JPH08257704A - Method for continuously casting high strength steel containing copper - Google Patents

Method for continuously casting high strength steel containing copper

Info

Publication number
JPH08257704A
JPH08257704A JP6740395A JP6740395A JPH08257704A JP H08257704 A JPH08257704 A JP H08257704A JP 6740395 A JP6740395 A JP 6740395A JP 6740395 A JP6740395 A JP 6740395A JP H08257704 A JPH08257704 A JP H08257704A
Authority
JP
Japan
Prior art keywords
molten steel
magnetic field
steel
mold
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6740395A
Other languages
Japanese (ja)
Inventor
Atsushi Itami
丹 淳 伊
Kosaku Shioda
田 浩 作 潮
Kenichi Miyazawa
沢 憲 一 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6740395A priority Critical patent/JPH08257704A/en
Publication of JPH08257704A publication Critical patent/JPH08257704A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To enable the continuous casting of a high strength steel in a small lot in the case of need, by adding a specific content of Cu into molten steel at the upstream side of brake magnetic field and simultaneously adding powder containing Ni to contain the specific value or more of Ni at a prescribed point just below the surface layer of a cast slab. CONSTITUTION: A copper wire 3 fed into the molten steel 4 in the condition of impressing the static magnetic field 8 with electomagnet 7 is mixed in a pool of the molten steel 4 at the upper side of the static magnetic field 8 and the alloy component is uniformized, and the length of a transition part which changes from the initial component to the following component, is drastically shortened. The powder 12 supplied into a meniscus of the molten steel 4, is invaded into the interface between a solidified shell 6 and the surface in a mold 2, and the Ni in the powder 12 is contained into the solidified shell 6. The Ni prevents the surface flaw developed in a hot-rolling, and at the time of adding >=1% Cu into the molten steel 4, Ni is made to be contained of >=0.01% at the point of 10mm just below the surface layer of the cast slab and the copper-containing high strength steel can continuously be cast in a good yield even in the small lot by executing the casting containing no Cu in the other strands.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数のストランドから
なる連続鋳造機により同時並行で複数の同一成分の鋳片
を連続鋳造しつつ一時期には1つのストランドで異成分
の銅を含む高強度鋼を鋳造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to continuously cast a plurality of slabs of the same component in parallel by a continuous casting machine comprising a plurality of strands, and at the same time, to provide high strength containing a different component of copper in one strand. A method of casting steel.

【0002】[0002]

【従来技術】鉄鋼材料の用途は時を重ねるに従って増加
し、その結果として鉄鋼材料の種類は多くなっている。
従って、需要家の多くの要求を満たすためには、材質の
異なる鉄鋼材料を少量ずつ製造するようになってきてい
る。いわゆる多品種小ロット材の製造である。多品種小
ロット材の製造下では、その後の圧延等の製造工程にお
いて要求される特性を造り分けることができない場合
は、たとえわずかの合金成分の差であっても別の鋼種と
して製造する必要がある。
BACKGROUND OF THE INVENTION The use of steel materials has increased over time, and as a result, the types of steel materials have increased.
Therefore, in order to meet many demands of customers, steel materials of different materials are manufactured little by little. This is the production of so-called high-mix low-lot materials. In the production of a wide variety of small lot materials, if the characteristics required in the subsequent manufacturing process such as rolling cannot be created separately, it is necessary to manufacture as a different steel type even if there is a slight difference in alloy composition. is there.

【0003】その場合、工業的な製造では大容量の、例
えば300トンの転炉で精錬しなければならないため、
本来必要とする量が高々10トン程度であっても300
トン出鋼しなければならない。これは大きな無駄であ
り、残された290トンを必要が生じるまでスラブとし
て備畜する場合には在庫が増加し置き場や金利負担を必
要とする問題が生じる。また、スクラップとして再溶解
する場合にはスクラップにするための余分なコストがか
かる問題が生じる。これらの問題は、最終的に鋼材の価
格を上げることになる。
In this case, industrial production requires refining in a large capacity, for example, 300 ton converter,
Even if the amount originally required is at most about 10 tons, 300
Tons must be tapped. This is a great waste, and when stocking the remaining 290 tons as a slab until it becomes necessary, the inventory will increase, and there will be a problem that storage space and interest rates will be required. Further, in the case of remelting as scrap, there arises a problem that extra cost is required for scraping. These problems will eventually raise the price of steel products.

【0004】従って、多品種小ロット材の製造は、鉄鋼
業界において積年の課題であった。多品種小ロット材の
鋳造技術の提案としては、例えば伊藤 孝:第72・7
3回西山記念技術講座、p143−172、日本鉄鋼協
会、に提示されたワイヤ添加法がある。ここでの目的
は、Alキルド鋼のSol.Al含有量の制御にある
が、これを拡大解釈するとその他の材質を変化させる合
金成分を溶鋼中に添加することにより多品種小ロット材
の製造に供することができる。
Therefore, the production of a wide variety of small lot materials has been a longstanding problem in the steel industry. As a proposal of a casting technique for a wide variety of small lot materials, for example, Takashi Ito: No. 72.7
There is a wire addition method presented in the 3rd Nishiyama Memorial Technology Course, p143-172, Japan Iron and Steel Institute. The purpose here is Sol. The Al content is controlled, but if this is expandedly interpreted, it is possible to use it for the production of a large variety of small lot materials by adding alloy components that change other materials into the molten steel.

【0005】しかし、この方法では、合金成分を加え始
めた直後から、鋳片中の添加成分が所望値になるまでに
時間がかかり、この間の鋳片(移行部:成分遷移部)は
添加成分の濃度(成分比)が不確定で不均一となる。す
なわち、移行部は長くかつその成分が不均一であるため
使い物にならないことを意味し、歩留りが悪い。
However, in this method, it takes time from immediately after the addition of the alloy component until the additive component in the cast reaches a desired value, and the cast in that period (transition part: component transition part) is the additive component. The concentration (component ratio) of is indeterminate and non-uniform. That is, it means that the transition portion is long and its components are not uniform, so that it cannot be used, and the yield is poor.

【0006】一方、銅を含む鋼板は、種々の特異な特性
を示すことが知られている。例えば、極低炭素鋼にTi
やNbを添加することにより実質的に固溶炭素や固溶窒
素を排除したIF鋼に、銅を1.5%程度添加して、冷
延焼鈍後析出処理を行うと、銅が炭窒化物を形成せずに
単独で析出強化し、引張強度が固溶体強化では工業的に
は達成不可能な590N/mm2級にまでおよび、かつ
成形性に極めて優れた鋼板となる。この鋼板は需要が堅
調ではあるが、使われる部品が極めて少ないことから少
量しか用いられていない。従って小ロット材の代表格で
あり、鉄鋼メ−カから見れば、大容量の転炉で出鋼され
た後スラブとして長い間保管する必要があること、さら
には含銅鋼をスクラップとするためには多くの問題があ
ること等から、その製造可否が問われるほど鉄鋼メ−カ
においては製造が嫌われる鋼種であった。
On the other hand, it is known that a steel sheet containing copper shows various peculiar characteristics. For example, ultra low carbon steel with Ti
When approximately 1.5% of copper is added to IF steel from which solid solution carbon and solid solution nitrogen are substantially eliminated by adding Nb and Nb and precipitation treatment is performed after cold rolling annealing, copper is carbonitride. The steel sheet has precipitation strength of 590 N / mm 2 class which is industrially unattainable by solid solution strengthening without forming a steel sheet and has excellent formability. Demand for this steel sheet is strong, but it is used only in a small amount because the number of parts used is extremely small. Therefore, it is a representative of small lot materials, and from a steel manufacturer's perspective, it needs to be stored as a slab for a long time after being tapped in a large-capacity converter, and because copper-containing steel is scrapped. Since there are many problems in steelmaking, it was a steel grade that manufacturing is disliked in iron and steel manufacturers to the extent that the possibility of manufacturing is questioned.

【0007】[0007]

【発明が解決しようとする課題】本発明は、小ロット材
の代表格である含銅高強度鋼の鋳造自由度を高くするこ
とを第1の目的とし、鋳造の歩留りをよくすることを第
2の目的とし、含銅高強度鋼の鋳造および管理に要する
コストを低減することを第3の目的とする。
SUMMARY OF THE INVENTION The first object of the present invention is to increase the degree of freedom of casting of copper-containing high-strength steel, which is a typical example of small lot materials, and to improve the yield of casting. The third purpose is to reduce the cost required for casting and managing the copper-containing high-strength steel.

【0008】[0008]

【課題を解決するための手段】本発明は、複数のストラ
ンドからなる連続鋳造機の各ストランドに同一種の溶鋼
を注入しながら、1つのストランドにおいては、鋳型の
下部あるいは鋳型よりも下方の鋳片に、鋳片引抜き方向
と交叉する方向の制動磁界を印加し、該制動磁界よりも
上方の溶鋼中にCuを重量比で0.1%以上添加し、そ
の際同時にパウダ−にNiを含有させ鋳片表層直下10
mm点においてNiを重量比で0.01%以上とし、他
のストランドにおいては前記溶鋼を通常の方法で鋳造す
ることを特徴とする。
According to the present invention, while pouring molten steel of the same kind into each strand of a continuous casting machine composed of a plurality of strands, one strand is cast at the bottom of the mold or below the mold. A braking magnetic field in a direction intersecting with the slab withdrawing direction is applied to the piece, Cu is added to the molten steel above the braking magnetic field in a weight ratio of 0.1% or more, and at the same time, the powder contains Ni. Directly below the surface layer of cast slab 10
At the point mm, Ni is 0.01% or more by weight, and in the other strands, the molten steel is cast by a usual method.

【0009】[0009]

【作用】1つのストランドにおいて、合金成分Cuの供
給を開始したときと終了したときには、上述の移行部
(成分遷移部)が鋳片にできる。
In one strand, when the supply of the alloy component Cu is started and ended, the above-mentioned transition portion (component transition portion) can be formed into a slab.

【0010】ここで、合金成分Cuを供給しているとき
制動磁界があると、制動磁界のところで、ノズルから注
入され下方(鋳片引抜き方向)に流れようとする溶鋼流
に、上方に戻そうとする電磁力が加わり、すなわち流下
を阻止する力が加わり、これにより制動磁界に達する位
置で溶鋼流が鋳型内面に向かう方向に進行方向が曲り、
そして鋳型内面に沿って上昇しようとする。すなわち、
制動磁界を境にして、それより上側(浸漬ノズル側)の
溶鋼は下方への流動を抑制されてその結果該上側(以下
この領域を遮断プ−ルと称す)で循環流を形成しようと
する。遮断プ−ルには合金成分が供給されるが、これが
該循環流により、効率よくプ−ル内溶鋼に分散する。す
なわち、制動磁界により、遮断プ−ルに先行する溶鋼に
対して遮断プ−ルが分離(溶鋼流の遮断もしくは抑制)
され、遮断プ−ルにおいては、供給される合金成分の撹
拌が実現し、これにより、先行の、合金成分を供給しな
い溶鋼への、その後供給した合金成分の拡散が少く、し
かも、合金成分の供給を開始してから鋳型内溶鋼の該合
金成分の所望成分比への収束が速く、したがって前述の
移行部(成分遷移部)の、鋳片引抜き方向の長さが大幅
に短くなる。すなわち1つのストランドによる多品種小
ロットの析出強化型高強度鋼の鋳造歩留りが大幅に向上
する。他のストランドにおいては鋳型に進入される溶鋼
のみの連続鋳造が行なわれ、これは従来の通常の同一種
鋳片の大量連続鋳造であり、鋳造歩留りが従来の通常と
同じく非常に高い。
Here, if there is a braking magnetic field while supplying the alloying component Cu, the molten steel flow injected from the nozzle at the braking magnetic field and trying to flow downward (in the slab drawing direction) will be returned upward. Electromagnetic force is applied, that is, a force that blocks the flow is applied, which causes the molten steel flow to bend toward the inner surface of the mold at the position where the braking magnetic field is reached,
Then, it tries to rise along the inner surface of the mold. That is,
At the boundary of the braking magnetic field, the molten steel on the upper side (immersion nozzle side) is suppressed from flowing downward, and as a result, tries to form a circulation flow on the upper side (hereinafter, this area is referred to as a blocking pool). . The alloy component is supplied to the shut-off pool, which is efficiently dispersed in the molten steel in the pool by the circulating flow. That is, the braking magnetic field separates the blocking pool from the molten steel preceding the blocking pool (blocks or suppresses the molten steel flow).
In the shut-off pool, the stirring of the supplied alloy components is realized, and as a result, the diffusion of the alloy components subsequently supplied to the preceding molten steel that does not supply the alloy components is small, and the alloy components After starting the supply, the molten steel in the mold quickly converges to the desired composition ratio of the alloy component, and therefore the length of the transition portion (component transition portion) in the slab drawing direction is significantly reduced. That is, the casting yield of precipitation-strengthened high-strength steel in a large variety of small lots with one strand is significantly improved. In the other strand, continuous casting of only the molten steel that enters the mold is performed, which is a conventional large-scale continuous casting of the same type of ingot, and the casting yield is as high as the conventional one.

【0011】一方、上述のように合金成分Cuの添加を
行なっている鋳型において、パウダーは鋳型内溶鋼のメ
ニスカス上から鋳型内面に沿って凝固シェルと鋳型内面
との間の界面に入り、そこからパウダ−中のNiが凝固
シェルの形成とともにその中に含有されるように浸入す
る。従って、パウダーから添加されるNiは鋳片の表層
のみに存在する。このように表層にNiが必要なのは、
鋳片を熱延した後に発生する表面疵、いわゆるCuによ
るへげの生成を防止するためである。そのために必要な
量は、パウダーによる方法を用いる本発明の場合、表層
直下10mm点において0.01%以上とする。上限は
特に規定はしないが、Cu量によりその上限を定めれば
よく、経済性の観点からはCuの重量比と同程度でよ
い。
On the other hand, in the mold in which the alloy component Cu is added as described above, the powder enters the interface between the solidified shell and the mold inner surface from above the meniscus of the molten steel in the mold along the mold inner surface, and from there. The Ni in the powder penetrates so as to be contained therein as the solidified shell forms. Therefore, Ni added from the powder exists only in the surface layer of the cast slab. The reason why Ni is required for the surface layer is
This is to prevent the generation of surface defects, which are so-called Cu, generated by hot rolling of the slab. In the case of the present invention using a method using powder, the amount necessary for that purpose is 0.01% or more at a point 10 mm immediately below the surface layer. The upper limit is not particularly specified, but the upper limit may be determined depending on the amount of Cu, and from the viewpoint of economy, it may be approximately the same as the weight ratio of Cu.

【0012】次に、より具体的に説明する。図1は、本
発明を一態様で実施する1つのストランドの鋳型2の、
広幅面に垂直な面で切断した縦断面図である。鋳型2の
下部には電磁ブレ−キ用の電磁石7が装備されている。
電磁ブレ−キ用の電磁石7は、広幅面の幅方向に均一な
密度の、鋳片引抜き方向10と直交する磁束をもたらす
一方向の磁界を、連続鋳造用鋳型2内の溶鋼4を横切る
ように、鋳型内溶鋼4に印加することができる。8はこ
の際の静磁界(静磁場)である。なお、電磁ブレーキの
電磁石7は、鋳型2の下方に配設してもよい。ただし、
鋳型2内に注入される溶鋼の流れが実質上及ぶ最下点f
点よりも上方とする。
Next, a more specific description will be given. FIG. 1 shows a one-strand mold 2 embodying the invention in one aspect,
It is a longitudinal cross-sectional view cut by a plane perpendicular to the wide surface. An electromagnet 7 for an electromagnetic brake is installed at the bottom of the mold 2.
The electromagnet 7 for the electromagnetic brake is configured to cross a molten steel 4 in the continuous casting mold 2 with a magnetic field in one direction which produces a magnetic flux having a uniform density in the width direction of the wide surface and orthogonal to the slab drawing direction 10. Then, it can be applied to the molten steel 4 in the mold. Reference numeral 8 is a static magnetic field (static magnetic field) at this time. The electromagnet 7 of the electromagnetic brake may be arranged below the mold 2. However,
The lowest point f at which the flow of molten steel injected into the mold 2 substantially extends
Above the point.

【0013】タンディッシュからノズル11を通して鋳
型2内に注入される溶鋼流れは、静磁界8が印加されて
いない場合は、f点まで達する。しかし、静磁界8を形
成した場合は、静磁界8を通過する溶鋼注入流に、これ
を阻止するローレンツ力が静磁界8から働き、注入流の
侵入深さは略c/d(一点鎖線)レベルまでとなる。静
磁界8を印加した状態で、銅ワイヤ3を溶鋼に送給す
る。溶鋼に入った銅ワイヤ3は、静磁界8の上側の溶鋼
プール中で、注入される溶鋼流によって均一に混合され
る。溶鋼プ−ルの表層に凝固シェルを生じた溶鋼(鋳
片)は一定の速度でこのプールから下方に押し出され
る。すなわち、流下しようとする溶鋼流は、静磁界8の
電磁ブレーキによって流下を止められるので方向を転じ
て鋳型内面に向かい、鋳型内に混合のための小さなプー
ルが形成され、その範囲内での混合が行われるため、濃
度が均一となるための時間が短縮されるとともに、この
プールからその下方に押し出される鋳片の流れは、プラ
グフロー化されて対流を形成しにくいため、静磁界8の
下方では新たな混合を引き起こさない。従って、最初の
成分から次の成分に変化する継目の部分(移行部)の長
さは最短となる。
The molten steel flow injected from the tundish into the mold 2 through the nozzle 11 reaches point f when the static magnetic field 8 is not applied. However, when the static magnetic field 8 is formed, the Lorentz force that blocks the molten steel injection flow passing through the static magnetic field 8 acts from the static magnetic field 8, and the penetration depth of the injection flow is approximately c / d (dashed line). Up to the level. With the static magnetic field 8 applied, the copper wire 3 is fed to the molten steel. The copper wire 3 that has entered the molten steel is uniformly mixed in the molten steel pool above the static magnetic field 8 by the injected molten steel flow. Molten steel (a slab) having a solidified shell on the surface of the molten steel pool is extruded downward from this pool at a constant speed. That is, the molten steel flow that is about to flow down is stopped by the electromagnetic brake of the static magnetic field 8 and therefore turns its direction to the inner surface of the mold, forming a small pool for mixing in the mold, and mixing within that range. As a result, the time for the concentration to become uniform is shortened, and the flow of the slab extruded downward from this pool is less likely to form convection due to plug flow. Does not cause new mixing. Therefore, the length of the seam portion (transition portion) where the first component changes to the second component becomes the shortest.

【0014】一方、溶鋼のメニスカスに供給したパウダ
ー12は、溶鋼のメニスカスと鋳型内面との接点部aと
bから方向に移動し、すなわち凝固シェルと鋳型2内表
面との界面に入り、そこからパウダ−中のNiが凝固シ
ェルの形成とともにその中に含有されるように浸入す
る。従って、パウダーから添加されるNiは、鋳片の表
層のみに存在する。このように表層にNiが必要なの
は、鋳片を熱延した後に発生する表面疵、いわゆるCu
によるへげの生成を防止するためである。そのために必
要な量は、パウダーによる方法を用いる本発明の場合、
表層直下10mm点において0.01%以上とする。上
限は特に規定はしないが、Cu量によりその上限を定め
ればよく、経済性の観点からはCuの重量比と同程度と
すればよい。以上、合金成分Cuは、静磁界8の電磁ブ
レーキ作用により、静磁界8より上の一定体積のプール
内で十分に混合されるため、合金の添加を開始してから
所定の時間経過し、定常状態になった時点で得られる鋳
片内の成分濃度は安定しており、鋳片横断面ならびに鋳
片長さ方向で一定である。従って、本発明の実施により
合金成分添加によって生じる成分変化領域(移行部)の
長さが大幅に低減するとともに、鋳片内のどの部分をと
っても合金成分の濃度が一様となり、Cu添加鋼の製造
歩留りが大幅に向上する。
On the other hand, the powder 12 supplied to the molten steel meniscus moves in the direction from the contact points a and b between the molten steel meniscus and the inner surface of the mold, that is, enters the interface between the solidified shell and the inner surface of the mold 2, and from there. The Ni in the powder penetrates so as to be contained therein as the solidified shell forms. Therefore, the Ni added from the powder exists only in the surface layer of the slab. As described above, Ni is required for the surface layer because the surface defects generated after hot rolling the slab, so-called Cu.
This is to prevent the generation of baldness due to. The amount required for that is, in the case of the present invention using the powder method,
It is 0.01% or more at a point 10 mm immediately below the surface layer. Although the upper limit is not particularly specified, the upper limit may be determined depending on the amount of Cu, and from the viewpoint of economy, it may be approximately the same as the weight ratio of Cu. As described above, the alloy component Cu is sufficiently mixed in the pool having a constant volume above the static magnetic field 8 by the electromagnetic braking action of the static magnetic field 8. Therefore, a predetermined time has elapsed since the addition of the alloy was started, and the steady state was achieved. The component concentration in the slab obtained when the slab is in a stable state is stable, and is constant in the slab transverse section and the slab length direction. Therefore, by implementing the present invention, the length of the component change region (transition portion) caused by the addition of the alloy component is significantly reduced, and the concentration of the alloy component becomes uniform at any portion in the cast slab. Manufacturing yield is greatly improved.

【0015】この際添加する元素は、本願発明では小ロ
ットである銅を含む高強度鋼を製造することを目的とし
て、Cuを重量比で0.1%以上添加する。銅の添加量
が0.1%未満では、含銅鋼としての特徴が現れない。
これは、従来から公知であるが、含銅鋼を極めて安価に
製造するために、ここではこれを規定する。上限は特に
規定しないが、合金添加はコストの上昇を招くため、2
%以下の添加が好ましい。
In the present invention, the element to be added at this time is 0.1% or more by weight of Cu for the purpose of producing a high strength steel containing copper, which is a small lot. If the added amount of copper is less than 0.1%, the characteristics as copper-containing steel do not appear.
Although this is conventionally known, it is specified here in order to manufacture copper-containing steel extremely inexpensively. Although the upper limit is not specified, addition of an alloy causes an increase in cost.
% Or less is preferable.

【0016】なお、合金成分Cu添加の方法については
特には限定しないが、Cuはワイヤ成形が極めて容易で
あり、銅ワイヤ製造技術は高度に発達しているので、銅
ワイヤを溶鋼中に送給する方法が最も好ましい。この方
法によると添加する合金成分を容易に溶鋼に溶かすこと
ができ、さらに鋳片内に均一に分布させることができ
る。静磁界8を印加し銅ワイヤ3の送りを開始すると
き、すなわち鋳型2内の溶鋼にCu添加を開始するとき
には、静磁界8で区画される上述のプ−ルのCu成分比
を速く目標重量比にするために高速で銅ワイヤ3を送給
し、目標重量比とするに必要な量を送給した後は、鋳造
速度に比例する速度、すなわち鋳型2に注入される溶鋼
量に見合った送給量とするのが好ましい。これにより成
分変化領域(移行部)の長さが更に低減する。
Although the method of adding the alloy component Cu is not particularly limited, since Cu is extremely easy to form a wire and the copper wire manufacturing technology is highly developed, the copper wire is fed into molten steel. The method of doing is most preferable. According to this method, the alloy components to be added can be easily dissolved in the molten steel, and can be evenly distributed in the cast slab. When the static magnetic field 8 is applied to start the feeding of the copper wire 3, that is, when the Cu addition to the molten steel in the mold 2 is started, the Cu component ratio of the above-mentioned pool partitioned by the static magnetic field 8 is quickly increased to the target weight. After the copper wire 3 was fed at a high speed to achieve the ratio, and the amount required to reach the target weight ratio was fed, the speed was proportional to the casting speed, that is, the amount of molten steel injected into the mold 2 was commensurate. It is preferable to set the amount to be delivered. This further reduces the length of the component change region (transition part).

【0017】[0017]

【実施例】第1表に示す組成(成分比:重量%)の鋼A
を、通常の精錬により300トン得、2つのストランド
を有する連続鋳造機において一方のストランドについ
て、まずは通常のパウダ−を用い鋼Aを先に100トン
鋳込み、途中から、Cuが1.2%になるように溶鋼中
への銅ワイヤ3の送給を行なって、銅を添加した鋼(N
o.1+No.2+No.3)を50トン鋳込んだ。も
う一方のストランドにおいては鋼Aを通常の方法で、す
なわち銅添加なしに、150トン鋳込んだ。この鋳造方
法において、銅を添加した鋼(No.1+No.2+N
o.3)に対して、制動磁界8なしかつパウダ−へのN
i添加なし(No.1),制動磁界8を印加したがパウ
ダ−へのNiの添加なし(No.2)、および、制動磁
界8を印加かつパウダ−へのNiの添加(No.3)の
3条件を鋳造中に実施した。すなわち第2表のように鋳
造を行った。Niを含ませた場合(No.3)は、表層
下10mmにおけるNiの量は重量比で0.3%であっ
た。鋳型幅方向に鋳片の形状は厚み230mm,幅12
50mmであった。電磁ブレ−キ用の電磁石7は、鋳型
内メニスカスから500〜700mmの位置に設置し
た。
EXAMPLES Steel A having the composition (composition ratio: weight%) shown in Table 1
300 tons were obtained by ordinary refining, and in a continuous casting machine having two strands, first, 100 tons of steel A was first cast using a normal powder, and Cu was reduced to 1.2% from the middle. So that the copper wire 3 is fed into the molten steel so that copper-added steel (N
o. 1 + No. 2 + No. 3) was cast into 50 tons. In the other strand, Steel A was cast in the usual way, i.e. without addition of copper, 150 tons. In this casting method, copper-added steel (No. 1 + No. 2 + N
o. For 3), no braking magnetic field 8 and N to powder
No addition of i (No. 1), application of braking magnetic field 8 but no addition of Ni to powder (No. 2), and application of braking magnetic field 8 and addition of Ni to powder (No. 3) The above three conditions were carried out during casting. That is, casting was performed as shown in Table 2. When Ni was included (No. 3), the amount of Ni in 10 mm below the surface layer was 0.3% by weight. The shape of the slab in the width direction of the mold is 230 mm in thickness and 12 in width.
It was 50 mm. The electromagnet 7 for the electromagnetic brake was installed at a position of 500 to 700 mm from the meniscus in the mold.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】制動磁界8を印加しなかったNo.1と制
動磁界8を印加したNo.2について、Cu添加のため
銅ワイヤ3の送給を開始してから、鋳片中のCu量が
0.2%になるまでの鋳片の長さと、Cuが1.2%に
なった後のCuのばらつきは、第3表の通りであった。
No. in which the braking magnetic field 8 was not applied No. 1 in which the braking magnetic field 8 was applied. Regarding No. 2, after starting the feeding of the copper wire 3 for the addition of Cu, the length of the slab until the Cu content in the slab becomes 0.2%, and after the Cu became 1.2% Table 3 shows the variation in Cu.

【0021】[0021]

【表3】 [Table 3]

【0022】第3表からわかるように、本発明により鋳
片のCuの量が所定の値になるまでの鋳片の長さは大き
く短縮し、かつその後のCu成分比のばらつきも小さ
い。
As can be seen from Table 3, according to the present invention, the length of the slab until the amount of Cu in the slab reaches a predetermined value is greatly shortened, and the variation of the Cu component ratio thereafter is also small.

【0023】次に、表層にNiを含有させなかったN
o.2とそれを含有させたNo.3のスラブを抽出温
度:1200℃、仕上圧延温度:900℃、巻取温度:
700℃の条件で熱延した。その熱延鋼帯について、表
面疵の有無を目視により検査した。検査の結果は第4表
の通りであった。
Next, N containing no Ni in the surface layer
o. 2 and No. 2 containing it. Extraction temperature: 1200 ° C, finish rolling temperature: 900 ° C, winding temperature:
Hot rolling was performed at 700 ° C. The hot rolled steel strip was visually inspected for surface flaws. The results of the inspection are shown in Table 4.

【0024】[0024]

【表4】 [Table 4]

【0025】第4表のように、表層にNiを含有させた
鋼No.3は表面疵がなく良好であったが、表層にNi
を含有させなかった鋼No.2には、Cuによるへげが
発生した。
As shown in Table 4, steel No. containing Ni in the surface layer was used. No. 3 was good with no surface flaws, but Ni was used as the surface layer.
Steel No. In No. 2, the baldness due to Cu occurred.

【0026】[0026]

【発明の効果】以上のように、本発明法を用いれば、需
要は堅調ではあるが極小量しか使われない含銅高強度鋼
を歩留りよく極めて容易に、かつ必要な時にのみ製造す
ることができ、大容量の転炉により操業している製造所
においては、多量の在庫を持つことなく、さらにスクラ
ップにさせることなく製造することができる。したがっ
て、含銅高強度鋼のコストを低減することができる。
As described above, according to the method of the present invention, it is possible to produce a copper-containing high-strength steel, which has a strong demand but is used only in an extremely small amount, with high yield, very easily, and only when necessary. Therefore, it is possible to manufacture a large-capacity converter that does not have a large amount of stock and does not make it scrap. Therefore, the cost of the copper-containing high strength steel can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を一態様で実施する複数ストランドの
連続鋳造機の、銅添加高強度鋼を鋳造する鋳型の長片の
縦断面図である。
FIG. 1 is a longitudinal cross-sectional view of a long piece of a mold for casting copper-added high-strength steel in a multi-strand continuous casting machine that embodies the present invention in one aspect.

【符号の説明】[Explanation of symbols]

2:鋳型 3:銅ワイヤ 4:鋳型内の溶鋼 6:凝固シェル 7:電磁ブレ−キ用の電磁石 8:制動磁界 10:鋳片引抜き方向 11:浸漬ノズル 12:パウダ− 2: Mold 3: Copper wire 4: Molten steel in the mold 6: Solidified shell 7: Electromagnet for electromagnetic braking 8: Braking magnetic field 10: Slab drawing direction 11: Immersion nozzle 12: Powder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数のストランドからなる連続鋳造機の各
ストランドに同一種の溶鋼を注入しながら、1つのスト
ランドにおいては、鋳型の下部あるいは鋳型よりも下方
の鋳片に、鋳片引抜き方向と交叉する方向の制動磁界を
印加し、該制動磁界よりも上方の溶鋼中にCuを重量比
で0.1%以上添加し、その際同時にパウダ−にNiを
含有させ鋳片表層直下10mm点においてNiを重量比
で0.01%以上とし、他のストランドにおいては前記
溶鋼を通常の方法で鋳造することを特徴とする、銅を含
む高強度鋼の連続鋳造方法。
1. While pouring molten steel of the same kind into each strand of a continuous casting machine consisting of a plurality of strands, in one strand, the cast strip withdrawal direction is set to the bottom of the mold or the cast below the mold. A braking magnetic field in an intersecting direction is applied, and Cu is added to the molten steel above the braking magnetic field in a weight ratio of 0.1% or more, and at the same time, Ni is added to the powder at a point 10 mm immediately below the surface layer of the cast slab. A continuous casting method for high-strength steel containing copper, characterized in that the weight ratio of Ni is 0.01% or more and the molten steel is cast in the other strands by a usual method.
JP6740395A 1995-03-27 1995-03-27 Method for continuously casting high strength steel containing copper Withdrawn JPH08257704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6740395A JPH08257704A (en) 1995-03-27 1995-03-27 Method for continuously casting high strength steel containing copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6740395A JPH08257704A (en) 1995-03-27 1995-03-27 Method for continuously casting high strength steel containing copper

Publications (1)

Publication Number Publication Date
JPH08257704A true JPH08257704A (en) 1996-10-08

Family

ID=13343949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6740395A Withdrawn JPH08257704A (en) 1995-03-27 1995-03-27 Method for continuously casting high strength steel containing copper

Country Status (1)

Country Link
JP (1) JPH08257704A (en)

Similar Documents

Publication Publication Date Title
UA63982C2 (en) Method and device for producing a ferritically rolled steel strip
CN107530769B (en) Continuous casting method using mold flux, and slab manufactured using the same
JPH08257704A (en) Method for continuously casting high strength steel containing copper
JPH08257703A (en) Method for continuous casting of high strength steel
JPH08257705A (en) Method for continuous casting high strength steel containing copper
JP2572807B2 (en) Manufacturing method of lead free-cutting steel by continuous casting method
JP6801378B2 (en) Molding device for continuous casting of steel and manufacturing method of surface modified slab using it
JP3170944B2 (en) Continuous slab casting method
JP2004074233A (en) Method for reducing center segregation in continuously cast slab
JPH08257702A (en) Method for continuous casting precipitation enhance type high strength steel
JP2001232450A (en) Method for manufacturing continuous cast slab
JP2898199B2 (en) Manufacturing method of continuous cast slab
JPH11347701A (en) Continuous casting method and continuous caster
JP2969579B2 (en) Steel continuous casting method
JP3316109B2 (en) Manufacturing method of thick steel plate with uniform material in surface layer and inside
JPH08257701A (en) Continuous casting method
JP2770691B2 (en) Steel continuous casting method
JPH06114500A (en) Production of low-carbon sulfur free-cutting steel
JPH0760408A (en) Production of steel plate for thin sheet
JPH04313453A (en) Continuous casting method
JP2002178113A (en) Cast slab having excellent solidified structure and steel obtained by working the same
JP2991073B2 (en) Wide thin slab casting method
JPH05237621A (en) Continuous casting method
JP2691675B2 (en) Continuous casting method for scrap-based steel
JPH11179489A (en) Production of steel wire rod

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604