JPH08257703A - Method for continuous casting of high strength steel - Google Patents

Method for continuous casting of high strength steel

Info

Publication number
JPH08257703A
JPH08257703A JP7065596A JP6559695A JPH08257703A JP H08257703 A JPH08257703 A JP H08257703A JP 7065596 A JP7065596 A JP 7065596A JP 6559695 A JP6559695 A JP 6559695A JP H08257703 A JPH08257703 A JP H08257703A
Authority
JP
Japan
Prior art keywords
steel
molten steel
magnetic field
slab
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7065596A
Other languages
Japanese (ja)
Inventor
Atsushi Itami
丹 淳 伊
Kosaku Shioda
田 浩 作 潮
Kenichi Miyazawa
沢 憲 一 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7065596A priority Critical patent/JPH08257703A/en
Publication of JPH08257703A publication Critical patent/JPH08257703A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To enable a continuous casting of a high strength steel in a small lot by adding a prescribed content of Cu into molten steel at the upstream side of brake magnetic field and simultaneously, adding powder containing Ni to contain the prescribed value or more of Ni at a prescribed point just below the surface layer of a cast slab. CONSTITUTION: A copper wire 3 fed into the molten steel 4 in the condition of impressing the static magnetic field 8 with electric magnets 7 is mixed in a pool of the molten steel 4 at the upper side of the static magnetic field 8 and the alloy component is uniformized, and the length of a transition part which changes from the initial component to the following component, is drastically shortened. The powder 12 supplied into a meniscus of the molten steel 4 is invaded into the interface between a solidified shell 6 and the surface in a mold 2, and the Ni in the powder 12 is invaded so as to be contained in the solidified shell 6. The Ni exists only in the surface of the cast slab, and since the surface flaw developed at a hot-rolling is prevented, at the time of adding >=1wt.% Cu into the molten steel 4, the copper-containing steel even in the small lot can continuously be cast in a good yield by containing >=0.01wt.% Ni at the point of 10mm just below the surface layer of the steel slab.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造鋳型内の溶鋼
に合金成分を加えて高強度鋼を鋳造する方法に関し、特
に、連続鋳造の一時期に鋳型内の溶鋼に合金成分を加え
て鋳型に注入される溶鋼の一部から該溶鋼そのものの鋳
造鋼とは成分が異なる高強度鋼を鋳造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for casting a high-strength steel by adding an alloy component to molten steel in a continuous casting mold, and more particularly to a method in which an alloy component is added to the molten steel in the mold at one stage of continuous casting. The present invention relates to a method of casting a high-strength steel having a composition different from that of the cast steel of the molten steel itself from a part of the molten steel injected into the steel.

【0002】[0002]

【従来技術】鉄鋼材料の用途は時を重ねるに従って増加
し、その結果として鉄鋼材料の種類は多くなっている。
従って、需要家の多くの要求を満たすためには材質の異
なる鉄鋼材料を少量ずつ製造するようになってきてい
る。いわゆる多品種小ロット材の製造である。多品種小
ロット材の製造下では、その後の圧延等の製造工程にお
いて要求される特性を造り分けることができない場合
は、たとえわずかの合金成分の差であっても別の鋼種と
して製造する必要がある。その場合、工業的な製造では
大容量の、例えば300トンの転炉で精錬しなければな
らないため、本来必要とする量が高々10トン程度であ
っても300トン出鋼しなければならない。これは大き
な無駄であり、残された290トンを必要が生じるまで
スラブとして備蓄する場合には在庫が増加し置き場や金
利負担を必要とする問題が生じる。また、スクラップと
して再溶解する場合にはスクラップにするための余分な
コストがかかる問題が生じる。これらの問題は、最終的
に鋼材の価格を上げることになる。従って、多品種小ロ
ット材の製造コスト低減は、鉄鋼業界において積年の課
題であった。
BACKGROUND OF THE INVENTION The use of steel materials has increased over time, and as a result, the types of steel materials have increased.
Therefore, in order to meet many demands of customers, steel materials of different materials are manufactured little by little. This is the production of so-called high-mix low-lot materials. In the production of a wide variety of small lot materials, if the characteristics required in the subsequent manufacturing process such as rolling cannot be created separately, it is necessary to manufacture as a different steel type even if there is a slight difference in alloy composition. is there. In that case, in industrial production, refining must be carried out in a large-capacity converter, for example, 300 tons, so 300 tons of steel must be tapped even if the originally required amount is at most about 10 tons. This is a great waste, and when stocking the remaining 290 tons as a slab until it becomes necessary, the inventory will increase, and there will be a problem that storage space and interest rates will be required. Further, in the case of remelting as scrap, there arises a problem that extra cost is required for scraping. These problems will eventually raise the price of steel products. Therefore, reducing the manufacturing cost of a wide variety of small lot materials has been a longstanding problem in the steel industry.

【0003】多品種小ロット材の鋳造技術の提案として
は、例えば伊藤 孝:第72・73回西山記念技術講
座,p143−p172,日本鉄鋼協会に提示されたワ
イヤ添加法がある。ここでの目的は、A1キルド鋼のS
ol.Al含有量の制御にあるが、これを拡大解釈する
とその他の材質を変化させる合金成分を溶鋼中に添加す
ることにより多品種小ロット材の鋳造に利用することが
できる。しかし、この方法では合金の成分が不確定で不
均一となる。すなわち、合金成分を添加しない先行の鋳
片と合金成分を添加した後行の鋳片のつながり部(移行
部:成分遷移部)では、合金成分を添付しない溶鋼に合
金成分を添加した溶鋼が混ざり、合金成分が不確定で不
均一となる。該移行部は長くかつその成分が不確定で不
均一であるため使い物にならないので、歩留りが悪い。
As a proposal of a casting technique for a wide variety of small lot materials, for example, there is a wire addition method presented to Takashi Ito: 72th and 73rd Nishiyama Memorial Technology Course, p143-p172, Japan Iron and Steel Institute. The purpose here is S of A1 killed steel.
ol. Although the Al content is controlled, it can be utilized for casting of various kinds of small lot materials by adding alloy components that change other materials to molten steel when expanded and interpreted. However, this method results in uncertain and non-uniform alloy components. That is, in the connecting part (transition part: component transition part) of the preceding cast product without adding alloy component and the following cast product with adding alloy component, molten steel with alloy component added is mixed with molten steel without alloy component attached. , The alloy composition is uncertain and non-uniform. The transition portion is long and its components are uncertain and non-uniform, so that it cannot be used, resulting in poor yield.

【0004】[0004]

【発明が解決しようとする課題】一方、銅を含む鋼板
は、種々の特異な特性を示すことが知られている。例え
ば、極低炭素鋼にTiやNbを添加することにより実質
的に固溶炭素や固溶窒素を排除したIF鋼に銅を1.5
%程度添加して、冷延焼鈍後析出処理を行うと、銅が炭
窒化物を形成せずに単独で析出強化し、引張強度が固溶
体強度では工業的には達成不可能な590N/mm2
にまでおよび、かつ成形性に極めて優れた鋼板となる。
この鋼板は需要が堅調ではあるが使われる部品が極めて
少ないことから少量しか用いられていない。従って、銅
添加鋼板すなわち高強度鋼は、小ロット材の代表格であ
る。ところが、大容量の転炉で出鋼された後スクラップ
として長い間保管する必要があること、さらには含銅鋼
をスクラップとするためには多くの問題があること等か
ら、その製造可否が問われるほど鉄鋼メーカーにおいて
は製造が嫌われる鋼種であった。
On the other hand, it is known that a steel sheet containing copper exhibits various unique properties. For example, copper is added to IF steel in which solid solution carbon and solid solution nitrogen are substantially eliminated by adding Ti and Nb to ultra low carbon steel.
%, And when precipitation treatment is performed after cold rolling annealing, copper does not form carbonitride and is precipitation strengthened alone, and the tensile strength is 590 N / mm 2 which is industrially unattainable with solid solution strength. It is a steel sheet that extends to the grade and has excellent formability.
Although the demand for this steel plate is strong, it is used only in a small amount because the number of parts used is extremely small. Therefore, a copper-added steel plate, that is, a high-strength steel is a representative of small lot materials. However, since it is necessary to store as scrap for a long time after being tapped in a large-capacity converter, and because there are many problems in scrapping copper-containing steel as scrap, there is a question of whether or not it can be manufactured. It was a type of steel that steel manufacturers dislike manufacturing.

【0005】本発明は、含銅鋼が抱える多品種小ロット
材の問題を克服することを目的する。具体的には、銅添
加高強度鋼の少量鋳造を容易にすることを第1の目的と
し、歩留りよく鋳造することを第2の目的とする。
An object of the present invention is to overcome the problem of a wide variety of small lot materials which copper-containing steel has. Specifically, the first purpose is to facilitate small amount casting of copper-added high-strength steel, and the second purpose is to cast with high yield.

【0006】[0006]

【課題を解決するための手段】本発明は、鋳型の下部あ
るいは鋳型よりも下方の鋳片に、鋳片引抜き方向と交叉
する方向の制動磁界を印加し、該制動磁界よりも上方の
溶鋼中にCuを重量比で0.1%以上添加し、その際同
時にパウダーにNiを含有させ鋳片表層直下10mm点
においてNiを重量比で0.01%以上とする、ことを
特徴とする。
SUMMARY OF THE INVENTION The present invention applies a braking magnetic field in a direction intersecting the casting withdrawing direction to a lower part of a mold or a lower part of the mold, and the molten steel above the braking field is applied. Cu is added in an amount of 0.1% or more by weight, and at the same time, Ni is added to the powder so that the content of Ni is 0.01% or more by weight at a point 10 mm immediately below the surface layer of the cast slab.

【0007】[0007]

【作用】溶鋼に、鋳片引抜き方向と交叉する方向の制動
磁界を印加すると、制動磁界のところで、鋳型に注入さ
れ下方(鋳片引抜き方向)に流れようとする溶鋼流に、
上方に戻そうとする電磁力が加わり、すなわち流下を阻
止する力が加わり、これにより制動磁界に達する位置で
溶鋼流が鋳型内面に向かう方向に進行方向が曲り、そし
て鋳型内面に沿って上昇しようとする。すなわち、制動
磁界を境にして、それより上側(浸漬ノズル側)の溶鋼
は下方への流動を抑制されてその結果該上側(以下この
領域を遮断プ−ルと称す)で循環流を形成しようとす
る。遮断プ−ルには合金成分が供給されるが、これが該
循環流により、効率よくプ−ル内溶鋼に分散する。すな
わち、制動磁界により、遮断プ−ルに先行する溶鋼に対
して遮断プ−ルが分離(溶鋼流の遮断もしくは抑制)さ
れ、遮断プ−ルにおいては、供給される合金成分の撹拌
が実現し、これにより、先行の、合金成分を供給しない
溶鋼への、その後供給した合金成分の拡散が少く、しか
も、合金成分の供給を開始してから鋳型内溶鋼の該合金
成分の所望成分比への収束が速く、したがって前述の移
行部(成分遷移部)の、鋳片引抜き方向の長さが大幅に
短くなる。すなわち異鋼種鋳造の歩留りが大幅に向上す
る。
When a braking magnetic field is applied to the molten steel in a direction intersecting with the slab drawing direction, the molten steel is injected into the mold at the braking magnetic field and flows downward (in the slab drawing direction).
An electromagnetic force that tries to return upward is applied, that is, a force that blocks the downward flow is applied, so that at the position where the braking magnetic field is reached, the molten steel flow bends in the direction toward the inner surface of the mold and then rises along the inner surface of the mold. And That is, with respect to the braking magnetic field, the molten steel on the upper side (immersion nozzle side) is restrained from flowing downward, and as a result, a circulating flow is formed on the upper side (hereinafter, this region is referred to as a blocking pool). And The alloy component is supplied to the shut-off pool, which is efficiently dispersed in the molten steel in the pool by the circulating flow. That is, the braking magnetic field separates the blocking pool from the molten steel preceding the blocking pool (blocks or suppresses the molten steel flow), and stirring of the supplied alloy components is realized in the blocking pool. , Thereby, the diffusion of the alloy component supplied to the preceding molten steel to which the alloy component is not supplied is small, and moreover, after the alloy component is started to be supplied to the desired component ratio of the alloy component of the molten steel in the mold. Convergence is fast, and therefore, the length of the above-mentioned transition portion (component transition portion) in the slab drawing direction is significantly reduced. That is, the yield of the different steel type casting is significantly improved.

【0008】一方、パウダーは鋳型内溶鋼のメニスカス
上から鋳型内面に沿って凝固シェルと鋳型内面との間の
界面に入り、そこからパウダ−中のNiが凝固シェルの
形成とともにその中に含有されるように浸入する。従っ
て、パウダーから添加されるNiは鋳片の表層のみに存
在する。このように表層にNiが必要なのは、鋳片を熱
延した後に発生する表面疵、いわゆるCuによるへげの
生成を防止するためである。そのために必要な量は、パ
ウダーによる方法を用いる本発明の場合、表層直下10
mm点において0.01%以上とする。上限は特に規定
はしないが、Cu量によりその上限を定めればよく、経
済性の観点からはCuの重量比と同程度でよい。
On the other hand, the powder enters the interface between the solidified shell and the inner surface of the mold from above the meniscus of the molten steel in the mold, and from this, Ni in the powder is contained therein together with the formation of the solidified shell. So as to infiltrate. Therefore, Ni added from the powder exists only in the surface layer of the cast slab. The reason why Ni is required for the surface layer in this way is to prevent the generation of surface defects, which are so-called Cu, generated by hot-rolling the cast slab, that is, Cu. In the case of the present invention using the powder method, the amount required therefor is 10 below the surface layer.
It is 0.01% or more at the mm point. The upper limit is not particularly specified, but the upper limit may be determined depending on the amount of Cu, and from the viewpoint of economy, it may be approximately the same as the weight ratio of Cu.

【0009】次に、より具体的に説明する。図1は、本
発明を一態様で実施する鋳型2の、広幅面に垂直な面で
切断した縦断面図である。鋳型2の下部には電磁ブレ−
キ用の電磁石7が装備されている。電磁ブレ−キ用の電
磁石7は、広幅面の幅方向に均一な密度の、鋳片引抜き
方向10と直交する磁束をもたらす一方向の磁界を、連
続鋳造用鋳型2内の溶鋼4を横切るように、鋳型内溶鋼
4に印加することができる。8はこの際の静磁界(静磁
場)である。なお、電磁ブレーキの電磁石7は、鋳型2
の下方に配設してもよい。ただし、鋳型2内に注入され
る溶鋼の流れが実質上及ぶ最下点f点よりも上方とす
る。
Next, a more specific description will be given. FIG. 1 is a vertical cross-sectional view of a mold 2 for carrying out the present invention in one mode, taken along a plane perpendicular to a wide surface. At the bottom of the mold 2 is an electromagnetic blade.
Equipped with an electromagnet 7 for g. The electromagnet 7 for the electromagnetic brake is configured to cross a molten steel 4 in the continuous casting mold 2 with a magnetic field in one direction which produces a magnetic flux having a uniform density in the width direction of the wide surface and orthogonal to the slab drawing direction 10. Then, it can be applied to the molten steel 4 in the mold. Reference numeral 8 is a static magnetic field (static magnetic field) at this time. The electromagnet 7 of the electromagnetic brake is the mold 2
You may arrange | position below. However, it is above the lowest point f where the flow of molten steel injected into the mold 2 substantially extends.

【0010】タンディッシュからノズル11を通して鋳
型2内に注入される溶鋼流れは、静磁界8が印加されて
いない場合は、f点まで達する。しかし、静磁界8を形
成した場合は、静磁界8を通過する溶鋼注入流に、これ
を阻止するローレンツ力が静磁界8から働き、注入流の
侵入深さは略c/d(一点鎖線)レベルまでとなる。静
磁界8を印加した状態で、銅ワイヤ3を溶鋼に送給す
る。溶鋼に入った銅ワイヤ3は、静磁界8の上側の溶鋼
プール中で、注入される溶鋼流によって均一に混合され
る。溶鋼プ−ルの表層に凝固シェルを生じた溶鋼(鋳
片)は一定の速度でこのプールから下方に押し出され
る。すなわち、流下しようとする溶鋼流は、静磁界8の
電磁ブレーキによって流下を止められるので方向を転じ
て鋳型内面に向かい、鋳型内に混合のための小さなプー
ルが形成され、その範囲内での混合が行われるため、濃
度が均一となるための時間が短縮されるとともに、この
プールからその下方に押し出される鋳片の流れは、プラ
グフロー化されて対流を形成しにくいため、静磁界8の
下方では新たな混合を引き起こさない。従って、最初の
成分から次の成分に変化する継目の部分(移行部)の長
さは最短となる。
The molten steel flow injected from the tundish into the mold 2 through the nozzle 11 reaches point f when the static magnetic field 8 is not applied. However, when the static magnetic field 8 is formed, the Lorentz force that blocks the molten steel injection flow passing through the static magnetic field 8 acts from the static magnetic field 8, and the penetration depth of the injection flow is approximately c / d (dashed line). Up to the level. With the static magnetic field 8 applied, the copper wire 3 is fed to the molten steel. The copper wire 3 that has entered the molten steel is uniformly mixed in the molten steel pool above the static magnetic field 8 by the injected molten steel flow. Molten steel (a slab) having a solidified shell on the surface of the molten steel pool is extruded downward from this pool at a constant speed. That is, the molten steel flow that is about to flow down is stopped by the electromagnetic brake of the static magnetic field 8 and therefore turns its direction to the inner surface of the mold, forming a small pool for mixing in the mold, and mixing within that range. As a result, the time for the concentration to become uniform is shortened, and the flow of the slab extruded downward from this pool is less likely to form convection due to plug flow. Does not cause new mixing. Therefore, the length of the seam portion (transition portion) where the first component changes to the second component becomes the shortest.

【0011】一方、溶鋼のメニスカスに供給したパウダ
ー12は、溶鋼のメニスカスと鋳型内面との接点部aと
bから方向に移動し、すなわち凝固シェルと鋳型2内表
面との界面に入り、そこからパウダ−中のNiが凝固シ
ェルの形成とともにその中に含有されるように浸入す
る。従って、パウダーから添加されるNiは、鋳片の表
層のみに存在する。このように表層にNiが必要なの
は、鋳片を熱延した後に発生する表面疵、いわゆるCu
によるへげの生成を防止するためである。そのために必
要な量は、パウダーによる方法を用いる本発明の場合、
表層直下10mm点において0.01%以上とする。上
限は特に規定はしないが、Cu量によりその上限を定め
ればよく、経済性の観点からはCuの重量比と同程度と
すればよい。以上、合金成分Cuは、静磁界8の電磁ブ
レーキ作用により、静磁界8より上の一定体積のプール
内で十分に混合されるため、合金の添加を開始してから
所定の時間経過し、定常状態になった時点で得られる鋳
片内の成分濃度は安定しており、鋳片横断面ならびに鋳
片長さ方向で一定である。従って、本発明の実施により
合金成分添加によって生じる成分変化領域(移行部)の
長さが大幅に低減するとともに、鋳片内のどの部分をと
っても合金成分の濃度が一様となり、Cu添加鋼の製造
歩留りが大幅に向上する。
On the other hand, the powder 12 supplied to the molten steel meniscus moves in the direction from the contact points a and b between the molten steel meniscus and the inner surface of the mold, that is, enters the interface between the solidified shell and the inner surface of the mold 2, and from there. The Ni in the powder penetrates so as to be contained therein as the solidified shell forms. Therefore, the Ni added from the powder exists only in the surface layer of the slab. As described above, Ni is required for the surface layer because the surface defects generated after hot rolling the slab, so-called Cu.
This is to prevent the generation of baldness due to. The amount required for that is, in the case of the present invention using the powder method,
It is 0.01% or more at a point 10 mm immediately below the surface layer. Although the upper limit is not particularly specified, the upper limit may be determined depending on the amount of Cu, and from the viewpoint of economy, it may be approximately the same as the weight ratio of Cu. As described above, the alloy component Cu is sufficiently mixed in the pool having a constant volume above the static magnetic field 8 by the electromagnetic braking action of the static magnetic field 8. Therefore, a predetermined time has elapsed since the addition of the alloy was started, and the steady state was achieved. The component concentration in the slab obtained when the slab is in a stable state is stable, and is constant in the slab transverse section and the slab length direction. Therefore, by implementing the present invention, the length of the component change region (transition portion) caused by the addition of the alloy component is significantly reduced, and the concentration of the alloy component becomes uniform at any portion in the cast slab. Manufacturing yield is greatly improved.

【0012】この際添加する元素は、本願発明では小ロ
ットである銅を含む高強度鋼を製造することを目的とし
て、Cuを重量比で0.1%以上添加する。銅の添加量
が0.1%未満では、含銅鋼としての特徴が現れない。
これは、従来から公知であるが、含銅鋼を極めて安価に
製造するために、ここではこれを規定する。上限は特に
規定しないが、合金添加はコストの上昇を招くため、2
%以下の添加が好ましい。
In the present invention, the element to be added at this time is 0.1% or more by weight of Cu for the purpose of producing a high strength steel containing copper which is a small lot in the present invention. If the added amount of copper is less than 0.1%, the characteristics as copper-containing steel do not appear.
Although this is conventionally known, it is specified here in order to manufacture copper-containing steel extremely inexpensively. Although the upper limit is not specified, addition of an alloy causes an increase in cost.
% Or less is preferable.

【0013】なお、合金成分Cu添加の方法については
特には限定しないが、Cuはワイヤ成形が極めて容易で
あり、銅ワイヤ製造技術は高度に発達しているので、銅
ワイヤを溶鋼中に送給する方法が最も好ましい。この方
法によると添加する合金成分を容易に溶鋼に溶かすこと
ができ、さらに鋳片内に均一に分布させることができ
る。静磁界8を印加し銅ワイヤ3の送りを開始すると
き、すなわち鋳型2内の溶鋼にCu添加を開始するとき
には、静磁界8で区画される上述のプ−ルのCu成分比
を速く目標重量比にするために高速で銅ワイヤ3を送給
し、目標重量比とするに必要な量を送給した後は、鋳造
速度に比例する速度、すなわち鋳型2に注入される溶鋼
量に見合った送給量とするのが好ましい。これにより成
分変化領域(移行部)の長さが更に低減する。
The method of adding the alloy component Cu is not particularly limited, but since Cu is extremely easy to form a wire and the copper wire manufacturing technology is highly developed, the copper wire is fed into molten steel. The method of doing is most preferable. According to this method, the alloy components to be added can be easily dissolved in the molten steel, and can be evenly distributed in the cast slab. When the static magnetic field 8 is applied to start the feeding of the copper wire 3, that is, when the Cu addition to the molten steel in the mold 2 is started, the Cu component ratio of the above-mentioned pool partitioned by the static magnetic field 8 is quickly increased to the target weight. After the copper wire 3 was fed at a high speed to achieve the ratio, and the amount required to reach the target weight ratio was fed, the speed was proportional to the casting speed, that is, the amount of molten steel injected into the mold 2 was commensurate. It is preferable to set the amount to be delivered. This further reduces the length of the component change region (transition part).

【0014】[0014]

【実施例】第1表に示す組成(成分比:重量%)の鋼A
を通常の精錬により300トン得、連続鋳造機において
溶鋼中に銅ワイヤ3によりCuを添加することにより、
まずは通常のパウダーを用い鋼Aを先に100トン鋳込
み、途中からCuが1.6%になるように鋼A−1を5
0トン鋳込んだ。次にCuの添加を中止した状態で鋼A
を50トン鋳込み、次に磁場を印加し1.6%になるよ
うにCuの添加を再開し鋼A−2を50トン鋳込み、最
後の50トンについては鋳片表層にNiを含有するよう
にNiの粉を含ませたパウダーを用いてNi量を、溶鋼
への供給量が一定になるように調整しながら鋼A−3を
鋳込んだ。この時の表層下10mmにおけるNiの量は
重量比で0.4%であった。鋳型幅方向に鋳片の形状は
厚み230mm、幅1250mmであった。電磁ブレー
キ用の電磁石7は、鋳型内メニスカスから500〜70
0mmの位置に設置した。
EXAMPLES Steel A having the composition (composition ratio: weight%) shown in Table 1
300 tons by ordinary refining, and by adding Cu by the copper wire 3 into the molten steel in the continuous casting machine,
First, 100 tons of steel A was first cast using ordinary powder, and 5 parts of steel A-1 were added so that Cu would be 1.6% from the middle.
I cast 0 tons. Next, with the addition of Cu stopped, steel A
50 tons of steel, then a magnetic field was applied to restart the addition of Cu so as to reach 1.6%, and 50 tons of steel A-2 was cast. For the last 50 tons, Ni was contained in the surface layer of the slab. Steel A-3 was cast while adjusting the amount of Ni using a powder containing Ni powder so that the amount supplied to the molten steel would be constant. At this time, the amount of Ni 10 mm below the surface layer was 0.4% by weight. The shape of the slab in the width direction of the mold was 230 mm in thickness and 1250 mm in width. The electromagnet 7 for the electromagnetic brake is 500 to 70 from the meniscus in the mold.
It was installed at a position of 0 mm.

【0015】[0015]

【表1】 [Table 1]

【0016】磁場を印加しなかった鋼A−1と磁場を印
加した鋼A−2について、Cuを添加してからその量が
1.6%になるまでの鋳片の長さと、Cuが1.6%に
なった後のCuのばらつきは、第2表の通りであった。
For the steel A-1 to which no magnetic field was applied and the steel A-2 to which a magnetic field was applied, the length of the slab from the addition of Cu until the amount reached 1.6%, and the Cu content was 1 The variation of Cu after reaching 0.6% is as shown in Table 2.

【0017】[0017]

【表2】 [Table 2]

【0018】第2表からわかるように、本発明法により
鋳片のCuの量が所定の値になるまでの鋳片の長さは大
きく短縮することができ、かつその後のばらつきも小さ
い。次に、表層にNiを含有させなかった鋼A−2とそ
れを含有させた鋼A−3のスラブを、抽出温度:120
0℃、仕上圧延温度:900℃、巻取温度:700℃の
条件で熱延した。その熱延鋼帯について、表面疵の有無
を目視により検査した。検査の結果は第3表の通りであ
った。
As can be seen from Table 2, the length of the slab until the amount of Cu in the slab reaches a predetermined value can be greatly shortened by the method of the present invention, and the variation thereafter is small. Next, the slabs of Steel A-2 containing no Ni in the surface layer and Steel A-3 containing it were extracted at an extraction temperature of 120.
Hot rolling was performed under the conditions of 0 ° C., finish rolling temperature: 900 ° C., and winding temperature: 700 ° C. The hot rolled steel strip was visually inspected for surface flaws. The results of the inspection are shown in Table 3.

【0019】[0019]

【表3】 [Table 3]

【0020】第3表のように、表層にNiを含有させた
鋼A−3は表面疵がなく良好であったが、表層にNiを
含有させなかった鋼A−2には、Cuによるへげが発生
した。
As shown in Table 3, the steel A-3 containing Ni in the surface layer was good with no surface flaws, but the steel A-2 containing no Ni in the surface layer was affected by Cu. There was a baldness.

【0021】[0021]

【発明の効果】以上のように、本発明法を用いれば、需
要は堅調ではあるが極小量しか使われない含銅鋼を極め
て容易に、かつ必要な時にのみ製造することができ、大
容量の転炉により操業している製鉄所においては、多量
の在庫を持つことなく、さらにスクラップにさせること
なく製造することなく、歩留りよく鋳造できる。
As described above, the use of the method of the present invention makes it possible to manufacture copper-containing steel, which has a strong demand but is used only in an extremely small amount, very easily and only when necessary, and has a large capacity. In a steel mill operating with the converter of No. 1, it is possible to perform casting with a good yield without having a large amount of inventory and without producing it without scrapping it.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を一態様で実施する連続鋳造鋳型の長
片の縦断面図である。
FIG. 1 is a vertical cross-sectional view of a long piece of a continuous casting mold that embodies the present invention in one aspect.

【符号の説明】[Explanation of symbols]

2:鋳型 3:銅ワイヤ 4:溶鋼 6:凝固シェル 7:電磁ブレーキ用の電磁石 8:静磁界(静磁
場) 9:浸漬ノズル 10:鋳片引抜き方
向 11:溶鋼表面のパウダー
2: Mold 3: Copper wire 4: Molten steel 6: Solidified shell 7: Electromagnet for electromagnetic brake 8: Static magnetic field (static magnetic field) 9: Immersion nozzle 10: Slab drawing direction 11: Powder on molten steel surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋳型の下部あるいは鋳型よりも下方の鋳片
に、鋳片引抜き方向と交叉する方向の制動磁界を印加
し、該制動磁界よりも上方の溶鋼中にCuを重量比で
0.1%以上添加し、その際同時にパウダーにNiを含
有させ鋳片表層直下10mm点においてNiを重量比で
0.01%以上とする、高強度鋼の連続鋳造方法。
1. A braking magnetic field in a direction intersecting with the casting withdrawing direction is applied to a lower part of the mold or a lower part of the mold, and Cu is added to the molten steel above the braking field in a weight ratio of 0. A continuous casting method for high-strength steel in which 1% or more is added, and at the same time Ni is added to the powder so that Ni is 0.01% or more by weight ratio at a point 10 mm immediately below the surface layer of the slab.
JP7065596A 1995-03-24 1995-03-24 Method for continuous casting of high strength steel Withdrawn JPH08257703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7065596A JPH08257703A (en) 1995-03-24 1995-03-24 Method for continuous casting of high strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7065596A JPH08257703A (en) 1995-03-24 1995-03-24 Method for continuous casting of high strength steel

Publications (1)

Publication Number Publication Date
JPH08257703A true JPH08257703A (en) 1996-10-08

Family

ID=13291568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7065596A Withdrawn JPH08257703A (en) 1995-03-24 1995-03-24 Method for continuous casting of high strength steel

Country Status (1)

Country Link
JP (1) JPH08257703A (en)

Similar Documents

Publication Publication Date Title
KR101218020B1 (en) High-strength hot-rolled steel sheet and process for production thereof
RU2282521C2 (en) Method for custom-making steel strip
KR101250101B1 (en) Method for continuously casting steel and process for producing steel sheet
JP5045408B2 (en) Manufacturing method of continuous cast slab
JPH08257703A (en) Method for continuous casting of high strength steel
CN107530769B (en) Continuous casting method using mold flux, and slab manufactured using the same
JPH08257704A (en) Method for continuously casting high strength steel containing copper
JP2004074233A (en) Method for reducing center segregation in continuously cast slab
JPH08257705A (en) Method for continuous casting high strength steel containing copper
JP2011194421A (en) Continuous casting method for steel
JPH08257702A (en) Method for continuous casting precipitation enhance type high strength steel
JP2613699B2 (en) Steel material excellent in low-temperature toughness and method for producing the same
JPH11347701A (en) Continuous casting method and continuous caster
JPH08257701A (en) Continuous casting method
JP3388933B2 (en) Continuous casting method of titanium-added ultra low carbon steel
JP2010099704A (en) Continuous casting method for steel cast slab
JP3316109B2 (en) Manufacturing method of thick steel plate with uniform material in surface layer and inside
JP3775178B2 (en) Thin steel plate and manufacturing method thereof
JPH0760408A (en) Production of steel plate for thin sheet
JPH11179489A (en) Production of steel wire rod
JP2691675B2 (en) Continuous casting method for scrap-based steel
JP5458779B2 (en) Continuous casting method for steel slabs
JPH08206803A (en) Method for continuously casting different kinds of steels
KR20230022213A (en) Manufacturing method of ultra-low carbon steel products
JP2005305532A (en) Manufacturing method for steel material partially different in component, and worked product

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604