JP2687243B2 - Multilayer optical interference film - Google Patents

Multilayer optical interference film

Info

Publication number
JP2687243B2
JP2687243B2 JP1217851A JP21785189A JP2687243B2 JP 2687243 B2 JP2687243 B2 JP 2687243B2 JP 1217851 A JP1217851 A JP 1217851A JP 21785189 A JP21785189 A JP 21785189A JP 2687243 B2 JP2687243 B2 JP 2687243B2
Authority
JP
Japan
Prior art keywords
film
refractive index
visible light
reflecting
optical interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1217851A
Other languages
Japanese (ja)
Other versions
JPH0380205A (en
Inventor
正浩 大石
Original Assignee
東芝硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝硝子株式会社 filed Critical 東芝硝子株式会社
Priority to JP1217851A priority Critical patent/JP2687243B2/en
Publication of JPH0380205A publication Critical patent/JPH0380205A/en
Application granted granted Critical
Publication of JP2687243B2 publication Critical patent/JP2687243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/40Devices for influencing the colour or wavelength of the light by light filters; by coloured coatings in or on the envelope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/26Screens; Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/28Envelopes; Vessels
    • H01K1/32Envelopes; Vessels provided with coatings on the walls; Vessels or coatings thereon characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/28Envelopes; Vessels
    • H01K1/32Envelopes; Vessels provided with coatings on the walls; Vessels or coatings thereon characterised by the material thereof
    • H01K1/325Reflecting coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は多層光干渉膜において、少ない層数でも必要
な特性が得られるようにし、かつ耐久性を向上したもの
である。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention is a multilayer optical interference film in which required characteristics can be obtained even with a small number of layers and durability is improved. .

(従来の技術) たとえば、反射鏡付ハロゲン電球には、ガラス反射鏡
の反射面に可視光反射赤外線透過膜を形成し、ハロゲン
電球から放射された光のうち可視光をできるだけ多く反
射して前方に放射し、赤外線を透過して後方に放射さ
せ、これによって赤外線の少ない可視光いわゆる冷光を
投射するものが多用されている。
(Prior Art) For example, in a halogen bulb with a reflector, a visible light-reflecting infrared ray transmissive film is formed on the reflecting surface of a glass reflector, and visible light is reflected as much as possible out of the light emitted from the halogen bulb. It is often used to project visible light with less infrared light, so-called cold light, by radiating the light to the rear and transmitting the infrared light.

また、ハロゲン電球には、円筒形ガラスバルブの外面
に可視光透過赤外線反射膜を形成し、フィラメントから
放射された光のうち可視光を外界に放射し、赤外線をで
きるだけ多く反射してフィラメントに帰還させてこれを
加熱し、これによって赤外線の少ない可視光すなわち冷
光を放射し、かつ発光効率を高くしたランプが多用され
ている。
In addition, the halogen bulb has a visible light-transmitting infrared reflective film formed on the outer surface of the cylindrical glass bulb, which radiates visible light out of the light emitted from the filament to the outside world and reflects as much infrared light as possible to return to the filament. A lamp is often used in which the lamp is heated to radiate visible light with little infrared rays, that is, cold light, and has high luminous efficiency.

しかして、上述の可視光反射赤外線透過膜と可視光透
過赤外線反射膜とはいずれもガラスなどの基体面に硫化
亜鉛(ZnS)などからなる高屈折率層とふっ化マグネシ
ウム(MgF2)などからなる低屈折率層とを11〜19層交互
積層して形成されたもので、上記高屈折率層と低屈折率
層との各層の厚さを適当にすることによって光の干渉を
利用して所望の波長域の光を反射し、所望の波長域の光
を透過するもので、屈折率の比が大きいほど高い反射率
と広い反射帯域を有するものである。そこで、上述の可
視光反射赤外線透過膜と可視光透過赤外線反射膜とを総
称して多層光干渉膜と称する。
Therefore, the visible light-reflecting infrared ray transmissive film and the visible light-transmitting infrared ray transmissive film are both made of a high refractive index layer made of zinc sulfide (ZnS) or the like and magnesium fluoride (MgF 2 ) or the like on the surface of a substrate such as glass. It is formed by alternately laminating 11 to 19 layers of a low refractive index layer, which utilizes light interference by appropriately adjusting the thickness of each of the high refractive index layer and the low refractive index layer. It reflects light in a desired wavelength range and transmits light in a desired wavelength range, and has a higher reflectance and a wider reflection band as the refractive index ratio increases. Therefore, the visible light reflecting infrared ray transmitting film and the visible light transmitting infrared ray reflecting film described above are collectively referred to as a multilayer optical interference film.

このような多層光干渉膜を構成するために用いられる
物質の組合わせとその屈折率の比とを第1表に示した。
Table 1 shows combinations of substances used to form such a multilayer optical interference film and their refractive index ratios.

この第1表から、広い反射帯域を得るにはZnS-MgF2
交互積層を採用するのが有利である。
From Table 1, it is advantageous to employ alternating stacking of ZnS-MgF 2 to obtain a wide reflection band.

(発明が解決しようとする課題) 上述のZnS-MgF2交互積層は屈折率比が高いが耐熱性、
耐候性に問題があり、これに比較してTiO2-SiO2交互積
層は耐熱、耐候性に優れる。この状態を次の第2表に示
す。
(Problems to be solved by the invention) The above-mentioned ZnS-MgF 2 alternating laminated layers have a high refractive index ratio but heat resistance,
There is a problem with weather resistance, and in comparison with this, the TiO 2 —SiO 2 alternate laminated layer is superior in heat resistance and weather resistance. This state is shown in Table 2 below.

すなわち、ZnS-MgF2層はハロゲンランプバルブやラン
プに近接した反射鏡に適用すると高温により短期間で剥
離し、かつ表層部のZnSが酸化されて白濁する。通常、
ハロゲン電球を点灯した場合、反射鏡の熱負荷が350℃
のとき30時間、300℃のとき100時間で使用不能になる。
また、ZnSは吸湿性があるため温度50℃、湿度90%の雰
囲気に50時間放置すると膜が剥離し、耐候性に問題があ
る。
That is, when the ZnS-MgF 2 layer is applied to a halogen lamp bulb or a reflector close to the lamp, the ZnS-MgF 2 layer peels off in a short period of time due to high temperature, and ZnS in the surface layer is oxidized and becomes cloudy. Normal,
When the halogen bulb is turned on, the heat load on the reflector is 350 ° C.
It becomes unusable after 30 hours at 100 ° C and 100 hours at 300 ° C.
Since ZnS has a hygroscopic property, if it is left in an atmosphere of a temperature of 50 ° C. and a humidity of 90% for 50 hours, the film peels off and there is a problem in weather resistance.

これに対し、TiO2-SiO2交互積層は耐熱性および対候
性に優れているが、この構成でZnS-MgF2交互積層と同程
度の光学特性を得ようとすれば、膜の積層数を50%多く
する必要があり、高価になるので、経済的な面から実用
性に問題がある。
On the other hand, the TiO 2 -SiO 2 alternate lamination has excellent heat resistance and weather resistance, but if it is attempted to obtain the same optical characteristics as the ZnS-MgF 2 alternate lamination with this configuration, the number of layers It is necessary to increase the value by 50%, and it becomes expensive, so there is a problem in practicality from the economical aspect.

そこで、本発明の課題は少ない層数でも必要な光学特
性が得られ、かつ耐熱性および耐候性の優れた多層光干
渉膜を提供することである。
Therefore, an object of the present invention is to provide a multilayer optical interference film that can obtain the required optical characteristics even with a small number of layers, and that has excellent heat resistance and weather resistance.

[発明の効果] (課題を解決するための手段) 本発明の多層光干渉膜は基体面に酸化チタンからなる
高屈折率層とふっ化バリウムからなる低屈折率層とを交
互積層して構成したことにより、少ない層数で必要な光
学特性が得られ、かつ耐熱性と耐候性とを向上させたも
のである。
[Effects of the Invention] (Means for Solving the Problems) The multilayer optical interference film of the present invention is formed by alternately laminating a high refractive index layer made of titanium oxide and a low refractive index layer made of barium fluoride on the surface of a substrate. By doing so, the required optical characteristics can be obtained with a small number of layers, and the heat resistance and weather resistance are improved.

(作用) ふっ化バリウム(BaF2)は化学的に安定で耐熱性と耐
候性とにすぐれかつ屈折率が小さい。そして酸化チタン
層とふっ化バリウム層とは屈折率比が大きいので少ない
層数で必要な光学特性が得られ、また両者の積層の適合
性が良いので剥離し難く、耐熱性、耐候性に優れた膜が
得られる。
(Function) Barium fluoride (BaF 2 ) is chemically stable, has excellent heat resistance and weather resistance, and has a small refractive index. Since the titanium oxide layer and the barium fluoride layer have a large refractive index ratio, the required optical properties can be obtained with a small number of layers, and because the compatibility of the lamination of both is good, it is difficult to peel off, and it has excellent heat resistance and weather resistance. A film is obtained.

(実施例) 以下、本発明の詳細を図示の実施例によって説明す
る。第1図は本発明を適用してなる反射鏡付ハロゲン電
球の一例を示し、図中(1)はガラス反射鏡、(2)は
この反射鏡(1)の内面に形成した多層光干渉膜の一例
である可視光反射赤外線透過膜、(3)は上記反射鏡
1)に装着されたハロゲン電球、(4)はこのハロゲ
ン電球(3)を反射鏡(1)に固着した耐熱性接着剤で
ある。
(Examples) Hereinafter, details of the present invention will be described with reference to the illustrated examples. FIG. 1 shows an example of a halogen bulb with a reflecting mirror to which the present invention is applied. In the figure, ( 1 ) is a glass reflecting mirror, and (2) is a multilayer optical interference film formed on the inner surface of this reflecting mirror ( 1 ). An example of a visible light-reflecting infrared ray transmitting film, (3) is a halogen light bulb mounted on the reflecting mirror ( 1 ), and (4) is a heat-resistant adhesive in which the halogen light bulb (3) is fixed to the reflecting mirror ( 1 ). It is an agent.

上記反射鏡(1)は内面が回転放物面をなす反射部(1
1)の背後に筒状の口金部(12)を一体に連設したもの
で、反射部(11)の内面に可視光反射赤外線透過膜
(2)が形成してある。
The reflector ( 1 ) has a reflecting portion (1) whose inner surface is a paraboloid of revolution.
A cylindrical base portion (12) is integrally connected behind 1), and a visible light reflecting / infrared transmitting film (2) is formed on the inner surface of the reflecting portion (11).

上記可視光反射赤外線透過膜(2)は第2図に模型的
に拡大して示すように、基体をなす反射部(11)内面に
ガラス側から酸化チタン(TiO2)からなる高屈折率層
(2H)(右下りハッチング)とふっ化バリウム(BaF2
からなる低屈折率層(2L)(右上りハッチング)とを合
計17層交互積層してなる。そして、これらの両層
(2H),(2L)の光学膜厚は1/4λで、第1層から9層
までは、λ1〜9=600nm、第10層から17層まではλ
10〜17=450nmとなっている。すなわち、λ=600nmの高
屈折率層(2H)とλ=600nmの低屈折率層(2L)とを交
互に4回合計8層被着し、これに高屈折率層(2H)を1
層積重ねて計9層とし、さらにλ=450nmの低屈折率層
(2L)と高屈折率層(2H)とを交互に4回計8層を被着
したものである。
The visible light reflection / infrared transmission film (2) is a high refractive index layer made of titanium oxide (TiO 2 ) from the glass side to the inner surface of the reflection part (11) forming the substrate, as shown in a model enlarged view in FIG. (2 H ) (downward hatching) and barium fluoride (BaF 2 ).
A low-refractive index layer (2 L ) consisting of (upper right hatching) and a total of 17 layers are alternately laminated. The optical film thickness of these two layers (2 H ) and (2 L ) is 1 / 4λ, λ 1-9 = 600 nm for the first to 9th layers, and λ for the 10th to 17th layers.
10 to 17 = 450 nm. That is, a high-refractive index layer (2 H ) with λ = 600 nm and a low-refractive index layer (2 L ) with λ = 600 nm are alternately deposited four times in total for a total of eight layers, and the high-refractive index layer (2 H ) 1
A total of 9 layers are laminated, and a low refractive index layer (2 L ) and a high refractive index layer (2 H ) having λ = 450 nm are alternately laminated 4 times for a total of 8 layers.

上記ハロゲン電球(3)は筒形(T形)ガラスバルブ
(31)の基部を圧潰して封止部(32)に形成し、フィラ
メント(33)を封装してなるもので、封止部(32)を反
射鏡(1)の口金部(12)内に収容してフィラメント(3
3)が反射部(11)の焦点に位置するように調整し、口
金部(12)内に接着剤(4)を充填して封止部(32)を
接着固定してある。
The halogen bulb (3) is formed by crushing the base portion of a tubular (T-shaped) glass bulb (31) to form a sealing portion (32) and sealing a filament (33). 32) is housed in the base (12) of the reflector ( 1 ) and the filament (3
3) is adjusted so as to be located at the focal point of the reflection part (11), and the base (12) is filled with the adhesive (4) to fix the sealing part (32) by adhesion.

上記可視光反射赤外線透過膜(2)を形成するには、
酸化チタン層は酸素およびアルゴンを導入した8×10-3
〜1×10-4Torrの低真空雰囲気内で反射鏡温度100〜300
℃で蒸着母材を電子ビームで衝撃し、ふっ化バリウム層
はアルゴンを導入した上記圧力の低真空雰囲気内で反射
鏡温度100〜300℃で蒸着母材を抵抗加熱して蒸着する。
To form the visible light reflection / infrared transmission film (2),
The titanium oxide layer is 8 × 10 -3 with oxygen and argon introduced.
Reflector temperature 100 to 300 in a low vacuum atmosphere of ~ 1 x 10 -4 Torr
The vapor-deposited base material is bombarded with an electron beam at ℃, and the barium fluoride layer is vapor-deposited by resistively heating the vapor-deposited base material at a reflector temperature of 100 to 300 ℃ in a low-vacuum atmosphere under the above-mentioned pressure in which argon is introduced.

この反射鏡付ハロゲン電球を点灯すると、フィラメン
ト(33)から放射された光のうち、可視光は可視光反射
赤外線透過膜(2)で反射して前方に放射され、赤外線
は可視光反射赤外線透過膜(2)を透過し、さらに反射
部(11)のガラスを透過して後方に放射される。したが
って、この反射鏡付ハロゲン電球は赤外線の少ない可視
光いわゆる冷光を投射できる。
When this halogen bulb with a reflector is turned on, visible light in the light emitted from the filament (33) is reflected by the visible light reflection infrared ray transmission film (2) and emitted forward, and infrared rays are transmitted through the visible light reflection infrared ray. The light is transmitted through the film (2) and further through the glass of the reflection part (11) to be emitted rearward. Therefore, this halogen bulb with a reflecting mirror can project visible light with little infrared light, so-called cold light.

しかして、上述の可視光反射赤外線透過膜(2)すな
わち多層光干渉膜を構成する両物質の光学特性を次に示
す。
Then, the optical characteristics of both substances forming the visible light reflecting / infrared transmitting film (2), that is, the multilayer optical interference film will be shown below.

酸化チタン(TiO2)層の屈折率NH=2.30 ふっ化バリウム(BaF2)層の屈折率NL=1.30 両層の屈折率比NH/NL=1.77 したがって、従来のZnS-MgF2交互積層よりも積層する
層数が少なくても同程度の光学特性が得られ、かつ反射
帯域の広帯域化を計ることができる。また、酸化チタン
とふっ化バリウムとの積層の適合性が従来の積層に比較
して極めて良好であり、熱負荷に対して剥離しにくく、
高温高湿の環境にも耐えられる。したがって、この反射
鏡付ハロゲン電球は高出力に耐え、長寿命で耐候性も良
い。
Refractive index of titanium oxide (TiO 2 ) layer N H = 2.30 Refractive index of barium fluoride (BaF 2 ) layer N L = 1.30 Refractive index ratio of both layers N H / N L = 1.77 Therefore, conventional ZnS-MgF 2 Even if the number of layers to be laminated is smaller than that of the alternate lamination, the same optical characteristics can be obtained and the reflection band can be widened. In addition, the compatibility of the lamination of titanium oxide and barium fluoride is extremely good as compared with the conventional lamination, and it is difficult to peel off against heat load,
Can withstand high temperature and high humidity environment. Therefore, this halogen bulb with a reflector has high output power, long life and good weather resistance.

つぎに、上述の反射鏡(1)の可視光反射赤外線透過
膜(2)の耐熱性と耐候性とを試験した。この結果を第
3表に示す。ここで、耐熱性はランプ点灯時の反射部
(11)の温度である300℃と350℃とにおいて、剥離開始
までの時間で示し、耐候性は温度50℃、湿度90%の雰囲
気中において剥離開始までの時間で示した。
Next, the visible light reflecting infrared ray transmitting film (2) of the above-mentioned reflecting mirror ( 1 ) was tested for heat resistance and weather resistance. Table 3 shows the results. Here, the heat resistance is shown as the time until the start of peeling at 300 ° C and 350 ° C, which are the temperatures of the reflection part (11) when the lamp is turned on, and the weather resistance is peeled in an atmosphere at a temperature of 50 ° C and a humidity of 90%. The time to start is shown.

この第3表を第2表と比較して、実施例のものが耐熱
性と耐候性に優れ、長寿命で苛酷な使用条件にも耐えら
れることが明らかである。
Comparing Table 3 with Table 2, it is clear that the examples are excellent in heat resistance and weather resistance, have a long life, and can withstand severe operating conditions.

つぎに、他の実施例を第3図に示す。このものは管形
石英バルブ(5)の中心線に沿ってフィラメント(6)
を封装し、バルブ(5)の外面に可視光透過赤外線反射
膜(7)を形成し、バルブ(5)内にアルゴンとともに
所要のハロゲンを封入してなるハロゲン電球である。
Next, another embodiment is shown in FIG. This is a filament (6) along the centerline of a tubular quartz bulb (5).
Is a halogen bulb in which the visible light transmitting infrared reflecting film (7) is formed on the outer surface of the bulb (5), and a required halogen is enclosed together with argon in the bulb (5).

上記可視光透過赤外線反射膜(7)は第2図に示した
可視光反射赤外線透過膜(2)と同様、酸化チタン(Ti
O2)からなる高屈折率層(2H)(右下りハッチング)と
ふっ化バリウム(BaF2)からなる低屈折率層(2L)(右
上りハッチング)とをたとえば合計15層交互積層したも
ので、各層(2H),(2L)の厚さを変えたことにより、
可視光を透過し赤外線を反射する特性を付与したもので
ある。
The visible light transmitting infrared reflecting film (7) is the same as the visible light reflecting infrared transmitting film (2) shown in FIG.
O 2 high refractive index layer made) (2 H) (was alternately downhill hatched) and the low refractive index layer made of barium fluoride (BaF 2) (2 L) ( right up hatching) and an example total 15 layers laminated By changing the thickness of each layer ( 2H ) and ( 2L ),
It has a property of transmitting visible light and reflecting infrared rays.

このハロゲン電球を点灯するとフィラメント(6)か
ら放射された光のうち可視光は可視光透過赤外線反射膜
(7)を透過して外界に放射され、赤外線は可視光透過
赤外線反射膜(7)で反射してフィラメント(6)に帰
還し、これを加熱して発光効率を向上する。したがって
このハロゲン電球は冷光を放射ししかも高効率である。
しかも、可視光透過赤外線反射膜(7)は前述と同様に
比較的少ない層数で所要の光学特性が得られ、しかも耐
熱性と耐候性とに優れ、長寿命で苛酷な使用条件に耐え
られる。
When this halogen bulb is lit, visible light of the light emitted from the filament (6) passes through the visible light transmitting infrared reflecting film (7) and is emitted to the outside, and infrared rays are transmitted through the visible light transmitting infrared reflecting film (7). It is reflected and returned to the filament (6), which is heated to improve the luminous efficiency. Therefore, this halogen bulb emits cold light and is highly efficient.
Moreover, the visible light transmitting / infrared reflecting film (7) can obtain required optical characteristics with a relatively small number of layers as described above, has excellent heat resistance and weather resistance, and has a long life and withstands harsh usage conditions. .

なお、本発明の多層光干渉膜は上述の適用例に限ら
ず、たとえば色フィルタ膜、紫外線遮断膜など多用な用
途がある。また、多層光干渉膜の形成方法は上述の例の
ほか、イオンプレーテング法、イオンアシスト法、CVD
法など他の形成方法でもよい。そして、酸化チタン層お
よびふっ化バリウム層の少なくとも一方にガラス質強化
剤、散光性微粒子などを含有させることは自由である。
さらに、基体は前述のガラス反射鏡やバルブに限らず、
たとえばフィルタ基板など用途に適したものならよく、
またその形状や材質は問うところでなく、多層光干渉膜
形成ができればよい。
The multilayer optical interference film of the present invention is not limited to the above-mentioned application examples, but has various uses such as a color filter film and an ultraviolet blocking film. In addition to the above-mentioned examples, the method of forming the multilayer optical interference film includes the ion plating method, the ion assist method, and the CVD method.
Other forming methods such as a method may be used. At least one of the titanium oxide layer and the barium fluoride layer may freely contain a glassy reinforcing agent, light diffusing fine particles and the like.
Furthermore, the substrate is not limited to the above-mentioned glass reflector and bulb,
For example, if it is suitable for the application such as a filter substrate,
Further, its shape and material are not critical, as long as a multilayer optical interference film can be formed.

[発明の効果] このように本発明の多層光干渉膜は基体面に酸化チタ
ンからなる高屈折率層とふっ化バリウムからなる低屈折
率層とを交互積層して構成したので、各成分が化学的に
安定で、組合わせにおける適合性が良く、屈折率比が大
きいので、少ない層数でも必要な光学特性が得られ、耐
熱性と耐候性とに優れ、長寿命で苛酷な使用条件に耐え
られる。
EFFECTS OF THE INVENTION As described above, since the multilayer optical interference film of the present invention is constituted by alternately laminating the high refractive index layer made of titanium oxide and the low refractive index layer made of barium fluoride on the surface of the substrate, each component is It is chemically stable, has good compatibility in combination, and has a large refractive index ratio, so the required optical properties can be obtained even with a small number of layers, it has excellent heat resistance and weather resistance, and it has a long life and is suitable for severe operating conditions. Can bear.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の多層光干渉膜の一実施例を示す反射鏡
付ハロゲン電球の断面図、第2図は同じく要部の模型的
拡大断面図、第3図は他の実施例を示すハロゲン電球の
断面図である。 (1)……反射鏡(基体の一例) (2)……可視光反射赤外線透過膜(光干渉膜の一例) (3)……ハロゲン電球、(33)……フィラメント (5)……バルブ(基体の他の例) (6)……フィラメント (7)……可視光透過赤外線反射膜(光干渉膜の他の
例)
FIG. 1 is a sectional view of a halogen light bulb with a reflecting mirror showing one embodiment of the multilayer optical interference film of the present invention, FIG. 2 is a model enlarged sectional view of the same main portion, and FIG. 3 is another embodiment. It is sectional drawing of a halogen bulb. ( 1 ) …… Reflecting mirror (example of base) (2) …… Visible light reflecting infrared ray transmissive film (example of optical interference film) (3) …… Halogen bulb, (33) …… Filament (5) …… Valve (Other example of substrate) (6) ...... Filament (7) ...... Visible light transmitting infrared reflecting film (other example of light interference film)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基体面に酸化チタンからなる高屈折率層と
ふっ化バリウムからなる低屈折率層とを交互積層してな
ることを特徴とする多層光干渉膜。
1. A multilayer optical interference film comprising a high refractive index layer made of titanium oxide and a low refractive index layer made of barium fluoride, which are alternately laminated on a substrate surface.
JP1217851A 1989-08-24 1989-08-24 Multilayer optical interference film Expired - Lifetime JP2687243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1217851A JP2687243B2 (en) 1989-08-24 1989-08-24 Multilayer optical interference film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217851A JP2687243B2 (en) 1989-08-24 1989-08-24 Multilayer optical interference film

Publications (2)

Publication Number Publication Date
JPH0380205A JPH0380205A (en) 1991-04-05
JP2687243B2 true JP2687243B2 (en) 1997-12-08

Family

ID=16710760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217851A Expired - Lifetime JP2687243B2 (en) 1989-08-24 1989-08-24 Multilayer optical interference film

Country Status (1)

Country Link
JP (1) JP2687243B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662454U (en) * 1993-02-09 1994-09-02 東芝硝子株式会社 Halogen lamp
JP2007096671A (en) * 2005-09-28 2007-04-12 Mitsubishi Electric Corp Vehicle-mounted monitor recorder and image data transfer method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144504A (en) * 1981-03-02 1982-09-07 Murakami Kaimeidou:Kk Reflector for car
JPS619604A (en) * 1984-06-23 1986-01-17 Koshin Kogaku:Kk Multi-layered dielectric film filter

Also Published As

Publication number Publication date
JPH0380205A (en) 1991-04-05

Similar Documents

Publication Publication Date Title
US4663557A (en) Optical coatings for high temperature applications
US6534903B1 (en) Broad spectrum reflective coating for an electric lamp
CA1177704A (en) Optical coatings for high temperature applications
JP2687243B2 (en) Multilayer optical interference film
US6471376B1 (en) Increased life reflector lamps
EP0448125B1 (en) Light interference film and lamp
JP3031625B2 (en) Heat ray absorbing reflector
JP3054663B2 (en) Multilayer reflector
JPH085833A (en) Optical interference body, tubular lamp, halogen lamp and illuminator
JP2971773B2 (en) Multilayer film
JP2928784B2 (en) Multilayer reflector
JP2993870B2 (en) Multilayer interference film
JP2778784B2 (en) Multilayer reflector for light source
JP2842721B2 (en) Neodymium color floodlight multilayer reflector
JP3438289B2 (en) Light bulbs and lighting equipment
JP2005266211A (en) Multilayer film reflecting mirror
JP3153050B2 (en) Incandescent light bulb
JP3496498B2 (en) Incandescent light bulb
JP2002006123A (en) Light reflecting body and reflective lighting apparatus
JPH0629882B2 (en) Multilayer film mirror
JPH0434501A (en) Multilayered optical interference film
JPH04240803A (en) Reflection mirror made of multilayered films
JP2000260397A (en) Incandescent lamp with infrared ray reflecting film
JP3110131B2 (en) High durability thin film
JPH01250904A (en) Light interference reflecting mirror