JPH08259374A - Method for growing si single crystal with radially uniform impurity concentration distribution - Google Patents

Method for growing si single crystal with radially uniform impurity concentration distribution

Info

Publication number
JPH08259374A
JPH08259374A JP7091431A JP9143195A JPH08259374A JP H08259374 A JPH08259374 A JP H08259374A JP 7091431 A JP7091431 A JP 7091431A JP 9143195 A JP9143195 A JP 9143195A JP H08259374 A JPH08259374 A JP H08259374A
Authority
JP
Japan
Prior art keywords
melt
single crystal
impurity concentration
concentration distribution
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7091431A
Other languages
Japanese (ja)
Other versions
JP2804456B2 (en
Inventor
Shoroku Kawanishi
荘六 川西
Kouji Sensai
宏治 泉妻
Shinji Sogo
慎二 十河
Hitoshi Sasaki
斉 佐々木
Shigeyuki Kimura
茂行 木村
Atsushi Ikari
敦 碇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP7091431A priority Critical patent/JP2804456B2/en
Priority to EP96104454A priority patent/EP0733726A3/en
Priority to US08/620,391 priority patent/US5700320A/en
Priority to KR1019960008023A priority patent/KR100264399B1/en
Publication of JPH08259374A publication Critical patent/JPH08259374A/en
Application granted granted Critical
Publication of JP2804456B2 publication Critical patent/JP2804456B2/en
Priority to KR1020000009606A priority patent/KR100269088B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To obtain, through Czochralski process, a Si single crystal uniformized in impurity concentration distribution in its radial direction. CONSTITUTION: When a Si single crystal is pulled up from a Si melt added with Ga or Sb through Czochralski process, element(s) capable of increasing the thermal expansion coefficient of the melt in the vicinity of its melting point (at least one kind of element selected from between B and P) is further added to the melt. As the result, agitation of the melt just under the growth interface can be promoted, and as the Si single crystal is pulled up from the melt uniformized in impurity concentration distribution, the Si single crystal uniform in impurity concentration distribution in its radial direction can be grown.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半径方向に関する不純
物濃度分布が均一なSi単結晶を融液から育成する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a Si single crystal having a uniform impurity concentration distribution in the radial direction from a melt.

【0002】[0002]

【従来の技術】融液からSi単結晶を育成する代表的な
方法として、チョクラルスキー法がある。チョクラルス
キー方法では、図1に示すように密閉容器1の内部に配
置したルツボ2を、回転及び昇降可能にサポート3で支
持する。ルツボ2の外周には、ヒータ4及び保温材5が
同心円状に設けられ、ルツボ2に収容した原料をヒータ
4で集中的に加熱し、融液6を調製する。融液6は、S
i単結晶成長に好適な温度に維持される。融液6に種結
晶7を接触させ、種結晶7の結晶方位を倣ったSi単結
晶8を成長させる。種結晶7は、ワイヤ9を介して回転
巻取り機構10又は剛性のある引き上げ棒から吊り下げ
られ、Si単結晶8の成長に応じて回転しながら引き上
げられる。また、ルツボ2も、サポート3を介して適宜
回転しながら下降する。サポート3の降下速度,回転速
度及び種結晶7の回転速度,上昇速度等は、融液6から
引上げられるSi単結晶8の成長速度に応じて制御され
る。
2. Description of the Related Art The Czochralski method is a typical method for growing a Si single crystal from a melt. In the Czochralski method, as shown in FIG. 1, a crucible 2 arranged inside an airtight container 1 is supported by a support 3 so as to be rotatable and vertically movable. A heater 4 and a heat insulating material 5 are concentrically provided on the outer periphery of the crucible 2, and the raw material contained in the crucible 2 is intensively heated by the heater 4 to prepare a melt 6. Melt 6 is S
i is maintained at a temperature suitable for single crystal growth. A seed crystal 7 is brought into contact with the melt 6 to grow a Si single crystal 8 following the crystal orientation of the seed crystal 7. The seed crystal 7 is hung from a rotary winding mechanism 10 or a rigid pulling rod via a wire 9, and is pulled while rotating according to the growth of the Si single crystal 8. The crucible 2 also descends while rotating appropriately via the support 3. The descending speed and rotating speed of the support 3 and the rotating speed and rising speed of the seed crystal 7 are controlled according to the growth speed of the Si single crystal 8 pulled up from the melt 6.

【0003】[0003]

【発明が解決しようとする課題】融液6には、Si単結
晶8に種々の要求特性を付与するため、各種の不純物が
添加される。しかし、添加された不純物の種類によって
は、成長界面における融液の挙動が異なってくるものも
ある。なかでも、Ga,Sb等の不純物を添加したSi
融液は、融液撹拌効果が減少し易く、それに伴って半径
方向に関する不純物分布が不均一になる。本発明者等
は、不純物濃度が不均一になる原因を次のように推察し
た。すなわち、Ga又はSbを添加した融液は、熱膨張
係数が融点近傍で約6.0×10-6/℃となり、熱膨張
係数に依存した乱流効果が低下する。そのため、添加不
純物が十分に撹拌されず、結果として成長界面直下で半
径方向に関する不純物濃度が不均一化する。不均一な不
純物濃度分布は、界面直下に形成される不純物境界層に
そのまま保存され、結晶中に取り込まれる。その結果、
引き上げられたSi単結晶の不純物濃度が半径方向に関
して不安定化し、得られたSi単結晶の品質安定性を低
下させる。本発明は、このような問題を解消すべく案出
されたものであり、熱膨張係数を大きくする元素をSi
融液に追加添加することにより、成長界面直下で融液を
拡散する作用を向上させ、半径方向に関して不純物濃度
が均一化された高品質のSi単結晶を得ることを目的と
する。
Various impurities are added to the melt 6 in order to impart various required characteristics to the Si single crystal 8. However, the behavior of the melt at the growth interface may vary depending on the type of added impurities. Above all, Si doped with impurities such as Ga and Sb
In the melt, the melt stirring effect is easily reduced, and accordingly, the impurity distribution in the radial direction becomes nonuniform. The present inventors presume the cause of non-uniform impurity concentration as follows. That is, the melt containing Ga or Sb has a thermal expansion coefficient of about 6.0 × 10 −6 / ° C. near the melting point, and the turbulent flow effect depending on the thermal expansion coefficient is reduced. Therefore, the added impurities are not sufficiently agitated, and as a result, the impurity concentration in the radial direction is non-uniform immediately below the growth interface. The non-uniform impurity concentration distribution is preserved as it is in the impurity boundary layer formed immediately below the interface and taken into the crystal. as a result,
The impurity concentration of the pulled Si single crystal becomes unstable in the radial direction, which deteriorates the quality stability of the obtained Si single crystal. The present invention has been devised to solve such a problem, and an element that increases the coefficient of thermal expansion is Si.
It is an object of the present invention to improve the action of diffusing the melt just below the growth interface by additionally adding it to the melt, and to obtain a high-quality Si single crystal having a uniform impurity concentration in the radial direction.

【0004】[0004]

【課題を解決するための手段】本発明のSi単結晶育成
方法は、Ga又はSbを添加したSi融液からチョクラ
ルスキー法でSi単結晶を引上げる際、融点近傍におけ
る前記融液の熱膨張係数を大きくする元素を前記融液に
追加添加することを特徴とする。熱膨張係数を大きくす
る元素としては、B又はPが使用される。これら元素
は、添加不純物(Ga又はSb)と周期律表上で属する
グループ(III 又はIV族)が一致しており、添加後の抵
抗値が0.001〜10Ω・cmとなるものとして添加
され、1×1018〜5×1020原子/cm3 の範囲に添
加量が定められる。
Means for Solving the Problems The method for growing a Si single crystal of the present invention is such that when a Si single crystal is pulled from a Si melt added with Ga or Sb by the Czochralski method, the heat of the melt near the melting point is increased. It is characterized in that an element for increasing the expansion coefficient is additionally added to the melt. B or P is used as an element for increasing the coefficient of thermal expansion. These elements are added so that the added impurities (Ga or Sb) and the group (group III or IV) belonging to the periodic table are the same, and the resistance value after addition is 0.001 to 10 Ω · cm. The addition amount is set in the range of 1 × 10 18 to 5 × 10 20 atoms / cm 3 .

【0005】[0005]

【作用】Si融液から引き上げられた単結晶の半径方向
に関する不純物濃度分布の不均一性は、成長界面直下に
おける融液の不純物濃度分布の均一性に依存している。
したがって、半径方向に関する不純物濃度分布を均一化
するためには、成長界面直下において融液の撹拌を活発
化させる必要がある。本発明者等の研究によるとき、融
液の熱膨張を増加させるB,P等の元素を添加すると、
成長界面直下で融液の撹拌が促進されることを見い出し
た。すなわち、B,P等の元素を添加した融液は、凝固
点近傍にある成長界面直下で熱膨張が局部的に大きくな
る。そのため、周囲にある融液との間で熱膨張差が大き
くなり、熱膨張差に起因して融液の循環流動が加速され
る。その結果、成長界面直下の融液が十分な撹拌作用を
受け、半径方向に関する不純物濃度分布が均一化され
る。したがって、この融液から引上げられたSi単結晶
は、半径方向に関して不純物濃度分布が均一化された高
品質の結晶となる。
The non-uniformity of the impurity concentration distribution in the radial direction of the single crystal pulled from the Si melt depends on the uniformity of the impurity concentration distribution of the melt just below the growth interface.
Therefore, in order to make the impurity concentration distribution in the radial direction uniform, it is necessary to activate the stirring of the melt immediately below the growth interface. According to the study by the present inventors, when elements such as B and P which increase the thermal expansion of the melt are added,
It was found that the stirring of the melt was promoted just below the growth interface. That is, in the melt containing elements such as B and P, the thermal expansion locally increases just below the growth interface near the freezing point. Therefore, the difference in thermal expansion between the melt and the surrounding melt becomes large, and the circulating flow of the melt is accelerated due to the difference in thermal expansion. As a result, the melt immediately below the growth interface is sufficiently stirred, and the impurity concentration distribution in the radial direction is made uniform. Therefore, the Si single crystal pulled up from this melt becomes a high-quality crystal with a uniform impurity concentration distribution in the radial direction.

【0006】[0006]

【実施例】Ga又はSbを0.1原子%添加したSi原
料5kgに、更にB又はPを1015原子/cm3 添加
し、ルツボで溶解した。そして、単結晶引上げ開始まで
の間、アルゴンガスを充満したチャンバー内にSi融液
を保持した。Ga又はSbを添加した融液は、図2に示
す密度の温度依存性から、融点〜1430℃の温度域に
おける熱膨張係数が約6.0×10-6/℃と推定され
る。特に、融点〜1430℃の温度域では密度の急激な
変動が緩和され、十分な撹拌作用が得られず、融液中の
不純物分布が均質であることが伺われる。この融液に更
にB又はPを添加したものでは、図2に示す0.1原子
%B又はPを添加した密度の温度依存性から、融点〜1
430℃の温度域における熱膨張係数が約1.5×10
-3/℃と推定される。すなわち、Ga又はSbを添加し
たときに比べて、その熱膨張係数が増加することが予想
され、融液に循環流動が活発になる。
Example To 5 kg of Si raw material added with 0.1 atom% of Ga or Sb, 10 15 atom / cm 3 of B or P was further added, and melted in a crucible. Then, the Si melt was held in a chamber filled with argon gas until the start of pulling the single crystal. From the temperature dependence of the density shown in FIG. 2, the melt added with Ga or Sb is estimated to have a thermal expansion coefficient of about 6.0 × 10 −6 / ° C. in the temperature range of melting point to 1430 ° C. Particularly, in the temperature range from the melting point to 1430 ° C., the rapid fluctuation of the density is alleviated, the sufficient stirring action cannot be obtained, and the impurity distribution in the melt is homogenous. In the case where B or P is further added to this melt, the melting point to 1 is obtained from the temperature dependence of the density when 0.1 atom% B or P is added as shown in FIG.
Coefficient of thermal expansion in the temperature range of 430 ° C is about 1.5 x 10
It is estimated to be -3 / ° C. That is, it is expected that the coefficient of thermal expansion will increase as compared with the case of adding Ga or Sb, and the circulation flow becomes active in the melt.

【0007】実際にGaドープSi融液及びGa,Bド
ープSi融液それぞれから直径3インチ及び長さ200
mmのSi単結晶を引き上げ、成長方向に関する不純物
濃度を測定した。測定結果を示す図3にみられるよう
に、GaドープSi融液にBを添加しない場合は、半径
方向の抵抗率の変動が±20%であった。これに対し
て、Bを更に添加した場合は、抵抗率の変動が±5%の
範囲に抑えられている。この対比から明らかなように、
熱膨張係数を大きくする元素を添加することによって、
成長界面直下で十分な融液の撹拌が確保され、半径方向
に関して不純物濃度分布が均一化されたSi単結晶が得
られることが確認された。
Actually, a diameter of 3 inches and a length of 200 are obtained from the Ga-doped Si melt and the Ga, B-doped Si melt, respectively.
The Si single crystal of mm was pulled up, and the impurity concentration in the growth direction was measured. As shown in FIG. 3, which shows the measurement results, when B was not added to the Ga-doped Si melt, the radial resistivity variation was ± 20%. On the other hand, when B is further added, the fluctuation of the resistivity is suppressed within the range of ± 5%. As is clear from this contrast,
By adding an element that increases the coefficient of thermal expansion,
It was confirmed that sufficient stirring of the melt was ensured just below the growth interface, and a Si single crystal with a uniform impurity concentration distribution in the radial direction was obtained.

【0008】[0008]

【発明の効果】以上に説明したように、本発明において
は、熱膨張係数を大きくする元素を添加したGa又はS
bドープSi融液から、チョクラルスキー法によってS
i単結晶を育成している。熱膨張係数を大きくする元素
は、成長界面直下で融液を十分に撹拌する作用を呈し、
不純物濃度分布が均一化された融液から単結晶が育成さ
れることを可能にする。そのため、得られたSi単結晶
は、半径方向に関して不純物濃度分布が均一化した高品
質の単結晶となる。
As described above, in the present invention, Ga or S added with an element that increases the coefficient of thermal expansion.
S from the b-doped Si melt by the Czochralski method
i Single crystal is grown. The element that increases the coefficient of thermal expansion exhibits an action of sufficiently stirring the melt just below the growth interface,
It enables a single crystal to be grown from a melt with a uniform impurity concentration distribution. Therefore, the obtained Si single crystal is a high-quality single crystal with a uniform impurity concentration distribution in the radial direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】 融液からSi単結晶を引き上げるチョクラル
スキー法
FIG. 1 Czochralski method for pulling Si single crystal from melt

【図2】 各種不純物を添加したSi融液の密度と温度
との関係を示すグラフ
FIG. 2 is a graph showing the relationship between the density and the temperature of a Si melt to which various impurities are added.

【図3】 引き上げられたSi単結晶の成長方向に関す
る不純物濃度分布を抵抗値で表したグラフ
FIG. 3 is a graph showing a resistance value of an impurity concentration distribution in a growth direction of a pulled Si single crystal.

【符号の説明】[Explanation of symbols]

1:密閉容器 2:ルツボ 3:サポート 4:
ヒータ 5:保温材 6:融液 7:種結晶 8:Si単結晶 9:ワ
イヤ 10:回転巻取り機構
1: Airtight container 2: Crucible 3: Support 4:
Heater 5: Heat insulating material 6: Melt 7: Seed crystal 8: Si single crystal 9: Wire 10: Rotating winding mechanism

───────────────────────────────────────────────────── フロントページの続き (71)出願人 595056491 佐々木 斉 埼玉県大宮市大成町1−545 (71)出願人 595056505 碇 敦 茨城県つくば市東光台2−12−15 (72)発明者 川西 荘六 茨城県つくば市東光台1−16−2 (72)発明者 泉妻 宏治 茨城県稲敷郡阿見町荒川沖1770−1−502 (72)発明者 十河 慎二 茨城県つくば市今鹿島4182−3 (72)発明者 佐々木 斉 埼玉県大宮市大成町1−545 (72)発明者 木村 茂行 茨城県つくば市竹園3−712 (72)発明者 碇 敦 茨城県つくば市東光台2−12−15 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 595056491 Hitoshi Sasaki 1-545 Taiseicho, Omiya-shi, Saitama Prefecture (71) Applicant 595056505 Atsushi Ikari 2-12-15 Tokodai, Tsukuba-shi, Ibaraki (72) Inventor Kawanishi Zhuang (6) 1-16-2 Tokodai, Tsukuba, Ibaraki Prefecture (72) Koji Izumizuma 1770-1-502, Arakawa-oki, Ami-cho, Inashiki-gun, Ibaraki Prefecture (72) Shinji Togawa 4182-3, Imakashima, Tsukuba-shi, Ibaraki ( 72) Inventor Hitoshi Sasaki 1-545 Taisei-cho, Omiya-shi, Saitama Prefecture (72) Inventor Shigeyuki Kimura 3-712 Takezono, Tsukuba-shi, Ibaraki (72) Inventor Atsushi Ikari 2-12-15 Tokodai, Tsukuba-shi, Ibaraki

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ga又はSbを添加したSi融液からチ
ョクラルスキー法でSi単結晶を引上げる際、融点近傍
における前記融液の熱膨張係数を大きくする元素を前記
融液に追加添加することを特徴とする半径方向に関する
不純物濃度分布が均一なSi単結晶の育成方法。
1. When pulling a Si single crystal from a Si melt added with Ga or Sb by the Czochralski method, an element for increasing the thermal expansion coefficient of the melt near the melting point is additionally added to the melt. A method for growing a Si single crystal having a uniform impurity concentration distribution in the radial direction, characterized in that
【請求項2】 請求項1記載の熱膨張係数を大きくする
元素がB又はPであるSi単結晶の育成方法。
2. A method for growing a Si single crystal, wherein the element for increasing the coefficient of thermal expansion according to claim 1 is B or P.
JP7091431A 1995-03-24 1995-03-24 Method for growing Si single crystal with uniform impurity concentration distribution in radial direction Expired - Fee Related JP2804456B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7091431A JP2804456B2 (en) 1995-03-24 1995-03-24 Method for growing Si single crystal with uniform impurity concentration distribution in radial direction
EP96104454A EP0733726A3 (en) 1995-03-24 1996-03-20 Growth of silicon single crystal having uniform impurity distribution along lengthwise or radial direction
US08/620,391 US5700320A (en) 1995-03-24 1996-03-22 Growth of silicon single crystal having uniform impurity distribution along lengthwise or radial direction
KR1019960008023A KR100264399B1 (en) 1995-03-24 1996-03-23 Growth of silicon single crystal having uniform impurity distribution along lengthwise direction
KR1020000009606A KR100269088B1 (en) 1995-03-24 2000-02-26 Growth of silicon single crystal having uniform impurity distribution along radial direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7091431A JP2804456B2 (en) 1995-03-24 1995-03-24 Method for growing Si single crystal with uniform impurity concentration distribution in radial direction

Publications (2)

Publication Number Publication Date
JPH08259374A true JPH08259374A (en) 1996-10-08
JP2804456B2 JP2804456B2 (en) 1998-09-24

Family

ID=14026189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7091431A Expired - Fee Related JP2804456B2 (en) 1995-03-24 1995-03-24 Method for growing Si single crystal with uniform impurity concentration distribution in radial direction

Country Status (1)

Country Link
JP (1) JP2804456B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118089A (en) * 1980-12-29 1982-07-22 Heliotronic Gmbh Manufacture of vertical pn junction upon pulling up silicon disk from silicon melt
JPH06204150A (en) * 1992-12-28 1994-07-22 Sumitomo Sitix Corp Manufacture of silicon single crystal substrate for semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118089A (en) * 1980-12-29 1982-07-22 Heliotronic Gmbh Manufacture of vertical pn junction upon pulling up silicon disk from silicon melt
JPH06204150A (en) * 1992-12-28 1994-07-22 Sumitomo Sitix Corp Manufacture of silicon single crystal substrate for semiconductor

Also Published As

Publication number Publication date
JP2804456B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
EP2142686B1 (en) Method for producing a single crystal
JP4567192B2 (en) Electric resistance heater for crystal growth apparatus and method of using the same
JP3086850B2 (en) Method and apparatus for growing single crystal
JP6680108B2 (en) Method for producing silicon single crystal
KR100264399B1 (en) Growth of silicon single crystal having uniform impurity distribution along lengthwise direction
JP2020114802A (en) Method for manufacturing silicon single crystal
JP2004315289A (en) Method for manufacturing single crystal
WO2004024998A1 (en) Heater for crystal formation, apparatus for forming crystal and method for forming crystal
JPH11130592A (en) Production of silicon single crystal
JPH08259374A (en) Method for growing si single crystal with radially uniform impurity concentration distribution
JP4788444B2 (en) Method for producing silicon single crystal
JP3132412B2 (en) Single crystal pulling method
JP2760957B2 (en) Single crystal growth method with controlled convection field in melt
JPH07267776A (en) Growth method of single crystal
JPH08259382A (en) Growing method for si single crystal by controlling melt convection current
JPH08259373A (en) Method for growing si single crystal controlling temperature fluctuation
JP2000044387A (en) Production of silicon single crystal
JP2016216306A (en) Method of controlling resistivity of silicon single crystal in the axial direction
JPH09255475A (en) Device for growing single crystal
JPH07277870A (en) Method and device for growing single crystal
KR100269088B1 (en) Growth of silicon single crystal having uniform impurity distribution along radial direction
JPS6033297A (en) Pulling device for single crystal semiconductor
JP2570348Y2 (en) Single crystal growth equipment
JPH04164889A (en) Production of single crystal
JP2002249396A (en) Method for growing silicon single crystal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980707

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees