JPH08259373A - Method for growing si single crystal controlling temperature fluctuation - Google Patents

Method for growing si single crystal controlling temperature fluctuation

Info

Publication number
JPH08259373A
JPH08259373A JP7091430A JP9143095A JPH08259373A JP H08259373 A JPH08259373 A JP H08259373A JP 7091430 A JP7091430 A JP 7091430A JP 9143095 A JP9143095 A JP 9143095A JP H08259373 A JPH08259373 A JP H08259373A
Authority
JP
Japan
Prior art keywords
melt
single crystal
thermal expansion
growing
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7091430A
Other languages
Japanese (ja)
Other versions
JP2804455B2 (en
Inventor
Shoroku Kawanishi
荘六 川西
Kouji Sensai
宏治 泉妻
Shinji Sogo
慎二 十河
Hitoshi Sasaki
斉 佐々木
Shigeyuki Kimura
茂行 木村
Atsushi Ikari
敦 碇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP7091430A priority Critical patent/JP2804455B2/en
Priority to EP96104454A priority patent/EP0733726A3/en
Priority to US08/620,391 priority patent/US5700320A/en
Priority to KR1019960008023A priority patent/KR100264399B1/en
Publication of JPH08259373A publication Critical patent/JPH08259373A/en
Application granted granted Critical
Publication of JP2804455B2 publication Critical patent/JP2804455B2/en
Priority to KR1020000009606A priority patent/KR100269088B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain, through Czochralski process, a Si single crystal uniformized in impurity concentration distribution in its growing direction by suppressing temperature fluctuation. CONSTITUTION: When a Si single crystal is pulled up from a Si melt added with B or P through Czochralski process, element(s) capable of decreasing the thermal expansion coefficient of the melt in the vicinity of its melting point (at least one element selected from among Ga, Sb and In) is further added to the melt. Therefore, turbulent flow state due to locally enlarging thermal expansion of the melt just under the growth interface can be suppressed, thus growing the Si single crystal under stable temperature conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成長方向に関して不純
物濃度を均一化したSi単結晶を融液から育成する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a Si single crystal having a uniform impurity concentration in the growth direction from a melt.

【0002】[0002]

【従来の技術】融液からSi単結晶を育成する代表的な
方法として、チョクラルスキー法がある。チョクラルス
キー方法では、図1に示すように密閉容器1の内部に配
置したルツボ2を、回転及び昇降可能にサポート3で支
持する。ルツボ2の外周には、ヒータ4及び保温材5が
同心円状に設けられ、ルツボ2に収容した原料をヒータ
4で集中的に加熱し、融液6を調製する。融液6は、S
i単結晶成長に好適な温度に維持される。融液6に種結
晶7を接触させ、種結晶7の結晶方位を倣ったSi単結
晶8を成長させる。種結晶7は、ワイヤ9を介して回転
巻取り機構10又は剛性のある引き上げ棒から吊り下げ
られ、Si単結晶8の成長に応じて回転しながら引き上
げられる。また、ルツボ2も、サポート3を介して適宜
回転しながら下降する。サポート3の降下速度,回転速
度及び種結晶7の回転速度,上昇速度等は、融液6から
引上げられるSi単結晶8の成長速度に応じて制御され
る。
2. Description of the Related Art The Czochralski method is a typical method for growing a Si single crystal from a melt. In the Czochralski method, as shown in FIG. 1, a crucible 2 arranged inside an airtight container 1 is supported by a support 3 so as to be rotatable and vertically movable. A heater 4 and a heat insulating material 5 are concentrically provided on the outer periphery of the crucible 2, and the raw material contained in the crucible 2 is intensively heated by the heater 4 to prepare a melt 6. Melt 6 is S
i is maintained at a temperature suitable for single crystal growth. A seed crystal 7 is brought into contact with the melt 6 to grow a Si single crystal 8 following the crystal orientation of the seed crystal 7. The seed crystal 7 is hung from a rotary winding mechanism 10 or a rigid pulling rod via a wire 9, and is pulled while rotating according to the growth of the Si single crystal 8. The crucible 2 also descends while rotating appropriately via the support 3. The descending speed and rotating speed of the support 3 and the rotating speed and rising speed of the seed crystal 7 are controlled according to the growth speed of the Si single crystal 8 pulled up from the melt 6.

【0003】[0003]

【発明が解決しようとする課題】融液6には、Si単結
晶8に種々の要求特性を付与するため、各種の不純物が
添加される。しかし、添加された不純物の種類によって
は、成長界面における融液の挙動が異なってくるものも
ある。なかでも、B,P等の不純物を添加したSi融液
は、成長界面で不安定凝固が生じ易く、それに伴って成
長方向に関する不純物分布が不均一になる。本発明者等
は、不純物濃度が不均一になる原因を次のように推察し
た。すなわち、B又はPを添加した融液は、微視的な速
度変動によりB又はPの実効偏析係数が変動し、熱膨張
係数が融点近傍で約1.5×10-3/℃となる。熱膨張
係数が周囲に比較して局部的に大きくなるため、融液が
成長界面直下で乱流化する。その結果、成長界面直下で
は乱流現象によって温度変動が大きくなり、不均一な不
純物濃度分布の直接要因であるリメルト現象が発生す
る。リメルト現象は、引上げられたSi単結晶の不純物
濃度を不安定化するばかりでなく、種々の結晶欠陥を導
入する原因にもなる。本発明は、このような問題を解消
すべく案出されたものであり、熱膨張係数を大きくする
元素をSi融液に追加添加することにより、成長界面直
下で融液の熱膨張係数が局部的に大きくなることを防止
し、安定条件下での単結晶引上げを可能にし、引上げ方
向に関して不純物濃度が均一化された高品質のSi単結
晶を得ることを目的とする。
Various impurities are added to the melt 6 in order to impart various required characteristics to the Si single crystal 8. However, the behavior of the melt at the growth interface may vary depending on the type of added impurities. Among them, in the Si melt to which impurities such as B and P are added, unstable solidification is likely to occur at the growth interface, and the impurity distribution in the growth direction becomes non-uniform accordingly. The present inventors presume the cause of non-uniform impurity concentration as follows. That is, in the melt to which B or P is added, the effective segregation coefficient of B or P changes due to microscopic speed fluctuation, and the thermal expansion coefficient becomes about 1.5 × 10 −3 / ° C. near the melting point. Since the coefficient of thermal expansion locally increases compared to the surroundings, the melt becomes turbulent immediately below the growth interface. As a result, the temperature fluctuation becomes large just below the growth interface due to the turbulent flow phenomenon, and the remelt phenomenon, which is a direct factor of the uneven impurity concentration distribution, occurs. The remelt phenomenon not only destabilizes the impurity concentration of the pulled Si single crystal, but also causes various crystal defects. The present invention has been devised to solve such a problem, and by additionally adding an element that increases the thermal expansion coefficient to the Si melt, the thermal expansion coefficient of the melt locally under the growth interface is localized. The purpose of the present invention is to obtain a high-quality Si single crystal in which the single crystal can be pulled up under stable conditions and the impurity concentration is uniform in the pulling direction.

【0004】[0004]

【課題を解決するための手段】本発明のSi単結晶育成
方法は、B又はPを添加したSi融液からチョクラルス
キー法でSi単結晶を引上げる際、融点近傍における前
記融液の熱膨張係数を小さくする元素を前記融液に追加
添加することを特徴とする。熱膨張係数を小さくする元
素としては、Ga,Sb及びInから選ばれた1種又は
2種以上が使用される。これら元素は、添加元素(B又
はP)と周期律表上で属するグループ(III 又はIV族)
が一致し、添加後の抵抗値が0.001〜10Ω・cm
となるものとして添加され、結晶育成中に融液表面にお
ける蒸発を考慮すると1×1018〜5×1020原子/c
3 の範囲に添加量が定められる。
According to the method for growing a Si single crystal of the present invention, when the Si single crystal is pulled from the Si melt containing B or P by the Czochralski method, the heat of the melt near the melting point is used. It is characterized in that an element for reducing the expansion coefficient is additionally added to the melt. As the element that reduces the coefficient of thermal expansion, one or more selected from Ga, Sb and In are used. These elements are added elements (B or P) and groups (III or IV group) on the periodic table.
And the resistance value after addition is 0.001 to 10 Ω · cm
When the vaporization on the surface of the melt is considered during crystal growth, 1 × 10 18 to 5 × 10 20 atoms / c
The addition amount is set in the range of m 3 .

【0005】[0005]

【作用】Si融液から引き上げられた単結晶の引上げ方
向、すなわち成長方向に関する不純物濃度分布の不均一
性は、成長界面直下における温度変動の大きさに依存し
ている。したがって、成長方向に関する不純物濃度分布
を均一化するためには、成長界面直下における温度変動
を抑制する必要がある。本発明者等の研究によるとき、
成長界面直下における温度変動は、凝固点近傍にある融
液の局部的な熱膨張によって引き起こされる乱流現象に
起因することが判った。そして、熱膨張係数を減少させ
る元素を添加するとき、局部的な熱膨張が抑制され、成
長界面直下においても融液の定常的な流れが確保され
る。その結果、リメルト現象が抑制され、安定した温度
条件下で単結晶が育成されることを解明した。このよう
にして得られたSi単結晶は、成長方向に関して不純物
濃度分布が均一化された高品質の結晶となる。
The nonuniformity of the impurity concentration distribution in the pulling direction of the single crystal pulled from the Si melt, that is, in the growth direction depends on the magnitude of the temperature fluctuation immediately below the growth interface. Therefore, in order to make the impurity concentration distribution in the growth direction uniform, it is necessary to suppress the temperature fluctuation immediately below the growth interface. When researched by the inventors,
It was found that the temperature fluctuation just below the growth interface is due to the turbulent flow phenomenon caused by the local thermal expansion of the melt near the freezing point. Then, when an element that reduces the coefficient of thermal expansion is added, local thermal expansion is suppressed, and a steady flow of the melt is secured even immediately below the growth interface. As a result, it was clarified that the remelt phenomenon was suppressed and the single crystal was grown under stable temperature conditions. The Si single crystal thus obtained becomes a high quality crystal in which the impurity concentration distribution is made uniform in the growth direction.

【0006】[0006]

【実施例】B又はPを1×1015原子/cm3 添加した
Si原料5kgに、更にGa又はSbを1.0原子%添
加し、ルツボで溶解した。そして、単結晶引上げ開始ま
での間、アルゴンガスを充満したチャンバー内にSi融
液を保持した。B又はPを添加した融液は、図2に示す
密度の温度依存性から、融点〜1430℃の温度域にお
ける熱膨張係数が約1.5×10-3/℃と推定される。
特に、融点〜1430℃の温度域では密度が急激に変動
し、融液が不安定な状態にあることが伺われる。この融
液に更にGa又はSbを添加したものでは、図2に示す
1原子%Ga又はSbを添加した密度の温度依存性か
ら、融点〜1430℃の温度域における熱膨張係数が約
6.0×10-6/℃と推定される。すなわち、B又はP
を添加したときに比べて、その熱膨張係数が減少するこ
とが予想され、密度の急激な変動が緩和されることにな
る。
EXAMPLE To 5 kg of Si raw material added with 1 × 10 15 atoms / cm 3 of B or P, 1.0 atom% of Ga or Sb was further added and melted in a crucible. Then, the Si melt was held in a chamber filled with argon gas until the start of pulling the single crystal. From the temperature dependence of the density shown in FIG. 2, the melt to which B or P is added is estimated to have a thermal expansion coefficient of about 1.5 × 10 −3 / ° C. in the temperature range of melting point to 1430 ° C.
Especially in the temperature range from melting point to 1430 ° C., the density changes abruptly, and the melt is in an unstable state. When Ga or Sb is further added to this melt, the thermal expansion coefficient in the temperature range from the melting point to 1430 ° C. is about 6.0 due to the temperature dependence of the density when 1 atom% Ga or Sb is added as shown in FIG. It is estimated to be × 10 -6 / ° C. That is, B or P
It is expected that the coefficient of thermal expansion will decrease as compared with the case of adding, and the rapid fluctuation of the density will be alleviated.

【0007】実際にBドープSi融液及びB,Gaドー
プSi融液それぞれから直径3インチ及び長さ200m
mのSi単結晶を引き上げ、成長方向に関する不純物濃
度を測定した。測定結果を示す図3にみられるように、
BドープSi融液にGaを添加しない場合は、成長方向
に関する抵抗率の変動が±15%であった。これに対
し、Gaを更に追加した場合には、低効率の変動が±5
%の範囲に抑えられている。この対比から明らかなよう
に、熱膨張係数を小さくする元素を添加することによっ
て、成長界面直下で熱膨張係数が局部的に大きくなるこ
とが抑えられ、安定した温度条件下で単結晶が育成さ
れ、成長方向に関して不純物濃度分布が均一化されたS
i単結晶が得られることが確認された。
Actually, the B-doped Si melt and the B, Ga-doped Si melt each have a diameter of 3 inches and a length of 200 m.
The Si single crystal of m was pulled up, and the impurity concentration in the growth direction was measured. As shown in FIG. 3 showing the measurement result,
When Ga was not added to the B-doped Si melt, the fluctuation in resistivity in the growth direction was ± 15%. On the other hand, when Ga is added, the fluctuation of low efficiency is ± 5.
It is suppressed to the range of%. As is clear from this comparison, by adding an element that reduces the thermal expansion coefficient, it is possible to suppress the thermal expansion coefficient from locally increasing directly under the growth interface, and to grow a single crystal under stable temperature conditions. , S with a uniform impurity concentration distribution in the growth direction
It was confirmed that an i single crystal was obtained.

【0008】[0008]

【発明の効果】以上に説明したように、本発明において
は、熱膨張係数を小さくする元素を添加したB又はPド
ープSi融液から、チョクラルスキー法によってSi単
結晶を育成している。熱膨張係数を小さくする元素は、
成長界面直下で乱流状態が発生することを防止し、安定
した温度条件下で結晶が育成されることを可能にする。
そのため、得られたSi単結晶は、リメルトに起因した
濃度変動や欠陥導入がなく、成長方向に関して不純物濃
度分布が均一化した高品質の単結晶となる。
As described above, in the present invention, the Si single crystal is grown by the Czochralski method from the B or P-doped Si melt to which the element that reduces the thermal expansion coefficient is added. The elements that reduce the coefficient of thermal expansion are
A turbulent flow state is prevented from being generated just below the growth interface, and a crystal can be grown under a stable temperature condition.
Therefore, the obtained Si single crystal is a high-quality single crystal in which there is no concentration fluctuation or defect introduction due to remelting and the impurity concentration distribution is uniform in the growth direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】 融液からSi単結晶を引き上げるチョクラル
スキー法
FIG. 1 Czochralski method for pulling Si single crystal from melt

【図2】 各種不純物を添加したSi融液の密度と温度
との関係を示すグラフ
FIG. 2 is a graph showing the relationship between the density and the temperature of a Si melt to which various impurities are added.

【図3】 引き上げられたSi単結晶の成長方向に関す
る不純物濃度分布を抵抗値で表したグラフ
FIG. 3 is a graph showing a resistance value of an impurity concentration distribution in a growth direction of a pulled Si single crystal.

【符号の説明】[Explanation of symbols]

1:密閉容器 2:ルツボ 3:サポート 4:
ヒータ 5:保温材 6:融液 7:種結晶 8:Si単結晶 9:ワ
イヤ 10:回転巻取り機構
1: Airtight container 2: Crucible 3: Support 4:
Heater 5: Heat insulating material 6: Melt 7: Seed crystal 8: Si single crystal 9: Wire 10: Rotating winding mechanism

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年1月30日[Submission date] January 30, 1996

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】実際にBドープSi融液及びB,Gaドー
プSi融液それぞれから直径3インチ及び長さ200m
mのSi単結晶を引き上げ、成長方向に関する不純物濃
度を測定した。測定結果を示す図3にみられるように、
BドープSi融液にGaを添加しない場合は、成長方向
に関する抵抗率の変動が±15%であった。これに対
し、Gaを更に追加した場合には、抵抗率の変動が±5
%の範囲に抑えられている。この対比から明らかなよう
に、熱膨張係数を小さくする元素を添加することによっ
て、成長界面直下で熱膨張係数が局部的に大きくなるこ
とが抑えられ、安定した温度条件下で単結晶が育成さ
れ、成長方向に関して不純物濃度分布が均一化されたS
i単結晶が得られることが確認された。
Actually, the B-doped Si melt and the B, Ga-doped Si melt each have a diameter of 3 inches and a length of 200 m.
The Si single crystal of m was pulled up, and the impurity concentration in the growth direction was measured. As shown in FIG. 3 showing the measurement result,
When Ga was not added to the B-doped Si melt, the fluctuation in resistivity in the growth direction was ± 15%. On the other hand, when Ga is further added, the change in resistivity is ± 5
It is suppressed to the range of%. As is clear from this comparison, by adding an element that reduces the thermal expansion coefficient, it is possible to suppress the thermal expansion coefficient from locally increasing directly under the growth interface, and to grow a single crystal under stable temperature conditions. , S with a uniform impurity concentration distribution in the growth direction
It was confirmed that an i single crystal was obtained.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 595056491 佐々木 斉 埼玉県大宮市大成町1−545 (71)出願人 595056505 碇 敦 茨城県つくば市東光台2−12−15 (72)発明者 川西 荘六 茨城県つくば市東光台1−16−2 (72)発明者 泉妻 宏治 茨城県稲敷郡阿見町荒川沖1770−1−502 (72)発明者 十河 慎二 茨城県つくば市今鹿島4182−3 (72)発明者 佐々木 斉 埼玉県大宮市大成町1−545 (72)発明者 木村 茂行 茨城県つくば市竹園3−712 (72)発明者 碇 敦 茨城県つくば市東光台2−12−15 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 595056491 Hitoshi Sasaki 1-545 Taiseicho, Omiya-shi, Saitama Prefecture (71) Applicant 595056505 Atsushi Ikari 2-12-15 Tokodai, Tsukuba-shi, Ibaraki (72) Inventor Kawanishi Zhuang (6) 1-16-2 Tokodai, Tsukuba, Ibaraki Prefecture (72) Koji Izumizuma 1770-1-502, Arakawa-oki, Ami-cho, Inashiki-gun, Ibaraki Prefecture (72) Shinji Togawa 4182-3, Imakashima, Tsukuba-shi, Ibaraki ( 72) Inventor Hitoshi Sasaki 1-545 Taiseicho, Omiya City, Saitama Prefecture (72) Inventor Shigeyuki Kimura 3-712 Takezono, Tsukuba City, Ibaraki Prefecture (72) Inventor Atsushi Ikari 2-12-15 Tokodai, Tsukuba City, Ibaraki Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 B又はPを添加したSi融液からチョク
ラルスキー法でSi単結晶を引上げる際、融点近傍にお
ける前記融液の熱膨張係数を小さくする元素を前記融液
に追加添加することを特徴とする温度変動を抑制したS
i単結晶の育成方法。
1. When pulling a Si single crystal from a Si melt added with B or P by the Czochralski method, an element that reduces the coefficient of thermal expansion of the melt near the melting point is additionally added to the melt. S that suppresses temperature fluctuations characterized by
i Single crystal growing method.
【請求項2】 請求項1記載の熱膨張係数を小さくする
元素がGa,Sb及びInから選ばれた1種又は2種以
上であるSi単結晶の育成方法。
2. A method for growing a Si single crystal, wherein the element for reducing the coefficient of thermal expansion according to claim 1 is one or more selected from Ga, Sb and In.
JP7091430A 1995-03-24 1995-03-24 Method for growing Si single crystal with controlled temperature fluctuation Expired - Fee Related JP2804455B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7091430A JP2804455B2 (en) 1995-03-24 1995-03-24 Method for growing Si single crystal with controlled temperature fluctuation
EP96104454A EP0733726A3 (en) 1995-03-24 1996-03-20 Growth of silicon single crystal having uniform impurity distribution along lengthwise or radial direction
US08/620,391 US5700320A (en) 1995-03-24 1996-03-22 Growth of silicon single crystal having uniform impurity distribution along lengthwise or radial direction
KR1019960008023A KR100264399B1 (en) 1995-03-24 1996-03-23 Growth of silicon single crystal having uniform impurity distribution along lengthwise direction
KR1020000009606A KR100269088B1 (en) 1995-03-24 2000-02-26 Growth of silicon single crystal having uniform impurity distribution along radial direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7091430A JP2804455B2 (en) 1995-03-24 1995-03-24 Method for growing Si single crystal with controlled temperature fluctuation

Publications (2)

Publication Number Publication Date
JPH08259373A true JPH08259373A (en) 1996-10-08
JP2804455B2 JP2804455B2 (en) 1998-09-24

Family

ID=14026161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7091430A Expired - Fee Related JP2804455B2 (en) 1995-03-24 1995-03-24 Method for growing Si single crystal with controlled temperature fluctuation

Country Status (1)

Country Link
JP (1) JP2804455B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104897A (en) * 2000-09-26 2002-04-10 Shin Etsu Handotai Co Ltd Silicon crystal and silicon crystal wafer and method of manufacturing them
JP2002104898A (en) * 2000-09-28 2002-04-10 Shin Etsu Handotai Co Ltd Silicon crystal and silicon crystal wafer and method of manufacturing them
US7341787B2 (en) 2004-01-29 2008-03-11 Siltronic Ag Process for producing highly doped semiconductor wafers, and dislocation-free highly doped semiconductor wafers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118089A (en) * 1980-12-29 1982-07-22 Heliotronic Gmbh Manufacture of vertical pn junction upon pulling up silicon disk from silicon melt
JPH06204150A (en) * 1992-12-28 1994-07-22 Sumitomo Sitix Corp Manufacture of silicon single crystal substrate for semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118089A (en) * 1980-12-29 1982-07-22 Heliotronic Gmbh Manufacture of vertical pn junction upon pulling up silicon disk from silicon melt
JPH06204150A (en) * 1992-12-28 1994-07-22 Sumitomo Sitix Corp Manufacture of silicon single crystal substrate for semiconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104897A (en) * 2000-09-26 2002-04-10 Shin Etsu Handotai Co Ltd Silicon crystal and silicon crystal wafer and method of manufacturing them
JP4607304B2 (en) * 2000-09-26 2011-01-05 信越半導体株式会社 Silicon single crystal for solar cell, silicon single crystal wafer for solar cell, and manufacturing method thereof
JP2002104898A (en) * 2000-09-28 2002-04-10 Shin Etsu Handotai Co Ltd Silicon crystal and silicon crystal wafer and method of manufacturing them
JP4607307B2 (en) * 2000-09-28 2011-01-05 信越半導体株式会社 Silicon single crystal for solar cell, silicon single crystal wafer for solar cell, and manufacturing method thereof
US7341787B2 (en) 2004-01-29 2008-03-11 Siltronic Ag Process for producing highly doped semiconductor wafers, and dislocation-free highly doped semiconductor wafers

Also Published As

Publication number Publication date
JP2804455B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
JP3086850B2 (en) Method and apparatus for growing single crystal
US5840116A (en) Method of growing crystals
KR100264399B1 (en) Growth of silicon single crystal having uniform impurity distribution along lengthwise direction
JPH08259373A (en) Method for growing si single crystal controlling temperature fluctuation
JPH03115188A (en) Production of single crystal
JPH08259370A (en) Method for growing si single crystal with controlled temperature distribution
JPH08259382A (en) Growing method for si single crystal by controlling melt convection current
JPH08259379A (en) Single crystal growing method controlling covection current field in melt
JPH10287488A (en) Pulling up of single crystal
JP2012001408A (en) Method for growing silicon single crystal
JPH07277875A (en) Method for growing crystal
JP2804456B2 (en) Method for growing Si single crystal with uniform impurity concentration distribution in radial direction
JPH07277870A (en) Method and device for growing single crystal
JPH09255475A (en) Device for growing single crystal
JPH05294784A (en) Single crystal growth device
JPH10279391A (en) Method for growing silicon single crystal
KR100269088B1 (en) Growth of silicon single crystal having uniform impurity distribution along radial direction
JPH07277891A (en) Method for growing crystal
JPH0891981A (en) Apparatus for growing single crystal and method for growing single crystal
JPH08208369A (en) Method for growing single crystal
JPH0250077B2 (en)
JPH0532480A (en) Method for growing crystal
JPH09255472A (en) Device for growing single crystal
JPH09255474A (en) Device for growing single crystal
JPH05221777A (en) Single crystal growth method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980707

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees