JPH11130592A - Production of silicon single crystal - Google Patents

Production of silicon single crystal

Info

Publication number
JPH11130592A
JPH11130592A JP31281997A JP31281997A JPH11130592A JP H11130592 A JPH11130592 A JP H11130592A JP 31281997 A JP31281997 A JP 31281997A JP 31281997 A JP31281997 A JP 31281997A JP H11130592 A JPH11130592 A JP H11130592A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
silicon single
cri
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31281997A
Other languages
Japanese (ja)
Inventor
Fumitaka Ishikawa
文敬 石川
Toshiaki Saishoji
俊昭 最勝寺
Kozo Nakamura
浩三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP31281997A priority Critical patent/JPH11130592A/en
Publication of JPH11130592A publication Critical patent/JPH11130592A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing silicon single crystal capable of obtaining desired single crystal by clarifying proper pulling conditions corresponding to the change in boron concentration in production of P type CZ (Czochralski) silicon single crystal of boron dope. SOLUTION: This method for producing silicon single crystal comprises setting crystal pulling conditions by using the equation (V/G)cri=0.15+1.47×10<-20> ×B established when boron concentration is defined as B (atom/cm<3> ) and crystal growth rate is defined as V (mm/min) and temperature gradient in axial direction from melting point to 1,350 deg.C is defined as G ( deg.C/mm) and V/G in the case when ring-like heat oxidation induced laminate defect which occurs after deposition of oxygen and heat treatment disappears in the center of crystal is defined as (V/G)cri.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン単結晶の
製造方法に関する。
[0001] The present invention relates to a method for producing a silicon single crystal.

【0002】[0002]

【従来の技術】半導体素子の基板には主として高純度の
シリコン単結晶が使用されているが、その製造方法とし
て一般にCZ法が用いられている。CZ法においては、
シリコン単結晶の原料である多結晶シリコンを装填した
石英るつぼを単結晶製造装置内に設置し、前記多結晶シ
リコンを石英るつぼの周囲に設けたヒータによって加
熱、溶解して融液とする。そして、シードチャックに取
り付けた種結晶を融液に浸漬してなじませた後、シード
チャック及び石英るつぼを互いに同方向または逆方向に
回転しつつシードチャックを引き上げて、シリコン単結
晶を所定の直径及び長さに成長させる。
2. Description of the Related Art A high purity silicon single crystal is mainly used for a substrate of a semiconductor device, and a CZ method is generally used as a manufacturing method thereof. In the CZ method,
A quartz crucible loaded with polycrystalline silicon, which is a raw material of silicon single crystal, is set in a single crystal manufacturing apparatus, and the polycrystalline silicon is heated and melted by a heater provided around the quartz crucible to form a melt. Then, after the seed crystal attached to the seed chuck is immersed in the melt to be blended, the seed chuck is pulled up while rotating the seed chuck and the quartz crucible in the same or opposite directions to each other, so that the silicon single crystal has a predetermined diameter. And grow to length.

【0003】CZ法によるシリコン単結晶(以下CZシ
リコン単結晶という)の製造において、単結晶に発生す
る欠陥は成長過程における結晶引き上げ速度や冷却方法
等に依存した結晶製造中の熱履歴の影響を受け、様々な
形で存在する。前記欠陥のうち、リング状に分布するこ
とを特徴とする熱酸化誘起積層欠陥(以下リングOSF
という)核の形成においては結晶引き上げ速度依存性を
明確に示し、結晶引き上げ速度をある値から徐々に低下
させると、リングOSFは結晶外縁から発生し、引き上
げ速度の低下とともにその半径を減じて結晶中心に近づ
き、やがて結晶中心で消滅する。
[0003] In the production of a silicon single crystal (hereinafter referred to as CZ silicon single crystal) by the CZ method, defects generated in the single crystal are affected by the heat history during the production of the crystal depending on the crystal pulling speed during the growth process, the cooling method, and the like. And exist in various forms. Among the defects, a thermal oxidation-induced stacking fault (hereinafter referred to as a ring OSF) characterized by being distributed in a ring shape.
In the formation of nuclei, the dependence on the crystal pulling speed is clearly shown. When the crystal pulling speed is gradually decreased from a certain value, the ring OSF is generated from the outer edge of the crystal, and the radius decreases as the pulling speed decreases. It approaches the center and eventually disappears at the center of the crystal.

【0004】シリコンウェーハのデバイス活性領域にリ
ングOSFが存在するとリーク電流等の原因となること
が知られており、その発生の少ないウェーハが望まれて
いる。また、リングOSFの内側の領域と外側の領域と
では欠陥のタイプが異なり、これもまたデバイス形成時
に大きな問題となるため、リングOSFの発生挙動を把
握することはCZシリコン単結晶の製造上、非常に重要
である。
It is known that the presence of a ring OSF in a device active region of a silicon wafer causes a leak current or the like, and a wafer with less occurrence is desired. In addition, since the types of defects are different between the region inside the ring OSF and the region outside the ring OSF, which is also a serious problem at the time of device formation, it is important to understand the generation behavior of the ring OSF in the production of CZ silicon single crystal. Very important.

【0005】[0005]

【発明が解決しようとする課題】リングOSFの発生挙
動は、同じ引き上げ条件であれば再現性を持ち、一定の
挙動を示す。しかし、引き上げ条件が変わった場合には
異なる挙動となる。また、ボロンドープのP型CZシリ
コン単結晶を製造する場合、ホットゾーンや結晶成長速
度等、結晶引き上げ条件を同一にして単結晶を育成して
も、ボロンのドープ量によって酸素析出熱処理後に発生
するリングOSFの発生挙動が異なる場合がある。この
リングOSFの内側領域、外側領域及びリングOSF自
体のそれぞれの領域でそこに存在する欠陥のタイプが全
く異なるため、ウェーハ上にデバイスを形成する上で大
きな問題となる。しかしながら、従来技術では単結晶を
製造するに当たり経験に頼っている部分が多いため、リ
ングOSFの発生挙動を制御して要求品質を満足する単
結晶を製造することが容易ではない。
The generation behavior of the ring OSF is reproducible and shows a constant behavior under the same lifting conditions. However, different behaviors occur when the lifting conditions change. In the case of producing a boron-doped P-type CZ silicon single crystal, even if a single crystal is grown under the same crystal pulling conditions such as a hot zone and a crystal growth rate, the ring generated after the oxygen precipitation heat treatment depends on the boron doping amount. OSF generation behavior may be different. Since the types of defects existing in the inner region, the outer region of the ring OSF, and the region of the ring OSF itself are completely different, this is a serious problem in forming a device on a wafer. However, in the prior art, since many parts rely on experience in producing a single crystal, it is not easy to produce a single crystal satisfying required quality by controlling the generation behavior of the ring OSF.

【0006】本発明は上記従来の問題点に着目してなさ
れたもので、ボロンドープによるP型CZシリコン単結
晶の製造において、ボロン濃度の変化に応じた適切な引
き上げ条件を明確化し、所望の単結晶が得られるような
シリコン単結晶の製造方法を提供することを目的として
いる。
The present invention has been made in view of the above-mentioned conventional problems. In the production of a P-type CZ silicon single crystal by boron doping, an appropriate pulling condition corresponding to a change in boron concentration is clarified, and a desired single crystal is obtained. It is an object of the present invention to provide a method for producing a silicon single crystal by which a crystal can be obtained.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るシリコン単結晶の製造方法の第1は、
CZ法を用いてボロンドープによるP型シリコン単結晶
を製造するに当たり、ボロン濃度をB(atoms/cm3 )、
結晶成長速度をV(mm/min)、融点から1350℃まで
の軸方向温度勾配をG(℃/mm )とし、酸素析出熱処理
後に発生するリングOSFが結晶中心に消滅する場合の
V/Gを(V/G)cri としたとき、 (V/G)cri =0.15+1.47×10-20 ×B なる算式を用いて結晶引き上げ条件を設定することを特
徴とする。上記構成によれば、シリコン単結晶の抵抗率
すなわちボロン濃度と、リングOSFが結晶中心に消滅
する場合のV/Gとの関係を算式で明確化したので、こ
の算式を利用すれば所望の抵抗率の単結晶を得るために
必要な引き上げ条件を容易に設定することができるよう
になる。
In order to achieve the above object, a first method of manufacturing a silicon single crystal according to the present invention is as follows.
In manufacturing a P-type silicon single crystal by boron doping using the CZ method, the boron concentration is set to B (atoms / cm3),
The crystal growth rate is V (mm / min), the axial temperature gradient from the melting point to 1350 ° C. is G (° C./mm 2), and V / G when the ring OSF generated after the oxygen precipitation heat treatment disappears at the crystal center is When (V / G) cri is set, the crystal pulling condition is set by using an equation of (V / G) cri = 0.15 + 1.47 × 10 −20 × B. According to the above configuration, the relationship between the resistivity of the silicon single crystal, that is, the boron concentration, and V / G when the ring OSF disappears at the center of the crystal is clarified by an equation. This makes it possible to easily set the pulling conditions necessary for obtaining a single crystal having a high rate.

【0008】本発明に係るシリコン単結晶の製造方法の
第2は、上記製造方法の第1に示した(V/G)cri よ
りも小さなV/Gの範囲で結晶引き上げ条件を設定し、
格子間シリコン優勢領域において単結晶を製造すること
を特徴とする。上記構成によれば、V/Gの値をリング
OSFが結晶中心部へ消滅するときのV/Gすなわち
(V/G)cri より小さくして単結晶を育成することに
したので、格子間シリコン優勢領域のみのシリコン単結
晶が得られる。
A second aspect of the method for producing a silicon single crystal according to the present invention is to set a crystal pulling condition in a range of V / G smaller than (V / G) cri shown in the first aspect of the above-mentioned production method,
The method is characterized in that a single crystal is manufactured in an interstitial silicon dominant region. According to the above configuration, the value of V / G is made smaller than V / G when the ring OSF disappears at the center of the crystal, that is, (V / G) cri, to grow a single crystal. A silicon single crystal having only the dominant region is obtained.

【0009】本発明に係るシリコン単結晶の製造方法の
第3は、上記製造方法の第1に示した(V/G)cri よ
りも0.08以上大きなV/Gの範囲で結晶引き上げ条件
を設定し、空孔優勢領域において単結晶を製造すること
を特徴とする。シリコン単結晶の製造方法の第2とは逆
に、V/Gの値を(V/G)cri より0.08以上大きく
して単結晶を育成することにしたので、リングOSFは
単結晶の外方に拡大し、空孔優勢領域のみのシリコン単
結晶が得られる。
A third aspect of the method of manufacturing a silicon single crystal according to the present invention is to set a crystal pulling condition in a range of V / G larger than 0.08 or more than (V / G) cri shown in the first of the above manufacturing method. It is characterized in that a single crystal is manufactured in the vacancy dominant region. Contrary to the second method of manufacturing a silicon single crystal, the value of V / G is set to be larger than (V / G) cri by 0.08 or more to grow a single crystal. A silicon single crystal which expands outward and has only the vacancy dominant region is obtained.

【0010】本発明に係るシリコン単結晶の製造方法の
第4は、上記製造方法の第1において、 (V/G)cri ≦V/G<(V/G)cri +0.08 を満足するV/Gの範囲で結晶引き上げ条件を設定し、
酸素析出熱処理後に発生するリングOSFが存在する単
結晶を製造することを特徴とする。上記構成によれば、
V/Gの値を(V/G)cri 以上、(V/G)cri +0.
08未満として単結晶を育成することにしたので、格子
間シリコン優勢領域と空孔優勢領域とを含むシリコン単
結晶を得ることができる。
A fourth aspect of the method for producing a silicon single crystal according to the present invention is that, in the first aspect of the above-mentioned production method, V satisfying (V / G) cri ≦ V / G <(V / G) cri + 0.08. / G range for crystal pulling,
The present invention is characterized in that a single crystal having a ring OSF generated after the oxygen precipitation heat treatment is manufactured. According to the above configuration,
When the value of V / G is equal to or more than (V / G) cri, (V / G) cri + 0.
Since a single crystal is grown with a value of less than 08, a silicon single crystal including an interstitial silicon dominant region and a vacancy dominant region can be obtained.

【0011】[0011]

【発明の実施の形態および実施例】次に、本発明に係る
シリコン単結晶の製造方法の実施例について図面を参照
して説明する。図1は、CZ法を用いた単結晶の製造に
おいて成長速度を徐々に低下させながら引き上げた場合
のリングOSFの発生挙動を示したものである。結晶成
長速度をV(mm/min )、シリコン単結晶1が融液界面
から1350℃まで冷却された部分の結晶の軸方向温度
勾配をG(℃/mm)とすると、一般にリングOSF2の
発生挙動はV/G(mm2 /℃ min)に依存し、V/Gが
小さくなるにつれて結晶中心側に収縮し、やがて消滅す
る。ホットゾーンが同じ、すなわちGが同じ場合は、リ
ングOSF2の発生挙動は通常Vに依存した一定の挙動
を示すが、ボロンの濃度が異なる場合は全く異なった挙
動を示す。本発明は、前記挙動をボロンの濃度によって
推定するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the method for producing a silicon single crystal according to the present invention will be described with reference to the drawings. FIG. 1 shows the generation behavior of the ring OSF when the single crystal is pulled up while the growth rate is gradually reduced in the production of the single crystal using the CZ method. Assuming that the crystal growth rate is V (mm / min) and the temperature gradient in the axial direction of the portion of the silicon single crystal 1 cooled to 1350 ° C. from the melt interface is G (° C./mm), the generation behavior of the ring OSF 2 is generally assumed. Depends on V / G (mm 2 / ° C. min), shrinks toward the center of the crystal as V / G decreases, and eventually disappears. When the hot zone is the same, that is, when G is the same, the generation behavior of the ring OSF2 usually shows a constant behavior depending on V, but shows a completely different behavior when the boron concentration is different. In the present invention, the behavior is estimated based on the concentration of boron.

【0012】抵抗率の異なるシリコン単結晶を製造する
ため、ボロンの濃度を変えて育成したシリコン単結晶に
おけるリングOSFの半径と結晶成長速度Vとの関係を
調査した。この調査には6インチウェーハを用い、抵抗
率は13Ω・cm、15mΩ・cm及び12mΩ・cmの3水
準とし、ホットゾーンすなわちGは3水準とも同一とし
た。調査結果は図2に示す通りである。同図で明らかな
ように、抵抗率すなわちボロン濃度が異なるとリングO
SFの半径と成長速度Vとの関係が大きく変化する。
In order to manufacture silicon single crystals having different resistivity, the relationship between the radius of the ring OSF and the crystal growth rate V in a silicon single crystal grown by changing the concentration of boron was investigated. In this investigation, a 6-inch wafer was used, the resistivity was set to three levels of 13 Ω · cm, 15 mΩ · cm, and 12 mΩ · cm, and the hot zone, ie, G, was the same for all three levels. The investigation results are as shown in FIG. As can be seen from the figure, if the resistivity, that is, the boron concentration is different, the ring O
The relationship between the radius of the SF and the growth rate V greatly changes.

【0013】また、リングOSFが結晶中心に消滅した
ときのV/Gとボロン濃度との関係を、抵抗率13Ω・
cm、15mΩ・cm、12mΩ・cmのウェーハ別に調査し
たところ、図3に示す結果が得られた。同図における回
帰直線は、リングOSFが単結晶の中心部に消滅すると
きのV/Gを(V/G)cri とし、成長速度をV(mm/m
in)、融点から1350℃までの軸方向温度勾配をG
(℃/mm )、ボロン濃度をB(atoms/cm3 )とすると、 (V/G)cri =0.15+1.47×10-20 ×B… として表される。
The relationship between V / G and the boron concentration when the ring OSF disappears at the center of the crystal is defined as a resistivity of 13 Ω ·
The results shown in FIG. 3 were obtained by investigating wafers of cm, 15 mΩ · cm and 12 mΩ · cm. In the regression line in the figure, the V / G when the ring OSF disappears at the center of the single crystal is (V / G) cri, and the growth rate is V (mm / m
in), the axial temperature gradient from the melting point to 1350 ° C.
(V / G) cri = 0.15 + 1.47 × 10 −20 × B..., Where (° C./mm) and the boron concentration are B (atoms / cm 3).

【0014】上記算式を用いることによって結晶引き上
げ条件の設定を容易にし、任意のボロン濃度すなわち抵
抗率で、かつ、空孔優勢領域、格子間シリコン優勢領
域、リングOSF部等の任意の領域でCZシリコン単結
晶を製造することができる。たとえば図1に示した格子
間シリコン優勢領域のインゴットを製造したい場合は、
式から導き出された(V/G)cri よりもV/Gが小
さくなるような引き上げ条件を設定すればよい。通常、
軸方向温度勾配Gの変更は困難であるので、結晶引き上
げ条件の設定に当たり結晶成長速度Vを小さくする。
By using the above formula, it is easy to set the crystal pulling conditions, and it is possible to set the CZ in an arbitrary region such as a vacancy dominant region, an interstitial silicon dominant region, and a ring OSF portion at an arbitrary boron concentration, that is, a resistivity. A silicon single crystal can be manufactured. For example, if you want to manufacture an ingot of the interstitial silicon dominant region shown in FIG.
A pulling condition may be set so that V / G is smaller than (V / G) cri derived from the equation. Normal,
Since it is difficult to change the temperature gradient G in the axial direction, the crystal growth rate V is reduced in setting the crystal pulling conditions.

【0015】また、本発明を用いれば、リングOSFを
結晶外部に逃がした状態(リングOSFの内側の領域)
で結晶を製造することも可能である。シリコン単結晶製
造中の結晶内部の温度分布は結晶の径方向で均一ではな
く、温度勾配Gは径方向で大きくなる傾向にある。その
ため、(V/G)cri で定義することが難しい。しかし
Gは結晶中心部と外周部とでは大きくても1.5倍程度の
違いであることが見積もられるので、この場合、(V/
G)cri よりも0.08以上大きい条件で引き上げを行う
ことによってリングOSFを結晶外部に逃がした状態で
単結晶を製造することができる。
Further, according to the present invention, the state in which the ring OSF has escaped to the outside of the crystal (region inside the ring OSF)
It is also possible to produce crystals with During the production of a silicon single crystal, the temperature distribution inside the crystal is not uniform in the radial direction of the crystal, and the temperature gradient G tends to increase in the radial direction. Therefore, it is difficult to define (V / G) cri. However, since G is estimated to be about 1.5 times the difference between the central portion and the outer peripheral portion of the crystal at most, in this case, (V /
G) A single crystal can be manufactured in a state where the ring OSF is released to the outside of the crystal by pulling it under a condition larger than the cri by 0.08 or more.

【0016】更に本発明を用い、リングOSFが結晶内
部に存在する状態で結晶を製造することが可能である。
このような結晶はリングOSFの内側領域と外側領域と
を同時に調査することができる等、主に結晶開発の面で
有用な結晶である。この場合(V/G)が、 (V/G)cri ≦(V/G)<(V/G)cri +0.08… を満足する範囲にあるような結晶引き上げ条件を設定す
ればよい。
Further, by using the present invention, it is possible to manufacture a crystal in a state where the ring OSF exists inside the crystal.
Such a crystal is useful mainly in terms of crystal development, such that the inner region and the outer region of the ring OSF can be investigated simultaneously. In this case, the crystal pulling condition may be set so that (V / G) satisfies (V / G) cri ≦ (V / G) <(V / G) cri + 0.08.

【0017】[0017]

【発明の効果】従来技術ではリングOSFの発生挙動の
制御は経験に依存している部分が多いため、それまでと
は異なる規格の単結晶を製造する場合には適切な製造条
件を見出すまでに時間がかかっていたが、本発明のシリ
コン単結晶製造方法を用いることにより、結晶引き上げ
条件の設定が容易になる。リングOSFの内側領域、外
側領域を造り分ける技術はシリコン単結晶の製造におい
て非常に重要な要素であり、エピタキシャルウェーハの
基板等に用いられるヘビードープ単結晶の需要が増大し
ている現在、本発明は極めて有効な製造方法である。
According to the prior art, since the control of the generation behavior of the ring OSF often depends on experience, when manufacturing a single crystal having a different standard from before, it is necessary to find appropriate manufacturing conditions. Although it took time, the use of the silicon single crystal manufacturing method of the present invention facilitates setting of crystal pulling conditions. The technology for separately forming the inner region and the outer region of the ring OSF is a very important factor in the production of silicon single crystal, and at present, the demand for heavy-doped single crystal used for the substrate of the epitaxial wafer is increasing. This is an extremely effective manufacturing method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】CZシリコン単結晶におけるリングOSFの発
生挙動を示す模式図である。
FIG. 1 is a schematic diagram showing a generation behavior of a ring OSF in a CZ silicon single crystal.

【図2】抵抗率の異なるシリコン単結晶の、結晶成長速
度とリングOSF半径との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a crystal growth rate and a ring OSF radius of silicon single crystals having different resistivity.

【図3】ボロン濃度と(V/G)cri との関係を示す図
である。
FIG. 3 is a diagram showing a relationship between boron concentration and (V / G) cri.

【符号の説明】[Explanation of symbols]

1…シリコン単結晶、2…リングOSF。 1. Silicon single crystal, 2. Ring OSF.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 CZ法を用いてボロンドープによるP型
シリコン単結晶を製造するに当たり、ボロン濃度をB
(atoms/cm3 )、結晶成長速度をV(mm/min)、融点か
ら1350℃までの軸方向温度勾配をG(℃/mm )と
し、酸素析出熱処理後に発生するリング状の熱酸化誘起
積層欠陥が結晶中心に消滅する場合のV/Gを(V/
G)cri としたとき、 (V/G)cri =0.15+1.47×10-20 ×B なる算式を用いて結晶引き上げ条件を設定することを特
徴とするシリコン単結晶の製造方法。
In producing a P-type silicon single crystal by boron doping using the CZ method, the boron concentration is set to B
(Atoms / cm 3), the crystal growth rate is V (mm / min), the axial temperature gradient from the melting point to 1350 ° C. is G (° C./mm 2), and ring-shaped thermal oxidation-induced stacking faults generated after oxygen precipitation heat treatment. Is vanishing at the center of the crystal,
A method for producing a silicon single crystal, wherein the crystal pulling conditions are set using the following formula: (V / G) cri = 0.15 + 1.47 × 10 −20 × B, where G) cri.
【請求項2】 請求項1記載の(V/G)cri よりも小
さなV/Gの範囲で結晶引き上げ条件を設定し、格子間
シリコン優勢領域において単結晶を製造することを特徴
とするシリコン単結晶の製造方法。
2. A silicon single crystal, wherein a crystal pulling condition is set within a range of V / G smaller than (V / G) cri according to claim 1, and a single crystal is produced in an interstitial silicon dominant region. Method for producing crystals.
【請求項3】 請求項1記載の(V/G)cri よりも0.
08以上大きなV/Gの範囲で結晶引き上げ条件を設定
し、空孔優勢領域において単結晶を製造することを特徴
とするシリコン単結晶の製造方法。
3. The value of (V / G) cri according to claim 1 is more than 0.
A method for producing a silicon single crystal, characterized in that crystal pulling conditions are set in a range of V / G larger than 08 and a single crystal is produced in a vacancy dominant region.
【請求項4】 請求項1記載のシリコン単結晶の製造方
法において、 (V/G)cri ≦V/G<(V/G)cri +0.08 を満足するV/Gの範囲で結晶引き上げ条件を設定し、
酸素析出熱処理後に発生するリング状の熱酸化誘起積層
欠陥が存在する単結晶を製造することを特徴とするシリ
コン単結晶の製造方法。
4. The method for producing a silicon single crystal according to claim 1, wherein the crystal pulling condition is in a range of V / G satisfying (V / G) cri ≦ V / G <(V / G) cri + 0.08. And set
A method for producing a silicon single crystal, comprising producing a single crystal having a ring-shaped thermal oxidation-induced stacking fault generated after an oxygen precipitation heat treatment.
JP31281997A 1997-10-29 1997-10-29 Production of silicon single crystal Withdrawn JPH11130592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31281997A JPH11130592A (en) 1997-10-29 1997-10-29 Production of silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31281997A JPH11130592A (en) 1997-10-29 1997-10-29 Production of silicon single crystal

Publications (1)

Publication Number Publication Date
JPH11130592A true JPH11130592A (en) 1999-05-18

Family

ID=18033806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31281997A Withdrawn JPH11130592A (en) 1997-10-29 1997-10-29 Production of silicon single crystal

Country Status (1)

Country Link
JP (1) JPH11130592A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086384A (en) * 1998-09-11 2000-03-28 Mitsubishi Materials Silicon Corp Pulling method of silicon single crystal
WO2000046433A1 (en) * 1999-02-01 2000-08-10 Shin-Etsu Handotai Co., Ltd. Epitaxial silicon wafer and its production method, and substrate for epitaxial silicon wafer
JP2000351690A (en) * 1999-06-08 2000-12-19 Nippon Steel Corp Silicon single crystal wafer and its production
JP2002064102A (en) * 2000-08-15 2002-02-28 Wacker Nsce Corp Single-crystal silicon substrate, epitaxial silicon wafer, and method of manufacturing the same
WO2002056341A3 (en) * 2000-12-29 2003-05-01 Memc Electronic Materials Highly p-doped vacancy dominated silicon wafers substantially free of oxidation induced stacking
US6641888B2 (en) 1999-03-26 2003-11-04 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer.
US6878451B2 (en) 1999-07-28 2005-04-12 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer
JP2016196390A (en) * 2015-04-06 2016-11-24 信越半導体株式会社 Method for manufacturing silicon single crystal
WO2022100875A1 (en) * 2020-11-11 2022-05-19 Globalwafers Co., Ltd. Methods for forming a silicon substrate with reduced grown-in nuclei for epitaxial defects and methods for forming an epitaxial wafer
WO2022233682A1 (en) * 2021-05-05 2022-11-10 Globalwafers Co., Ltd. Methods for forming an epitaxial wafer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086384A (en) * 1998-09-11 2000-03-28 Mitsubishi Materials Silicon Corp Pulling method of silicon single crystal
WO2000046433A1 (en) * 1999-02-01 2000-08-10 Shin-Etsu Handotai Co., Ltd. Epitaxial silicon wafer and its production method, and substrate for epitaxial silicon wafer
US6565822B1 (en) 1999-02-01 2003-05-20 Shin-Etsu Handotai Co., Ltd. Epitaxial silicon wafer, method for producing the same and subtrate for epitaxial silicon wafer
US6641888B2 (en) 1999-03-26 2003-11-04 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer.
JP2000351690A (en) * 1999-06-08 2000-12-19 Nippon Steel Corp Silicon single crystal wafer and its production
US6878451B2 (en) 1999-07-28 2005-04-12 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer
JP2002064102A (en) * 2000-08-15 2002-02-28 Wacker Nsce Corp Single-crystal silicon substrate, epitaxial silicon wafer, and method of manufacturing the same
WO2002056341A3 (en) * 2000-12-29 2003-05-01 Memc Electronic Materials Highly p-doped vacancy dominated silicon wafers substantially free of oxidation induced stacking
JP2016196390A (en) * 2015-04-06 2016-11-24 信越半導体株式会社 Method for manufacturing silicon single crystal
WO2022100875A1 (en) * 2020-11-11 2022-05-19 Globalwafers Co., Ltd. Methods for forming a silicon substrate with reduced grown-in nuclei for epitaxial defects and methods for forming an epitaxial wafer
US11987901B2 (en) 2020-11-11 2024-05-21 Globalwafers Co., Ltd. Methods for forming a silicon substrate with reduced grown-in nuclei for epitaxial defects and methods for forming an epitaxial wafer
US11987900B2 (en) 2020-11-11 2024-05-21 Globalwafers Co., Ltd. Methods for forming a silicon substrate with reduced grown-in nuclei for epitaxial defects and methods for forming an epitaxial wafer
WO2022233682A1 (en) * 2021-05-05 2022-11-10 Globalwafers Co., Ltd. Methods for forming an epitaxial wafer

Similar Documents

Publication Publication Date Title
KR100582240B1 (en) Silicon single crystal wafer and a method for producing it
US6472040B1 (en) Semi-pure and pure monocrystalline silicon ingots and wafers
JP4147599B2 (en) Silicon single crystal and manufacturing method thereof
JP3787472B2 (en) Silicon wafer, method for manufacturing the same, and method for evaluating silicon wafer
JPH11157995A (en) Production of silicon single crystal wafer
US6245430B1 (en) Silicon single crystal wafer and manufacturing method for it
JPH0812493A (en) Production of silicon single crystal
JP3601328B2 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer produced by this method
JPH03261693A (en) Production of single crystal
JPH11130592A (en) Production of silicon single crystal
JP3634133B2 (en) Method for producing silicon single crystal with few crystal defects and silicon single crystal wafer
KR20070072346A (en) Producing method of high quality silicon single crystal ingot and silicon wafer made thereby
JP4151474B2 (en) Method for producing single crystal and single crystal
JP3867476B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP5223513B2 (en) Single crystal manufacturing method
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP2007210820A (en) Method of manufacturing silicon single crystal
JP4296740B2 (en) Manufacturing method of silicon single crystal wafer, silicon single crystal wafer and epitaxial wafer
JP2002201091A (en) Method of manufacturing epitaxial wafer having no epitaxial defect using nitrogen and carbon added substrate
JP4082394B2 (en) Evaluation method of silicon wafer
JP3724535B2 (en) High quality silicon single crystal
JP4007193B2 (en) Method for producing silicon single crystal
JP4155273B2 (en) Manufacturing method of high quality silicon single crystal
JP4577320B2 (en) Silicon wafer manufacturing method
JP2001122695A (en) Method of producing single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104