JP2009238509A - Lighting apparatus - Google Patents

Lighting apparatus Download PDF

Info

Publication number
JP2009238509A
JP2009238509A JP2008081614A JP2008081614A JP2009238509A JP 2009238509 A JP2009238509 A JP 2009238509A JP 2008081614 A JP2008081614 A JP 2008081614A JP 2008081614 A JP2008081614 A JP 2008081614A JP 2009238509 A JP2009238509 A JP 2009238509A
Authority
JP
Japan
Prior art keywords
reflecting surface
reflecting
light source
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008081614A
Other languages
Japanese (ja)
Other versions
JP5075705B2 (en
Inventor
Satoru Yamauchi
哲 山内
Katsumi Watanabe
加津己 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008081614A priority Critical patent/JP5075705B2/en
Publication of JP2009238509A publication Critical patent/JP2009238509A/en
Application granted granted Critical
Publication of JP5075705B2 publication Critical patent/JP5075705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting apparatus in which irradiation unevenness at the irradiation face is prevented without deteriorating the apparatus efficiency even at low cost. <P>SOLUTION: The lighting apparatus 1 includes a light source 3 and a reflecting mirror 4 to reflect light from the light source 3. The light source 3 has a base 31 and an outer tube 33 which extends from the base 31 and in which an arc tube 32 is installed. The reflecting mirror 4 has a first reflecting surface 41 (range shown in dotted line in the figure) which is a portion to be near the base 31 of the light source 3 and a second reflecting surface 42 (range shown in one dotted line in the figure) which is all portions other than the first reflecting surface 41 including the portion close to the arc tube 32. The first reflecting surface 41 and the second reflecting surface 42 have a covered layer for smoothing the reflecting surface. The surface roughness of the covered layer of the first reflecting surface 41 is made larger than that of the covered layer of the second reflecting surface 42. Accordingly, the first reflecting surface 41 is made a rough surface without deteriorating the total light reflection factor and made the reflective surface of nearly diffusion state. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光源からの光を反射する反射鏡を備えた照明器具に関し、具体的には、建物の天井や壁に埋め込まれて使用されるダウンライト等に関するものである。   The present invention relates to a luminaire provided with a reflecting mirror that reflects light from a light source, and more specifically to a downlight or the like that is embedded in a ceiling or wall of a building.

近年、ダウンライトやスポットライト、投光器等の照明器具において、器具効率を向上するために、高輝性の光反射層を有する反射鏡が実用化されている。このような反射鏡として、所定の形状に成形されたガラス、プラスチック、金属又はセラミック等から成る基材上に塗装膜によるアンダーコート層が形成され、この層上に銀、銀合金又はアルミニウム等の光反射層が真空蒸着法、スパッタリング法又はイオンプレーティング法等によって製膜されたものがある(例えば、特許文献1参照)。なお、製膜された光反射層上には、当該光反射層を保護するトップコート層が形成される。   In recent years, in a lighting device such as a downlight, a spotlight, or a projector, a reflecting mirror having a highly reflective light reflecting layer has been put into practical use in order to improve the device efficiency. As such a reflector, an undercoat layer made of a coating film is formed on a substrate made of glass, plastic, metal, ceramic or the like molded into a predetermined shape, and silver, silver alloy, aluminum, or the like is formed on this layer. There is one in which a light reflecting layer is formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like (for example, see Patent Document 1). A top coat layer that protects the light reflection layer is formed on the formed light reflection layer.

ところで、上述のような光反射層を有して略鏡面状態となる反射鏡では、反射鏡に配設された光源が点灯すると、光源の内部に存在するステム等の非発光部材が反射鏡に映り込み、照射面の略中央が暗くなる中落ち現象等による照射ムラが発生する。そこで、上記問題を解決する手法として、ガラスで構成される光源の外管をフロスト(艶消し)状態にする方法がある。しかし、このような方法では、光源から放射される光束が減少し、器具効率が低下する。   By the way, in the reflecting mirror having the light reflecting layer as described above and having a substantially mirror surface state, when a light source disposed in the reflecting mirror is turned on, a non-light-emitting member such as a stem existing inside the light source is turned into the reflecting mirror. Irradiation unevenness occurs due to reflection, a drop-out phenomenon in which the approximate center of the irradiated surface becomes dark, and the like. Therefore, as a technique for solving the above-described problem, there is a method in which the outer tube of the light source made of glass is made frosted (matted). However, in such a method, the luminous flux emitted from the light source is reduced, and the instrument efficiency is lowered.

また、上記問題を解決する他の手法として、反射鏡の基材の一部をショットブラスト法等によって粗面化する方法や、反射鏡の基材の一部にディンプル形状又はファセット形状を付与する方法がある。さらに、アンダーコート層やトップコート層を構成する塗料組成物に微細粒子を添加し、高輝性の光反射層を艶消し状態にする方法がある。さらに、光源からの光を拡散反射させるため、反射面が多重放物線上に割り付けられた複数の魚眼状の素子から成る反射鏡がある(例えば、特許文献2参照)。これらの発明では、光源からの光が反射鏡にて拡散反射されることにより、照射面における照射ムラを抑制できるが、反射鏡の反射率が低下して器具効率が減少すると共にコストアップを招来する。
特開2004−291492号公報 特開平9−231812号公報
As another method for solving the above problem, a method of roughening a part of the base material of the reflecting mirror by a shot blast method or the like, or a dimple shape or a facet shape is imparted to a part of the base material of the reflecting mirror. There is a way. Furthermore, there is a method in which fine particles are added to the coating composition constituting the undercoat layer or the topcoat layer to make the high-brightness light reflecting layer matt. Furthermore, in order to diffusely reflect light from a light source, there is a reflecting mirror composed of a plurality of fish-eye elements whose reflecting surfaces are allocated on multiple parabolas (for example, see Patent Document 2). In these inventions, the light from the light source is diffusely reflected by the reflecting mirror, so that irradiation unevenness on the irradiation surface can be suppressed. However, the reflectance of the reflecting mirror is reduced, and the efficiency of the instrument is reduced and the cost is increased. To do.
JP 2004-291492 A JP-A-9-231812

本発明は、上記問題を解決するためになされたものであり、低コストでありながら、器具効率を低下させることなく照射面における照射ムラを防止することができる照明器具を提供することを目的とする。   The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a lighting apparatus that can prevent irradiation unevenness on an irradiation surface without lowering the efficiency of the apparatus while being low in cost. To do.

上記目的を達成するために請求項1の発明は、光源と、前記光源からの光を反射させる反射鏡とを備えた照明器具であって、前記光源は、口金部と前記口金部から延在する発光管部とを有するものであり、前記反射鏡は、前記口金部に近接する第1の反射面と、前記発光管部に近接する第2の反射面とを有し、前記第1の反射面及び第2の反射面は、当該反射面を平滑化するための被覆層を有し、前記第1の反射面の被覆層の表面粗さは、前記第2の反射面の被覆層のそれよりも大きいものである。   In order to achieve the above object, the invention of claim 1 is a luminaire comprising a light source and a reflecting mirror that reflects light from the light source, wherein the light source extends from a base part and the base part. And the reflecting mirror has a first reflecting surface proximate to the base portion and a second reflecting surface proximate to the arc tube portion, the first reflecting surface The reflective surface and the second reflective surface have a coating layer for smoothing the reflective surface, and the surface roughness of the coating layer of the first reflective surface is that of the coating layer of the second reflective surface. It is bigger than that.

請求項2の発明は、請求項1に記載の発明において、前記第1の反射面の被覆層の厚さは、前記第2の反射面の被覆層の厚さよりも薄いものである。   According to a second aspect of the present invention, in the first aspect of the invention, the thickness of the coating layer of the first reflective surface is smaller than the thickness of the coating layer of the second reflective surface.

請求項3の発明は、請求項1又は請求項2に記載の発明において、前記第1の反射面及び第2の反射面の各被覆層は、ソフトセグメントとハードセグメントが共重合された材料で成るものである。   According to a third aspect of the present invention, in the first or second aspect of the present invention, each coating layer of the first reflective surface and the second reflective surface is made of a material in which a soft segment and a hard segment are copolymerized. It consists of.

請求項1の発明によれば、第1の反射面の被覆層の表面粗さが第2の反射面の被覆層のそれよりも大きいので、第1の反射面は、全光線反射率が低下することなく粗面化され、略拡散状態の反射面となる。そのため、光源の内部において口金部側に位置するステム等の非発光部材が第1の反射面に映り込むことを抑制でき、器具効率を低下させることなく照射面における照射ムラの発生を防止できる。また、反射鏡の形状を複雑に加工する必要がないので、低コストである。   According to the first aspect of the present invention, since the surface roughness of the coating layer of the first reflecting surface is larger than that of the coating layer of the second reflecting surface, the total light reflectance of the first reflecting surface is lowered. Thus, the surface is roughened and becomes a substantially diffused reflecting surface. Therefore, it can suppress that non-light-emitting members, such as a stem located in the base part side in a light source, are reflected in a 1st reflective surface, and generation | occurrence | production of the irradiation nonuniformity in an irradiation surface can be prevented, without reducing an instrument efficiency. Moreover, since it is not necessary to process the shape of the reflecting mirror in a complicated manner, the cost is low.

請求項2の発明によれば、第1の反射面の被覆層の厚さが第2の反射面の被覆層の厚さよりも薄いので、照射面における照射ムラの発生を一層確実に防止できる。   According to invention of Claim 2, since the thickness of the coating layer of a 1st reflective surface is thinner than the thickness of the coating layer of a 2nd reflective surface, generation | occurrence | production of the irradiation nonuniformity on an irradiation surface can be prevented more reliably.

請求項3の発明によれば、第1の反射面及び第2の反射面の各被覆層がソフトセグメントとハードセグメントが共重合された材料で成るので、反射鏡は自己治癒性を有することになり、反射鏡に付着した埃や汚れを拭取り清掃により除去した際に、第1の反射面及び第2の反射面にキズが残ることがない。そのため、器具の美観性を維持できると共に、キズ等によるグレアの発生を抑制できる。   According to the invention of claim 3, since each coating layer of the first reflecting surface and the second reflecting surface is made of a material in which soft segments and hard segments are copolymerized, the reflecting mirror has self-healing properties. Thus, when the dust and dirt adhering to the reflecting mirror are removed by wiping and cleaning, no scratches remain on the first reflecting surface and the second reflecting surface. Therefore, the aesthetics of the instrument can be maintained and the occurrence of glare due to scratches or the like can be suppressed.

本発明の一実施形態に係る照明器具について図面を参照して説明する。図1及び図2は本実施形態に係る照明器具1の概略構成を示す。照明器具1は、建物の天井2に埋め込まれるダウンライトであって、光源3と、光源3からの光を反射させる反射鏡4と、反射鏡4と一体的に形成され、光源3を装着するためのソケット部5と、ソケット部5の上部に延設された天板部6とを備える。光源3は、ソケット部5と螺合される口金部31と、口金部31から延出し、真空である内部に発光管部32が設けられた外管部33とを有する。反射鏡4は、光源3の周囲を囲むように略漏斗状に形成されている。反射鏡4の外面周縁には、枠7及びバネ部材8が設けられており、天井2に形成された孔21に反射鏡4を挿入した状態で、枠7及びバネ部材8によって天井2を上下に挟み込むと、照明器具1が天井2に固定される。天板部6には、光源3を点灯させるための安定器9が設けられている。   The lighting fixture which concerns on one Embodiment of this invention is demonstrated with reference to drawings. FIG.1 and FIG.2 shows schematic structure of the lighting fixture 1 which concerns on this embodiment. The luminaire 1 is a downlight embedded in a ceiling 2 of a building, and is formed integrally with the light source 3, the reflecting mirror 4 that reflects light from the light source 3, and the reflecting mirror 4, and is mounted with the light source 3. And a top plate 6 extending on the top of the socket 5. The light source 3 includes a base part 31 screwed into the socket part 5, and an outer tube part 33 extending from the base part 31 and having an arc tube part 32 provided inside a vacuum. The reflecting mirror 4 is formed in a substantially funnel shape so as to surround the periphery of the light source 3. A frame 7 and a spring member 8 are provided on the outer peripheral edge of the reflecting mirror 4, and the ceiling 2 is moved up and down by the frame 7 and the spring member 8 in a state where the reflecting mirror 4 is inserted into a hole 21 formed in the ceiling 2. When it is sandwiched, the lighting fixture 1 is fixed to the ceiling 2. The top plate 6 is provided with a ballast 9 for turning on the light source 3.

ここで、反射鏡4は、その内部に設置された光源3の口金部31に近接する部位である第1の反射面41(図中点線で示す範囲)と、発光管部32に近接する部位を含んだ、第1の反射面41を除く全ての部位である第2の反射面42(図中一点鎖線で示す範囲)とを有する。   Here, the reflecting mirror 4 includes a first reflecting surface 41 (a range indicated by a dotted line in the drawing) that is a part close to the base part 31 of the light source 3 installed therein and a part that is close to the arc tube part 32. And the second reflecting surface 42 (the range indicated by the alternate long and short dash line in the figure), which is the entire portion except for the first reflecting surface 41.

図3は光源3の詳細な構成を示す。本実施形態において光源3は、高圧状態となったナトリウム蒸気中での放電現象により発光する高圧ナトリウムランプである。発光管部32には、水銀、希ガス及びナトリウムが封入されている。外管部33は透明なガラスで構成され、その内部には、発光管部32の他に当該発光管部32を発光させるための構成部品として、ステム34やゲッタ35、始動ユニット36、始動補助導体37等が設けられている。これらの構成部品の多くは、外管部33の内部においてソケット側に位置している。ここで、安定器9を介して光源3に電力が供給されると、発光管部32は光を放射するが、発光管部32以外の光源3の構成部品は光を放射しない。なお、光源3は、高圧ナトリウムランプに限られず、ハロゲンランプや白熱電球、蛍光灯等であってもよい。   FIG. 3 shows a detailed configuration of the light source 3. In the present embodiment, the light source 3 is a high-pressure sodium lamp that emits light due to a discharge phenomenon in sodium vapor in a high-pressure state. The arc tube portion 32 is filled with mercury, a rare gas, and sodium. The outer tube portion 33 is made of transparent glass. In addition to the arc tube portion 32, the outer tube portion 33 includes a stem 34, a getter 35, a starting unit 36, a starting aid as components for causing the arc tube portion 32 to emit light. A conductor 37 and the like are provided. Many of these components are located on the socket side inside the outer tube portion 33. Here, when power is supplied to the light source 3 through the ballast 9, the arc tube portion 32 emits light, but the components of the light source 3 other than the arc tube portion 32 do not emit light. The light source 3 is not limited to a high-pressure sodium lamp, and may be a halogen lamp, an incandescent lamp, a fluorescent lamp, or the like.

図4は反射鏡4を構成する各部の具体的な構成を示す。反射鏡4は、樹脂、金属又はガラス等の材料を元に所定の形状に成形された基材43と、基材43の内側に積層された光学多層膜44で構成されており、光学多層膜44の最上層面が上述した第1の反射面41及び第2の反射面42となっている。光学多層膜44は、基材43の内側表面に形成されたアンダーコート層45と、アンダーコート層45上に形成された光反射層46と、光反射層46上に形成されたトップコート層47と、トップコート層47上に形成された被覆層48とを有する。   FIG. 4 shows a specific configuration of each part constituting the reflecting mirror 4. The reflecting mirror 4 includes a base material 43 formed in a predetermined shape based on a material such as resin, metal, or glass, and an optical multilayer film 44 laminated on the inner side of the base material 43. The optical multilayer film The uppermost layer surface 44 is the first reflecting surface 41 and the second reflecting surface 42 described above. The optical multilayer film 44 includes an undercoat layer 45 formed on the inner surface of the substrate 43, a light reflecting layer 46 formed on the undercoat layer 45, and a top coat layer 47 formed on the light reflecting layer 46. And a coating layer 48 formed on the topcoat layer 47.

基材43は、照明器具1に定められる耐熱温度の下で使用可能であって、光学多層膜44が積層されることにより光源3から放射される光を反射できるものであれば、特に限定されるものではない。ここで、基材43に樹脂を用いる場合について説明する。基材43に用いる樹脂は、熱可塑性樹脂又は熱硬化性樹脂のいずれであってもよい。基材43となる熱可塑性樹脂材料としては、例えば、ポリブチレンテレフタレート(PBT)やポリエチレンテレフタレート(PET)、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルフィド(PPS)、ポリフェニレンオキサイド(PPO)、熱可塑性ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリカーボネイト(PC)、液晶ポリマー(LCP)、シンジオタクチックポリスチレン(SPS)等が挙げられる。基材43となる熱硬化性樹脂材料としては、バルクモールディングコンパウンド(BMC)用材料として一般的に使用される不飽和ポリエステル(UP)等が挙げられる。また、基材43の耐熱性や強度、耐光性等を向上させるため、上述の熱可塑性樹脂材料又は熱硬化性樹脂材料に無機充填剤等の各種添加剤を添加してもよいし、複数の熱可塑性樹脂材料をポリマーブレンドにより混合させたり、相溶化剤によりブロック共重合させてもよい。上記樹脂材料の成形方法は、樹脂成形で一般的に使用される方法であれば特に限定されるものではなく、当該成形方法としては、例えば、射出成形や圧縮成形、真空成形、圧空成形等が挙げられる。   The base material 43 is not particularly limited as long as it can be used at a heat-resistant temperature determined for the lighting fixture 1 and can reflect the light emitted from the light source 3 by being laminated with the optical multilayer film 44. It is not something. Here, the case where resin is used for the base material 43 is demonstrated. The resin used for the base material 43 may be either a thermoplastic resin or a thermosetting resin. Examples of the thermoplastic resin material used as the base material 43 include polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), and thermoplastic polyimide (PI). ), Polyetherimide (PEI), polycarbonate (PC), liquid crystal polymer (LCP), syndiotactic polystyrene (SPS), and the like. Examples of the thermosetting resin material used as the base material 43 include unsaturated polyester (UP) that is generally used as a bulk molding compound (BMC) material. Further, in order to improve the heat resistance, strength, light resistance, etc. of the base material 43, various additives such as an inorganic filler may be added to the above-mentioned thermoplastic resin material or thermosetting resin material, and a plurality of additives may be added. The thermoplastic resin material may be mixed by a polymer blend or may be block copolymerized by a compatibilizer. The molding method of the resin material is not particularly limited as long as it is a method generally used in resin molding. Examples of the molding method include injection molding, compression molding, vacuum molding, and pneumatic molding. Can be mentioned.

次に、基材43に金属を用いる場合について説明する。基材43となる金属材料としては、例えば、Al基合金やMg基合金、Fe基合金等が挙げられる。上記金属材料の成形方法は、材料の特性や反射鏡4の形状等を考慮して選択され、当該成形方法としては、例えば、スピニング加工やプレス加工、ダイキャスト、チクソモールディング等が挙げられる。   Next, the case where a metal is used for the base material 43 will be described. Examples of the metal material used as the base material 43 include an Al-based alloy, an Mg-based alloy, and an Fe-based alloy. The forming method of the metal material is selected in consideration of the characteristics of the material, the shape of the reflecting mirror 4, and the like, and examples of the forming method include spinning processing, press processing, die casting, and thixomolding.

次に、基材43にガラスを用いる場合について説明する。基材43となるガラス材料としては、石英ガラス等が挙げられる。上記ガラス材料の成形方法は特に限定されるものではなく、当該成形方法としては、例えば、プレス加工やブロー加工等が挙げられる。なお、上述した樹脂材料、金属材料及びガラス材料等を元に基材43を成形したとき、基材43の表面に成形時における加工油や離型剤、ガス等の付着物がある場合には、物理的又は化学的な方法によって当該付着物が除去されることは言うまでもない。   Next, the case where glass is used for the base material 43 will be described. Examples of the glass material used as the base material 43 include quartz glass. The method for forming the glass material is not particularly limited, and examples of the forming method include press working and blow working. In addition, when the base material 43 is molded based on the above-described resin material, metal material, glass material, etc., when there are deposits such as processing oil, mold release agent, gas, etc. at the time of molding on the surface of the base material 43 Needless to say, the deposit is removed by a physical or chemical method.

アンダーコート層45は、基材43と光反射層46との間に生じる内部応力を緩和し、基材43と光反射層46の密着性を向上させるものである。アンダーコート層45には、例えば、アクリル樹脂系やエポキシ樹脂系、ウレタン樹脂系、変性シリコーン樹脂系、ポリブタジエン樹脂系等の塗料や、酸化チタン等の白色顔料を含有する白色系塗料が用いられる。アンダーコート層45の形成方法は特に限定されるものではなく、当該形成方法としては、例えば、スプレー法や浸漬法、静電塗装法等が挙げられる。アンダーコート層45の膜厚は、所望する上記密着性が得られれば、特に限定されるものではない。   The undercoat layer 45 relieves internal stress generated between the base material 43 and the light reflection layer 46 and improves the adhesion between the base material 43 and the light reflection layer 46. For the undercoat layer 45, for example, an acrylic resin type, an epoxy resin type, a urethane resin type, a modified silicone resin type, a polybutadiene resin type, or a white type paint containing a white pigment such as titanium oxide is used. The formation method of the undercoat layer 45 is not particularly limited, and examples of the formation method include a spray method, a dipping method, and an electrostatic coating method. The thickness of the undercoat layer 45 is not particularly limited as long as the desired adhesion is obtained.

光反射層46は、光源3から放射される光を高効率で反射させるものであり、Al材、Ag材又はこれらの合金等の光反射層46の形成材料として公知の材料であれば、特に限定されるものではない。なかでも、Ag材と比較して安価であって、安定した反射特性と高温時に変色し難い性質を有するAl材又はAl基合金が、光反射層46の材料として好ましい。光反射層46の形成方法としては、例えば、真空蒸着法やスパッタリング法、イオンプレーティング法、イオンアシスト法等が挙げられる。光反射層46の膜厚は、一般的に10〜30nmが好ましいが、所望する強度及び光反射率が得られる膜厚であれば、この範囲を超えても差し支えない。   The light reflecting layer 46 reflects light emitted from the light source 3 with high efficiency, and is particularly a material known as a material for forming the light reflecting layer 46 such as an Al material, an Ag material, or an alloy thereof. It is not limited. Among them, an Al material or an Al-based alloy, which is inexpensive as compared with the Ag material and has stable reflection characteristics and hardly discolors at high temperatures, is preferable as the material for the light reflecting layer 46. Examples of the method for forming the light reflecting layer 46 include a vacuum deposition method, a sputtering method, an ion plating method, and an ion assist method. The film thickness of the light reflecting layer 46 is generally preferably 10 to 30 nm, but may be beyond this range as long as the desired strength and light reflectance can be obtained.

トップコート層47は、光反射層46を保護するものであって、所望する耐熱性や光反射層46との密着性が得られるものであれば、特に限定されるものではない。なかでも、光源3からの熱や光の影響を受けにくいストレートシリコーン系の無機塗料が、トップコート層47として好ましい。ストレートシリコーン系の無機塗料によって形成されるトップコート層47の膜厚は、10μm以下であることが望ましい。このような膜厚の範囲で形成されたトップコート層47であれば、基材43が複雑な3次元形状であり、かつ光源3の点灯/消灯により基材43に多大な温度差が生じる場合であっても、反射鏡4の膨張/収縮によるクラックが当該トップコート層47に発生することを抑制できる。   The topcoat layer 47 is not particularly limited as long as it protects the light reflecting layer 46 and can provide desired heat resistance and adhesion to the light reflecting layer 46. Among these, a straight silicone-based inorganic paint that is not easily affected by heat and light from the light source 3 is preferable as the top coat layer 47. The film thickness of the topcoat layer 47 formed of a straight silicone-based inorganic paint is desirably 10 μm or less. In the case of the top coat layer 47 formed in such a film thickness range, the base material 43 has a complicated three-dimensional shape, and a large temperature difference occurs in the base material 43 due to the light source 3 being turned on / off. Even so, the occurrence of cracks in the topcoat layer 47 due to expansion / contraction of the reflecting mirror 4 can be suppressed.

被覆層48は、トップコート層47を覆って光学多層膜44の最上層面である第1の反射面41及び第2の反射面42を平滑化するためのものである。被覆層48は、柔軟性を有するソフトセグメントと硬質性を有するハードセグメントが共重合された組成物で構成される。被覆層48には、上記組成物以外の成分が含有されていてもよく、上記組成物にレベリング剤やカップリング剤、消泡剤、艶消し剤、紫外線吸収剤、酸化防止剤等の公知の添加剤を必要に応じて添加したものであってもよい。被覆層48となる組成物の具体例としては、例えば、アクリルウレタン系軟質塗料とポリジメチルシロキサン系共重合体から成るもの、ポリジメチルシロキサン系共重合体とポリカプロラクトンとポリシロキサン系のウレタン又はメラミン架橋体から成るもの、アクリル樹脂とポリイソシアネート化合物から成るものが挙げられる。ここで、第1の反射面41の被覆層48の表面粗さは、第2の反射面42の被覆層48のそれよりも大きくされ、第1の反射面41の被覆層48の厚さは、第2の反射面42の被覆層48の厚さよりも薄くされている。   The coating layer 48 covers the top coat layer 47 and smoothes the first reflective surface 41 and the second reflective surface 42 that are the uppermost layer surfaces of the optical multilayer film 44. The coating layer 48 is composed of a composition in which a soft segment having flexibility and a hard segment having hardness are copolymerized. The coating layer 48 may contain components other than the above-described composition, and the above-described composition includes a known leveling agent, coupling agent, antifoaming agent, matting agent, ultraviolet absorber, antioxidant, and the like. What added the additive as needed may be used. Specific examples of the composition that forms the coating layer 48 include, for example, those composed of an acrylic urethane-based soft paint and a polydimethylsiloxane-based copolymer, a polydimethylsiloxane-based copolymer, polycaprolactone, and a polysiloxane-based urethane or melamine. What consists of a crosslinked body and what consists of an acrylic resin and a polyisocyanate compound are mentioned. Here, the surface roughness of the covering layer 48 of the first reflecting surface 41 is made larger than that of the covering layer 48 of the second reflecting surface 42, and the thickness of the covering layer 48 of the first reflecting surface 41 is The thickness of the coating layer 48 of the second reflecting surface 42 is made thinner.

次に、上述した実施形態を具現化した1つの実施例と、比較のための2つの比較例について説明する。   Next, one example embodying the above-described embodiment and two comparative examples for comparison will be described.

(実施例1)
Al材(JIS規格:A1050)をスピニング加工により所定の反射鏡形状に加工して基材43を得た後、基材43をアルカリ洗浄剤によって脱脂洗浄した。次いで、基材43の内側表面にストレートシリコーン樹脂(商品名:SH−804、東レダウコーニング製)をスプレー塗布した後、220℃で30分間焼付乾燥し、膜厚15μmのアンダーコート層45を形成した。そして、このアンダーコート層45の表面にAg(純度99.99%)をDCマグネトロンスパッタリング法によって蒸着させ、平均膜厚800Åの光反射層46を形成した。さらに、光反射層46の表面にアンダーコート層45と同様のストレートシリコーン樹脂をスプレー塗布し、200℃で30分間焼付乾燥し、膜厚15μmのトップコート層47を形成した。
Example 1
An Al material (JIS standard: A1050) was processed into a predetermined reflecting mirror shape by spinning processing to obtain a base material 43, and then the base material 43 was degreased and cleaned with an alkaline cleaner. Next, a straight silicone resin (trade name: SH-804, manufactured by Toray Dow Corning) is spray-coated on the inner surface of the base material 43, and then baked and dried at 220 ° C. for 30 minutes to form an undercoat layer 45 having a film thickness of 15 μm. did. And Ag (purity 99.99%) was vapor-deposited on the surface of this undercoat layer 45 by DC magnetron sputtering method, and the light reflection layer 46 with an average film thickness of 800 mm was formed. Further, a straight silicone resin similar to the undercoat layer 45 was spray-coated on the surface of the light reflecting layer 46 and baked and dried at 200 ° C. for 30 minutes to form a topcoat layer 47 having a film thickness of 15 μm.

最後に、トップコート層47の表面に2液型アクリルウレタン塗料(商品名:自己治癒性クリヤーNo.100、ナトコ製)をスプレー塗布した後、120℃で15分間焼付乾燥し、第1の反射面41においては膜厚4μm、第2の反射面42においては膜厚10μmの被覆層48を形成した。ここで、上記塗料を反射鏡4の中心軸に平行な方向からスプレー塗装を行った結果、塗料の持つレベリング性から、第1の反射面41の被覆層48の表面粗さが第2の反射面42の被覆層48の表面粗さより大きくなった。   Finally, a two-component acrylic urethane paint (product name: self-healing clear No. 100, manufactured by NATCO) is spray-coated on the surface of the top coat layer 47, and then baked and dried at 120 ° C. for 15 minutes to provide a first reflection. A coating layer 48 having a thickness of 4 μm was formed on the surface 41, and a coating layer 48 having a thickness of 10 μm was formed on the second reflecting surface 42. Here, as a result of spray coating the coating material from the direction parallel to the central axis of the reflecting mirror 4, the surface roughness of the coating layer 48 of the first reflecting surface 41 is the second reflection due to the leveling property of the coating material. It became larger than the surface roughness of the coating layer 48 of the surface 42.

(比較例1)
実施例1と同様の基材43に、上記アンダーコート層45、光反射層46及びトップコート層47を形成して反射鏡を得た。
(Comparative Example 1)
The undercoat layer 45, the light reflecting layer 46, and the top coat layer 47 were formed on the same base material 43 as in Example 1 to obtain a reflecting mirror.

(比較例2)
トップコート層47として、上記ストレートシリコーン樹脂に平均粒子系3μmのシリカ粒子を5wt%添加したものを使用した以外は、比較例1と同様にして反射鏡を得た。
(Comparative Example 2)
A reflective mirror was obtained in the same manner as in Comparative Example 1 except that the top coat layer 47 was prepared by adding 5 wt% of silica particles having an average particle size of 3 μm to the straight silicone resin.

以上のように作製したサンプルについて、全光線反射率、拡散反射率、器具効率、耐キズ付き性及び照射面における照射ムラについて評価試験を実施した。以下においてこれらの試験方法を説明する。全光線反射率及び拡散反射率の評価試験では、日立ハイテクノロジー製、自記分光光度計U−4000を用いて555nmにおける全光線反射率及び拡散反射率を測定した。器具効率の評価試験では、所定の配光測定装置を用いて、光源3をソケット部5に装着して点灯させたときに器具外に放射される光束と、光源3を単独で点灯させたときに放射される全光束を測定し、これらの比率を求めた。耐キズ付き性の評価試験では、JIS規格の標準綿布を用いて、第1の反射面41及び第2の反射面42を1kgf/cm2の荷重で100往復こすり、こすった後の第1の反射面41及び第2の反射面42におけるキズつき具合を目視評価した。照射面における照射ムラの評価試験では、照明器具1を床面から5m上方にある天井に設置し、光源3を点灯させて床面に照射された照射光の状態を目視評価した。次に、実施例1並びに、比較例1及び比較例2についての上記評価試験の結果と上述した被覆層48の膜厚を表1に示す。   About the sample produced as mentioned above, the evaluation test was implemented about the total light reflectance, diffuse reflectance, instrument efficiency, scratch resistance, and the irradiation nonuniformity in an irradiation surface. These test methods are described below. In the evaluation test of total light reflectance and diffuse reflectance, the total light reflectance and diffuse reflectance at 555 nm were measured using a self-recording spectrophotometer U-4000 manufactured by Hitachi High Technology. In the evaluation test of the instrument efficiency, when a light source 3 is mounted on the socket part 5 and turned on using a predetermined light distribution measuring device, the light beam emitted outside the instrument and the light source 3 are turned on alone The total luminous flux radiated to was measured and the ratio of these was obtained. In the scratch resistance evaluation test, using a JIS standard cotton cloth, the first reflective surface 41 and the second reflective surface 42 are rubbed 100 times with a load of 1 kgf / cm 2, and the first reflection after rubbing. The degree of scratching on the surface 41 and the second reflecting surface 42 was visually evaluated. In the irradiation unevenness evaluation test on the irradiated surface, the lighting fixture 1 was installed on the ceiling 5 m above the floor surface, the light source 3 was turned on, and the state of the irradiated light irradiated on the floor surface was visually evaluated. Next, Table 1 shows the results of the above-described evaluation tests for Example 1 and Comparative Examples 1 and 2, and the film thickness of the coating layer 48 described above.

Figure 2009238509
Figure 2009238509

耐キズ付き性の評価試験の結果において、「○」は、第1の反射面41及び第2の反射面42にキズ等が認められないことを示し、「×」は第1の反射面41及び第2の反射面42にキズ等が明らかに認められることを示している。照射ムラの評価試験の結果において、「○」は、照射面に照射ムラが認められないことを示し、「×」は照射面に照射ムラが明らかに認められることを示している。表1から分かるように、実施例1の反射鏡4を備えた照明器具は、各比較例に対して高い器具効率と耐キズ付き性を有し、かつ照射面における照射ムラがない器具となる。   In the results of the scratch resistance evaluation test, “◯” indicates that no scratches or the like are observed on the first reflecting surface 41 and the second reflecting surface 42, and “×” indicates the first reflecting surface 41. In addition, scratches and the like are clearly recognized on the second reflecting surface 42. In the result of the irradiation unevenness evaluation test, “◯” indicates that no irradiation unevenness is observed on the irradiated surface, and “×” indicates that the irradiation unevenness is clearly recognized on the irradiated surface. As can be seen from Table 1, the lighting fixture provided with the reflecting mirror 4 of Example 1 has high fixture efficiency and scratch resistance with respect to each comparative example, and has no irradiation unevenness on the irradiation surface. .

以上、本実施形態に係る照明器具1によれば、第1の反射面41は、全光線反射率が低下することなく粗面化され、略拡散状態の反射面となる。そのため、光源3の内部において口金部31側に位置するステム34等の非発光部材が、第1の反射面41に映り込むことを抑制でき、器具効率を低下させることなく照射面における照射ムラの発生を確実に防止できる。また、反射鏡4の形状を複雑に加工する必要がないので、低コストである。また、第1の反射面41及び第2の反射面42の各被覆層48がソフトセグメントとハードセグメントが共重合された材料で成るので、反射鏡4は自己治癒性を有することになり、反射鏡4に付着した埃や汚れを拭取り清掃により除去した際に、第1の反射面41及び第2の反射面42にキズが残ることがない。そのため、器具の美観性を維持できると共に、キズ等によるグレアの発生を抑制できる。   As mentioned above, according to the lighting fixture 1 which concerns on this embodiment, the 1st reflective surface 41 is roughened without a total light reflectance falling, and becomes a reflective surface of a substantially diffused state. Therefore, it is possible to prevent non-light emitting members such as the stem 34 located on the base part 31 side in the light source 3 from being reflected on the first reflecting surface 41, and to prevent irradiation unevenness on the irradiation surface without reducing the instrument efficiency. Occurrence can be reliably prevented. Moreover, since it is not necessary to process the shape of the reflecting mirror 4 in a complicated manner, the cost is low. Moreover, since each coating layer 48 of the 1st reflective surface 41 and the 2nd reflective surface 42 consists of the material by which the soft segment and the hard segment were copolymerized, the reflective mirror 4 will have a self-healing property, and reflective When the dust and dirt adhering to the mirror 4 are removed by wiping and cleaning, no scratches remain on the first reflecting surface 41 and the second reflecting surface 42. Therefore, the aesthetics of the instrument can be maintained and the occurrence of glare due to scratches or the like can be suppressed.

なお、本発明は、上記実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、基材43自体が所望の反射率を有したものであれば、基材43の表面にアンダーコート層45、光反射層46及びトップコート層47を形成する必要はない。また、基材43の表面にアンダーコート層45、光反射層46及びトップコート層47を形成する代わりに、クロムや銀等によるメッキ処理を施したものであってもよい。   In addition, this invention is not restricted to the structure of the said embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, if the base material 43 itself has a desired reflectance, it is not necessary to form the undercoat layer 45, the light reflection layer 46, and the topcoat layer 47 on the surface of the base material 43. Further, instead of forming the undercoat layer 45, the light reflecting layer 46, and the topcoat layer 47 on the surface of the base material 43, a plating treatment with chromium, silver, or the like may be performed.

本発明の一実施形態に係る照明器具を示す斜視図。The perspective view which shows the lighting fixture which concerns on one Embodiment of this invention. 上記照明器具を示す側面断面図。Side surface sectional drawing which shows the said lighting fixture. 上記照明器具の光源を示す側面図。The side view which shows the light source of the said lighting fixture. 上記照明器具の反射鏡の構造を示す断面図。Sectional drawing which shows the structure of the reflective mirror of the said lighting fixture.

符号の説明Explanation of symbols

1 照明器具
3 光源
4 反射鏡
31 口金部
32 発光管部
41 第1の反射面
42 第2の反射面
48 被覆層
DESCRIPTION OF SYMBOLS 1 Lighting fixture 3 Light source 4 Reflective mirror 31 Base part 32 Light emitting tube part 41 1st reflective surface 42 2nd reflective surface 48 Coating layer

Claims (3)

光源と、前記光源からの光を反射させる反射鏡とを備えた照明器具であって、
前記光源は、口金部と前記口金部から延在する発光管部とを有するものであり、
前記反射鏡は、前記口金部に近接する第1の反射面と、前記発光管部に近接する第2の反射面とを有し、
前記第1の反射面及び第2の反射面は、当該反射面を平滑化するための被覆層を有し、
前記第1の反射面の被覆層の表面粗さは、前記第2の反射面の被覆層のそれよりも大きいことを特徴とする照明器具。
A lighting apparatus comprising a light source and a reflecting mirror that reflects light from the light source,
The light source has a base part and an arc tube part extending from the base part,
The reflecting mirror has a first reflecting surface close to the base part and a second reflecting surface close to the arc tube part,
The first reflective surface and the second reflective surface have a coating layer for smoothing the reflective surface,
The lighting apparatus according to claim 1, wherein a surface roughness of the covering layer of the first reflecting surface is larger than that of the covering layer of the second reflecting surface.
前記第1の反射面の被覆層の厚さは、前記第2の反射面の被覆層の厚さよりも薄いことを特徴とする請求項1に記載の照明器具。   2. The lighting fixture according to claim 1, wherein a thickness of the coating layer of the first reflecting surface is smaller than a thickness of the coating layer of the second reflecting surface. 前記第1の反射面及び第2の反射面の各被覆層は、ソフトセグメントとハードセグメントが共重合された材料で成ることを特徴とする請求項1又は請求項2に記載の照明器具。   3. The lighting apparatus according to claim 1, wherein each of the coating layers of the first reflecting surface and the second reflecting surface is made of a material in which a soft segment and a hard segment are copolymerized.
JP2008081614A 2008-03-26 2008-03-26 lighting equipment Expired - Fee Related JP5075705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081614A JP5075705B2 (en) 2008-03-26 2008-03-26 lighting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081614A JP5075705B2 (en) 2008-03-26 2008-03-26 lighting equipment

Publications (2)

Publication Number Publication Date
JP2009238509A true JP2009238509A (en) 2009-10-15
JP5075705B2 JP5075705B2 (en) 2012-11-21

Family

ID=41252211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081614A Expired - Fee Related JP5075705B2 (en) 2008-03-26 2008-03-26 lighting equipment

Country Status (1)

Country Link
JP (1) JP5075705B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221179A (en) * 2010-04-15 2011-10-19 毛有强 Lamp reflector and lamps
JP2012009180A (en) * 2010-06-22 2012-01-12 Panasonic Electric Works Co Ltd Lighting fixture
JP2013538431A (en) * 2010-09-07 2013-10-10 シカト・インコーポレイテッド LED-based illumination module with PTFE color conversion surface

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273415A (en) * 1996-05-07 1996-10-18 Toshiba Lighting & Technol Corp Light source with reflector
JPH10292147A (en) * 1997-04-18 1998-11-04 Nissan Motor Co Ltd Coating composition
JP2000348514A (en) * 1999-05-31 2000-12-15 Matsushita Electric Works Ltd Reflecting plate for luminaire
JP2002107516A (en) * 2000-09-28 2002-04-10 Matsushita Electric Works Ltd Reflecting mirror and method for adjusting light distribution on reflecting mirror plane, method for forming reflecting mirror plane, and lighting fixture
JP2006164949A (en) * 2004-09-21 2006-06-22 Valeo Vision Lighting fixture for automobile or reflector for signal device
JP2006160289A (en) * 2004-12-03 2006-06-22 Taisei Kako Co Ltd Inner surface coating method for metal tube, and metal tube with corrosion-resistant inner surface coating
JP2007289874A (en) * 2006-04-25 2007-11-08 Matsushita Electric Works Ltd Coating application method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273415A (en) * 1996-05-07 1996-10-18 Toshiba Lighting & Technol Corp Light source with reflector
JPH10292147A (en) * 1997-04-18 1998-11-04 Nissan Motor Co Ltd Coating composition
JP2000348514A (en) * 1999-05-31 2000-12-15 Matsushita Electric Works Ltd Reflecting plate for luminaire
JP2002107516A (en) * 2000-09-28 2002-04-10 Matsushita Electric Works Ltd Reflecting mirror and method for adjusting light distribution on reflecting mirror plane, method for forming reflecting mirror plane, and lighting fixture
JP2006164949A (en) * 2004-09-21 2006-06-22 Valeo Vision Lighting fixture for automobile or reflector for signal device
JP2006160289A (en) * 2004-12-03 2006-06-22 Taisei Kako Co Ltd Inner surface coating method for metal tube, and metal tube with corrosion-resistant inner surface coating
JP2007289874A (en) * 2006-04-25 2007-11-08 Matsushita Electric Works Ltd Coating application method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221179A (en) * 2010-04-15 2011-10-19 毛有强 Lamp reflector and lamps
CN102221179B (en) * 2010-04-15 2015-02-18 毛有强 Lamp reflector and lamps
JP2012009180A (en) * 2010-06-22 2012-01-12 Panasonic Electric Works Co Ltd Lighting fixture
JP2013538431A (en) * 2010-09-07 2013-10-10 シカト・インコーポレイテッド LED-based illumination module with PTFE color conversion surface

Also Published As

Publication number Publication date
JP5075705B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4466648B2 (en) Light reflector and lighting apparatus having the light reflector
US20070147049A1 (en) Leveling of reflector
JP5075705B2 (en) lighting equipment
JPH06302302A (en) Light transmitting product and lamp based therewith
JP2000106017A (en) Vehicle lighting fixture
US20150354782A1 (en) Optical part, reflector, light-emitting device, and lighting device
JP5156544B2 (en) lighting equipment
JP2009099336A (en) Coated metal plate for led
JP2010164747A (en) Reflector and illumination device using the same
JP2016535929A (en) Thin film coating for improved outdoor LED reflector
JP3687358B2 (en) Lamp reflector
JP5336324B2 (en) lighting equipment
CN202125740U (en) Lamp with excellent radiation effect
CN201672451U (en) Reflector for lighting lamp
KR101620891B1 (en) Led lighting equipment having superior light homogeneity
TWI435024B (en) Lamp
JP2012174441A (en) Lighting fixture
JP2006523366A (en) lamp
JP2011113744A (en) Reflecting plate for lighting fixture
JP2011154815A (en) Luminaire
JP2011003333A (en) Lighting fixture
US20020071273A1 (en) Lampshade with plating film layer
CN202749335U (en) Spiral energy-saving lamp
JP2011113734A (en) Lighting fixture
TWI585341B (en) A lamp holder structure and a method for forming a highly diffusible light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees