JP2011203359A - Reflector using dielectric layer and method for producing the same - Google Patents

Reflector using dielectric layer and method for producing the same Download PDF

Info

Publication number
JP2011203359A
JP2011203359A JP2010068548A JP2010068548A JP2011203359A JP 2011203359 A JP2011203359 A JP 2011203359A JP 2010068548 A JP2010068548 A JP 2010068548A JP 2010068548 A JP2010068548 A JP 2010068548A JP 2011203359 A JP2011203359 A JP 2011203359A
Authority
JP
Japan
Prior art keywords
reflector
film
light
dielectric layer
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010068548A
Other languages
Japanese (ja)
Other versions
JP5727152B2 (en
Inventor
Makoto Yoshida
吉田  誠
Chikashi Shinno
史 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010068548A priority Critical patent/JP5727152B2/en
Publication of JP2011203359A publication Critical patent/JP2011203359A/en
Application granted granted Critical
Publication of JP5727152B2 publication Critical patent/JP5727152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a reflector with a curved surface having a high enhanced reflection effect.SOLUTION: A dielectric layer 23 comprising a plurality of layers disposed on a metal reflection surface 22 in a curved surface shape has a distribution of film thickness in accordance with an incident angle of a beam coming from a light source 10. The layer is formed in such a manner that the film thickness is large in an area 5 where the incident angle is large and the film thickness is small in an area 2 where the incident angle is small. For example, the film thickness L is constant in the direction of the major axis 6 of the beam coming from the light source 10. The dielectric layer has a structure of an enhanced reflection film.

Description

本発明は、誘電体多層膜を用いたリフレクタに関する。   The present invention relates to a reflector using a dielectric multilayer film.

金属薄膜層を用いたリフレクタに、増反射膜と呼ばれる所定の構成の誘電体多層膜を積層することにより、金属薄膜層単体よりも反射率を高めることができる。一般的な増反射膜は、高屈折率薄膜層と低屈折率薄膜層の膜厚をそれぞれλ/4n(λは入射光の波長、nは薄膜の屈折率)に設定している。特許文献1には、金属薄膜層に接する低屈折率薄膜層の厚さをλ/4nよりも薄い特定の範囲にすることにより、さらに反射率を向上させることができると開示している。また、特許文献1の第4頁には、特許文献1の反射体は、理由は定かでないが、可視光線のほぼすべての広い波長領域において金属層単膜よりも高い反射率を実現することが可能であると記載されている。   By laminating a dielectric multilayer film having a predetermined configuration called a reflection-increasing film on a reflector using a metal thin film layer, the reflectance can be increased as compared with the metal thin film layer alone. In a general high reflection film, the film thicknesses of the high refractive index thin film layer and the low refractive index thin film layer are set to λ / 4n (λ is the wavelength of incident light and n is the refractive index of the thin film), respectively. Patent Document 1 discloses that the reflectance can be further improved by setting the thickness of the low refractive index thin film layer in contact with the metal thin film layer to a specific range thinner than λ / 4n. Further, on page 4 of Patent Document 1, although the reason is not clear, the reflector of Patent Document 1 can realize a higher reflectance than that of a single metal layer film in almost all wide wavelength regions of visible light. It is stated that it is possible.

また、特許文献2には、マイクロミラーの表面に増反射膜を配置することが開示されている。特許文献3には、イオンアシスト蒸着法により増反射膜を形成する方法が開示されている。   Further, Patent Document 2 discloses disposing an increased reflection film on the surface of the micromirror. Patent Document 3 discloses a method of forming an enhanced reflection film by ion-assisted vapor deposition.

一方、特許文献4には、露光装置のように、短波長光用の曲率半径の小さなレンズを用いる光学装置において、レンズ表面の光学薄膜(反射膜や反射防止膜)に膜厚ムラがあると光学性能が十分に発揮できないため、均一に成膜する方法が開示されている。   On the other hand, in Patent Document 4, in an optical apparatus using a lens with a small radius of curvature for short wavelength light, such as an exposure apparatus, the optical thin film (reflective film or antireflection film) on the lens surface has a film thickness unevenness. Since the optical performance cannot be sufficiently exhibited, a method for uniformly forming a film is disclosed.

再公表WO2004/074887号公報Republished WO2004 / 074887 特開2010−2776号公報JP 2010-27776 A 特開2008−260978号公報JP 2008-260978 A 特開2007−93894号公報JP 2007-93894 A

発明者らによれば、曲面のリフレクタで単色光を反射すると、平面のリフレクタよりも増反射効果が低減することがわかった。例えば、所定構成の増反射膜を備えた平面リフレクタについて、波長550nmにおける増反射効果を、金属薄膜層単体に対する反射光束の増加により測定すると、6%程度の反射光束の増加が得られるのに対し、同じ構成の増反射膜を備えた曲面のリフレクタでは、3%程度しか得られない。   According to the inventors, it has been found that when monochromatic light is reflected by a curved reflector, the effect of increasing the reflection is reduced as compared with a planar reflector. For example, when a planar reflector provided with a predetermined configuration of a reflective reflector is measured for an increased reflection effect at a wavelength of 550 nm by increasing the reflected light flux for a single metal thin film layer, an increase in reflected light flux of about 6% is obtained. In the case of a curved reflector having the same reflective reflection film, only about 3% can be obtained.

これは、従来の増反射膜は、特許文献1および2のように平面のリフレクタにおいて増反射効果を高める構造であるため、曲面のリフレクタの場合にその形状が増反射効果に与える影響が考慮されていないためであると推測される。また、従来は、特許文献3に記載のように、曲面の光学素子に均一な誘電体多層膜を成膜することが望まれていた。   This is because the conventional reflection-enhancing film has a structure that enhances the reflection enhancement effect in a flat reflector as in Patent Documents 1 and 2, and therefore the influence of the shape of the reflection reflector on the reflection enhancement effect is considered in the case of a curved reflector. It is presumed that this is not the case. Conventionally, as described in Patent Document 3, it has been desired to form a uniform dielectric multilayer film on a curved optical element.

本発明の目的は、高い増反射効果を示す曲面リフレクタを提供することにある。   An object of the present invention is to provide a curved reflector exhibiting a high reflection enhancement effect.

上記目的を達成するために、本発明の第1の態様によれば、曲面形状の金属反射面と、金属反射面上に積層された複数層からなる誘電体層とを備えるリフレクタであって、誘電体層は、光源から入射する光線の主軸方向についての膜厚が一定とした構造のものが提供される。   In order to achieve the above object, according to a first aspect of the present invention, there is provided a reflector comprising a curved metal reflecting surface and a plurality of dielectric layers laminated on the metal reflecting surface, The dielectric layer is provided with a structure in which the film thickness in the principal axis direction of the light beam incident from the light source is constant.

また、本発明の第2の態様によれば、曲面形状の金属反射面と、金属反射面上に積層された複数層からなる誘電体層とを備えるリフレクタであって、誘電体層は、光源から入射する光線の入射角に応じて膜厚が分布しており、入射角が大きい領域は膜厚が厚く、入射角が小さい領域は膜厚が薄く形成されている構造のものが提供される。   According to a second aspect of the present invention, there is provided a reflector comprising a curved metal reflecting surface and a dielectric layer composed of a plurality of layers laminated on the metal reflecting surface, wherein the dielectric layer is a light source The film thickness is distributed according to the incident angle of the light beam incident from the above, and the structure in which the film thickness is formed in the area where the incident angle is large and the film thickness is formed in the area where the incident angle is small is provided. .

誘電体層は、例えば増反射膜を用いる。金属反射面は、例えば、光源からの光を直角に曲げる形状のものを用いる。   For the dielectric layer, for example, an increased reflection film is used. For example, a metal reflecting surface having a shape that bends light from a light source at a right angle is used.

本発明の第3の態様によれば、曲面形状の金属反射面に、気相成長法により誘電体層を成膜する工程を含むリフレクタの製造方法であって、気相成長法により膜が成長する方向と、金属反射面に入射する光の主軸方向とを一致させて、誘電体層を成膜する方法が提供される。   According to a third aspect of the present invention, there is provided a method for manufacturing a reflector including a step of forming a dielectric layer on a curved metal reflecting surface by a vapor deposition method, wherein the film is grown by the vapor deposition method. There is provided a method for forming a dielectric layer by aligning the direction in which the light is incident and the principal axis direction of light incident on the metal reflecting surface.

本発明によれば、曲面の金属反射面上の誘電体層の膜厚を光源からの光線の入射方向に応じて設定したことにより、光の入射角によって誘電体層の光学特性が発揮されないという現象を防止し、誘電体層の全面で所定の光学特性、すなわち増反射効果を得ることができる。これにより、増反射効果の高い曲面リフレクタを提供できる。   According to the present invention, since the film thickness of the dielectric layer on the curved metal reflecting surface is set according to the incident direction of the light beam from the light source, the optical characteristics of the dielectric layer are not exhibited depending on the incident angle of light. The phenomenon can be prevented, and a predetermined optical characteristic, that is, an enhanced reflection effect can be obtained on the entire surface of the dielectric layer. Thereby, a curved reflector having a high reflection enhancement effect can be provided.

実施形態の曲面リフレクタ20と発光素子10の構成と、光の入射方向を示す説明図。FIG. 3 is an explanatory diagram showing the configuration of the curved reflector 20 and the light emitting element 10 according to the embodiment and the light incident direction. 比較例の曲面リフレクタと発光素子の構成と、光の入射方向を示す説明図。Explanatory drawing which shows the structure of the curved surface reflector of a comparative example, and a light emitting element, and the incident direction of light. (a)および(b)比較例の曲面リフレクタの誘電体多層膜の製造方法を示す説明図、(c)実施形態の曲面リフレクタの誘電体多層膜の製造方法を示す説明図。(A) And (b) Explanatory drawing which shows the manufacturing method of the dielectric multilayer film of the curved reflector of a comparative example, (c) Explanatory drawing which shows the manufacturing method of the dielectric multilayer film of the curved reflector of embodiment.

以下、本発明の一実施の形態について説明する。   Hereinafter, an embodiment of the present invention will be described.

本発明では、曲面リフレクタでは光源との位置関係により、リフレクタ面への光の入射角が異なることを考慮し、曲面リフレクタの増反射効果を高める。すなわち、誘電体薄膜を用いた増反射効果は、入射光の角度に対し依存し、光入射角が大きくなるにつれ、増反射の中心波長は短い方へシフトするため、波長シフトを抑制するために、入射角度が大きいリフレクタ面では誘電体薄膜の膜厚を厚くする。これにより、LEDのように単色光に近い光源を使用した場合であっても、曲面リフレクタの全面で増反射を生じさせる。   In the present invention, considering the fact that the angle of incidence of light on the reflector surface differs depending on the positional relationship with the light source, the curved reflector increases the reflection enhancement effect of the curved reflector. That is, the effect of increasing reflection using a dielectric thin film depends on the angle of incident light, and as the light incident angle increases, the central wavelength of the increased reflection shifts to a shorter side. The thickness of the dielectric thin film is increased on the reflector surface having a large incident angle. As a result, even when a light source close to monochromatic light such as an LED is used, increased reflection is caused on the entire surface of the curved reflector.

以下、図1を用いて本実施形態の発光装置の構造を説明する。   Hereinafter, the structure of the light emitting device of this embodiment will be described with reference to FIG.

図1のように、本発光装置は、発光素子10と曲面リフレクタ20とを含む。ここでは、発光素子10は、曲面リフレクタ20の下端とほぼ水平に配置されている。曲面リフレクタ20は、凹型の曲面を有する筺体21の曲面に、金属膜22と、誘電体多層膜23とを積層した構造である。筺体21の曲面形状は、発光素子10から放射状に出射された光が、金属層22および誘電体多層膜23で、発光素子10の出射光の主軸6に対してほぼ90°の方向に向かって反射されるように設計されている。   As shown in FIG. 1, the light emitting device includes a light emitting element 10 and a curved reflector 20. Here, the light emitting element 10 is arranged substantially horizontally with the lower end of the curved reflector 20. The curved reflector 20 has a structure in which a metal film 22 and a dielectric multilayer film 23 are laminated on a curved surface of a casing 21 having a concave curved surface. The curved surface shape of the housing 21 is such that light emitted radially from the light emitting element 10 is directed to a direction of approximately 90 ° with respect to the main axis 6 of the emitted light of the light emitting element 10 by the metal layer 22 and the dielectric multilayer film 23. Designed to be reflected.

金属層22は、AlやAg等の反射率の高い材料により形成されている。誘電体多層膜23は、金属層22側に配置された低屈折率層とその上に配置された高屈折率層とを組として、これをひと組以上積層した構造であり、発光素子10からの光に対して増反射効果を発揮する。低屈折率層は、例えば二酸化ケイ素膜や、酸化アルミニウム膜を用いる。高屈折率層は、低屈折率層よりも屈折率の高い、例えば酸化チタンや酸化ジルコニウム層を用いる。   The metal layer 22 is formed of a material having a high reflectance such as Al or Ag. The dielectric multilayer film 23 is a structure in which a low refractive index layer disposed on the metal layer 22 side and a high refractive index layer disposed thereon are combined, and one or more sets thereof are laminated. Exhibits an enhanced reflection effect on light. For example, a silicon dioxide film or an aluminum oxide film is used for the low refractive index layer. For the high refractive index layer, for example, a titanium oxide or zirconium oxide layer having a higher refractive index than that of the low refractive index layer is used.

低屈折率層と高屈折率層は、それぞれの界面で反射された光束が互いに干渉し強めあうことにより、金属層22単体のみによる反射率よりも増幅された反射率を示す。   The low-refractive index layer and the high-refractive index layer exhibit reflectivity that is amplified more than the reflectivity of the metal layer 22 alone because the light beams reflected at the respective interfaces interfere with each other and strengthen each other.

誘電体多層膜23の膜厚について説明する。本発明では、発光素子10から放射状に放射された光が誘電体多層膜23に入射する際の入射角が大きい領域では、基板面に垂直な方向についての膜厚が大きくなるようにした。これを実現するため、具体的には、発光素子10の出射光の主軸6に平行な方向についての誘電体多層膜23の膜厚Lが、湾曲した誘電体多層膜23の各部(全面)において一定になるようにした。   The film thickness of the dielectric multilayer film 23 will be described. In the present invention, the film thickness in the direction perpendicular to the substrate surface is increased in a region where the incident angle when light radiated from the light emitting element 10 is incident on the dielectric multilayer film 23 is large. In order to realize this, specifically, the film thickness L of the dielectric multilayer film 23 in the direction parallel to the main axis 6 of the light emitted from the light-emitting element 10 is different in each part (entire surface) of the curved dielectric multilayer film 23. It was made constant.

このようにすると、図1のように誘電体多層膜23への入射角が領域2,3,4,5の順で大きくなるに従い、基板面に垂直な方向の膜厚も順に大きくなるため、増反射の中心波長を誘電体多層膜23の広い領域で一定に保ち、増反射効果を発揮することができる。   In this case, as the incident angle to the dielectric multilayer film 23 increases in the order of the regions 2, 3, 4 and 5 as shown in FIG. 1, the film thickness in the direction perpendicular to the substrate surface also increases in order. The central wavelength of the increased reflection can be kept constant over a wide area of the dielectric multilayer film 23, and the increased reflection effect can be exhibited.

これに対し、比較例として、図2に示すように、一様な膜厚の誘電体多層膜33を備えた曲面リフレクタ30を用いた場合には、誘電体多層膜23への入射角が領域12,13,14,15の順で大きくなっても、膜厚は一定であるため、増反射の中心波長を誘電体多層膜23が短波長側にシフトする。発光素子10の出射波長は、一定にであるため、一部の領域のみでしかの増反射効果を得ることができず、全体の反射率を高めることができない。   On the other hand, as a comparative example, as shown in FIG. 2, when a curved reflector 30 having a uniform dielectric multilayer film 33 is used, the incident angle to the dielectric multilayer film 23 is a region. Even if it increases in the order of 12, 13, 14, and 15, the film thickness is constant. Therefore, the dielectric multilayer film 23 shifts the central wavelength of the increased reflection to the short wavelength side. Since the emission wavelength of the light emitting element 10 is constant, it is not possible to obtain the effect of increasing reflection only in a part of the region, and the overall reflectance cannot be increased.

本実施形態の誘電体多層膜23の湾曲した低屈折率層と高屈折率層は、上述のように発光素子10の出射光の主軸6に平行な方向の膜厚L(均一膜厚成長方向についての膜厚L)が各部において一定であるが、この膜厚Lは、以下のように定める。すなわち、発光素子10の出射光の主軸6に平行な方向の膜厚Lは、増反射膜の条件であるd=λ/4n(λ:発光素子10の出射光波長、n:屈折率)によって定まるdに対して、L=d/(cosθ)(ここでは、θ=45°)を満たす値に設定する。もしくは、特許文献1等に記載されている公知の平板状の増反射膜の条件を満たす膜厚dに対して、L=d/(cos45°)を満たす値となるように設定する。なお、θ=45°としているのは、本実施形態の曲面リフレクタ20が発光素子10からの光を主軸6に対して90°の方向に向かって反射する反射角δ=90°のリフレクタであり、誘電体多層膜23への入射角の中心角θ=δ/2=45°だからである。よって、θは、曲面リフレクタ20の反射角δに応じて、θ=δ/2に設定する。   The curved low-refractive index layer and high-refractive index layer of the dielectric multilayer film 23 of the present embodiment are, as described above, the film thickness L in the direction parallel to the main axis 6 of the emitted light of the light emitting element 10 (uniform film thickness growth direction) The film thickness L) is constant in each part, but this film thickness L is determined as follows. That is, the film thickness L in the direction parallel to the main axis 6 of the emitted light of the light emitting element 10 depends on the condition of the increased reflection film, d = λ / 4n (λ: the emitted light wavelength of the light emitting element 10, n: refractive index). For a fixed d, a value satisfying L = d / (cos θ) (here, θ = 45 °) is set. Alternatively, the thickness d is set so as to satisfy L = d / (cos 45 °) with respect to the film thickness d satisfying the conditions of a known flat reflection increasing film described in Patent Document 1 or the like. Note that θ = 45 ° is a reflector having a reflection angle δ = 90 °, in which the curved reflector 20 of the present embodiment reflects light from the light emitting element 10 in the direction of 90 ° with respect to the main axis 6. This is because the central angle θ = δ / 2 = 45 ° of the incident angle to the dielectric multilayer film 23. Therefore, θ is set to θ = δ / 2 according to the reflection angle δ of the curved reflector 20.

上記のような膜厚を有する誘電体多層膜23の成膜方法としては、蒸着、スパッタ、イオンプレーティング等の気相成長法を用いることができる。具体的には、平面の成膜対象物(基板)を配置した場合に均一な膜厚で膜が成長する方向(均一膜厚成長方向)41を確認し、この均一膜厚成長方向が、曲面リフレクタ20の発光素子10の出射光の主軸6の方向と一致するように筺体21を配置して成膜を行う方法を用いる。これにより、膜厚の変化した誘電体多層膜23を比較的容易に成膜することができる。   As a method for forming the dielectric multilayer film 23 having the above-described film thickness, vapor phase growth methods such as vapor deposition, sputtering, and ion plating can be used. Specifically, when a flat film formation target (substrate) is arranged, a direction (uniform film growth direction) 41 in which the film grows with a uniform film thickness is confirmed, and this uniform film growth direction is a curved surface. A method of forming a film by arranging the casing 21 so as to coincide with the direction of the main axis 6 of the emitted light of the light emitting element 10 of the reflector 20 is used. Thereby, the dielectric multilayer film 23 having a changed film thickness can be formed relatively easily.

実際に、図3(a),(b),(c)に示したように、筺体21の向きを、発光素子10の出射光の主軸6の方向が均一膜厚成長方向41に対して、それぞれ垂直、45°、平行、に設定し、誘電体多層膜23を成膜し、曲面リフレクタ20の試料を作成した。図3(c)の試料は、均一膜厚成長方向41と主軸6の方向が平行であり、本実施形態の図1の構造の均一膜成長方向41の膜厚Lが一定の誘電体多層膜23が成膜された。図3(a)の試料は、誘電体多層膜23の膜厚の変化が、本実施形態の図3(c)の試料とは逆向きであった。図3(b)の試料は、誘電体多層膜23の膜厚変化が小さかった。   Actually, as shown in FIGS. 3A, 3 </ b> B, and 3 </ b> C, the direction of the casing 21 is set so that the direction of the main axis 6 of the emitted light of the light emitting element 10 is in the uniform film thickness growth direction 41. The dielectric multilayer film 23 was formed in each of the vertical, 45 ° and parallel directions, and a sample of the curved reflector 20 was prepared. The sample of FIG. 3C is a dielectric multilayer film in which the uniform film growth direction 41 and the direction of the main axis 6 are parallel, and the film thickness L in the uniform film growth direction 41 of the structure of FIG. 23 was deposited. In the sample of FIG. 3A, the change in the thickness of the dielectric multilayer film 23 was opposite to that of the sample of FIG. 3C of this embodiment. In the sample of FIG. 3B, the change in film thickness of the dielectric multilayer film 23 was small.

これらに発光素子10からの光を入射し、反射光束の量を測定したところ、金属層22のみの場合と比較した反射光束の増加率は、図3(a)の試料で1%、図3(b)の試料で3%であったのに対し、本実施形態の図3(c)の試料は6%であった。   When the light from the light emitting element 10 is incident on these and the amount of the reflected light beam is measured, the increase rate of the reflected light beam is 1% in the sample of FIG. In the sample of (b), it was 3%, whereas in the sample of FIG.

これらのことから、本実施形態の、基板面に垂直な方向の膜厚が変化した誘電体多層膜23を備えた曲面リフレクタおよびその成膜方法は、増反射効果を高めることに有効であることが確認できた。   From these facts, the curved reflector having the dielectric multilayer film 23 whose thickness in the direction perpendicular to the substrate surface and the film forming method of the present embodiment are effective for enhancing the reflection enhancement effect. Was confirmed.

本発明では、曲面のリフレクタの増反射効果を高めることができるため、発光素子等の光源と組み合わせることにより、光量の大きな発光装置を得ることができる。このような発光装置は、例えば車両用のヘッドランプや、液晶表示装置のバックライト装置、プロジェクタ装置の光源、室内・屋外照明等の照明装置として適している。また、本発明の曲面リフレクタの用途は、発光装置に限られるものではなく、曲面リフレクタを用いるすべての装置に適用可能である。   In the present invention, since the effect of increasing the reflection of the curved reflector can be enhanced, a light emitting device with a large amount of light can be obtained by combining with a light source such as a light emitting element. Such a light emitting device is suitable, for example, as a headlamp for a vehicle, a backlight device of a liquid crystal display device, a light source of a projector device, an illumination device such as indoor / outdoor illumination. In addition, the use of the curved reflector of the present invention is not limited to the light emitting device, and can be applied to all devices using the curved reflector.

また、本発明は、誘電体多層膜を備えた曲面リフレクタについて説明したが、リフレクタに限らず、誘電体多層膜を曲面に成膜して使用する製品全般に適用することが可能である。   Further, the present invention has been described with respect to the curved reflector provided with the dielectric multilayer film. However, the present invention is not limited to the reflector and can be applied to all products using the dielectric multilayer film formed on the curved surface.

上述の実施形態では、光源として発光素子を用いた場合について説明したが、本発明の光源は、単色光を発する発光素子に限定されるものではなく、単色光ではない光源、発光素子ではないランプ等の光源を用いることももちろん可能である。   In the above-described embodiment, the case where a light emitting element is used as a light source has been described. However, the light source of the present invention is not limited to a light emitting element that emits monochromatic light, and is a light source that is not monochromatic light, or a lamp that is not a light emitting element. It is of course possible to use a light source such as

2〜5…領域、6…出射光の主軸、10…発光素子、20…曲面リフレクタ、21…筺体、22…金属層、23…誘電体多層膜、33…誘電体多層膜、41…均一膜厚成長方向   2 to 5 ... region, 6 ... main axis of emitted light, 10 ... light emitting element, 20 ... curved reflector, 21 ... enclosure, 22 ... metal layer, 23 ... dielectric multilayer film, 33 ... dielectric multilayer film, 41 ... uniform film Thick growth direction

Claims (5)

曲面形状の金属反射面と、前記金属反射面上に積層された複数層からなる誘電体層とを備え、
前記誘電体層は、光源から入射する光線の主軸方向についての膜厚が一定であることを特徴とするリフレクタ。
A curved metal reflective surface, and a dielectric layer composed of a plurality of layers laminated on the metal reflective surface,
The dielectric layer has a constant film thickness in the principal axis direction of light incident from a light source.
曲面形状の金属反射面と、前記金属反射面上に積層された複数層からなる誘電体層とを備え、
前記誘電体層は、光源から入射する光線の入射角に応じて膜厚が分布しており、前記入射角が大きい領域は膜厚が厚く、入射角が小さい領域は膜厚が薄く形成されていることを特徴とするリフレクタ。
A curved metal reflective surface, and a dielectric layer composed of a plurality of layers laminated on the metal reflective surface,
The dielectric layer has a thickness distributed according to an incident angle of light incident from a light source, and the region having a large incident angle is thick and the region having a small incident angle is thin. Reflector characterized by being.
請求項1または2に記載のリフレクタにおいて、前記誘電体層は、増反射膜であることを特徴とするリフレクタ。   3. The reflector according to claim 1, wherein the dielectric layer is a reflection-enhancing film. 4. 請求項1ないし3のいずれか1項に記載のリフレクタにおいて、前記金属反射面は、光源からの光を直角に曲げる形状であることを特徴とするリフレクタ。   4. The reflector according to claim 1, wherein the metal reflecting surface has a shape that bends light from a light source at a right angle. 5. 曲面形状の金属反射面に、気相成長法により誘電体層を成膜する工程を含むリフレクタの製造方法であって、
前記気相成長法により膜が成長する方向と、前記金属反射面に入射する光の主軸方向とを一致させて、前記誘電体層を成膜することを特徴とするリフレクタの製造方法。
A reflector manufacturing method including a step of forming a dielectric layer on a curved metal reflecting surface by vapor deposition,
A method of manufacturing a reflector, wherein the dielectric layer is formed by aligning a direction in which a film is grown by the vapor phase growth method with a principal axis direction of light incident on the metal reflecting surface.
JP2010068548A 2010-03-24 2010-03-24 REFLECTOR USING DIELECTRIC LAYER AND LIGHT EMITTING DEVICE Active JP5727152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010068548A JP5727152B2 (en) 2010-03-24 2010-03-24 REFLECTOR USING DIELECTRIC LAYER AND LIGHT EMITTING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010068548A JP5727152B2 (en) 2010-03-24 2010-03-24 REFLECTOR USING DIELECTRIC LAYER AND LIGHT EMITTING DEVICE

Publications (2)

Publication Number Publication Date
JP2011203359A true JP2011203359A (en) 2011-10-13
JP5727152B2 JP5727152B2 (en) 2015-06-03

Family

ID=44880093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010068548A Active JP5727152B2 (en) 2010-03-24 2010-03-24 REFLECTOR USING DIELECTRIC LAYER AND LIGHT EMITTING DEVICE

Country Status (1)

Country Link
JP (1) JP5727152B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009180A (en) * 2010-06-22 2012-01-12 Panasonic Electric Works Co Ltd Lighting fixture
CN102661537A (en) * 2012-04-16 2012-09-12 深圳市华星光电技术有限公司 Backlight module and liquid crystal display
JP2014127513A (en) * 2012-12-25 2014-07-07 Nichia Chem Ind Ltd Light-emitting device
JP2015099816A (en) * 2013-11-18 2015-05-28 日亜化学工業株式会社 Method for manufacturing light distribution member and method for manufacturing light emitting device
KR101557443B1 (en) * 2014-04-29 2015-10-06 엘지전자 주식회사 Lighting device
CN107884993A (en) * 2017-10-24 2018-04-06 友达光电股份有限公司 Backlight module and display device comprising same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417005A (en) * 1987-07-10 1989-01-20 Japan Aviation Electron Curved reflecting mirror
JPH0352730U (en) * 1989-09-29 1991-05-22
JPH04251238A (en) * 1991-01-09 1992-09-07 Ushio Inc Liquid crystal projector device
JPH08273415A (en) * 1996-05-07 1996-10-18 Toshiba Lighting & Technol Corp Light source with reflector
JP2003330393A (en) * 2002-05-15 2003-11-19 Panasonic Communications Co Ltd Display device and image communication machine having the same, and copying machine
WO2004074887A1 (en) * 2003-02-21 2004-09-02 Mitsui Chemicals, Inc. Reflector and application thereof
JP2007213869A (en) * 2006-02-07 2007-08-23 Shimadzu Corp Light source equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417005A (en) * 1987-07-10 1989-01-20 Japan Aviation Electron Curved reflecting mirror
JPH0352730U (en) * 1989-09-29 1991-05-22
JPH04251238A (en) * 1991-01-09 1992-09-07 Ushio Inc Liquid crystal projector device
JPH08273415A (en) * 1996-05-07 1996-10-18 Toshiba Lighting & Technol Corp Light source with reflector
JP2003330393A (en) * 2002-05-15 2003-11-19 Panasonic Communications Co Ltd Display device and image communication machine having the same, and copying machine
WO2004074887A1 (en) * 2003-02-21 2004-09-02 Mitsui Chemicals, Inc. Reflector and application thereof
JP2007213869A (en) * 2006-02-07 2007-08-23 Shimadzu Corp Light source equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009180A (en) * 2010-06-22 2012-01-12 Panasonic Electric Works Co Ltd Lighting fixture
CN102661537A (en) * 2012-04-16 2012-09-12 深圳市华星光电技术有限公司 Backlight module and liquid crystal display
JP2014127513A (en) * 2012-12-25 2014-07-07 Nichia Chem Ind Ltd Light-emitting device
JP2015099816A (en) * 2013-11-18 2015-05-28 日亜化学工業株式会社 Method for manufacturing light distribution member and method for manufacturing light emitting device
KR101557443B1 (en) * 2014-04-29 2015-10-06 엘지전자 주식회사 Lighting device
CN107884993A (en) * 2017-10-24 2018-04-06 友达光电股份有限公司 Backlight module and display device comprising same

Also Published As

Publication number Publication date
JP5727152B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5727152B2 (en) REFLECTOR USING DIELECTRIC LAYER AND LIGHT EMITTING DEVICE
TWI261378B (en) Polarized light emitting device
US9028071B2 (en) Light emitting element, light source device, and projection display device
JP5605368B2 (en) Optical element, light source device and projection display device
JP5590039B2 (en) Wire grid polarizer and method of manufacturing the same
JP2009116218A (en) Antireflective film, method of forming antireflective film and light-transmissive member
WO2011108138A1 (en) Optical element, light-source apparatus, and projection-type display apparatus
JP2018092135A (en) Optical imaging device
JPWO2012172858A1 (en) Optical element, light source device and projection display device
JP6180089B2 (en) Optical element and projection-type image display device using the same
US10209518B2 (en) Display apparatus
JP2003270432A (en) Visible light reflecting member
JP5619586B2 (en) Projection display equipment
JP5566667B2 (en) Polarization conversion element
JP5833320B2 (en) Polarized illumination device and projection display device
CN111201475B (en) Wire grid polarizing plate, method for manufacturing the same, method for observing the same, and method for estimating the polarization axis direction of wire grid polarizing plate
JP6916073B2 (en) Optical device
TWI669462B (en) Lamp device for generating three-dimensional lighting effect by using multiple virtual images
US11022737B2 (en) Wire grid polarization element having gradually changing proportions of elements, liquid crystal apparatus, and electronic device
JP2007114375A (en) Light irradiation device, liquid crystal display apparatus and liquid crystal projection apparatus
JP2007003936A (en) Infrared region reflecting mirror and its manufacturing method
JP2005266211A (en) Multilayer film reflecting mirror
JP2005352288A (en) Optical system for enlarging luminous flux diameter, image combiner and image display device
JPH0915407A (en) Reflection optical element
US20240069378A1 (en) Optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150402

R150 Certificate of patent or registration of utility model

Ref document number: 5727152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250