JP2005266211A - Multilayer film reflecting mirror - Google Patents

Multilayer film reflecting mirror Download PDF

Info

Publication number
JP2005266211A
JP2005266211A JP2004077619A JP2004077619A JP2005266211A JP 2005266211 A JP2005266211 A JP 2005266211A JP 2004077619 A JP2004077619 A JP 2004077619A JP 2004077619 A JP2004077619 A JP 2004077619A JP 2005266211 A JP2005266211 A JP 2005266211A
Authority
JP
Japan
Prior art keywords
layers
layer
refractive index
film
index thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004077619A
Other languages
Japanese (ja)
Inventor
Ken Toida
憲 戸井田
Kazuto Nozawa
和人 野沢
Minoru Omoto
稔 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIBASON CO Ltd
Original Assignee
SIBASON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIBASON CO Ltd filed Critical SIBASON CO Ltd
Priority to JP2004077619A priority Critical patent/JP2005266211A/en
Publication of JP2005266211A publication Critical patent/JP2005266211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer film reflecting mirror, capable of providing the high reflectance of visible light and the high illuminance of reflected light by layering a small number of reflecting films. <P>SOLUTION: The multilayer film reflection mirror is constituted by forming, as metallic Si layers having a high refractive index, a plurality of high refractive index thin-film layers out of a multilayer reflection film formed by alternately layering the high refractive index thin-film layers and low-refractive index thin-film layers. For example, by forming the plurality of high-refractive index thin-film layers, existing from the 1st layer to the 8th layer of the multilayer reflection film as the metallic Si layers and the plurality of low-refractive index thin-film layers existing there as SiO<SB>2</SB>layers, high reflectance is obtained by the large difference in the refractive index between them. However, the Si layer has high absorption factor of the visible light. Then, for example, a TiO<SB>2</SB>layer as the high-refractive index thin-film layer and the SiO<SB>2</SB>layer as the low-refractive index thin-film layer are layered alternately and properly as an upper layer than the Si layer, so that the absorption of the visible light by the Si layer is reduced to such an extent that it can be neglected; and the high reflectance of the visible light and the high illuminance of the reflected light are obtained by a small number of layers as a whole. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、可視光を反射し、赤外線を透過させるコールドミラーのような特定波長の光を反射させる反射鏡であって、反射基材面に成膜された多層の反射膜のうち複数の高屈折率薄膜層を金属Siで形成した多層膜反射鏡に関する。   The present invention is a reflecting mirror that reflects light of a specific wavelength, such as a cold mirror that reflects visible light and transmits infrared rays, and includes a plurality of reflective films formed on a reflective substrate surface. The present invention relates to a multilayer film reflecting mirror in which a refractive index thin film layer is formed of metal Si.

ガラスのような反射基材の表面に高屈折率薄膜層と低屈折率薄膜層とを交互に積層して多層反射膜を設けたコールドミラーが公知である(例えば特許文献1参照)。また、例えば、プロジェクター等の照明器具のリフレクターとして用いられるコールドミラーとして、図6に示すように、ガラス基材B上に、高屈折率薄膜層としてのTiO2層と、低屈折率薄膜層としてのSiO2層とを交互にn層(図6では36層)重ねた多層膜51を有するものが知られている。
このようなコールドミラーは、ガラス基材面上に多数の屈折率の異なる薄膜を形成しなければならないので、製作に多くの手数と時間を要する難点があり、これを減じてコストの低減を図る要請がある。また、市場では、わずかでも高い照度のリフレクターが求められている。
特開平8−292320号公報
A cold mirror is known in which a multilayer reflective film is provided by alternately laminating a high refractive index thin film layer and a low refractive index thin film layer on the surface of a reflective substrate such as glass (see, for example, Patent Document 1). Further, for example, as a cold mirror used as a reflector of a lighting fixture such as a projector, as shown in FIG. 6, a TiO 2 layer as a high refractive index thin film layer and a low refractive index thin film layer on a glass substrate B It is known to have a multilayer film 51 in which n layers (36 layers in FIG. 6) are alternately stacked with SiO 2 layers.
Since such a cold mirror has to form a large number of thin films with different refractive indexes on the surface of the glass substrate, there are disadvantages that require a lot of work and time to manufacture, thereby reducing the cost. There is a request. In addition, there is a demand for reflectors with a high illuminance even in the market.
JP-A-8-292320

この発明は、上記従来のコールドミラーのような多層膜反射鏡における問題点に鑑みてなされたもので、比較的少数の反射膜の積層により、高い可視光反射率と反射光照度が得られる多層膜反射鏡を提供することを課題としている。   The present invention has been made in view of the problems in the multilayer reflector such as the above-mentioned conventional cold mirror, and can provide a high visible light reflectance and reflected light illuminance by laminating a relatively small number of reflective films. The problem is to provide a reflector.

この発明においては、上記課題を解決するため、高屈折率薄膜層と低屈折率薄膜層とを交互に積層して形成された多層反射膜のうちの複数の高屈折率薄膜層を金属Si層として多層膜反射鏡を構成する。
例えば、多層反射膜の第1層から第8層のうちの複数の高屈折率薄膜層を金属Si層とし、低屈折率薄膜層をSiO2層のような公知の低屈折率材層とすることができる。
また、例えば、多層反射膜の第1層から第8層のうちの複数の高屈折率薄膜層を金属Si層とし、低屈折率薄膜層をSiO2層とし、第9層以降の低屈折率薄膜層をSiO2層とし、高屈折率薄膜層をTiO2層とすることができる。
In the present invention, in order to solve the above problems, a plurality of high refractive index thin film layers of a multilayer reflective film formed by alternately laminating high refractive index thin film layers and low refractive index thin film layers are formed as metal Si layers. As shown in FIG.
For example, a plurality of high refractive index thin film layers of the first to eighth layers of the multilayer reflective film are metal Si layers, and the low refractive index thin film layer is a known low refractive index material layer such as a SiO 2 layer. be able to.
Further, for example, a plurality of high refractive index thin film layers among the first to eighth layers of the multilayer reflective film are metal Si layers, a low refractive index thin film layer is an SiO 2 layer, and a low refractive index after the ninth layer. The thin film layer can be an SiO 2 layer, and the high refractive index thin film layer can be a TiO 2 layer.

この発明においては、多層反射膜のうちの複数の高屈折率薄膜層を金属Si層としたため、組み合わされる低屈折率薄膜層との間の大きな屈折率の差により、同等の可視光反射率、反射光照度で、多層反射膜の層数を従来の多層膜反射鏡に比して大幅に減じることができる。   In the present invention, since the plurality of high-refractive-index thin film layers of the multilayer reflective film are metal Si layers, the same visible light reflectivity due to the large refractive index difference between the combined low-refractive-index thin film layers, With the reflected light illuminance, the number of layers of the multilayer reflective film can be greatly reduced as compared with the conventional multilayer mirror.

図面を参照してこの発明の実施の形態を説明する。図1は本発明の実施例を示すコールドミラーの概略的断面図、図2は他の実施例を示すコールドミラーの概略的断面図である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a cold mirror showing an embodiment of the present invention, and FIG. 2 is a schematic sectional view of a cold mirror showing another embodiment.

図1において、ガラス基材B上に、蒸着法又はスパッタリング法で多層反射膜31が形成されている。多層反射膜31は28層の反射膜層からなり、その第1,3,5,7層として金属Si層が形成され、第2,4,6,8層としてSiO2層が形成され、さらに、第9層から第28層まで、TiO2層とSiO2層が交互に形成される。 In FIG. 1, a multilayer reflective film 31 is formed on a glass substrate B by vapor deposition or sputtering. The multilayer reflective film 31 is composed of 28 reflective film layers, a metal Si layer is formed as the first, third, fifth and seventh layers, a SiO 2 layer is formed as the second , fourth, sixth and eighth layers, From the ninth layer to the 28th layer, TiO 2 layers and SiO 2 layers are alternately formed.

このように形成されたコールドミラーの反射率(分光反射特性)と、図6に示すように36層の多層反射膜51を形成(TiO2層とSiO2層を交互形成)した従来のコールドミラーの反射率との比較を図4に示す。これによれば、多層反射膜が28層の上記実施形態のコールドミラーは、多層反射膜が36層の従来のコールドミラーと可視光域においてほぼ同等の反射率を有することがわかる。 The conventional cold mirror in which the reflectance (spectral reflection characteristic) of the cold mirror formed in this way and the 36-layer multilayer reflective film 51 (alternately formed TiO 2 layer and SiO 2 layer) are formed as shown in FIG. A comparison with the reflectance is shown in FIG. According to this, it can be seen that the cold mirror of the above embodiment having 28 multilayer reflective films has substantially the same reflectance in the visible light region as the conventional cold mirror having 36 multilayer reflective films.

また、図5に示すように、分光光度計の大型試料室1内に、150Wのハロゲンスポットランプ2、試料3、照度計センサ4を定位置に設け、ハロゲンスポットランプ2から試料3に照射された入射光の反射光を照度計センサ4に受けて3種の試料の照度比較を行った結果を下表に示す。ここで、試料No.1「Si系24層」は、第1,3,5,7層としてSi層、第2,4,6,8層としてSiO2層、第9層から第24層まで、TiO2層とSiO2層が交互積層された平面ガラス基板、試料No.2「Si系28層」は、第1,3,5,7層としてSi層、第2,4,6,8層としてSiO2層、第9層から第28層まで、TiO2層とSiO2層が交互積層された平面ガラス基板、試料No.3「TiO2系40層」は、TiO2層とSiO2層が交互に40層積層された従来型の平面ガラス基板である。

Figure 2005266211
Further, as shown in FIG. 5, a 150 W halogen spot lamp 2, a sample 3, and an illuminometer sensor 4 are provided at fixed positions in the large sample chamber 1 of the spectrophotometer, and the sample 3 is irradiated from the halogen spot lamp 2. The table below shows the results of comparing the illuminance of the three samples by receiving the reflected light of the incident light on the illuminometer sensor 4. Here, sample No. 1 “Si-based 24 layers” is composed of Si layers as the first, third, fifth and seventh layers, SiO2 layers as the second, fourth, sixth and eighth layers, from the ninth layer to the twenty-fourth layer, A flat glass substrate in which TiO 2 layers and SiO 2 layers are alternately laminated, sample No. 2 “Si-based 28 layers” has Si layers, 2, 4, 6, and 8 layers as first, third, fifth, and seventh layers. As a SiO 2 layer, a flat glass substrate in which a TiO 2 layer and a SiO 2 layer are alternately laminated from the ninth layer to the 28th layer, sample No. 3 “TiO 2 system 40 layer” is a TiO 2 layer and a SiO 2 layer. Is a conventional flat glass substrate in which 40 layers are alternately laminated.
Figure 2005266211

試料No.1〜3は、波長450nm〜720nm(可視光域)における平均反射率においてほぼ同等である。試料No.1「Si系24層」は、試料No.3「TiO2系40層」より照度が低い(実験の結果、これは、「TiO2系34〜36層」の照度に当たることがわかった。)。しかし、試料No.2「Si系28層」では、試料No.3「TiO2系40層」より照度が高いことがわかる。すなわち、第1,3,5,7をSi層とする「Si系」多層反射膜では、より少ない膜層数で、従来の「TiO2系」多層反射膜より高い反射光の照度(約1.02倍)が得られることが確認された。分光光度計のグレーティングされた微弱な光における分光反射特性が同等であっても、ハロゲンランプの強い光では、反射光の照度に差が生じる。 Samples Nos. 1 to 3 have almost the same average reflectance in a wavelength of 450 nm to 720 nm (visible light region). Sample No. 1 “Si type 24 layer” has lower illuminance than Sample No. 3 “TiO 2 type 40 layer” (experimental results show that this corresponds to the illuminance of “TiO 2 type 34 to 36 layer”) .) However, it can be seen that Sample No. 2 “Si 28-layer” has higher illuminance than Sample No. 3 “TiO 2 40-layer”. That is, in the “Si-based” multilayer reflective film having the first, third, fifth, and seventh Si layers, the illuminance of reflected light (approximately 1.02) is higher than that of the conventional “TiO 2 -based” multilayer reflective film with a smaller number of film layers. Times) was confirmed. Even if the spectral reflection characteristics of the weak light that is grating of the spectrophotometer are equal, the illuminance of the reflected light is different in the strong light of the halogen lamp.

図2に示す実施形態おいては、ガラス基材B上に、蒸着法又はスパッタリング法で多層反射膜41が形成されている。多層反射膜41は28層の反射膜層からなり、その第1層としてTiO2層、第2,4,6,8,10層としてSiO2層、第3,5,7,9層としてSi層が形成され、さらに、第11層から第28層まで、TiO2層とSiO2層とが交互に形成される。 In the embodiment shown in FIG. 2, the multilayer reflective film 41 is formed on the glass substrate B by vapor deposition or sputtering. The multilayer reflective film 41 is composed of 28 reflective film layers, the first layer of which is a TiO 2 layer, the second , fourth, sixth, eighth and tenth layers are SiO 2 layers, and the third, fifth, seventh and ninth layers are Si layers. Further, a TiO 2 layer and a SiO 2 layer are alternately formed from the 11th layer to the 28th layer.

このように形成されたコールドミラーの反射率も図1に示す実施形態のコールドミラーとほぼ同等であった。   The reflectance of the cold mirror formed in this way was also almost equivalent to the cold mirror of the embodiment shown in FIG.

コールドミラーの多層反射膜は、一般に、高屈折率材料層(例えばTiO2層)と低屈折率材料層(例えばSiO2層)を交互に数十層程度、ガラス基板等の基板表面に堆積することにより作られ、可視光線を反射し、赤外線を透過する特性を持つ。屈折率の差が大きい層の組み合わせ程、反射率が向上し、反射膜の層数を減じることができる。 In general, a multilayer reflective film of a cold mirror is formed by depositing a high refractive index material layer (for example, TiO 2 layer) and a low refractive index material layer (for example, SiO 2 layer) alternately on the surface of a substrate such as a glass substrate. And has the property of reflecting visible light and transmitting infrared light. The combination of layers having a large difference in refractive index improves the reflectivity and can reduce the number of layers of the reflective film.

Si層の屈折率は3〜3.5と、TiO2層の屈折率2.3〜2.4より大きいので、屈折率の小さいSiO2層との組み合わせでより大きな反射率を得られることになるが、Si層は可視光線を吸収する難点がある。 Since the refractive index of the Si layer is 3 to 3.5, which is larger than the refractive index of the TiO 2 layer 2.3 to 2.4, it is possible to obtain a larger reflectance in combination with the SiO 2 layer having a small refractive index. However, the Si layer has a difficulty in absorbing visible light.

金属Si層を蒸着法、スパッタリング法により、基材上に吸収膜になるように成膜すると、可視光線は吸収するが、赤外線はほとんど吸収しない。従って、図3に示すように、Si膜は、赤外域の光をほとんど透過させる性質を持つ。この特性は、高屈折率材料としてのTiO2とほぼ同等である。可視光線については、フィルタのように透過目的で使用する場合には吸収を無視できないが、反射鏡として使用する場合には、上記実施形態のように、その上層に吸収の少ないTiO2,SiO2等の交互層を形成し、これにより大部分の可視光を反射してしまえば、Si膜による吸収の影響を無視できる程度に軽減でき、全体として高い反射率を得ることができる。 When a metal Si layer is formed on the substrate to form an absorption film by vapor deposition or sputtering, visible light is absorbed, but infrared is hardly absorbed. Therefore, as shown in FIG. 3, the Si film has a property of transmitting almost infrared light. This characteristic is almost equivalent to TiO 2 as a high refractive index material. Visible light cannot be ignored when used for transmission purposes like a filter, but when used as a reflecting mirror, TiO 2 and SiO 2 that absorb less in the upper layer as in the above embodiment. If the alternating layers such as these are formed and most of the visible light is reflected thereby, the influence of absorption by the Si film can be reduced to a negligible level, and a high reflectance as a whole can be obtained.

すなわち、図3において、Si単層膜のミラーでは、例えば600nmの波長で、約9%の吸収があるが、図4において、Si層を4層形成したコールドミラーでは、上層の影響で、600nmの波長において、95%以上の反射率を有する。Si膜の屈折率は600nm波長に対して3.5程度であるが、上記実施形態の反射膜構成では、Si膜の長所である高屈折率を利用し、短所である吸収を軽減している。   That is, in FIG. 3, the Si single layer mirror has an absorption of about 9% at a wavelength of 600 nm, for example, but in FIG. 4, the cold mirror having four Si layers formed has an effect of 600 nm on the upper layer. And having a reflectance of 95% or more at the above wavelength. Although the refractive index of the Si film is about 3.5 with respect to the wavelength of 600 nm, the reflection film configuration of the above embodiment uses the high refractive index that is an advantage of the Si film and reduces the absorption that is a disadvantage. .

なお、上層に形成されるTiO2層とSiO2層との交互積層の組み合わせは、これに限定されるものではなく、他の公知の各種の高屈折率材料と低屈折率材料の組み合わせに代えることができる。 It should be noted that the combination of alternately laminated TiO 2 layers and SiO 2 layers formed in the upper layer is not limited to this, and is replaced with other known combinations of various high refractive index materials and low refractive index materials. be able to.

この発明は、例えばプロジェクター用照明器具のリフレクターとして使用するのに適したコールドミラーを提供する。   The present invention provides a cold mirror suitable for use as, for example, a reflector of a projector lighting fixture.

本発明の実施例を示すコールドミラーの概略的断面図である。It is a schematic sectional drawing of the cold mirror which shows the Example of this invention. 他の実施例を示すコールドミラーの概略的断面図である。It is a schematic sectional drawing of the cold mirror which shows another Example. Si単層膜の光吸収率分光特性を示すグラフである。It is a graph which shows the optical absorptivity spectral characteristic of Si single layer film. 実施例と従来例との反射率の比較を示すグラフである。It is a graph which shows the comparison of the reflectance of an Example and a prior art example. 実施例と従来例との反射光照度の比較試験の方法を示す説明図である。It is explanatory drawing which shows the method of the comparative test of the reflected light illumination intensity of an Example and a prior art example. 従来のコールドミラーの概略的断面図である。It is a schematic sectional drawing of the conventional cold mirror.

符号の説明Explanation of symbols

31,41 多層反射膜
B 反射基材
31, 41 Multilayer reflective film B Reflective substrate

Claims (4)

反射基材面に高屈折率薄膜層と低屈折率薄膜層とを交互に積層して多層反射膜を設けた反射鏡であって、複数の前記高屈折率薄膜層が金属Si層であることを特徴とする多層膜反射鏡。   A reflecting mirror in which a high-refractive-index thin film layer and a low-refractive-index thin-film layer are alternately laminated on a reflective substrate surface to provide a multilayer reflective film, and the plurality of high-refractive-index thin film layers are metal Si layers A multilayer film reflector characterized by. 前記多層反射膜の第1層から第8層のうちの複数の高屈折率薄膜層が金属Si層であり、第9層以降が他の高屈折率薄膜層と低屈折率薄膜層との交互積層であることを特徴とする請求項1に記載の多層膜反射鏡。   The plurality of high-refractive-index thin film layers among the first to eighth layers of the multilayer reflective film are metal Si layers, and the ninth and subsequent layers are alternating with other high-refractive-index thin film layers and low-refractive-index thin film layers. The multilayer reflector according to claim 1, wherein the multilayer reflector is a laminate. 前記多層反射膜の第1層から第8層のうちの複数の高屈折率薄膜層が金属Si層であり、低屈折率薄膜層がSiO2層であることを特徴とする請求項1又は2に記載の多層膜反射鏡。 The plurality of high refractive index thin film layers of the first to eighth layers of the multilayer reflective film are metal Si layers, and the low refractive index thin film layers are SiO 2 layers. 2. A multilayer film reflector according to 1. 前記多層反射膜の第1層から第8層のうちの複数の高屈折率薄膜層が金属Si層であり、低屈折率薄膜層がSiO2層であり、第9層以降の低屈折率薄膜層がSiO2層であり、高屈折率薄膜層がTiO2層であることを特徴とする請求項1又は2に記載の多層膜反射鏡。 The plurality of high refractive index thin film layers among the first to eighth layers of the multilayer reflective film are metal Si layers, the low refractive index thin film layers are SiO 2 layers, and the low refractive index thin films after the ninth layer. 3. The multilayer film reflector according to claim 1, wherein the layer is a SiO 2 layer, and the high refractive index thin film layer is a TiO 2 layer.
JP2004077619A 2004-03-18 2004-03-18 Multilayer film reflecting mirror Pending JP2005266211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077619A JP2005266211A (en) 2004-03-18 2004-03-18 Multilayer film reflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077619A JP2005266211A (en) 2004-03-18 2004-03-18 Multilayer film reflecting mirror

Publications (1)

Publication Number Publication Date
JP2005266211A true JP2005266211A (en) 2005-09-29

Family

ID=35090833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077619A Pending JP2005266211A (en) 2004-03-18 2004-03-18 Multilayer film reflecting mirror

Country Status (1)

Country Link
JP (1) JP2005266211A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133325A (en) * 2005-11-14 2007-05-31 Fujinon Sano Kk Reflection mirror and optical pickup
JP2007279534A (en) * 2006-04-11 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> Optical element
JP2009156954A (en) * 2007-12-25 2009-07-16 Nippon Electric Glass Co Ltd Wavelength separation film, and optical communication filter using the same
JP2011166146A (en) * 2010-02-12 2011-08-25 Seoul Opto Devices Co Ltd Light-emitting diode chip having distributed bragg reflector and method of fabricating the same
JP2013250318A (en) * 2012-05-30 2013-12-12 Nidek Co Ltd Multilayer film filter and method for manufacturing multilayer film filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133325A (en) * 2005-11-14 2007-05-31 Fujinon Sano Kk Reflection mirror and optical pickup
JP2007279534A (en) * 2006-04-11 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> Optical element
JP2009156954A (en) * 2007-12-25 2009-07-16 Nippon Electric Glass Co Ltd Wavelength separation film, and optical communication filter using the same
JP2011166146A (en) * 2010-02-12 2011-08-25 Seoul Opto Devices Co Ltd Light-emitting diode chip having distributed bragg reflector and method of fabricating the same
JP2013250318A (en) * 2012-05-30 2013-12-12 Nidek Co Ltd Multilayer film filter and method for manufacturing multilayer film filter

Similar Documents

Publication Publication Date Title
US7349151B2 (en) IR absorbing reflector
JP5279428B2 (en) Wide area heat ray cut filter
JP2000314807A (en) Visible light shielding and infrared ray transmitting filter
JP2005266211A (en) Multilayer film reflecting mirror
JP2006259124A (en) Cold mirror
JP3864677B2 (en) Illumination device and color rendering improvement filter
JPH05127004A (en) Reflecting mirror
JPH05241017A (en) Optical interference multilayered film having yellow filter function
JP3031625B2 (en) Heat ray absorbing reflector
JP2842721B2 (en) Neodymium color floodlight multilayer reflector
JPH08306217A (en) Ultraviolet irradiation lamp
WO2021157738A1 (en) Optical device
JP2007003936A (en) Infrared region reflecting mirror and its manufacturing method
US20160252662A1 (en) Reflector and microscope
JPH11178839A (en) Medical treatment lighting system
JP2687243B2 (en) Multilayer optical interference film
JP2002006123A (en) Light reflecting body and reflective lighting apparatus
JP2017032737A (en) Infrared reflective mirror
JPH0784105A (en) Reflecting film
JPS6275402A (en) Projection type multilayer film reflector
JP3295026B2 (en) Infrared reflective coating and lamp using the same
JP2000260397A (en) Incandescent lamp with infrared ray reflecting film
JPH06167604A (en) Ir tranmission and visible ray reflection type mirror
JP2778784B2 (en) Multilayer reflector for light source
JP2712508B2 (en) lighting equipment