JPH08273415A - Light source with reflector - Google Patents

Light source with reflector

Info

Publication number
JPH08273415A
JPH08273415A JP8112693A JP11269396A JPH08273415A JP H08273415 A JPH08273415 A JP H08273415A JP 8112693 A JP8112693 A JP 8112693A JP 11269396 A JP11269396 A JP 11269396A JP H08273415 A JPH08273415 A JP H08273415A
Authority
JP
Japan
Prior art keywords
light
light source
refractive index
interference film
incident angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8112693A
Other languages
Japanese (ja)
Inventor
Akira Kawakatsu
晃 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP8112693A priority Critical patent/JPH08273415A/en
Publication of JPH08273415A publication Critical patent/JPH08273415A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To suppress the occurrence of color lines, color stripes, brightness and darkness stripes, and the like by laminating high refractive index layers and low refractive index layers alternately on the surface of a reflector so as to constitute a light interference film, and thickening the film thickness thereof as the incident angle of the light from a light source becomes large. CONSTITUTION: High ref reactive index layers and low refractive index layers are alternately laminated on the inside surface of the curved base body 3 of a reflector so as to constitute a light interference film 4. In the light interference film 4, the film thickness thereof is made to be thick as the incident angle of the light from a light source 1 becomes large, that is, as approaching to the opening portion of the reflector. Thereby, the wavelength area of the penetrating-in or reflecting-on light becomes uniform on the whole surface of the light interference film 4 so that the occurrence of color lines, color stripes, and brightness and darkness stripes are suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、反射鏡および光源
が一体に構成された反射鏡付光源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source with a reflecting mirror in which a reflecting mirror and a light source are integrally formed.

【0002】[0002]

【従来の技術】従来、例えば店舗照明用等には反射鏡付
ハロゲン電球が用いられている。この種のものは、小形
ハロゲン電球および表面に可視光反射赤外線透過膜が形
成された回転放物面をなすガラス反射鏡で構成されてい
る。この可視光反射赤外線透過膜は、酸化チタン(Ti
O2)等からなる高屈折率層とシリカ(SiO2)等か
らなる低屈折率層とを9〜15層交互重層したもので、
光の干渉によってハロゲン電球から放射された光のうち
可視光の波長域を前方に反射、赤外線の波長域を後方に
透過して被照射体を熱損させない利点がある。
2. Description of the Related Art Conventionally, halogen bulbs with a reflector have been used, for example, for store lighting. This type is composed of a small halogen bulb and a glass reflector having a paraboloid of revolution having a visible light reflecting and infrared transmitting film formed on the surface thereof. This visible-light-reflecting infrared-transmissive film is made of titanium oxide (Ti
A high refractive index layer made of O2) or the like and a low refractive index layer made of silica (SiO2) or the like, which are 9 to 15 layers alternately laminated,
Among the light emitted from the halogen bulb due to the interference of light, there is an advantage that the visible light wavelength range is reflected forward and the infrared wavelength range is transmitted backward so that the irradiated body is not damaged by heat.

【0003】また、これらの波長域の制御は、高屈折率
層および低屈折率層の厚さ等に関係し、特公昭44−8
272号公報に開示されているように、反射鏡全面に一
様な厚さまたは制御された変化を有する厚さで行うこと
ができるものである。なお、このような可視光反射赤外
線透過膜のように、光の干渉を利用して特定波長の光を
反射または透過させる多重層光学膜を光干渉膜と総称し
ている。
The control of these wavelength ranges is related to the thicknesses of the high refractive index layer and the low refractive index layer, and is disclosed in Japanese Patent Publication No. 44-8
As disclosed in Japanese Laid-Open Patent Publication No. 272, it can be performed with a uniform thickness or a thickness having a controlled change over the entire surface of the reflecting mirror. A multilayer optical film that reflects or transmits light having a specific wavelength by utilizing light interference, such as the visible light reflection / infrared transmission film, is generically called an optical interference film.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この種
の反射鏡のほぼ軸上に配設された電球では、白色被照射
面を照射した場合、被照射面が近すぎると、この被照射
面の光軸を中心として色のついた光の輪が形成され、こ
の光の輪が当っている被照射体は異なった色に見えると
いう現象の発生がある。
However, in the case of a light bulb arranged almost on the axis of a reflecting mirror of this kind, when the white illuminated surface is illuminated, if the illuminated surface is too close, There is a phenomenon that a ring of colored light is formed around the optical axis, and the irradiated object on which the ring of light hits appears to have a different color.

【0005】本発明は、被照射面の光軸を中心として色
のついた光の輪が形成されにくい反射鏡付光源を提供す
るとを目的とする。
An object of the present invention is to provide a light source with a reflecting mirror in which it is difficult to form a ring of colored light around the optical axis of the illuminated surface.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、背部
に形成されたランプ配設孔を有する曲面状基体と;曲面
状基体に光学的に対向するとともに、この基体のほぼ軸
上に配設された光源と;曲面状基体の表面に高屈折率層
および低屈折率層を交互にかつ光源からの光の入射角が
大きくなるにしたがって膜厚が厚くなるように構成され
た光干渉膜と;光源に直接または間接的に設けられた口
金と;を具備している。
According to a first aspect of the present invention, there is provided a curved base body having a lamp mounting hole formed in a back portion thereof; the curved base body is optically opposed to the curved base body, and substantially on the axis of the base body. A light source arranged; and a high-refractive-index layer and a low-refractive-index layer alternately on the surface of the curved substrate, and optical interference configured such that the film thickness increases as the incident angle of light from the light source increases. A film; and a base directly or indirectly provided on the light source.

【0007】[0007]

【発明の実施の形態】本発明の一実施の形態について、
店舗照明等に使用される反射器付ハロゲン電球を図1お
よび図2を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Regarding one embodiment of the present invention,
A halogen bulb with a reflector used for store lighting or the like will be described with reference to FIGS. 1 and 2.

【0008】図1は、本発明の一実施の形態を示す反射
鏡付光源の一部切り欠き断面図、図2は、同じく要部の
拡大断面図である。
FIG. 1 is a partially cutaway sectional view of a light source with a reflecting mirror showing an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of the same main portion.

【0009】図中1は、光源である例えばハロゲン電
球、2はこの光源1の基部に装着された口金、3はこの
口金2に装置されて光源1を包囲する内面が回転放物面
をなすガラス等からなる耐熱性透光性の曲面状基体、4
はこの基体3の内面に形成された光干渉膜例えば可視光
反射赤外線透過膜である。なお、口金は直接または間接
的に、すなわち光源または基体3に設けられている。
In the figure, 1 is a light source such as a halogen bulb, 2 is a base mounted on the base of the light source 1, and 3 is an inner surface surrounding the light source 1 mounted on the base 2 to form a paraboloid of revolution. Heat-resistant translucent curved substrate 4 made of glass or the like
Is an optical interference film formed on the inner surface of the substrate 3, for example, a visible light reflecting infrared transmitting film. The base is directly or indirectly provided on the light source or the base 3.

【0010】ここで、曲面状基体3は、曲面状に形成さ
れた内面および背部に形成されたランプ配設孔を有す
る。光源1は、曲面状基体に光学的に対向するととも
に、この基体のほぼ軸上に配設されている。また、光干
渉膜4は、曲面状基体3の表面に高屈折率層および低屈
折率層を交互にかつ光源1からの光の入射角が大きくな
るにしたがって膜厚が厚くなるように構成されている。
Here, the curved substrate 3 has an inner surface formed in a curved shape and a lamp mounting hole formed in the back portion. The light source 1 optically opposes the curved base body and is disposed substantially on the axis of the base body. Further, the light interference film 4 is configured such that high refractive index layers and low refractive index layers are alternately formed on the surface of the curved substrate 3 and the film thickness increases as the incident angle of light from the light source 1 increases. ing.

【0011】この光干渉膜4は第2図に模式的に拡大し
て示すように、基体3表面に酸化チタン等からなる高屈
折率層41…とシリカ等からなる低屈折率層42…とを
20〜26層交互重層したもので、各層41,42の厚
さを適当にしたことにより光の干渉によって光源1から
入射した光のうち可視光を前方に反射し、赤外線を基体
3の背後に透過するものである。
The optical interference film 4 has a high refractive index layer 41 made of titanium oxide or the like and a low refractive index layer 42 made of silica or the like on the surface of the substrate 3, as schematically shown in FIG. 20 to 26 layers are alternately laminated, and by appropriately adjusting the thickness of each layer 41, 42, visible light of the light incident from the light source 1 is reflected forward by the interference of light and infrared rays are reflected behind the substrate 3. It is transparent to.

【0012】そして、本実施の形態では、光干渉膜4を
構成する高屈折率層41および低屈折率層42の厚さを
光源1からの入射角の分布に対応して基体3の開口縁に
近ずくほど厚くした。すなわち、基体3に形成された高
屈折率層41および低屈折率層42からなる光干渉膜4
は、光源1からの光の入射角θが大きくなるにしたが
い、その膜厚を厚くした。
In the present embodiment, the thicknesses of the high refractive index layer 41 and the low refractive index layer 42 forming the optical interference film 4 are adjusted so that the opening edge of the base 3 corresponds to the distribution of the incident angle from the light source 1. The thicker it gets closer to. That is, the optical interference film 4 including the high refractive index layer 41 and the low refractive index layer 42 formed on the base body 3.
Was made thicker as the incident angle θ of the light from the light source 1 becomes larger.

【0013】この結果、可視光の反射波長域および赤外
線の透過波長域が光干渉膜4の全面においてほぼ一様に
なり、かつその反射率および透過率も低入射角部位とほ
ぼ同じになった。この結果、反射鏡付光源の可視光透過
効率が著しく向上し、かつ透過光中の赤外線が著く減少
した。
As a result, the visible light reflection wavelength range and the infrared transmission wavelength range are substantially uniform over the entire surface of the optical interference film 4, and the reflectance and the transmittance thereof are substantially the same as those at the low incident angle portion. . As a result, the visible light transmission efficiency of the light source with a reflecting mirror was significantly improved, and the infrared rays in the transmitted light were significantly reduced.

【0014】ここで、本発明の理論的説明を図4および
図5を参照して詳述する。図4は、本発明の理論的な説
明のための模式図、図5は、同じく入射角の変化を示す
説明図である。
A theoretical explanation of the present invention will now be described in detail with reference to FIGS. 4 and 5. FIG. 4 is a schematic diagram for theoretically explaining the present invention, and FIG. 5 is an explanatory diagram similarly showing a change in incident angle.

【0015】本発明者は種々研究の結果、上述のように
反射鏡付光源からの照射光に色のついた光の輪が現れる
のは光源からの光の入射角が異なっているためであると
の結論に達した。図において、Aを光源、Bをこの光源
Aに対設した基体に形成された屈折層とし、この屈折層
Bの厚さをdmm、屈折率をnとする。そして、光源A
から3本の光束R1,R2およびR3がそれぞれ入射角
θ1(0度),θ2(小さい),θ3(大きい)で入射
し、この屈折層B内を透過して下方に向うとする。この
とき、同じ厚さの屈折層でも入射角θが大きいと層の厚
さが大きくなったと同じ結果になり、放射点における光
の位相がずれる。そこで、入射角θに起因する干渉の位
相のずれδを求めると次の式で表わされる。
As a result of various researches by the inventor of the present invention, as described above, a ring of colored light appears in the irradiation light from the light source with a reflecting mirror because the incident angle of the light from the light source is different. I reached the conclusion. In the figure, A is a light source, B is a refraction layer formed on a base member opposite to the light source A, the refraction layer B has a thickness of dmm and a refraction index of n. And the light source A
From the three light beams R1, R2, and R3 respectively enter at incident angles θ1 (0 degree), θ2 (small), and θ3 (large), pass through the inside of the refraction layer B, and are directed downward. At this time, if the incident angle θ is large, the same result will be obtained as the thickness of the layer is increased, even if the refractive layers have the same thickness, and the phase of the light at the emission point is shifted. Therefore, when the phase shift δ of the interference caused by the incident angle θ is obtained, it is expressed by the following equation.

【0016】δ=4πnd(cosθ)/λ ここでλ
は光の波長を示す。すなわち、入射角θが大きくなると
干渉の位相は短波長側にずれる。
Δ = 4πnd (cos θ) / λ where λ
Indicates the wavelength of light. That is, when the incident angle θ increases, the phase of interference shifts to the short wavelength side.

【0017】したがって、入射角θによる位相のずれを
なくするためには層の厚さdを変えてdcosθが一定
になるようにすればよい。換言すれば、光干渉膜におい
て入射角による位相のずれをなくするには高屈折率層お
よび低屈折率層の両方ともdcosθが一定になるよう
入射角θに対応して層の厚さdを変化させればよい。
Therefore, in order to eliminate the phase shift due to the incident angle θ, the layer thickness d may be changed so that dcos θ becomes constant. In other words, in order to eliminate the phase shift due to the incident angle in the optical interference film, the thickness d of the layer is set corresponding to the incident angle θ so that dcos θ is constant in both the high refractive index layer and the low refractive index layer. You can change it.

【0018】そして、図5に示すように光干渉膜Iが形
成された反射鏡(図示しない)が放物面をなし、その焦
点に光源Aが位置している場合には、光干渉膜I各部に
おける入射角θは、光干渉膜Iの縁に近ずくほど大きく
なるので、dcosθができるだけ一定になるよう、縁
に近ずくほど各層の厚さを大きくすればよい。
As shown in FIG. 5, when the reflecting mirror (not shown) on which the light interference film I is formed has a parabolic surface and the light source A is located at the focal point, the light interference film I is formed. Since the incident angle θ at each portion becomes larger as it approaches the edge of the optical interference film I, the thickness of each layer may be increased as it approaches the edge so that dcos θ becomes as constant as possible.

【0019】さらに、反射鏡(図示しない。)の曲面に
沿って形成された光干渉膜Iがだ円面や双曲面の場合に
もほぼ同様である。
Further, substantially the same is true when the optical interference film I formed along the curved surface of the reflecting mirror (not shown) is an elliptical surface or a hyperboloidal surface.

【0020】ただし、上述の理論は近似的なもので、実
際には入射角θが変わると屈折層の見掛け上の屈折率が
変わるので、完全に補正することはできないが、実用上
支障ない程度に補正することは容易である。
However, the above theory is approximate, and since the apparent refractive index of the refraction layer actually changes when the incident angle θ changes, it cannot be completely corrected, but there is no problem in practical use. It is easy to correct.

【0021】このような光干渉膜を形成する方法は種々
考えられるが、その若干の例を図6および図7を参照し
て説明する。図6は、光干渉膜の形成方法を示す説明
図、図7は、同じく他の形成方法を示す説明図である。
Various methods of forming such an optical interference film can be considered, but some examples will be described with reference to FIGS. 6 and 7. FIG. 6 is an explanatory diagram showing a method for forming the optical interference film, and FIG. 7 is an explanatory diagram showing another method for forming the same.

【0022】図6に示すように、透明基体P1上に蒸発
器Eを対設し、基体P1の背面からヒータHの熱を反射
鏡Mで照射して中心部ほど高温になるようにして真空蒸
着すれば周辺に近ずくほど厚い屈折層Bが得られる。こ
のようにして、例えば酸化チタンからなる高屈折率層と
シリカからなる低屈折率層とを15〜20層交互重層す
ればよい。なお、図では平板状の透明基体P1が示され
ているが、もちろん曲面状であっても周辺に近ずくほど
厚い屈折層Bが形成される。
As shown in FIG. 6, an evaporator E is provided on the transparent substrate P1 so that the heat of the heater H is radiated from the rear surface of the substrate P1 by the reflecting mirror M so that the temperature becomes higher in the central portion and a vacuum is generated. By vapor deposition, a thicker refraction layer B can be obtained as it gets closer to the periphery. In this manner, for example, 15 to 20 high refractive index layers made of titanium oxide and 15 to 20 low refractive index layers made of silica may be alternately laminated. Although the plate-shaped transparent substrate P1 is shown in the figure, the curved refraction layer B is formed closer to the periphery even if it is curved.

【0023】また、図7に示すように、内面が回転放物
面をなし背部にランプ配設孔例えばランプ取付け孔Qを
有するわん形基体P2の開口縁を有機金属化合物溶液L
に浸し、ランプ取付け孔Qに吸い口Tを付して排気して
液Lを取付け孔Q近傍まで上昇させ、ついで、吸い口T
から管理された速度で気体を導入して所望の速度で液L
の面を低下させる。この気体の導入速度を制御すること
によって基体P2内面の塗膜の厚さを所望のとおり開口
縁に近ずくほど厚くなるように制御できる。そして、こ
のようにして得られた塗膜を焼成すれば金属酸化物から
なり所望の厚さ分布を有する屈折層が得られる。このよ
うにして、たとえば酸化チタンからなる高屈折率層とシ
リカからなる低屈折率層とを所望により9〜15層交互
重層すればよい。
Further, as shown in FIG. 7, the inner edge of the trapezoidal substrate P2 having a rotation parabolic surface and a lamp mounting hole Q, for example, a lamp mounting hole Q in the back, is provided at the opening edge of the organometallic compound solution L.
The lamp mounting hole Q with a suction port T to exhaust the liquid L to the vicinity of the mounting hole Q and then to the suction port T.
The gas is introduced at a controlled rate from the
Reduce the aspect of. By controlling the introduction rate of this gas, the thickness of the coating film on the inner surface of the substrate P2 can be controlled so that it becomes thicker as it approaches the opening edge as desired. Then, by baking the coating film thus obtained, a refraction layer made of a metal oxide and having a desired thickness distribution can be obtained. In this way, for example, a high refractive index layer made of titanium oxide and a low refractive index layer made of silica may be alternately laminated in an amount of 9 to 15 layers.

【0024】つぎに、本実施の形態において光干渉膜4
の入射角による分光反射率の変化を譲査した。この結果
を図3に示す。図3は、同じく光学特性を示すグラフで
あり、図は横軸に波長をnmの単位でとり、縦軸に反射
率を相対値でとったもので、実線は入射角0度、鎖線は
入射角46度および破線は入射角57.4度の部位にお
ける分光反射率をそれぞれ示す。
Next, in the present embodiment, the optical interference film 4
The change in spectral reflectance depending on the incident angle of was investigated. The result is shown in FIG. FIG. 3 is also a graph showing optical characteristics, in which the horizontal axis represents wavelength in nm and the vertical axis represents reflectance as a relative value. The solid line indicates an incident angle of 0 degrees and the chain line indicates incident light. The angle of 46 degrees and the broken line indicate the spectral reflectance at the site where the incident angle is 57.4 degrees.

【0025】また、図8は、従来例の光学特性を示すグ
ラフである。これは、本実施の形態と同様の光干渉膜お
いて、各屈折率層がいずれも面一様な厚さに構成されて
いるものであり、上述したと同様に入射角0度、46度
および57.4度の部位における分光反射率をとった。
これらグラフから明らかなとおり、本実施の形態の光干
渉膜4は可視光の透過波長域および赤外線の透過波長域
が入射角の異なる部位においても極めて近似している。
FIG. 8 is a graph showing the optical characteristics of the conventional example. This is because in the same optical interference film as in the present embodiment, each refractive index layer is formed to have a uniform surface thickness, and the incident angles are 0 ° and 46 ° as described above. And the spectral reflectance at the site of 57.4 degrees were taken.
As is clear from these graphs, the optical interference film 4 of the present embodiment is very similar even in a region where the visible light transmission wavelength range and the infrared transmission wavelength range differ in incident angle.

【0026】つぎに、本実施の形態の反射鏡付光源およ
び従来例のランプ特性を比較した。この結果を次に示
す。本実施の形態では、光束比、中心光度比および熱線
カット率がそれぞれ135%、138%および79%で
あるのに対し、従来例では100%、100%および8
2%となった。
Next, the characteristics of the light source with a reflecting mirror of this embodiment and the lamp characteristics of the conventional example were compared. The results are shown below. In the present embodiment, the luminous flux ratio, the central luminous intensity ratio, and the heat ray cut rate are 135%, 138%, and 79%, respectively, whereas in the conventional example, 100%, 100%, and 8%.
It became 2%.

【0027】これらも明らかなとおり、本実施の形態の
反射鏡付光源は従来例に比較して格段に明るくなり、か
つ熱線カット率がほとんど低下していないものである。
As is apparent from the above, the light source with a reflecting mirror according to the present embodiment is significantly brighter than the conventional example, and the heat ray cut rate is not substantially reduced.

【0028】なお、本発明において、反射基体の形状は
回転だ円面体や双曲線面体等曲面状であればよく、ま
た、反射基体は拡散透光性のものでもよい。
In the present invention, the shape of the reflecting base may be a curved surface such as a spheroid or a hyperboloid, and the reflecting base may be a diffuse translucent one.

【0029】また、光干渉膜は可視光透過赤外線反射
膜、干渉色フイルタ膜等、光の干渉を利用して特定波長
域の光を選択的に透過または反射するものであればよ
く、基体の表裏両面のうち少なくとも一方の面に形成し
てあればよい。そして、高屈折率層は酸化チタンのほか
酸化ジルコン(ZnO2)、酸化錫(SnO2)、酸化
アンチモン(SbO2)等既知のどのようなものでもよ
く、また、低屈折率層はシリカのほか、酸化マグネシウ
ム(MgO)、ふっ化カルシウム(CaF2)等既知の
どのようなものでもよい。さらに、光源は普通電球、メ
タルハライドランプあるいは蛍光ランプ等の放電ランプ
等でもよい。
Further, the light interference film may be a visible light transmitting infrared reflecting film, an interference color filter film or the like as long as it selectively transmits or reflects light in a specific wavelength range by utilizing the interference of light. It may be formed on at least one of the front and back surfaces. Further, the high refractive index layer may be any known one such as zircon oxide (ZnO2), tin oxide (SnO2), antimony oxide (SbO2) in addition to titanium oxide, and the low refractive index layer may be oxidized in addition to silica in addition to silica. Any known material such as magnesium (MgO) or calcium fluoride (CaF2) may be used. Further, the light source may be an ordinary light bulb, a metal halide lamp, a discharge lamp such as a fluorescent lamp, or the like.

【0030】[0030]

【発明の効果】本発明では、光源が曲面状基体に光学的
に対向するとともに、この基体のほぼ軸上に配設され、
光干渉膜が曲面状基体の表面に高屈折率層および低屈折
率層を交互にかつ光源からの光の入射角が大きくなるに
したがって膜厚が厚くなるように構成されているので、
光干渉膜の全面において透過または反射する波長域が一
様になり、かつその反射率または透過率も一様になり、
色筋、色縞、明暗縞等の発生を抑制することができる。
According to the present invention, the light source optically opposes the curved substrate and is disposed substantially on the axis of the substrate.
Since the optical interference film is configured such that high refractive index layers and low refractive index layers are alternately formed on the surface of the curved substrate and the film thickness increases as the incident angle of light from the light source increases.
The wavelength range that is transmitted or reflected is uniform over the entire surface of the optical interference film, and its reflectance or transmittance is also uniform,
Generation of color streaks, color stripes, bright and dark stripes, etc. can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の一実施の形態を示す反射鏡付
光源の一部切り欠き断面図。
FIG. 1 is a partially cutaway cross-sectional view of a light source with a reflecting mirror showing an embodiment of the present invention.

【図2】図2は、同じく要部の拡大断面図。FIG. 2 is an enlarged cross-sectional view of a main part of the same.

【図3】図3は、同じく光学特性を示すグラフ。FIG. 3 is a graph similarly showing optical characteristics.

【図4】図4は、本発明の理論的な説明のための模式
図。
FIG. 4 is a schematic diagram for theoretical explanation of the present invention.

【図5】図5は、同じく入射角の変化を示す説明図。FIG. 5 is an explanatory view similarly showing a change in incident angle.

【図6】図6は、光干渉膜の形成方法を示す説明図。FIG. 6 is an explanatory view showing a method for forming an optical interference film.

【図7】図7は、同じく他の形成方法を示す説明図。FIG. 7 is an explanatory view showing another forming method similarly.

【図8】図8は、従来例の光学特性を示すグラフ。FIG. 8 is a graph showing optical characteristics of a conventional example.

【符号の説明】[Explanation of symbols]

1…光源 2…口金 3…曲面状基体 4…光干渉膜 1 ... Light source 2 ... Base 3 ... Curved substrate 4 ... Optical interference film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】背部に形成されたランプ配設孔を有する曲
面状基体と;曲面状基体に光学的に対向するとともに、
この基体のほぼ軸上に配設された光源と;曲面状基体の
表面に高屈折率層および低屈折率層を交互にかつ光源か
らの光の入射角が大きくなるにしたがって膜厚が厚くな
るように構成された光干渉膜と;光源に直接または間接
的に設けられた口金と;を具備していることを特徴とす
る反射鏡付光源。
1. A curved base having a lamp mounting hole formed in the back thereof; and being optically opposed to the curved base,
A light source disposed substantially on the axis of this substrate; high refractive index layers and low refractive index layers are alternately formed on the surface of the curved substrate, and the film thickness increases as the incident angle of light from the light source increases. A light source with a reflecting mirror, comprising: a light interference film configured as described above; and a base provided directly or indirectly on the light source.
JP8112693A 1996-05-07 1996-05-07 Light source with reflector Pending JPH08273415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8112693A JPH08273415A (en) 1996-05-07 1996-05-07 Light source with reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8112693A JPH08273415A (en) 1996-05-07 1996-05-07 Light source with reflector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60242995A Division JPH0743444B2 (en) 1985-10-31 1985-10-31 Light source

Publications (1)

Publication Number Publication Date
JPH08273415A true JPH08273415A (en) 1996-10-18

Family

ID=14593129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8112693A Pending JPH08273415A (en) 1996-05-07 1996-05-07 Light source with reflector

Country Status (1)

Country Link
JP (1) JPH08273415A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238509A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Lighting apparatus
JP2011203359A (en) * 2010-03-24 2011-10-13 Stanley Electric Co Ltd Reflector using dielectric layer and method for producing the same
CN102713696A (en) * 2009-11-30 2012-10-03 通用电气公司 Oxide multilayers for high temperature applications and lamps

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140873A (en) * 1978-04-24 1979-11-01 Nec Corp Manufacture of semiconductor device
JPS59177850A (en) * 1983-03-29 1984-10-08 Matsushita Electronics Corp Tungsten halogen lamp with dichroic mirror
JPS62103602A (en) * 1985-10-31 1987-05-14 Toshiba Corp Optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140873A (en) * 1978-04-24 1979-11-01 Nec Corp Manufacture of semiconductor device
JPS59177850A (en) * 1983-03-29 1984-10-08 Matsushita Electronics Corp Tungsten halogen lamp with dichroic mirror
JPS62103602A (en) * 1985-10-31 1987-05-14 Toshiba Corp Optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238509A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Lighting apparatus
CN102713696A (en) * 2009-11-30 2012-10-03 通用电气公司 Oxide multilayers for high temperature applications and lamps
JP2011203359A (en) * 2010-03-24 2011-10-13 Stanley Electric Co Ltd Reflector using dielectric layer and method for producing the same

Similar Documents

Publication Publication Date Title
US5143445A (en) Glass reflectors lpcvd coated with optical interference film
EP0883889B1 (en) Novel daylight lamp
GB2103830A (en) Optical tantalum pentoxide coatings for high temperature applications
JPH0439854A (en) Lighting device
US6441541B1 (en) Optical interference coatings and lamps using same
EP0756131A1 (en) Vehicle lighting device
JPH0743444B2 (en) Light source
JPH08273415A (en) Light source with reflector
US3528725A (en) Color temperature correction light transmitting filter
JPH0458145B2 (en)
JPH11178839A (en) Medical treatment lighting system
JP2842721B2 (en) Neodymium color floodlight multilayer reflector
JP2005266211A (en) Multilayer film reflecting mirror
JPH0521043A (en) Lighting device
JP2870100B2 (en) Light bulb with reflector for general lighting
JP3054663B2 (en) Multilayer reflector
JPH0282403A (en) Luminaire
JPH09259837A (en) Tungsten halogen lamp
JP3054664B2 (en) Multilayer reflector
JPH08292320A (en) Cold mirror
JPH0622824Y2 (en) LCD projector device
JPH02288003A (en) Lighting apparatus
JP2550709B2 (en) Lighting equipment
JPH01250904A (en) Light interference reflecting mirror
EP0361674A1 (en) Light source