and manufacturing method thereof |
JP2021174780A (en) * | 2020-04-17 | 2021-11-01 | ルビコン株式会社 | Capacitor device, power unit and manufacturing method of capacitor device |
-
1995
- 1995-04-13 JP JP7113650A patent/JPH08288174A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009055067A (en) * | 2005-03-07 | 2009-03-12 | Samsung Electro Mech Co Ltd | Embedded multilayer chip capacitor and print circuit board having the same |
JP2008205380A (en) * | 2007-02-22 | 2008-09-04 | Toyota Motor Corp | Semiconductor module |
JP2010245381A (en) * | 2009-04-08 | 2010-10-28 | Maruwa Co Ltd | Block type composite electronic component |
DE102013102278A1 (en) * | 2013-03-07 | 2014-09-11 | Epcos Ag | capacitor arrangement |
US9905363B2 (en) | 2013-03-07 | 2018-02-27 | Epcos Ag | Capacitor arrangement |
CN105428065A (en) * | 2016-01-26 | 2016-03-23 | 株洲宏达陶电科技有限公司 | Open-circuit-mode multicore combined ceramic capacitor and manufacturing method thereof |
JP2021174780A (en) * | 2020-04-17 | 2021-11-01 | ルビコン株式会社 | Capacitor device, power unit and manufacturing method of capacitor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3157362B2 (en) | Semiconductor device | |
US6027762A (en) | Method for producing flexible board | |
US8304054B2 (en) | Printed circuit board made from a composite material | |
US4975674A (en) | Surge absorber | |
KR20150002754A (en) | Circuit board, particularly for a power-electronic module, comprising an electrically-conductive substrate | |
JP2004228403A (en) | Semiconductor module, its manufacturing method and switching power supply device | |
JPS61176142A (en) | Substrate structure | |
KR20130006368A (en) | Power electronic system comprising a cooling device | |
GB2084796A (en) | Mounting and cooling arrangements for semiconductor devices | |
JP2002340700A (en) | Piezoelectric sensor | |
JPH08288174A (en) | Multilayer ceramic capacitor for high frequency power | |
US7405448B2 (en) | Semiconductor device having a resistance for equalizing the current distribution | |
JP2017011049A (en) | Insulation circuit board, and power semiconductor device using the same | |
JPH08107039A (en) | Ceramic electronic component | |
US20070084043A1 (en) | Conductive Adhesive Attachment of Capacitor Terminals | |
EP0431586A2 (en) | High-power semiconductor device | |
Palmer | Hybrid microcircuitry for 300° C operation | |
JPH08236940A (en) | Multilayered wiring board | |
CN210575321U (en) | Chip thermistor and electronic device | |
JP2000049056A (en) | Solid-state electrolytic capacitor | |
JPH0831546B2 (en) | High power circuit board and hybrid integrated circuit thereof | |
JP2002033433A (en) | Semiconductor device and manufacturing method thereof | |
JPH09116239A (en) | Metallic-base multilayered circuit board | |
JPS6076179A (en) | Thermoelectric converter | |
JP3220211B2 (en) | Liquid crystal display |