JPS59177850A - Tungsten halogen lamp with dichroic mirror - Google Patents

Tungsten halogen lamp with dichroic mirror

Info

Publication number
JPS59177850A
JPS59177850A JP5473383A JP5473383A JPS59177850A JP S59177850 A JPS59177850 A JP S59177850A JP 5473383 A JP5473383 A JP 5473383A JP 5473383 A JP5473383 A JP 5473383A JP S59177850 A JPS59177850 A JP S59177850A
Authority
JP
Japan
Prior art keywords
light
bulb
mirror
dichroic mirror
halogen lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5473383A
Other languages
Japanese (ja)
Other versions
JPH0458145B2 (en
Inventor
Masayoshi Miyashita
宮下 正義
Shigero Matsuoka
松岡 茂朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP5473383A priority Critical patent/JPS59177850A/en
Publication of JPS59177850A publication Critical patent/JPS59177850A/en
Publication of JPH0458145B2 publication Critical patent/JPH0458145B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures

Abstract

PURPOSE:To decrease irregularities in brightness and temperature distribution on the irradiated surface by installing a tungsten halogen lamp inside a dichroric mirror having a selective reflection film on its inner surface and performing diffusion treatment on part of the bulb of the tungsten halogen lamp. CONSTITUTION:In a tungsten halogen lamp with a dichroic mirror, a tungsten halogen lamp 4 having a frost surface 7 formed by diffusion treatment on the outer surface of a bulb 6, is installed inside a dichroic mirror 3. The dichroic mirror 3 is made by forming a multilayered selective reflection film 2 having a selective reflection characteristic on the inner surface of a glass base body 1 through vapordeposition. Since light discharged from a filament 5 toward the mirror 3 is partially diffused by passing through the frost surface 7, light with a high luminance traveling from the filament 5 and light with a low lumiance traveling from the bulb surface become incident upon the point (P3) located in the inner side of the mirror 3 as well as the point (P4) located in the opening side of the mirror 3. Therefore reflected light includes both main reflected light (F3), (F4) and diffused reflected light (F'3), (F'4). As a result, irradiation can be carried out without causing any irregularity in brightness and variation in temperature distribution on the irradiated surface.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は特に8愉映写機やオーバヘッドプロジェクタ−
等の光学機器用、または博物館や店舗等の一般照明用と
してのグイクロイックミラー付ノ・ロゲン電球に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is particularly applicable to 8-screen projectors and overhead projectors.
The present invention relates to a non-volatile light bulb with a guichroic mirror for use in optical equipment such as, for example, or for general lighting in museums, stores, and the like.

従来例の構成とその問題点 グイクロイックミラー伺ハロゲン電球は、ダイクロイッ
クミラーとハロゲン電球を一体化したもので、小形で、
良好な配光性能が維持できると云うミラー付ハロゲン電
球の特長と、・・ロゲン電球の欠点である赤外放射を大
幅に軽減できると云う特長とを合せてもっている。
Conventional structure and problems A halogen light bulb is a combination of a dichroic mirror and a halogen light bulb, and is small.
It combines the feature of a halogen light bulb with a mirror, which is the ability to maintain good light distribution performance, and the feature of being able to significantly reduce infrared radiation, which is a drawback of halogen light bulbs.

このダイクロイックミラー付ハロゲン電球について第1
図を用いて説明すると、圧縮形成したガラス基体1の内
面に、可視光を反射し赤外光を透過する選択性反射特性
をもつ多層の選択性反射膜2を蒸着した単一または複合
楕円回転面のダイクロイックミラー3に、所楚の配光特
性が得られる位tにハロゲン電球4を組込んだものであ
る。
About this halogen bulb with dichroic mirror
To explain using a diagram, a single or compound ellipsoidal rotation is formed by depositing a multilayer selective reflection film 2 having selective reflection characteristics that reflects visible light and transmits infrared light on the inner surface of a compressed glass substrate 1. A halogen light bulb 4 is incorporated into a dichroic mirror 3 on the surface at a position where the desired light distribution characteristics can be obtained.

ゲンガスが封有されている。Gengas is sealed inside.

パルプが透明なハロゲン電球を備えたダイクロイックミ
ラー付ハロゲン電球は、発光部が小さいため、配光制御
が容易となり、光の利用効率を高めることができるが、
フィラメントの偏心やフィラメント位置のわずかなずれ
によって配光特性が大きく変化し、従って被照射面の照
度分布に犬きく影響を与える。また、被照射面にフィラ
メントの影が映る仁ともある。このため、ミラーの内面
形状を多面体にするか、凸面や凹面状の小さなくぼみ(
点刻せ/(は槌目と称す)を設けて拡散反射するように
しているが、ミラーの拡散性を大きくすると、光の制御
が困難となり、効率も低下して所定の配光性能が得られ
なくなるため、ミラーを拡散性にする(・では限度があ
る。
Halogen bulbs with dichroic mirrors, which are equipped with halogen bulbs with transparent pulp, have a small light-emitting area, making it easier to control light distribution and increasing the efficiency of light use.
The eccentricity of the filament or a slight shift in the filament position greatly changes the light distribution characteristics, and therefore has a significant impact on the illuminance distribution on the irradiated surface. It is also called jin, in which the shadow of the filament is reflected on the irradiated surface. For this reason, the inner surface of the mirror should be made polyhedral or have small convex or concave depressions (
Stipples (referred to as hammer marks) are provided to diffuse reflection, but if the diffusivity of the mirror is increased, it becomes difficult to control the light and the efficiency decreases, making it difficult to achieve the desired light distribution performance. Therefore, the mirror should be made diffusive (there is a limit).

アルミ蒸着ミラー丑たはアルミミラーなどのミラー付・
・ロゲン電球の分布温度は使用している)・ロゲン電球
自体の分布温度とほとんど同じであるが、ダイクロイッ
クミラー付ノ・ロゲン電球の場合には、光軸方向でノ・
ロゲン電球単独の分布温度より一般に数10K(ケルビ
ン)高くなる。また、光の照射方向によって分布温度が
異なり、一般に光軸から離れるにつれて分布温度カニ高
くなり、ダイクロイックミラーによっては光色が青味を
おびてくる。これはダイクロイックミラーの分光反射率
が一定でなく、波長によって反射率が変化するためであ
る。また、このミラーの分光反射特性は反射膜の厚さお
よび光の入射角度によっても大きく変ってくる。第2図
および第3図は反射膜の厚さと入射角度に対するダイク
ロイックミラーの透過特性の変化を示したものである。
With mirrors such as aluminum vapor-deposited mirrors or aluminum mirrors.
・The distribution temperature of the Rogen bulb is almost the same as the distribution temperature of the Rogen bulb itself, but in the case of the Rogen bulb with a dichroic mirror, the temperature distribution is
The distribution temperature is generally several tens of K (Kelvin) higher than that of a rogen bulb alone. Furthermore, the distribution temperature varies depending on the direction of light irradiation, and generally the distribution temperature increases as the distance from the optical axis increases, and depending on the dichroic mirror, the light color becomes bluish. This is because the spectral reflectance of the dichroic mirror is not constant and changes depending on the wavelength. Furthermore, the spectral reflection characteristics of this mirror vary greatly depending on the thickness of the reflective film and the angle of incidence of light. FIGS. 2 and 3 show changes in the transmission characteristics of the dichroic mirror with respect to the thickness of the reflective film and the angle of incidence.

反射膜の厚さが増すほど、丑だ入射角度が大きくなるほ
ど、反射膜は長波長側の光を多く通ずようになり、した
がって反射光としては長波長側がカットさ九、光色は青
味をおびてくる(分布温度は高くなる)。
As the thickness of the reflective film increases and the angle of incidence increases, the reflective film will allow more light on the long wavelength side to pass through, so the long wavelength side will be cut off as reflected light, and the light color will be bluish. (distribution temperature becomes higher).

以下と汎について説明する。第4図は楕円回転ミラーの
場合の光(可視光及び赤外光)の放射経路を示したもの
である。フィラメント5から放射さて nた光は多層反射膜2によっち可視光F1.F2と赤外
光IR1,IE2との2成分に分離され、主として可視
光のみがミラー前面に放出される。この場合、ミラーの
奥側P1と開口側P2とは多層反射膜2の膜厚が同じで
あっても光が通過する距離はP2の方が長く見掛上反射
膜が厚くなったに等しい。
The following and generalization will be explained. FIG. 4 shows radiation paths of light (visible light and infrared light) in the case of an elliptical rotating mirror. The light emitted from the filament 5 is converted into visible light F1 by the multilayer reflective film 2. The light is separated into two components: F2 and infrared light IR1 and IE2, and mainly only visible light is emitted to the front surface of the mirror. In this case, even if the thickness of the multilayer reflective film 2 is the same on the rear side P1 and the opening side P2 of the mirror, the distance through which light passes is longer on P2 and is equivalent to an apparent thicker reflective film.

このため、P からの反射光F2は分布温度が高くなる
。楕円回転面ミラーでは奥側P、の反射光F1は光軸方
向に、開口側P2の反射光F2は光軸から離れた方向に
それぞれ照射されるため、光軸から離れるにつれて分布
温度は高くなり、例えば光軸中心で3050にの場合、
周辺方向で3200〜3300にとなる。反射膜は屈折
率の異なる2つの化合物を交互に多数回蒸着したもので
あり、非常に膜厚のむら(蒸着むら)の生じやすいもの
で、ミラー間では勿論、一枚のミラーについても局部的
な膜厚のむらがある。膜厚のむらの大きいミラーを使用
したグイクロイックミラー付ノーロゲン電球は、被照射
面が部分的に赤味全おびたり、青味をおびたりするので
、照明上好寸しくない。分布温度で50にの差があると
、人間の目には識別でき、200に以上の差がある場合
は使用上問題がある。特にダイクロイックミラー付ノ・
ロゲン電球の場合、分布温度が高くなると、光色が黄色
才たは緑色がかつてきて演色性が極端に悪くなる。この
ように、パルプが透明のノ・ロゲン電球を組込んだグイ
クロイックミラー付ノーロゲン電球は、フィラメントの
偏心やフィラメントの位置ずれによる配光特性への影響
が大きく、被照射面にフィラメントの影などがでやすく
、明るさのむらのない照明を得ることが困難である。ま
た、ダイクロイックミラーの反射膜厚のむらによる光色
のむらが生じやすく、さらに被照射面の光軸中心と周辺
部でも光色のむらが生じやすい。
Therefore, the distribution temperature of the reflected light F2 from P 2 becomes high. In an elliptical rotating mirror, the reflected light F1 from the rear side P is irradiated in the optical axis direction, and the reflected light F2 from the aperture side P2 is irradiated in a direction away from the optical axis, so the distribution temperature increases as the distance from the optical axis increases. , for example, in the case of 3050 at the center of the optical axis,
It becomes 3200-3300 in the peripheral direction. The reflective film is made by alternately depositing two compounds with different refractive indexes many times, and it is very likely that unevenness in film thickness (deposition unevenness) will occur, not only between mirrors but also locally on a single mirror. The film thickness is uneven. Norogen light bulbs with glaucroic mirrors that use mirrors with large film thickness irregularities are not suitable for illumination because the irradiated surface becomes partially reddish or bluish. A difference of 50 degrees in distribution temperature can be discerned by the human eye, while a difference of 200 degrees or more poses a problem in use. Especially those with dichroic mirrors.
In the case of rogen light bulbs, as the temperature distribution increases, the light color becomes yellowish or greenish, resulting in extremely poor color rendering. In this way, a gicroic mirrored norogen bulb incorporating a transparent pulp bulb has a large effect on the light distribution characteristics due to filament eccentricity and filament misalignment, and the filament casts a shadow on the irradiated surface. etc., making it difficult to obtain illumination with even brightness. Further, unevenness in light color is likely to occur due to unevenness in the thickness of the reflective film of the dichroic mirror, and furthermore, unevenness in light color is also likely to occur at the center and periphery of the optical axis of the irradiated surface.

発明の目的 本発明はフィラメントの偏心やフィラメントの位置ずれ
等による配送特性への影響を少なくし、明るさのむらの
少ない照明を得ると同時に、ダイクロイックミラーの反
射膜厚のむら等による光色のばらつきも少なくして良好
な照明効果を有するダイクロイックミラー付ノ・ロゲン
電球を提供するものである。
Purpose of the Invention The present invention reduces the influence of filament eccentricity, filament misalignment, etc. on delivery characteristics, provides illumination with less uneven brightness, and at the same time reduces the variation in light color due to unevenness in the reflective film thickness of a dichroic mirror. To provide a dichroic mirror-equipped non-rogen light bulb which has good illumination effects with a small amount of light.

発明の構成 本発明は内面に選択性反射膜を形成し/こダイクロイッ
クミラーの内側に、パルプの少なくとも一部の表面に拡
散処理を施したノーロゲン電球を設け、ミラーとハロゲ
ン電球全一体化して構成したもの ′で、ハロゲン電球
の発光状態はフィラメントがほとんど見えない程度に拡
散されるので、フィラメントの発光部は拡大され、この
部分の輝度(明るさ)も大幅に低下する。さらに−フィ
ラメントの周辺のバルブ面も散乱光により輝き発光部は
大きくなる。この/こめ、ダイクロインクミラー付ハロ
ゲン電球の1!(1明特性は面積の小さい高輝度発光部
による集光配光特性ど面積の大きい低輝度発光H15に
よる拡散配光特性との2つの特長を兼ね備えている。
Structure of the Invention The present invention has a structure in which a selective reflective film is formed on the inner surface of the dichroic mirror, and a halogen bulb with diffusion treatment applied to at least a portion of the surface of the pulp is provided inside the dichroic mirror, and the mirror and the halogen bulb are integrated. In this case, the light emitting state of the halogen bulb is diffused to the extent that the filament is almost invisible, so the light emitting part of the filament is enlarged and the brightness (brightness) of this part is also significantly reduced. Furthermore, the bulb surface around the filament also shines due to scattered light and the light emitting area becomes larger. This is the first halogen light bulb with dichroic ink mirror! (The 1-bright characteristic combines two features: the light-condensing light distribution characteristic by the high-intensity light emitting part with a small area and the diffused light distribution characteristic by the low-intensity light-emitting part H15 having a large area.

実施例の説明 以下、本発明の一実施例について肉面を用いて説明する
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below using the meat side.

第5図は本発明の一実施例であるダイクロイックミラー
付ハロゲン電球の断面図である。同図に示すように、こ
のダイクロイックミラー付ハロゲン電球は、ガラス基体
1の内面に選択性反射特性をもつ多層の選択性反射膜2
を蒸着により形成したダイクロイックミラー3の内側に
、バルブ6の外表面に拡散処理を施してフロスト面7と
なしたハロゲン電球4を設けている。バルブ6の70ス
ト面の形成は、バルブ6の外表面をサンドブラスト等で
機械的に粗面化するか、ぶつ酸等で化学的に粗面化する
FIG. 5 is a sectional view of a halogen light bulb with a dichroic mirror, which is an embodiment of the present invention. As shown in the figure, this halogen light bulb with a dichroic mirror includes a multilayer selective reflection film 2 having selective reflection characteristics on the inner surface of a glass substrate 1.
A halogen light bulb 4 whose outer surface of a bulb 6 is subjected to diffusion treatment to form a frosted surface 7 is provided inside a dichroic mirror 3 formed by vapor deposition. To form the 70 stroke surface of the bulb 6, the outer surface of the bulb 6 is roughened mechanically by sandblasting or the like, or chemically by roughening with butic acid or the like.

第6図はこの電球を使用した場合のダイクr−フィック
ミラーイス」ハロゲン電球の説明図で、フィラメント5
からダイクロイックミラー3の方向に放射された光(:
は、フロスト面7を通ることによつで部分的に拡散さ扛
る。したがって、ミラーの奥側の点P3および開口側の
点P4にも、フィラメント5かもの高輝度部分の光およ
び、バルブ面からの低輝度部分の光(拡散光)がそれそ
扛入射するため、これらの反射光には光の強い主反射光
F3.F4と光の弱い拡散反射光F3′、F4′との2
つの成分が含1f1.る。
Figure 6 is an explanatory diagram of the Dyke R-Fickmiller Ice halogen bulb when this bulb is used, and the filament 5
The light emitted from the direction of the dichroic mirror 3 (:
is partially diffused by passing through the frost surface 7. Therefore, the light from the high brightness part of the filament 5 and the light from the low brightness part from the bulb surface (diffused light) also enter the point P3 on the back side of the mirror and the point P4 on the opening side. These reflected lights include the strong main reflected light F3. 2 of F4 and weak diffuse reflection light F3', F4'
Contains 1f1. Ru.

これらのうち、主反射光F3.F4はグイクロイックミ
ラー付ノ・ロゲン電球として必要な明るさおよび明るさ
の拡がりを得るものであり、拡散反射光F3/ 、 F
4/は明るさのむらおよび分布温度のばらつきを縮少す
る働きをする。第7図はダイクロイックミラー付ハロゲ
ン電球の配光曲線の一例全示したもので、曲線Eは従来
の透明バルブのハロゲン電球、曲線Fはバルブ外表面を
拡散処理したハロゲン電球のものである。透明バルブの
ハロゲン電球の配光曲線は凹凸が多く、軸対称も悪い。
Among these, the main reflected light F3. F4 obtains the brightness and spread of brightness necessary for a non-rogen light bulb with a luminescent mirror, and diffuse reflected light F3/, F
4/ serves to reduce unevenness in brightness and variation in temperature distribution. FIG. 7 shows an example of the light distribution curve of a halogen light bulb with a dichroic mirror, where curve E is a conventional halogen light bulb with a transparent bulb, and curve F is a halogen light bulb whose outer surface is diffused. The light distribution curve of a transparent halogen bulb is uneven and has poor axial symmetry.

これに対し、拡散処理をしたハロゲン電球の場合中心光
度はやや低くなるが変動の少ない曲線となり、軸対称性
も良い。2つの電球の照明状態を比較してみても明らか
に拡散処理をした・・ロゲン電球の方が照明むらが少な
く、寸た光軸中心部からの照度変化がゆるやかで視覚的
に均一な感じを受ける。
On the other hand, in the case of a halogen bulb that has undergone diffusion treatment, the center luminous intensity is slightly lower, but the curve has less fluctuation and has good axial symmetry. Comparing the lighting conditions of the two bulbs, it is clear that they have been treated with diffusion treatment...The Rogen bulb has less uneven lighting, and the illuminance changes gradually from the center of the optical axis, giving a visually uniform feeling. receive.

従来の透明バルブのハロゲン電球およびバルブ外表面を
拡散処理したハロゲン電球を組込んだダイクロイックミ
ラー付ハロゲン電球について、同一被照射面内で光軸中
心と周辺部の分布温度の差金比較したところ、透明バル
ブのノーロゲン電球で150に〜200にのものが拡散
したハロゲン電球では90に〜130にとなシ、分布温
度の差が少なくなる。又選択性反射膜の局部的な膜厚の
ばらつきによる分布温度の不均一性についても拡散処理
したハロゲン電球では大巾に改善でき、多少膜厚のばら
つきのあるダイクロイックミラーを用いても実用」二問
題のない程度に分布温度のばらつきを押えることができ
る。
A comparison of the difference in temperature distribution between the center of the optical axis and the periphery within the same irradiated surface of a conventional halogen bulb with a transparent bulb and a halogen bulb with a dichroic mirror incorporating a halogen bulb with diffusion treatment on the outer surface of the bulb revealed that the transparent In the case of a halogen bulb, which has a diffused temperature of 150 to 200 in the case of a norogen bulb, the difference in temperature distribution decreases to 90 to 130. In addition, non-uniformity in temperature distribution due to local variations in the thickness of the selective reflective film can be greatly improved with diffusion-treated halogen bulbs, and it is not practical to use dichroic mirrors with some variation in film thickness. Variations in temperature distribution can be suppressed to a non-problematic level.

なお、ハロゲン電球のバルブ表面に拡散性をもたせる方
法については、耐熱性の白色塗装被膜を形成してもよく
、聾だこれらの拡散処理をバルブの一部分に施しても同
様の効果が期待できる。また、選択性反射膜全形成する
基体はガラスのほか赤外線を透過する耐熱性のある素材
でもよく、樹脂、セラミックなどでもよい。
As for the method of imparting diffusivity to the bulb surface of a halogen light bulb, a heat-resistant white paint film may be formed, and similar effects can be expected by applying these diffusion treatments to a portion of the bulb. In addition to glass, the substrate on which the selective reflection film is entirely formed may be made of a heat-resistant material that transmits infrared rays, such as resin or ceramic.

発明の効果 以上のように、選択性反射膜全内面に形成したダイクロ
イックミラーの内側に設けたハロゲン電球の表面の少な
くとも一部を拡散処理することにより、フィラメントか
ら放射さ、t′1.た光はバルブ面で拡散され、ハロゲ
ン電球の発光部はフイラルトからバルブ全面に拡大され
る。このためダイクロイックミラーにはバルブ面からの
拡散光が多く入射するため被照射面上で明るさのむらお
よび分布温度のばらつきの少ない良質の照明が得られる
Effects of the Invention As described above, by diffusing at least a portion of the surface of the halogen bulb provided inside the dichroic mirror formed on the entire surface of the selective reflection film, the radiation from the filament, t'1. The light is diffused by the bulb surface, and the light emitting part of the halogen bulb is expanded from the filard to the entire surface of the bulb. For this reason, a large amount of diffused light from the bulb surface enters the dichroic mirror, so that high-quality illumination with less unevenness in brightness and less variation in temperature distribution can be obtained on the illuminated surface.

丑だ、フィラメントの偏心や変形などによる配光特性へ
の影響も少ないため、安定し/辷品質が得られる。また
、ダイクロイックミラー〇形状を多面体+c 1.たり
、凸面や凹面状の小さなくほみを設けるなどの特別の加
工を施こさなくとも所定の配光性能が得られる。
Moreover, the light distribution characteristics are less affected by eccentricity or deformation of the filament, resulting in stable/reading quality. Also, change the dichroic mirror shape to polyhedron +c 1. A predetermined light distribution performance can be obtained without special processing such as providing small convex or concave holes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のダイクロイックミラー付ハロゲン電球の
構造断面図、第2図、第3図はダイクロイックミラーの
分光透過率を示す図、第4図は従来のグイクロイックミ
ラー付電球の説明図、第5図は本発明のダイクロイック
ミラー付ハロゲン電球の構造断面図、第6図はこの説明
図、第7図は配光曲線を示す図である。 1  ガラス基体、2・・・・選択性反射膜、3・ ・
ダイクロイックミラー、4・ ・・ハロゲン′ε球。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ばっ 寸                        
            鞍部 2  の
Figure 1 is a cross-sectional view of the structure of a conventional halogen light bulb with a dichroic mirror, Figures 2 and 3 are diagrams showing the spectral transmittance of the dichroic mirror, and Figure 4 is an explanatory diagram of a conventional light bulb with a dichroic mirror. FIG. 5 is a structural sectional view of a halogen light bulb with a dichroic mirror according to the present invention, FIG. 6 is an explanatory diagram thereof, and FIG. 7 is a diagram showing a light distribution curve. 1 glass substrate, 2...selective reflective film, 3...
Dichroic mirror, 4...Halogen'ε bulb. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
blatantly
Saddle 2

Claims (1)

【特許請求の範囲】[Claims] 内面に選択性反射膜を形成したダイクロイックミラーの
内側にハロゲン電球を設け、かつ前記ハロゲン電球のバ
ルブの少なくとも一部の表面に拡散処理を施したことを
特徴とするダイクロイックミラー付ハロゲン電球。
A halogen light bulb with a dichroic mirror, characterized in that a halogen light bulb is provided inside a dichroic mirror having a selective reflection film formed on the inner surface, and a diffusion treatment is applied to at least a part of the surface of the bulb of the halogen light bulb.
JP5473383A 1983-03-29 1983-03-29 Tungsten halogen lamp with dichroic mirror Granted JPS59177850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5473383A JPS59177850A (en) 1983-03-29 1983-03-29 Tungsten halogen lamp with dichroic mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5473383A JPS59177850A (en) 1983-03-29 1983-03-29 Tungsten halogen lamp with dichroic mirror

Publications (2)

Publication Number Publication Date
JPS59177850A true JPS59177850A (en) 1984-10-08
JPH0458145B2 JPH0458145B2 (en) 1992-09-16

Family

ID=12978993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5473383A Granted JPS59177850A (en) 1983-03-29 1983-03-29 Tungsten halogen lamp with dichroic mirror

Country Status (1)

Country Link
JP (1) JPS59177850A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149160U (en) * 1986-03-14 1987-09-21
JPS62155462U (en) * 1986-03-25 1987-10-02
JPS6416061U (en) * 1987-07-17 1989-01-26
JPH08273415A (en) * 1996-05-07 1996-10-18 Toshiba Lighting & Technol Corp Light source with reflector
JPH1064486A (en) * 1997-06-02 1998-03-06 Toshiba Lighting & Technol Corp Light source with reflecting mirror

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922783U (en) * 1972-05-31 1974-02-26
JPS5679972U (en) * 1979-11-26 1981-06-29

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922783U (en) * 1972-05-31 1974-02-26
JPS5679972U (en) * 1979-11-26 1981-06-29

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149160U (en) * 1986-03-14 1987-09-21
JPH0517799Y2 (en) * 1986-03-14 1993-05-12
JPS62155462U (en) * 1986-03-25 1987-10-02
JPS6416061U (en) * 1987-07-17 1989-01-26
JPH0431735Y2 (en) * 1987-07-17 1992-07-30
JPH08273415A (en) * 1996-05-07 1996-10-18 Toshiba Lighting & Technol Corp Light source with reflector
JPH1064486A (en) * 1997-06-02 1998-03-06 Toshiba Lighting & Technol Corp Light source with reflecting mirror

Also Published As

Publication number Publication date
JPH0458145B2 (en) 1992-09-16

Similar Documents

Publication Publication Date Title
US4161015A (en) Luminaire using a multilayer interference mirror
HU215225B (en) Reflector lamp
JP2003258319A (en) Light emitting diode and luminaire
JP2004521465A (en) Lighting equipment
JPS59177850A (en) Tungsten halogen lamp with dichroic mirror
HU180333B (en) Reflecting mirror for decreasing the luminous rays being in the infrared region
JPS62213062A (en) Blow lamp bulb and incandescent lamp using the same
JP2001519586A (en) Fluorescent light
JPH06251755A (en) Bulb and signal lamp unit
US4914342A (en) Narrow spot reflector lamp with diffusing reflector
HU212949B (en) Headlight lamp
JPH09171708A (en) Reflector for radiation light source and medical illumination apparatus with said reflector
JPH10268129A (en) Infrared reflecting film, tubular lamp, and luminaire
JPH06275113A (en) Lighting reflector, lamp, lighting system and luminaire
JPS6021843Y2 (en) Vehicle lights
JPH11178839A (en) Medical treatment lighting system
JPH0282403A (en) Luminaire
JPH05157909A (en) Neodymium color light projecting multilayer film reflection mirror
JPS6193409A (en) Color lighting apparatus
JP2595552Y2 (en) Vehicle interior lights
JPH0218481Y2 (en)
JPH0683479U (en) Vehicle interior light
JP2007073461A (en) High intensity discharge lamp or high intensity discharge lamp with reflector
JPH0364802A (en) Luminaire
JP2000276920A (en) Luminaire and lamp