JPH08257702A - Method for continuous casting precipitation enhance type high strength steel - Google Patents

Method for continuous casting precipitation enhance type high strength steel

Info

Publication number
JPH08257702A
JPH08257702A JP7065595A JP6559595A JPH08257702A JP H08257702 A JPH08257702 A JP H08257702A JP 7065595 A JP7065595 A JP 7065595A JP 6559595 A JP6559595 A JP 6559595A JP H08257702 A JPH08257702 A JP H08257702A
Authority
JP
Japan
Prior art keywords
molten steel
mold
continuous casting
steel
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7065595A
Other languages
Japanese (ja)
Inventor
Atsushi Itami
丹 淳 伊
Kosaku Shioda
田 浩 作 潮
Eiichi Takeuchi
内 栄 一 竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7065595A priority Critical patent/JPH08257702A/en
Publication of JPH08257702A publication Critical patent/JPH08257702A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To enable a continuous casting of a precipitation enhancing type high strength steel of a small lot by adding the specific contents of at least one kind of Ti, Nb and V into molten steel at the upstream side of brake magnetic field and supplying only the molten steel in the other strands. CONSTITUTION: At the time of pouring the molten steel 4 having the constant component ratio into a mold 2 through a nozzle 11, the electromagnets 7 for electromagnetic brake is energized to form a magnetostatic field 8, and the alloy components are supplied into the molten steel 4 above this magnetic field at the speed proportional to the casting speed. Since a pool is formed and mixed with the alloy elements and the molten steel 4 by the electromagnetic brake, the alloy component concns. are uniformized, and the length of a transition part which changes to the following component, is drastically reduced and the yield of the cast product can be improved. In order to obtain the precipitation enhancing type high strength steel in the small lot, Ti, Nb or V is added, and in the case of one kind of the single element among these, the element is added to >=0.01%, and in the case of two or more kinds, the total thereof is added to >=0.01%, and then, the continuous casting supplying only the molten steel 4 in the other strands can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数のストランドから
なる連続鋳造機において、連続鋳造の一時期に鋳型内の
溶鋼に合金成分を加えて、該溶鋼の一部から該溶鋼とは
成分あるいは成分比が異なる鋳片を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting machine composed of a plurality of strands, in which alloy components are added to molten steel in a mold at a time of continuous casting, and a portion or part of the molten steel becomes a component or a component with the molten steel. It relates to a method for producing slabs having different ratios.

【0002】[0002]

【従来技術】鉄鋼材料の用途は時を重ねるに従って増加
し、その結果として鉄鋼材料の種類は多くなっている。
従って、需要家の多くの要求を満たすためには材質の異
なる鉄鋼材料を少量ずつ製造するようになってきてい
る。いわゆる多品種小ロット材の製造である。多品種小
ロット材の製造下では、その後の圧延等の製造工程にお
いて要求される特性を造り分けることができない場合
は、たとえわずかの合金成分又は成分比の差であって
も、別の鋼種として製造する必要がある。その場合、工
業的な製造では大容量の、例えば300トンの転炉で精
錬しなければならないため、本来必要とする量が高々1
0トン程度であっても300トン出鋼しなければならな
い。これは大きな無駄であり、残された290トンを必
要が生じるまでスラブとして備畜する場合には、在庫が
増加し置き場や金利負担を必要とする問題が生じる。ま
た、スクラップとして再溶解する場合には、スクラップ
にするための余分なコストがかかる問題が生じる。これ
らの問題は、最終的に鋼材の価格を上げることになる。
従って、多品種小ロット材の製造は、鉄鋼業界において
積年の課題であった。
BACKGROUND OF THE INVENTION The use of steel materials has increased over time, and as a result, the types of steel materials have increased.
Therefore, in order to meet many demands of customers, steel materials of different materials are manufactured little by little. This is the production of so-called high-mix low-lot materials. In the production of high-mix low-lot materials, if it is not possible to create the required characteristics in the subsequent manufacturing process such as rolling, even if there is a slight difference in alloy composition or composition ratio, it will be treated as a different steel type. Must be manufactured. In that case, industrial production requires refining in a large-capacity converter, for example, 300 tons, so the originally required amount is at most 1.
Even if it is about 0 tons, 300 tons must be tapped. This is a great waste, and when stocking the remaining 290 tons as a slab until it is necessary, there is a problem that the inventory increases and storage space and interest rates are required. Further, in the case of remelting as scrap, there arises a problem that extra cost is required for scrapping. These problems will eventually raise the price of steel products.
Therefore, the production of high-mix low-lot materials has been a longstanding problem in the steel industry.

【0003】多品種小ロットの課題を克服する技術の提
案としては、例えば、伊藤 孝:第72・73回西山記
念技術講座,p143−p172,日本鉄鋼協会に提示され
た、ワイヤ添加法がある。ここでの目的は、A1キルド
鋼のSol.Al含有量の制御にあるが、これを拡大解
釈すると、その他の材質を変化させる合金成分を溶鋼中
に添加することにより多品種小ロット材の製造に供する
ことのできる鋳片を製造することができる。
As a proposal of a technique for overcoming the problems of a large variety of small lots, for example, there is a wire addition method presented by Takashi Ito: 72th and 73rd Nishiyama Memorial Technology Lecture, p143-p172, Japan Iron and Steel Institute. . The purpose here is Sol. Although it is in the control of the Al content, if this is expandedly interpreted, it is possible to manufacture a slab that can be used for the manufacture of a wide variety of small lot materials by adding alloy components that change other materials into molten steel. it can.

【0004】[0004]

【発明が解決しようとする課題】しかし、この方法で
は、合金成分を加えた直後から引抜き鋳片が所望の成分
になるまでに時間がかかり、この間の鋳片(移行部;成
分遷移部)は、添加した合金の成分比が不確定で不均一
となる。すなわち、移行部が長くかつその成分が不確定
で不均一であるため使い物にならないことを意味し、歩
留りが悪い。
However, in this method, it takes time from immediately after adding the alloy components until the drawn slab becomes a desired component, and the slab (transition part; component transition part) during this time is , The composition ratio of the added alloy is uncertain and non-uniform. That is, it means that the transition portion is long and its components are uncertain and non-uniform, so that it cannot be used, and the yield is poor.

【0005】本発明は、複数のストランドを有する連続
鋳造機による連続鋳造において多品種小ロットの析出強
化型高強度鋼の連続鋳造を実現することを第1の目的と
し、多品種小ロットの析出強化型高強度鋼の歩留を向上
することを第2の目的とする。
The first object of the present invention is to realize continuous casting of a large variety of precipitation-strengthened high strength steels in continuous casting by a continuous casting machine having a plurality of strands. A second object is to improve the yield of reinforced high strength steel.

【0006】[0006]

【課題を解決するための手段】本発明の第1実施態様で
は、複数のストランドからなる連続鋳造機の1つのスト
ランドにおいては、連続鋳造鋳型に浸漬ノズルを介して
鋳型外部から溶鋼を供給し、浸漬ノズルの下方の溶鋼に
鋳片引抜き方向と交叉する方向の制動磁界を印加し該磁
界の上流側の溶鋼中に合金成分Ti,NbおよびVの少
くとも一種を、一種単独に添加する場合には重量比でT
i:0.01%以上,Nb:0.01%以上,V:0.
01%以上、を、2種以上を添加する場合にはその和
0.01%以上を添加し、他のストランドにおいては前
記鋳型外部からの溶鋼のみ連続鋳造する。
In a first embodiment of the present invention, in one strand of a continuous casting machine consisting of a plurality of strands, molten steel is supplied to the continuous casting mold from the outside of the mold through a dipping nozzle, When a braking magnetic field is applied to the molten steel below the dipping nozzle in a direction intersecting with the slab drawing direction, and at least one of the alloying components Ti, Nb and V is added to the molten steel upstream of the magnetic field alone. Is T by weight
i: 0.01% or more, Nb: 0.01% or more, V: 0.
In the case of adding two or more kinds, 0.01% or more, the sum thereof is added by 0.01% or more, and in other strands, only molten steel from the outside of the mold is continuously cast.

【0007】本発明の第2実施態様では、複数のストラ
ンドからなる連続鋳造機の1つのストランドにおいて
は、連続鋳造鋳型に浸漬ノズルを介して鋳型外部から溶
鋼を供給し、浸漬ノズルの下方の溶鋼に鋳片引抜き方向
と交叉する方向の制動磁界を印加しかつ鋳型内の該磁界
より上流の溶鋼を電磁撹拌しつつ該磁界の上流側の溶鋼
中に合金成分Ti,NbおよびVの少くとも一種を、一
種単独に添加する場合には重量比でTi:0.01%以
上,Nb:0.01%以上,V:0.01%以上、を、
2種以上を添加する場合にはその和0.01%以上を添
加し、他のストランドにおいては前記鋳型外部からの溶
鋼のみ連続鋳造する。
In a second embodiment of the present invention, in one strand of a continuous casting machine composed of a plurality of strands, molten steel is supplied to the continuous casting mold from the outside of the mold through a dipping nozzle, and the molten steel below the dipping nozzle is supplied. A braking magnetic field in a direction intersecting the slab withdrawing direction is applied to the molten steel and the molten steel upstream of the magnetic field in the mold is electromagnetically stirred while at least one of alloying components Ti, Nb and V is contained in the molten steel upstream of the magnetic field. When added singly, Ti: 0.01% or more, Nb: 0.01% or more, V: 0.01% or more by weight ratio,
When adding two or more kinds, 0.01% or more of the sum is added, and in other strands, only molten steel from the outside of the mold is continuously cast.

【0008】いずれの実施態様においても、必要に応じ
て、移行部(成分遷移部)の鋳片引抜き方向の長さをよ
り短くするために、合金成分を添加するに当り、鋳型内
の溶鋼の上下方向の混合を防止するための遮蔽盤を、鋳
型内の溶鋼の湯面に挿入する。
In any of the embodiments, in order to further shorten the length of the transition portion (component transition portion) in the cast slab drawing direction, the molten steel in the mold is added when the alloy component is added. A shield plate for preventing vertical mixing is inserted on the molten steel surface in the mold.

【0009】[0009]

【作用】1つのストランドにおいて、合金成分の供給を
開始したときと終了したときには、上述の移行部(成分
遷移部)が鋳片にできる。
In one strand, the above-mentioned transition portion (component transition portion) can be formed into a slab when the supply of the alloy components is started and when the supply of the alloy components is completed.

【0010】ここで、合金成分を供給しているとき制動
磁界があると、制動磁界のところで、ノズルから注入さ
れ下方(鋳片引抜き方向)に流れようとする溶鋼流に、
上方に戻そうとする電磁力が加わり、すなわち流下を阻
止する力が加わり、これにより制動磁界に達する位置で
溶鋼流が鋳型内面に向かう方向に進行方向が曲り、そし
て鋳型内面に沿って上昇しようとする。すなわち、制動
磁界を境にして、それより上側(浸漬ノズル側)の溶鋼
は下方への流動を抑制されてその結果該上側(以下この
領域を遮断プ−ルと称す)で循環流を形成しようとす
る。遮断プ−ルには合金成分が供給されるが、これが該
循環流により、効率よくプ−ル内溶鋼に分散する。すな
わち、制動磁界により、遮断プ−ルに先行する溶鋼に対
して遮断プ−ルが分離(溶鋼流の遮断もしくは抑制)さ
れ、遮断プ−ルにおいては、供給される合金成分の撹拌
が実現し、これにより、先行の、合金成分を供給しない
溶鋼への、その後供給した合金成分の拡散が少く、しか
も、合金成分の供給を開始してから鋳型内溶鋼の該合金
成分の所望成分比への収束が速く、したがって前述の移
行部(成分遷移部)の、鋳片引抜き方向の長さが大幅に
短くなる。すなわち1つのストランドによる多品種小ロ
ットの析出強化型高強度鋼の鋳造歩留りが大幅に向上す
る。他のストランドにおいては鋳型に進入される溶鋼の
みの連続鋳造が行なわれ、これは従来の通常の同一種鋳
片の大量連続鋳造であり、鋳造歩留りが従来の通常と同
じく非常に高い。
Here, if a braking magnetic field is present while the alloy components are being supplied, the molten steel flow injected from the nozzle at the braking magnetic field and trying to flow downward (in the slab drawing direction),
An electromagnetic force that tries to return upward is applied, that is, a force that blocks the downward flow is applied, so that at the position where the braking magnetic field is reached, the molten steel flow bends in the direction toward the inner surface of the mold and then rises along the inner surface of the mold. And That is, with respect to the braking magnetic field, the molten steel on the upper side (immersion nozzle side) is restrained from flowing downward, and as a result, a circulating flow is formed on the upper side (hereinafter, this region is referred to as a blocking pool). And The alloy component is supplied to the shut-off pool, which is efficiently dispersed in the molten steel in the pool by the circulating flow. That is, the braking magnetic field separates the blocking pool from the molten steel preceding the blocking pool (blocks or suppresses the molten steel flow), and stirring of the supplied alloy components is realized in the blocking pool. , Thereby, the diffusion of the alloy component supplied to the preceding molten steel to which the alloy component is not supplied is small, and moreover, after the alloy component is started to be supplied to the desired component ratio of the alloy component of the molten steel in the mold. Convergence is fast, and therefore, the length of the above-mentioned transition portion (component transition portion) in the slab drawing direction is significantly reduced. That is, the casting yield of precipitation-strengthened high-strength steel in a large variety of small lots with one strand is significantly improved. In the other strand, continuous casting of only the molten steel that enters the mold is performed, which is a conventional large-scale continuous casting of the same type of ingot, and the casting yield is as high as the conventional one.

【0011】以下に、より具体的に説明する。図1は、
本発明を一態様で実施する複数ストランドからなる連続
鋳造機の、多品種小ロットの析出強化型高強度鋼の鋳造
に割り当てられた1つのストランドの連続鋳造鋳型2
の、広幅面に垂直な面で切断した縦断面図、図2は該鋳
型2の広幅面に平行な面で切断した縦断面図である。
A more specific description will be given below. Figure 1
One strand continuous casting mold 2 assigned to casting multiple lots of a small lot of precipitation-strengthened high-strength steel in a multiple-strand continuous casting machine for carrying out the present invention in one aspect
2 is a vertical cross-sectional view taken along a plane perpendicular to the wide-width surface, and FIG. 2 is a vertical cross-sectional view taken along a plane parallel to the wide-width surface of the mold 2.

【0012】鋳型2の下部には電磁ブレ−キ用の電磁石
7が装備されており、溶鋼メニスカスのやや下にあたる
位置に、電磁撹拌装置9が装備されている。電磁ブレ−
キ用の電磁石7は、広幅面の幅方向に均一な密度の、鋳
片引抜き方向10と直交する磁束をもたらす一方向の磁
界を、連続鋳造用鋳型2内の溶鋼4を横切るように、鋳
型内溶鋼4に印加することができる。8はこの際の静磁
界(静磁場)である。なお、電磁ブレーキの電磁石7
は、鋳型2の下方に配設してもよい。ただし、鋳型2内
に注入される溶鋼の流れが実質上及ぶ最下点f点よりも
上方とする。
An electromagnet 7 for electromagnetic braking is installed in the lower part of the mold 2, and an electromagnetic stirring device 9 is installed at a position slightly below the molten steel meniscus. Electromagnetic blur
The electromagnet 7 for g is a mold in such a manner that a magnetic field in one direction that produces a magnetic flux having a uniform density in the width direction of the wide surface and that is orthogonal to the slab drawing direction 10 traverses the molten steel 4 in the continuous casting mold 2. It can be applied to the inner molten steel 4. Reference numeral 8 is a static magnetic field (static magnetic field) at this time. The electromagnet 7 of the electromagnetic brake
May be disposed below the mold 2. However, it is above the lowest point f where the flow of molten steel injected into the mold 2 substantially extends.

【0013】タンディッシュからノズル11を通して鋳
型2内に注入される溶鋼流れは、静磁界8が印加されて
いない場合は、f点まで達する。しかし、静磁界8を形
成した場合は、静磁界8を通過する溶鋼注入流に、これ
を阻止するローレンツ力が静磁界8から働き、注入流の
侵入深さは略c/d(一点鎖線)レベルまでとなる。図
2においては、静磁界8による磁束は、紙面の裏から表
に向かう方向に流れている。
The molten steel flow injected from the tundish into the mold 2 through the nozzle 11 reaches point f when the static magnetic field 8 is not applied. However, when the static magnetic field 8 is formed, the Lorentz force that blocks the molten steel injection flow passing through the static magnetic field 8 acts from the static magnetic field 8, and the penetration depth of the injection flow is approximately c / d (dashed line). Up to the level. In FIG. 2, the magnetic flux generated by the static magnetic field 8 flows from the back side of the paper to the front side.

【0014】本発明の第1実施態様では、溶鋼を連続鋳
造する途中で、すなわちノズル11を通して実質上一定
の成分比の溶鋼を連続的に鋳型2に注入しているとき
に、電磁ブレ−キ用の電磁石7に通電して、すなわち上
述の静磁界8を形成して、該静磁界8よりも上方の溶鋼
中に合金成分を供給する。図2には、合金成分を均一密
度に封入した鋼ワイヤ3を、鋳造速度に比例する速度で
鋳型内溶鋼に送り出すことにより、溶鋼に対する定量供
給を行なう態様を示した。
In the first embodiment of the present invention, the electromagnetic brake is used during the continuous casting of the molten steel, that is, when the molten steel having a substantially constant composition ratio is continuously injected into the mold 2 through the nozzle 11. The electromagnet 7 for use is energized, that is, the above-mentioned static magnetic field 8 is formed, and the alloy component is supplied into the molten steel above the static magnetic field 8. FIG. 2 shows a mode in which the steel wire 3 in which the alloy components are enclosed in a uniform density is fed into the molten steel in the mold at a rate proportional to the casting rate, so that the molten steel is quantitatively supplied.

【0015】したがって所定比で鋳型内溶鋼に合金成分
が供給されるが、静磁界8が、ノズル11からの溶鋼注
入流がc/dのレベル以下に侵入するのを妨げている。
その結果、供給された合金成分を含む溶鋼は、a,b,
c’,d’の範囲内にある遮断プ−ル内で、注入される
溶鋼流によって均一に混合され、一定の速度(引抜き速
度)でこのプールから下方に押し出される。すなわち、
電磁石7の電磁ブレーキによって鋳型2内に、供給され
る合金成分を溶鋼と混合のための小さなプールが形成さ
れ、その範囲内での混合が行なわれるため、濃度が均一
となるための時間が短縮されるとともに、このプールか
らその下方に押し出される流れは、プラグフロー化され
て対流を形成しにくいため、静磁界8の下部では新たな
混合(先行の溶鋼と後行の溶鋼の混合)を引き起こさな
い。従って、最初の成分から次の成分に変化する継目す
なわち移行部(成分遷移部)の長さは最短となる。
Therefore, the alloy components are supplied to the molten steel in the mold at a predetermined ratio, but the static magnetic field 8 prevents the molten steel injection flow from the nozzle 11 from entering below the level of c / d.
As a result, the molten steel containing the supplied alloy components is a, b,
In the shut-off pool in the range of c ′, d ′, the molten steel flow is uniformly mixed and extruded downward from this pool at a constant speed (drawing speed). That is,
By the electromagnetic brake of the electromagnet 7, a small pool for mixing the supplied alloy components with the molten steel is formed in the mold 2, and the mixing is performed within the range, so that the time required for the concentration to be uniform is shortened. At the same time, the flow pushed downward from this pool is plug-flowed, and it is difficult to form convection, so that new mixing (mixing of the preceding molten steel and the following molten steel) is caused in the lower part of the static magnetic field 8. Absent. Therefore, the length of the seam, that is, the transition portion (component transition portion) where the first component changes to the second component becomes the shortest.

【0016】このように、合金成分は電磁ブレーキより
上の一定体積のプール内で十分に混合されるため、合金
の添加を開始してから所定の時間経過し、定常状態にな
った時点で得られる鋳片内の成分濃度は安定しており、
鋳片横断面ならびに鋳片長さ方向で一定である。従っ
て、本発明の実施により合金添加によって生じる成分変
化領域の長さを大幅に低減するとともに鋳片内のどの部
分をとっても合金成分の濃度が一様となり、鋳造製品の
歩留りが大幅に向上する。
As described above, since the alloy components are sufficiently mixed in the pool having a constant volume above the electromagnetic brake, a predetermined time has elapsed after the addition of the alloy was started, and the alloy component was obtained when the steady state was reached. The component concentration in the cast slab is stable,
It is constant in the cross section of the slab and the length direction of the slab. Therefore, by implementing the present invention, the length of the component change region caused by the addition of the alloy is significantly reduced, and the concentration of the alloy component is made uniform at any portion in the cast slab, and the yield of the cast product is greatly improved.

【0017】この際添加する元素は、小ロットである析
出強化型高強度鋼を製造することを目的として、Ti、
そして/またはNb、そして/またはVを添加する。各
々を単独に添加する場合は重量比でTi:0.01%以
上,Nb:0.01%以上,V:0.01%以上、とす
る。それぞれの元素の上記下限値未満の添加では、析出
強化の効果が現れない。また、2種以上を同時に添加す
る場合にはその和が0.01%以上になるように添加す
る。これもその和が0.01%未満では析出強化の効果
が現われない。上限は特に限定しないが、合金添加はコ
ストの上昇を招くため、単独の場合でも総和でも0.2
%以下が好ましい。
The elements added at this time are Ti, Ti, for the purpose of producing a precipitation-strengthened high-strength steel in a small lot.
And / or Nb and / or V are added. When they are added individually, the weight ratio is Ti: 0.01% or more, Nb: 0.01% or more, and V: 0.01% or more. Addition of each element below the above lower limits does not show the effect of precipitation strengthening. When two or more kinds are added at the same time, the total amount is 0.01% or more. Also, if the sum is less than 0.01%, the effect of precipitation strengthening does not appear. The upper limit is not particularly limited, but addition of an alloy causes an increase in cost.
% Or less is preferable.

【0018】本発明の第2実施態様では、少くとも鋳型
2の溶鋼に合金成分を供給している間、電磁撹拌装置9
を駆動する。電磁撹拌装置9は鋳型内溶鋼に推力を与え
るリニアモ−タであるが、他の公知のものを用いてもよ
い。この電磁撹拌装置9は、電磁石7よりも上方に、好
ましくは鋳型内溶鋼のメニスカス近傍に配する。この方
法によると、図2のa,b,c’,d’の範囲内にある
溶鋼には、溶鋼注入流によって発生した強い撹拌力F’
と電磁撹拌力の双方が作用し、溶鋼は一層顕著に混合す
る。従って、合金成分添加時にその溶鋼中の合金成分濃
度が均一化する速度が速く、合金成分濃度を均一化する
効果が高い。合金成分の供給開始時に遮断プ−ル内の溶
鋼を所望成分濃度にするための量の合金成分を高速で供
給し、この供給後は、鋳造速度に比例する速度で合金成
分を供給する供給速度制御を電磁撹拌と併用することに
より、移行部(成分遷移部)の長さが更に短くなり、鋳
造製品の歩留りが更に向上する。
In the second embodiment of the present invention, the electromagnetic stirring device 9 is used at least while the alloy components are being supplied to the molten steel of the mold 2.
Drive. The electromagnetic stirrer 9 is a linear motor that applies thrust to the molten steel in the mold, but other known devices may be used. The electromagnetic stirrer 9 is arranged above the electromagnet 7, preferably near the meniscus of the molten steel in the mold. According to this method, the strong stirring force F ′ generated by the molten steel injection flow is applied to the molten steel within the range of a, b, c ′, d ′ in FIG.
And the electromagnetic stirring force both act, and the molten steel mixes more significantly. Therefore, at the time of adding the alloy component, the rate of uniformizing the alloy component concentration in the molten steel is high, and the effect of uniformizing the alloy component concentration is high. At the start of the supply of the alloy components, the amount of the alloy components to bring the molten steel in the blocking pool to the desired component concentration is supplied at high speed, and after this supply, the alloy components are supplied at a rate proportional to the casting speed. By using the control together with the electromagnetic stirring, the length of the transition part (component transition part) is further shortened, and the yield of the cast product is further improved.

【0019】なお、合金成分を添加する直前に、また合
金成分の添加を止めた直後に、鋳型内の溶鋼の上下方向
の混合を防止するための遮蔽板を鋳型内の溶鋼の湯面に
挿入することができる。これは、比重の異なる2つ以上
の合金を添加するときに、合金成分を添加した溶鋼から
添加しない溶鋼への該合金成分の拡散を防止する効果が
高い。この場合遮蔽板は公知のものを用いてよい。
Immediately before adding the alloy components and immediately after stopping the addition of the alloy components, a shield plate for preventing vertical mixing of the molten steel in the mold is inserted into the molten metal surface of the molten steel in the mold. can do. This has a high effect of preventing the diffusion of the alloy components from the molten steel to which the alloy components have been added to the molten steel to which the alloy components have not been added when adding two or more alloys having different specific gravities. In this case, a known shield plate may be used.

【0020】なお、合金供給は、合成成分パウダ,粒,
合金成分ワイヤ等の連続的送給で行なうことができる
が、合金成分を内部に封入した鋼ワイヤを溶鋼中に供給
する方法が好ましい。この方法によると溶鋼へ供給する
までの合金成分の酸化や汚染がなく、添加する合金成分
を容易に溶鋼に溶かすことができ、さらに鋳片内に均一
に分布させることができる。
The alloy is supplied by the composition powder, particles,
The alloy component wire or the like can be continuously fed, but a method in which a steel wire having an alloy component enclosed therein is supplied into molten steel is preferable. According to this method, the alloy components are not oxidized or contaminated until they are supplied to the molten steel, the alloy components to be added can be easily dissolved in the molten steel, and the alloy components can be evenly distributed in the slab.

【0021】上述の第1実施例態様および第2実施態様
のいずれにおいても、析出強化型高強度鋼の連続鋳造を
終了するときには、すなわち合金成分の供給を終了する
ときは、合金成分の供給を停止し、そのとき遮断プ−ル
にあった溶鋼量が、静磁界8が加わっていないときに鋳
型2内に注入される溶鋼の流れが実質上及ぶ最下点f点
を通過した後に、電磁石7の通電を遮断する。なお、合
金成分の供給中も、合金の添加を開始してから鋳片内の
成分濃度が安定し、安定した領域がf点を通過した後に
電磁石7を通電を遮断してもよい。このように遮断した
後、合金成分の供給を終了するときは、合金成分の供給
を停止し、電磁石7に通電して静磁界8を溶鋼に印加
し、そのとき遮断プ−ルにあった溶鋼量が、静磁界8が
加わっていないときに鋳型2内に注入される溶鋼の流れ
が実質上及ぶ最下点f点を通過した後に、電磁石7の通
電を遮断する。なお、静磁界8の印加が操業上格別な支
障又は負担にならない場合には、電磁場8を定常的に印
加しておいてもよい。
In both the first embodiment and the second embodiment described above, when the continuous casting of the precipitation-strengthened high-strength steel is completed, that is, when the supply of the alloy components is completed, the alloy components are supplied. After the stop, the amount of molten steel in the shut-off pool at that time passes through the lowest point f, where the flow of molten steel injected into the mold 2 substantially when the static magnetic field 8 is not applied, is followed by the electromagnet. Turn off the power supply of 7. Even during the supply of the alloy components, the component concentration in the slab is stabilized after the alloy addition is started, and the electromagnet 7 may be de-energized after the stable region passes the point f. When the supply of the alloy components is terminated after the interruption in this way, the supply of the alloy components is stopped, the electromagnet 7 is energized to apply the static magnetic field 8 to the molten steel, and the molten steel present at the interruption pool at that time is applied. After the quantity has passed the lowest point f, where the flow of the molten steel injected into the mold 2 substantially extends when the static magnetic field 8 is not applied, the energization of the electromagnet 7 is cut off. In addition, when the application of the static magnetic field 8 does not hinder or burden the operation in particular, the electromagnetic field 8 may be constantly applied.

【0022】[0022]

【実施例】【Example】

〔実施例1〕第1表に示す組成(成分比:重量%)の鋼
Aの溶鋼を通常の精錬により300トン得、2つのスト
ランドを有する連続鋳造機において、一方のストランド
の鋳型(以下小ロット鋳造鋳型と称す)で鋼Aを先に1
00トン鋳込み、そして途中から小ロット鋳造鋳型内の
溶鋼にそのメニスカスからワイヤによりNbを添加する
ことにより、Nbが0.05%になるように鋼を50ト
ン鋳込み、もう一方のストランドについては通常の方法
で150トンの鋼Aを鋳込んだ。鋳型幅方向に鋳片の形
状は厚み230mm、幅1250mmであった。電磁ブ
レ−キ用の電磁石7は、鋳型内メニスカスから500m
m〜700mmの位置に設置し、Nb添加の50トン鋳
込み中は、電磁石7による制動磁界を印加した場合と印
加しなかった場合の2条件とした。
[Example 1] 300 tons of molten steel of Steel A having the composition (component ratio: wt%) shown in Table 1 was obtained by ordinary refining, and in a continuous casting machine having two strands, a mold for one strand (hereinafter referred to as small Steel A first with a lot casting mold)
50 tons of steel is cast so that Nb becomes 0.05% by adding 00 tons of molten steel in the small lot casting mold from the meniscus to the molten steel in the middle, and then the other strand is usually Steel A of 150 tons was cast by the above method. The shape of the slab in the width direction of the mold was 230 mm in thickness and 1250 mm in width. The electromagnet 7 for the electromagnetic brake is 500 m from the meniscus in the mold.
It was installed at a position of m to 700 mm, and during 50 ton casting with Nb added, there were two conditions, that is, when the braking magnetic field by the electromagnet 7 was applied and when it was not applied.

【0023】[0023]

【表1】 [Table 1]

【0024】制動磁界を印加した場合と印加しなかった
場合の、鋼中のNb量がワイヤ送給開始から、0.05
%になるまでの鋳片の長さと、Nb量が0.05%にな
った後のNbの濃度のばらつきは、第2表の通りであっ
た。
The amount of Nb in the steel when the braking magnetic field was applied and when it was not applied was 0.05 after the wire feeding was started.
Table 2 shows the variation in the length of the cast slab until the content of Nb and the concentration of Nb after the Nb content became 0.05%.

【0025】[0025]

【表2】 [Table 2]

【0026】第2表からわかるように、制動磁界を印加
した場合は鋳片のNb量が所定の値になるまでの鋳片の
長さは大きく短縮し、かつその後のNb濃度のばらつき
も小さい。
As can be seen from Table 2, when a braking magnetic field is applied, the length of the slab until the Nb amount of the slab reaches a predetermined value is greatly shortened, and the variation in Nb concentration thereafter is also small. .

【0027】〔実施例2〕第1表に示す組成の鋼Aと実
質上同じ成分である溶鋼を通常の精錬方法で得、小ロッ
ト鋳造鋳型内のメニスカスから溶鋼中にワイヤにより合
金を添加するに際にて、ワイヤ内の合金の種類とワイヤ
の送り速度を変更することにより第3表に示す組成の鋼
B〜鋼Hをこの順序で鋳片として得た。その際、制動磁
界は鋳型内溶鋼へのワイヤ送給開始後連続して印加し
た。また、各鋼種のワイヤ内の合金の種類とワイヤ送り
速度を変更したときに遮蔽板を挿入することにより各鋼
の継目を明瞭にした。
Example 2 Molten steel having substantially the same composition as steel A having the composition shown in Table 1 was obtained by a conventional refining method, and an alloy was added to the molten steel from a meniscus in a small lot casting mold by a wire. At that time, steels B to H having the compositions shown in Table 3 were obtained as cast pieces in this order by changing the type of alloy in the wire and the feed rate of the wire. At that time, the braking magnetic field was continuously applied after the wire feeding to the molten steel in the mold was started. In addition, the seam of each steel was clarified by inserting a shielding plate when the type of alloy in the wire of each steel type and the wire feed speed were changed.

【0028】[0028]

【表3】 [Table 3]

【0029】これらの鋳片について、スラブ抽出温度:
1250℃、仕上圧延終了温度:920℃、巻取温度:
600℃の条件で熱延を行い、板厚3mmの熱延鋼板を
得た。 この熱延板について析出強化高強度鋼板の特徴
が最も発揮される再加熱試験を行い、圧延のままと再加
熱試験後の強度の差を求めた。再加熱試験では、熱延板
を800℃のソルトバスに10分浸漬し、その後空冷し
た。また、強度特性は、引張試験で評価した。引張試験
は、JISZ2201記載の5号試験片を用い、同Z2
241記載の方法に従って行い、引張強度TSを測定し
た。試験片長手方向は、製品の圧延方向とした。また、
経済性の評価として、本法による鋼Bから鋼Hの鋳片の
重量を必要量とし、それぞれの鋼を通常の方法で300
トン連続鋳造した場合の差を不必要量として評価した。
第4表に、圧延のままと再加熱試験後のTSの差(ΔT
S)と不必要量、さらに300トンに対する比(不必要
率)を示した。
For these slabs, the slab extraction temperature:
1250 ° C, finish rolling finish temperature: 920 ° C, winding temperature:
Hot rolling was performed under the condition of 600 ° C. to obtain a hot rolled steel sheet having a plate thickness of 3 mm. This hot rolled sheet was subjected to a reheating test that maximizes the characteristics of the precipitation strengthened high strength steel sheet, and the difference in strength between the as-rolled sheet and after the reheating test was determined. In the reheating test, the hot-rolled sheet was immersed in a salt bath at 800 ° C. for 10 minutes and then air-cooled. The strength characteristics were evaluated by a tensile test. For the tensile test, a No. 5 test piece described in JIS Z2201 was used and the same Z2
According to the method described in 241, the tensile strength TS was measured. The longitudinal direction of the test piece was the rolling direction of the product. Also,
In order to evaluate the economic efficiency, the weight of the slabs of Steel B to Steel H according to this method was used as the required amount, and each steel was measured by the usual method to obtain 300
The difference in the case of continuous ton casting was evaluated as an unnecessary amount.
Table 4 shows the difference between the as-rolled and TS after the reheating test (ΔT
S), unnecessary amount, and ratio to 300 tons (unnecessary rate) are shown.

【0030】[0030]

【表4】 [Table 4]

【0031】ΔTSは少ないほど再加熱前後の強度が変
化せず、析出強化鋼としての特徴が現われる。その結果
を示したのが鋼C,E,F,Gである。いずれも合金成
分すなわち析出強化元素が、上述の第1実施態様および
第2実施態様の範囲内にあるものである。一方、元鋼材
である鋼Aは評価の対象ではないものの、析出強化元素
が含まれない特性を示し、上述の第1実施態様および第
2実施態様の範囲外の含有量であった鋼B,D,Hは、
析出強化鋼としての特性を示さなかった。また、経済性
を評価する指針として示した通常の方法で製造する各鋼
の不必要率は85%以上であり、本発明による析出強化
型高強度鋼の鋳造は歩留りがよく経済的であることを示
している。
As ΔTS is smaller, the strength before and after reheating does not change, and the characteristic of precipitation strengthened steel appears. The results are shown for steels C, E, F and G. In each case, the alloy component, that is, the precipitation strengthening element is within the range of the above-described first embodiment and second embodiment. On the other hand, although steel A, which is the original steel material, is not a target of evaluation, it shows characteristics that precipitation strengthening elements are not included, and the content of steel B is outside the range of the above-mentioned first embodiment and second embodiment, D and H are
It did not show the properties as a precipitation strengthened steel. Further, the unnecessary rate of each steel produced by the ordinary method shown as a guideline for evaluating the economical efficiency is 85% or more, and the precipitation-strengthened high-strength steel casting according to the present invention has good yield and is economical. Is shown.

【0032】[0032]

【発明の効果】本発明によれば、連続鋳造の途中で溶鋼
中に合金成分を加えて、該溶鋼の一部から、多品種小ロ
ットの析出強化型高強度鋼の鋳片を、合金成分の含有量
が均一でかつその移行部分を少なくなるように製造する
ことができる。すなわち、複数ストランドの連続鋳造機
の鋳造能力および効率を格別に低下することなく、必要
量は少ないものの重要な特性を発揮する析出強化型高強
度鋼を極めて経済的に、しかも比較的に自由度が高い鋳
造スケジュ−ルで製造することができる。
EFFECTS OF THE INVENTION According to the present invention, alloy components are added to molten steel in the course of continuous casting, and from a part of the molten steel, a slab of precipitation-strengthened high-strength steel of a large variety of small lots is formed. Can be manufactured so as to have a uniform content and to reduce the transition portion thereof. That is, a precipitation-strengthened high-strength steel that exhibits important properties, although the required amount is small, is extremely economical and has a relatively high degree of freedom, without significantly lowering the casting capacity and efficiency of a multi-strand continuous casting machine. It can be manufactured with a high casting schedule.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を一態様で実施する複数ストランドの
連続鋳造機の、多品種小ロットの析出強化型高強度鋼を
鋳造する鋳型の長片の縦断面図である。
FIG. 1 is a vertical cross-sectional view of a long piece of a mold for casting multiple types of small lots of precipitation-strengthened high-strength steel in a multi-strand continuous casting machine that embodies the present invention in one embodiment.

【図2】 図1に示す鋳型の短片の縦断面図である。FIG. 2 is a vertical cross-sectional view of a short piece of the mold shown in FIG.

【符号の説明】[Explanation of symbols]

2:鋳型 3:ワイヤ 4:鋳型内の溶鋼 5:凝固シェル 6:鋳片内の溶鋼 7:電磁ブレーキ
用の電磁石 8:静磁界 9:電磁撹拌装置 10:鋳片の引き抜き方向 11:浸漬ノズル
2: Mold 3: Wire 4: Molten steel in mold 5: Solidified shell 6: Molten steel in cast piece 7: Electromagnet for electromagnetic brake 8: Static magnetic field 9: Electromagnetic stirrer 10: Extraction direction of cast piece 11: Immersion nozzle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22D 11/00 B22D 11/00 P 11/08 11/08 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B22D 11/00 B22D 11/00 P 11/08 11/08 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数のストランドからなる連続鋳造機の1
つのストランドにおいては、連続鋳造鋳型に浸漬ノズル
を介して鋳型外部から溶鋼を供給し、浸漬ノズルの下方
の溶鋼に鋳片引抜き方向と交叉する方向の制動磁界を印
加し該磁界の上流側の溶鋼中に合金成分Ti,Nbおよ
びVの少くとも一種を、一種単独に添加する場合には重
量比でTi:0.01%以上,Nb:0.01%以上,
V:0.01%以上、を、2種以上を添加する場合には
その和0.01%以上を添加し、他のストランドにおい
ては前記鋳型外部からの溶鋼のみ連続鋳造する、析出強
化型高強度鋼の連続鋳造方法。
1. A continuous casting machine comprising a plurality of strands.
In one strand, molten steel is supplied to the continuous casting mold from the outside of the mold through a dipping nozzle, and a damping magnetic field in a direction intersecting with the slab drawing direction is applied to the molten steel below the dipping nozzle, and the molten steel upstream of the magnetic field is applied. When at least one of the alloy components Ti, Nb and V is added alone, the weight ratio of Ti: 0.01% or more and Nb: 0.01% or more,
V: 0.01% or more, when adding two or more kinds, the sum of 0.01% or more is added, and in other strands, only molten steel from the outside of the mold is continuously cast. Continuous casting method for high strength steel.
【請求項2】複数のストランドからなる連続鋳造機の1
つのストランドにおいては、連続鋳造鋳型に浸漬ノズル
を介して鋳型外部から溶鋼を供給し、浸漬ノズルの下方
の溶鋼に鋳片引抜き方向と交叉する方向の制動磁界を印
加しかつ鋳型内の該磁界より上流の溶鋼を電磁撹拌しつ
つ該磁界の上流側の溶鋼中に合金成分Ti,Nbおよび
Vの少くとも一種を、一種単独に添加する場合には重量
比でTi:0.01%以上,Nb:0.01%以上,
V:0.01%以上、を、2種以上を添加する場合には
その和0.01%以上を添加し、他のストランドにおい
ては前記鋳型外部からの溶鋼のみ連続鋳造する、析出強
化型高強度鋼の連続鋳造方法。
2. A continuous casting machine comprising a plurality of strands.
In one strand, molten steel is supplied to the continuous casting mold from the outside of the mold through a dipping nozzle, and a braking magnetic field in a direction intersecting the slab drawing direction is applied to the molten steel below the dipping nozzle and When at least one of the alloy components Ti, Nb and V is added to the molten steel upstream of the magnetic field while electromagnetically stirring the molten steel upstream, Ti: 0.01% or more by weight ratio, Nb, : 0.01% or more,
V: 0.01% or more, when adding two or more kinds, the sum of 0.01% or more is added, and in other strands, only molten steel from the outside of the mold is continuously cast. Continuous casting method for high strength steel.
【請求項3】 合金成分を添加するに当り、鋳型内の溶
鋼の上下方向の混合を防止するための遮蔽盤を、鋳型内
の溶鋼の湯面に挿入することを特徴とする、請求項1ま
たは請求項2に記載の、析出強化型高強度鋼の連続鋳造
方法。
3. When adding an alloy component, a shield plate for preventing vertical mixing of molten steel in the mold is inserted into the molten metal surface of the molten steel in the mold. Alternatively, the continuous casting method for precipitation-strengthened high-strength steel according to claim 2.
JP7065595A 1995-03-24 1995-03-24 Method for continuous casting precipitation enhance type high strength steel Withdrawn JPH08257702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7065595A JPH08257702A (en) 1995-03-24 1995-03-24 Method for continuous casting precipitation enhance type high strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7065595A JPH08257702A (en) 1995-03-24 1995-03-24 Method for continuous casting precipitation enhance type high strength steel

Publications (1)

Publication Number Publication Date
JPH08257702A true JPH08257702A (en) 1996-10-08

Family

ID=13291539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7065595A Withdrawn JPH08257702A (en) 1995-03-24 1995-03-24 Method for continuous casting precipitation enhance type high strength steel

Country Status (1)

Country Link
JP (1) JPH08257702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078815A (en) * 2018-11-13 2020-05-28 日本製鉄株式会社 Continuous casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078815A (en) * 2018-11-13 2020-05-28 日本製鉄株式会社 Continuous casting method

Similar Documents

Publication Publication Date Title
CN104894471A (en) High-manganese high-aluminum vanadium-containing non-magnetic steel plate and manufacturing method thereof
US5657816A (en) Method for regulating flow of molten steel within mold by utilizing direct current magnetic field
JPH08257702A (en) Method for continuous casting precipitation enhance type high strength steel
JPH08257701A (en) Continuous casting method
JPS62254954A (en) Control method for molten steel flow in mold of continuous casting
JPH08257705A (en) Method for continuous casting high strength steel containing copper
US5265666A (en) Method for continuously casting copper alloys
JP2003117636A (en) Method for controlling fluidity of molten steel in mold and device for forming electromagnetic field for this purpose
JP2004074233A (en) Method for reducing center segregation in continuously cast slab
JP2001232450A (en) Method for manufacturing continuous cast slab
JPH08257704A (en) Method for continuously casting high strength steel containing copper
US5553660A (en) Method for continuously casting copper alloys
JPH08257703A (en) Method for continuous casting of high strength steel
EP3238856B1 (en) A method of controlling the solidification process of continuously cast metals and alloys and a device for implementing the method
JP2898199B2 (en) Manufacturing method of continuous cast slab
JP2010099704A (en) Continuous casting method for steel cast slab
JPH05237621A (en) Continuous casting method
JP2960288B2 (en) Manufacturing method of multilayer steel sheet by continuous casting
JP3426383B2 (en) Steel continuous casting method
JP2969579B2 (en) Steel continuous casting method
JPH06114500A (en) Production of low-carbon sulfur free-cutting steel
JPH0839196A (en) Production of continuously cast slab
JPH1177259A (en) Method for continuously casting steel
JP2691675B2 (en) Continuous casting method for scrap-based steel
JPH0760408A (en) Production of steel plate for thin sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604