JPH08257701A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH08257701A
JPH08257701A JP6559495A JP6559495A JPH08257701A JP H08257701 A JPH08257701 A JP H08257701A JP 6559495 A JP6559495 A JP 6559495A JP 6559495 A JP6559495 A JP 6559495A JP H08257701 A JPH08257701 A JP H08257701A
Authority
JP
Japan
Prior art keywords
molten steel
steel
magnetic field
mold
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6559495A
Other languages
Japanese (ja)
Inventor
Atsushi Itami
丹 淳 伊
Kosaku Shioda
田 浩 作 潮
Eiichi Takeuchi
内 栄 一 竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6559495A priority Critical patent/JPH08257701A/en
Publication of JPH08257701A publication Critical patent/JPH08257701A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To reduce a variation range of component and to uniformize a component concn. of an alloy by impressing brake magnetic field in the direction crossing the drawing direction of a cast slab to molten steel below an immersion nozzle, in a continuous casting of the different component of steel or the different component ratio of steel. CONSTITUTION: At the time of pouring the molten steel 4 having the constant component ratio into a mold 2 through the nozzle 11, the electric magnets 7 for electromagnetic brake is energized to form the static magnetic field 8, and the alloy component is supplied into the molten steel 4 above this magnetic field at the speed proportional to the cast speed. Since a pool is formed and mixed with the alloy component and the molten steel 4 by the static magnetic field 8 of the electric magnets 7, the alloy component concn. is uniformized for a short period of time, and the length of a transition part which changes from the initial component to the following component, becomes the shortest. In such a way, the component concn. in the cast slab 6 after elapsing a prescribed time from the addition of the alloy becomes the constant, and the length of the variation range of component is drastically shortened and also, the yield of the cast product can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造の一時期に鋳
型内の溶鋼に合金成分を加えて、該溶鋼の一部から該溶
鋼とは成分あるいは成分比が異なる鋳片を製造する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a slab having a component or a component ratio different from that of molten steel from a part of the molten steel by adding an alloy component to the molten steel in a mold at one stage of continuous casting. .

【0002】[0002]

【従来技術】鉄鋼材料の用途は時を重ねるに従って増加
し、その結果として鉄鋼材料の種類は多くなっている。
従って、需要家の多くの要求を満たすためには材質の異
なる鉄鋼材料を少量ずつ製造するようになってきてい
る。いわゆる多品種小ロット材の製造である。多品種小
ロット材の製造下では、その後の圧延等の製造工程にお
いて要求される特性を造り分けることができない場合
は、たとえわずかの合金成分又は成分比の差であって
も、別の鋼種として製造する必要がある。その場合、工
業的な製造では大容量の、例えば300トンの転炉で精
錬しなければならないため、本来必要とする量が高々1
0トン程度であっても300トン出鋼しなければならな
い。これは大きな無駄であり、残された290トンを必
要が生じるまでスラブとして備畜する場合には、在庫が
増加し置き場や金利負担を必要とする問題が生じる。ま
た、スクラップとして再溶解する場合には、スクラップ
にするための余分なコストがかかる問題が生じる。これ
らの問題は、最終的に鋼材の価格を上げることになる。
従って、多品種小ロット材の製造は、鉄鋼業界において
積年の課題であった。
BACKGROUND OF THE INVENTION The use of steel materials has increased over time, and as a result, the types of steel materials have increased.
Therefore, in order to meet many demands of customers, steel materials of different materials are manufactured little by little. This is the production of so-called high-mix low-lot materials. In the production of high-mix low-lot materials, if it is not possible to create the required characteristics in the subsequent manufacturing process such as rolling, even if there is a slight difference in alloy composition or composition ratio, it will be treated as a different steel type. Must be manufactured. In that case, industrial production requires refining in a large-capacity converter, for example, 300 tons, so the originally required amount is at most 1.
Even if it is about 0 tons, 300 tons must be tapped. This is a great waste, and when stocking the remaining 290 tons as a slab until it is necessary, there is a problem that the inventory increases and storage space and interest rates are required. Further, in the case of remelting as scrap, there arises a problem that extra cost is required for scrapping. These problems will eventually raise the price of steel products.
Therefore, the production of high-mix low-lot materials has been a longstanding problem in the steel industry.

【0003】多品種小ロットの課題を克服する技術の提
案としては、例えば、伊藤 孝:第72・73回西山記
念技術講座,p143−p172,日本鉄鋼協会に提示され
た、ワイヤ添加法がある。ここでの目的は、A1キルド
鋼のSol.Al含有量の制御にあるが、これを拡大解
釈すると、その他の材質を変化させる合金成分を溶鋼中
に添加することにより多品種小ロット材の製造に供する
ことのできる鋳片を製造することができる。
As a proposal of a technique for overcoming the problems of a large variety of small lots, for example, there is a wire addition method presented to Takashi Ito: 72nd and 73rd Nishiyama Memorial Technology Course, p143-p172, Japan Iron and Steel Institute. . The purpose here is Sol. Although it is in the control of the Al content, if this is expandedly interpreted, it is possible to manufacture a slab that can be used for the manufacture of a wide variety of small lot materials by adding alloy components that change other materials into molten steel. it can.

【0004】[0004]

【発明が解決しようとする課題】しかし、この方法で
は、合金成分を加えた直後から引抜き鋳片が所望の成分
になるまでに時間がかかり、この間の鋳片(移行部;成
分遷移部)は、添加した合金の成分比が不確定で不均一
となる。すなわち、移行部が長くかつその成分が不確定
で不均一であるため使い物にならないことを意味し、歩
留りが悪い。
However, in this method, it takes time from immediately after adding the alloy components until the drawn slab becomes a desired component, and the slab (transition part; component transition part) during this time is , The composition ratio of the added alloy is uncertain and non-uniform. That is, it means that the transition portion is long and its components are uncertain and non-uniform, so that it cannot be used, and the yield is poor.

【0005】本発明は、連続鋳造中の一時期に鋳型内の
溶鋼に合金成分を加えて、該溶鋼の一部から該溶鋼とは
異なった成分又は異なった成分比の鋳片を製造するに際
して、合金成分の含有量が不確定で不均一な前記移行部
の長さ(引抜き方向)を短縮することを第1の目的と
し、多品種小ロット材の連続鋳造の歩留を向上すること
を第2の目的とする。
According to the present invention, alloy components are added to molten steel in a mold at a time during continuous casting to produce a slab having a different component or a different component ratio from the molten steel from a part of the molten steel. The first purpose is to shorten the length (drawing direction) of the transitional part in which the content of the alloy component is uncertain and non-uniform, and to improve the yield of continuous casting of a wide variety of small lot materials. The purpose is 2.

【0006】[0006]

【課題を解決するための手段】本発明は、連続鋳造鋳型
に浸漬ノズルを介して鋳型外部から実質上同一成分の溶
鋼を連続的に供給しつつ鋳型内溶鋼に合金成分を供給す
ることにより異成分鋼又は異成分比鋼を鋳造する連続鋳
造方法において、浸漬ノズルの下方の溶鋼に鋳片引抜き
方向と交叉する方向の制動磁界を印加することを特徴と
する。
According to the present invention, a continuous casting mold is continuously supplied with molten steel having substantially the same composition from the outside of the mold through an immersion nozzle, while an alloy component is supplied to the molten steel in the mold. A continuous casting method for casting a component steel or a steel with a different composition ratio is characterized in that a braking magnetic field is applied to the molten steel below the immersion nozzle in a direction intersecting with the slab drawing direction.

【0007】本発明の第1実施態様は、均一な磁束密度
を有する一方向の磁界を連続鋳造用鋳型内溶鋼あるいは
鋳型を出た鋳片を横切るように印加する電磁ブレーキ
を、鋳型の下部あるいは鋳型よりも下方に配設した連続
鋳造機を用い、連続鋳造の途中で前記磁界を印加し、か
つ、該磁界の上流側の溶鋼中に合金成分Ti,Nbおよ
びVの少くとも一種を、一種単独に添加する場合には重
量比でTi:0.01%以上,Nb:0.01%以上,
V:0.01%以上、を、2種以上を添加する場合には
その和0.01%以上を添加する、析出強化型高強度鋼
の連続鋳造方法である。
In the first embodiment of the present invention, an electromagnetic brake for applying a unidirectional magnetic field having a uniform magnetic flux density across molten steel in a continuous casting mold or a slab that has left the mold is provided at the bottom of the mold or Using a continuous casting machine disposed below the mold, applying the magnetic field during the continuous casting, and at least one of alloying components Ti, Nb and V in the molten steel on the upstream side of the magnetic field, When added alone, Ti: 0.01% or more and Nb: 0.01% or more by weight,
It is a continuous casting method for precipitation-strengthened high-strength steel in which V: 0.01% or more, and when two or more kinds are added, the sum thereof is 0.01% or more.

【0008】本発明の第2実施態様は、均一な磁束密度
を有する一方向の磁界を連続鋳造用鋳型内溶鋼あるいは
鋳型を出た鋳片を横切るように印加する電磁ブレーキ
を、鋳型の下部あるいは鋳型よりも下方に配設し、かつ
該電磁ブレーキよりも上方に鋳型内の溶鋼を撹拌する電
磁撹拌装置を配設した連続鋳造機を用い、前記磁界を印
加した状態で該磁界よりも上方の溶鋼中に合金成分T
i,NbおよびVの少くとも一種を添加するに際して、
一種単独に添加する場合には重量比でTi:0.01%
以上,Nb:0.01%以上,V:0.01%以上、
を、2種以上を添加する場合にはその和0.01%以上
を、添加するとともに前記電磁撹拌装置により鋳型内
の、前記磁界よりも上流の溶鋼を撹拌する、析出強化型
高強度鋼の連続鋳造方法である。
In a second embodiment of the present invention, an electromagnetic brake for applying a unidirectional magnetic field having a uniform magnetic flux density across molten steel in a continuous casting mold or a slab discharged from the mold is provided at the bottom of the mold or Using a continuous casting machine disposed below the mold and above the electromagnetic brake, an electromagnetic stirring device that stirs the molten steel in the mold is used, and the magnetic field is applied above the magnetic field. Alloying component T in molten steel
When adding at least one of i, Nb and V,
When added alone, Ti: 0.01% by weight
Or more, Nb: 0.01% or more, V: 0.01% or more,
In the case of adding two or more kinds, the sum of 0.01% or more is added and the molten steel in the mold, which is upstream of the magnetic field, is stirred by adding the electromagnetic stirrer. It is a continuous casting method.

【0009】いずれの実施態様においても、必要に応じ
て、移行部(成分遷移部)の鋳片引抜き方向の長さをよ
り短くするために、合金成分を添加するに当り、鋳型内
の溶鋼の上下方向の混合を防止するための遮蔽盤を、鋳
型内の溶鋼の湯面に挿入する。
In any of the embodiments, in order to further shorten the length of the transition portion (component transition portion) in the slab withdrawal direction, the molten steel in the mold is added when alloying components are added. A shield plate for preventing vertical mixing is inserted on the molten steel surface in the mold.

【0010】[0010]

【作用】前記合金成分の供給を開始したときと終了した
ときには、上述の移行部(成分遷移部)が鋳片にでき
る。
When the supply of the alloy components is started and ended, the above-mentioned transition portion (component transition portion) can be formed into a slab.

【0011】ここで、合金成分の供給を開始したときに
本発明により、浸漬ノズルの下方の溶鋼に、鋳片引抜き
方向と交叉する方向の制動磁界を印加すると、制動磁界
のところで、ノズルから注入され下方(鋳片引抜き方
向)に流れようとする溶鋼流に、上方に戻そうとする電
磁力が加わり、すなわち流下を阻止する力が加わり、こ
れにより制動磁界に達する位置で溶鋼流が鋳型内面に向
かう方向に進行方向が曲り、そして鋳型内面に沿って上
昇しようとする。すなわち、制動磁界を境にして、それ
より上側(浸漬ノズル側)の溶鋼は下方への流動を抑制
されてその結果該上側(以下この領域を遮断プ−ルと称
す)で循環流を形成しようとする。遮断プ−ルには合金
成分が供給されるが、これが該循環流により、効率よく
プ−ル内溶鋼に分散する。すなわち、制動磁界により、
遮断プ−ルに先行する溶鋼に対して遮断プ−ルが分離
(溶鋼流の遮断もしくは抑制)され、遮断プ−ルにおい
ては、供給される合金成分の撹拌が実現し、これによ
り、先行の、合金成分を供給しない溶鋼への、その後供
給した合金成分の拡散が少く、しかも、合金成分の供給
を開始してから鋳型内溶鋼の該合金成分の所望成分比へ
の収束が速く、したがって前述の移行部(成分遷移部)
の、鋳片引抜き方向の長さが大幅に短くなる。すなわち
異鋼種鋳造の歩留りが大幅に向上する。
According to the present invention, when a braking magnetic field in a direction intersecting the slab drawing direction is applied to the molten steel below the immersion nozzle when the supply of the alloy components is started, the nozzle is injected at the braking magnetic field. The molten steel flow, which tends to flow downward (in the slab withdrawal direction), is subjected to an electromagnetic force that attempts to return it upward, that is, a force that blocks the downward flow, which causes the molten steel flow to reach the braking magnetic field at the inner surface of the mold. The advancing direction bends in the direction toward, and tries to rise along the inner surface of the mold. That is, with respect to the braking magnetic field, the molten steel on the upper side (immersion nozzle side) is restrained from flowing downward, and as a result, a circulating flow is formed on the upper side (hereinafter, this region is referred to as a blocking pool). And The alloy component is supplied to the shut-off pool, which is efficiently dispersed in the molten steel in the pool by the circulating flow. That is, due to the braking magnetic field,
The blocking pool is separated (molten steel flow is blocked or suppressed) from the molten steel preceding the blocking pool, and stirring of the supplied alloy components is realized in the blocking pool. The diffusion of the alloy components supplied thereafter to the molten steel to which the alloy components are not supplied is small, and moreover, the convergence of the molten steel in the mold to the desired component ratio of the alloy components is quick after the supply of the alloy components is started. Transition part (component transition part)
However, the length in the slab withdrawal direction is significantly reduced. That is, the yield of the different steel type casting is significantly improved.

【0012】次に、合金成分の供給を停止したときに本
発明により、浸漬ノズルの下方の溶鋼に、鋳片引抜き方
向と交叉する方向の制動磁界を印加すると、制動磁界に
より、遮断プ−ルに先行する合金成分添加溶鋼に対して
遮断プ−ルが分離(溶鋼流の遮断もしくは抑制)され、
遮断プ−ルには合金成分が供給されない。これにより、
先行の、合金成分を供給した溶鋼への、合金成分を供給
しない溶鋼の拡散が少く、、したがって前述の移行部
(成分遷移部)の、鋳片引抜き方向の長さが大幅に短く
なる。すなわち異鋼種鋳造の歩留りが大幅に向上する。
Next, according to the present invention, when the supply of alloy components is stopped, a braking magnetic field in a direction intersecting with the slab drawing direction is applied to the molten steel below the dipping nozzle by the braking magnetic field. Isolation pool is separated (molten steel flow is blocked or suppressed) from molten steel added with alloy components preceding
No alloying components are supplied to the shut-off pool. This allows
The diffusion of the molten steel not supplied with the alloy component to the preceding molten steel supplied with the alloy component is small, and therefore the length of the transition portion (component transition portion) in the slab drawing direction is significantly shortened. That is, the yield of the different steel type casting is significantly improved.

【0013】以下に、より具体的に説明する。図1は、
本発明を一態様で実施する鋳型2の、広幅面に垂直な面
で切断した縦断面図、図2は該鋳型2の広幅面に平行な
面で切断した縦断面図である。鋳型2の下部には電磁ブ
レ−キ用の電磁石7が装備されており、溶鋼メニスカス
のやや下にあたる位置に、電磁撹拌装置9が装備されて
いる。電磁ブレ−キ用の電磁石7は、広幅面の幅方向に
均一な密度の、鋳片引抜き方向10と直交する磁束をも
たらす一方向の磁界を、連続鋳造用鋳型2内の溶鋼4を
横切るように、鋳型内溶鋼4に印加することができる。
8はこの際の静磁界(静磁場)である。なお、電磁ブレ
ーキの電磁石7は、鋳型2の下方に配設してもよい。た
だし、鋳型2内に注入される溶鋼の流れが実質上及ぶ最
下点f点よりも上方とする。
A more specific description will be given below. Figure 1
FIG. 2 is a vertical cross-sectional view of a mold 2 for carrying out the present invention in one aspect, taken along a plane perpendicular to a wide surface, and FIG. 2 is a vertical cross-sectional view taken along a plane parallel to the wide surface of the mold 2. An electromagnet 7 for electromagnetic braking is installed in the lower part of the mold 2, and an electromagnetic stirrer 9 is installed at a position slightly below the molten steel meniscus. The electromagnet 7 for the electromagnetic brake is configured to cross a molten steel 4 in the continuous casting mold 2 with a magnetic field in one direction which produces a magnetic flux having a uniform density in the width direction of the wide surface and orthogonal to the slab drawing direction 10. Then, it can be applied to the molten steel 4 in the mold.
Reference numeral 8 is a static magnetic field (static magnetic field) at this time. The electromagnet 7 of the electromagnetic brake may be arranged below the mold 2. However, it is above the lowest point f where the flow of molten steel injected into the mold 2 substantially extends.

【0014】タンディッシュからノズル11を通して鋳
型2内に注入される溶鋼流れは、静磁界8が印加されて
いない場合は、f点まで達する。しかし、静磁界8を形
成した場合は、静磁界8を通過する溶鋼注入流に、これ
を阻止するローレンツ力が静磁界8から働き、注入流の
侵入深さは略c/d(一点鎖線)レベルまでとなる。図
2においては、静磁界8による磁束は、紙面の裏から表
に向かう方向に流れている。
The molten steel flow injected from the tundish into the mold 2 through the nozzle 11 reaches point f when the static magnetic field 8 is not applied. However, when the static magnetic field 8 is formed, the Lorentz force that blocks the molten steel injection flow passing through the static magnetic field 8 acts from the static magnetic field 8, and the penetration depth of the injection flow is approximately c / d (dashed line). Up to the level. In FIG. 2, the magnetic flux generated by the static magnetic field 8 flows from the back side of the paper to the front side.

【0015】本発明の第1実施態様では、溶鋼を連続鋳
造する途中で、すなわちノズル11を通して実質上一定
の成分比の溶鋼を連続的に鋳型2に注入しているとき
に、電磁ブレ−キ用の電磁石7に通電して、すなわち上
述の静磁界8を形成して、該静磁界8よりも上方の溶鋼
中に合金成分を供給する。図2には、合金成分を均一密
度に封入した鋼ワイヤ3を、鋳造速度に比例する速度で
鋳型内溶鋼に送り出すことにより、溶鋼に対する定量供
給を行なう態様を示した。
In the first embodiment of the present invention, the electromagnetic brake is used during continuous casting of molten steel, that is, when molten steel having a substantially constant composition ratio is continuously injected into the mold 2 through the nozzle 11. The electromagnet 7 for use is energized, that is, the above-mentioned static magnetic field 8 is formed, and the alloy component is supplied into the molten steel above the static magnetic field 8. FIG. 2 shows a mode in which the steel wire 3 in which the alloy components are enclosed in a uniform density is fed into the molten steel in the mold at a rate proportional to the casting rate, so that the molten steel is quantitatively supplied.

【0016】したがって所定比で鋳型内溶鋼に合金成分
が供給されるが、静磁界8が、ノズル11からの溶鋼注
入流がc/dのレベル以下に侵入するのを妨げている。
その結果、供給された合金成分を含む溶鋼は、a,b,
c’,d’の範囲内にある遮断プ−ル内で、注入される
溶鋼流によって均一に混合され、一定の速度(引抜き速
度)でこのプールから下方に押し出される。すなわち、
電磁石7の電磁ブレーキによって鋳型2内に、供給され
る合金成分を溶鋼と混合のための小さなプールが形成さ
れ、その範囲内での混合が行なわれるため、濃度が均一
となるための時間が短縮されるとともに、このプールか
らその下方に押し出される流れは、プラグフロー化され
て対流を形成しにくいため、静磁界8の下部では新たな
混合(先行の溶鋼と後行の溶鋼の混合)を引き起こさな
い。従って、最初の成分から次の成分に変化する継目す
なわち移行部(成分遷移部)の長さは最短となる。
Therefore, the alloy components are supplied to the molten steel in the mold at a predetermined ratio, but the static magnetic field 8 prevents the molten steel injection flow from the nozzle 11 from entering below the level of c / d.
As a result, the molten steel containing the supplied alloy components is a, b,
In the shut-off pool in the range of c ′, d ′, the molten steel flow is uniformly mixed and extruded downward from this pool at a constant speed (drawing speed). That is,
By the electromagnetic brake of the electromagnet 7, a small pool for mixing the supplied alloy components with the molten steel is formed in the mold 2, and the mixing is performed within the range, so that the time required for the concentration to be uniform is shortened. At the same time, the flow pushed downward from this pool is plug-flowed, and it is difficult to form convection, so that new mixing (mixing of the preceding molten steel and the following molten steel) is caused in the lower part of the static magnetic field 8. Absent. Therefore, the length of the seam, that is, the transition portion (component transition portion) where the first component changes to the second component becomes the shortest.

【0017】このように、合金成分は電磁ブレーキより
上の一定体積のプール内で十分に混合されるため、合金
の添加を開始してから所定の時間経過し、定常状態にな
った時点で得られる鋳片内の成分濃度は安定しており、
鋳片横断面ならびに鋳片長さ方向で一定である。従っ
て、本発明の実施により合金添加によって生じる成分変
化領域の長さを大幅に低減するとともに鋳片内のどの部
分をとっても合金成分の濃度が一様となり、鋳造製品の
歩留りが大幅に向上する。
As described above, since the alloy components are sufficiently mixed in the pool having a constant volume above the electromagnetic brake, a predetermined time has elapsed after the addition of the alloy was started, and the alloy components were obtained at the time when the steady state was reached. The component concentration in the cast slab is stable,
It is constant in the cross section of the slab and the length direction of the slab. Therefore, by implementing the present invention, the length of the component change region caused by the addition of the alloy is significantly reduced, and the concentration of the alloy component is made uniform at any portion in the cast slab, and the yield of the cast product is greatly improved.

【0018】この際添加する元素は、小ロットである析
出強化型高強度鋼を製造することを目的として、Ti、
そして/またはNb、そして/またはVを添加する。各
々を単独に添加する場合は重量比でTi:0.01%以
上,Nb:0.01%以上,V:0.01%以上、とす
る。それぞれの元素の上記下限値未満の添加では、析出
強化の効果が現れない。また、2種以上を同時に添加す
る場合にはその和が0.01%以上になるように添加す
る。これもその和が0.01%未満では析出強化の効果
が現われない。上限は特に限定しないが、合金添加はコ
ストの上昇を招くため、単独の場合でも総和でも0.2
%以下が好ましい。
The elements added at this time are Ti, Ti, for the purpose of producing a precipitation-strengthened high-strength steel in a small lot.
And / or Nb and / or V are added. When they are added individually, the weight ratio is Ti: 0.01% or more, Nb: 0.01% or more, and V: 0.01% or more. Addition of each element below the above lower limits does not show the effect of precipitation strengthening. When two or more kinds are added at the same time, the total amount is 0.01% or more. Also, if the sum is less than 0.01%, the effect of precipitation strengthening does not appear. The upper limit is not particularly limited, but addition of an alloy causes an increase in cost.
% Or less is preferable.

【0019】本発明の第2実施態様では、少くとも鋳型
2の溶鋼に合金成分を供給している間、電磁撹拌装置9
を駆動する。電磁撹拌装置9は鋳型内溶鋼に推力を与え
るリニアモ−タであるが、他の公知のものを用いてもよ
い。この電磁撹拌装置9は、電磁石7よりも上方に、好
ましくは鋳型内溶鋼のメニスカス近傍に配する。この方
法によると、図2のa,b,c’,d’の範囲内にある
溶鋼には、溶鋼注入流によって発生した強い撹拌力F’
と電磁撹拌力の双方が作用し、溶鋼は一層顕著に混合す
る。従って、合金成分添加時にその溶鋼中の合金成分濃
度が均一化する速度が速く、合金成分濃度を均一化する
効果が高い。合金成分の供給開始時に遮断プ−ル内の溶
鋼を所望成分濃度にするための量の合金成分を高速で供
給し、この供給後は、鋳造速度に比例する速度で合金成
分を供給する供給速度制御を電磁撹拌と併用することに
より、移行部(成分遷移部)の長さが更に短くなり、鋳
造製品の歩留りが更に向上する。
In the second embodiment of the present invention, the electromagnetic stirrer 9 is used at least while the alloy components are being supplied to the molten steel of the mold 2.
Drive. The electromagnetic stirrer 9 is a linear motor that applies thrust to the molten steel in the mold, but other known devices may be used. The electromagnetic stirrer 9 is arranged above the electromagnet 7, preferably near the meniscus of the molten steel in the mold. According to this method, the strong stirring force F ′ generated by the molten steel injection flow is applied to the molten steel within the range of a, b, c ′, d ′ in FIG.
And the electromagnetic stirring force both act, and the molten steel mixes more significantly. Therefore, at the time of adding the alloy component, the rate of uniformizing the alloy component concentration in the molten steel is high, and the effect of uniformizing the alloy component concentration is high. At the start of the supply of the alloy components, the amount of the alloy components to bring the molten steel in the blocking pool to the desired component concentration is supplied at high speed, and after this supply, the alloy components are supplied at a rate proportional to the casting speed. By using the control together with the electromagnetic stirring, the length of the transition part (component transition part) is further shortened, and the yield of the cast product is further improved.

【0020】なお、合金成分を添加する直前に、また合
金成分の添加を止めた直後に、鋳型内の溶鋼の上下方向
の混合を防止するための遮蔽板を鋳型内の溶鋼の湯面に
挿入することができる。これは、比重の異なる2つ以上
の合金を添加するときに、合金成分を添加した溶鋼から
添加しない溶鋼への該合金成分の拡散を防止する効果が
高い。この場合遮蔽板は公知のものを用いてよい。
Immediately before adding the alloy components and immediately after stopping the addition of the alloy components, a shield plate for preventing vertical mixing of the molten steel in the mold is inserted into the molten steel surface of the molten steel in the mold. can do. This has a high effect of preventing the diffusion of the alloy components from the molten steel to which the alloy components have been added to the molten steel to which the alloy components have not been added when adding two or more alloys having different specific gravities. In this case, a known shield plate may be used.

【0021】なお、合金供給は、合成成分パウダ,粒,
合金成分ワイヤ等の連続的送給で行なうことができる
が、合金成分を内部に封入した鋼ワイヤを溶鋼中に供給
する方法が好ましい。この方法によると溶鋼へ供給する
までの合金成分の酸化や汚染がなく、添加する合金成分
を容易に溶鋼に溶かすことができ、さらに鋳片内に均一
に分布させることができる。
The alloy is supplied by powder, particles,
The alloy component wire or the like can be continuously fed, but a method in which a steel wire having an alloy component enclosed therein is supplied into molten steel is preferable. According to this method, the alloy components are not oxidized or contaminated until they are supplied to the molten steel, the alloy components to be added can be easily dissolved in the molten steel, and the alloy components can be evenly distributed in the slab.

【0022】上述の第1実施例態様および第2実施態様
のいずれにおいても、析出強化型高強度鋼の連続鋳造を
終了するときには、すなわち合金成分の供給を終了する
ときは、合金成分の供給を停止し、そのとき遮断プ−ル
にあった溶鋼量が、静磁界8が加わっていないときに鋳
型2内に注入される溶鋼の流れが実質上及ぶ最下点f点
を通過した後に、電磁石7の通電を遮断する。なお、合
金成分の供給中も、合金の添加を開始してから鋳片内の
成分濃度が安定し、安定した領域がf点を通過した後に
電磁石7を通電を遮断してもよい。このように遮断した
後、合金成分の供給を終了するときは、合金成分の供給
を停止し、電磁石7に通電して静磁界8を溶鋼に印加
し、そのとき遮断プ−ルにあった溶鋼量が、静磁界8が
加わっていないときに鋳型2内に注入される溶鋼の流れ
が実質上及ぶ最下点f点を通過した後に、電磁石7の通
電を遮断する。なお、静磁界8の印加が操業上格別な支
障又は負担にならない場合には、電磁場8を定常的に印
加しておいてもよい。
In both the first embodiment and the second embodiment described above, when the continuous casting of precipitation-strengthened high-strength steel is completed, that is, when the supply of alloy components is completed, the alloy components are supplied. After the stop, the amount of molten steel in the shut-off pool at that time passes through the lowest point f, where the flow of molten steel injected into the mold 2 substantially when the static magnetic field 8 is not applied, is followed by the electromagnet. Turn off the power supply of 7. Even during the supply of the alloy components, the component concentration in the slab is stabilized after the alloy addition is started, and the electromagnet 7 may be de-energized after the stable region passes the point f. When the supply of the alloy components is terminated after the interruption in this way, the supply of the alloy components is stopped, the electromagnet 7 is energized to apply the static magnetic field 8 to the molten steel, and the molten steel present at the interruption pool at that time is applied. After the quantity has passed the lowest point f, where the flow of the molten steel injected into the mold 2 substantially extends when the static magnetic field 8 is not applied, the energization of the electromagnet 7 is cut off. In addition, when the application of the static magnetic field 8 does not hinder or burden the operation in particular, the electromagnetic field 8 may be constantly applied.

【0023】[0023]

【実施例】【Example】

〔実施例1〕第1表の成分比(重量%)の鋼Aの溶鋼を
通常の精錬により300トン得、連続鋳造機においてま
ず鋼Aを先に250トン鋳込み、次に鋳型内の鋼Aの溶
鋼のメニスカスからワイヤによりTiを添加することに
より、途中からTiが0.08%になるように鋼を50
トン鋳込んだ。鋳片の形状は厚み230mm、幅1250
mmであった。電磁ブレーキ用の電磁石7は、鋳型内メニ
スカスから500〜700mm下方の位置に設置し、磁場
を印加した場合と印加しなかった場合の2条件を、上記
50トンの鋳込中に機会を変えて実施した。
Example 1 300 tons of molten steel of steel A having the composition ratio (% by weight) shown in Table 1 was obtained by ordinary refining, 250 tons of steel A was first cast in a continuous casting machine, and then steel A in the mold. By adding Ti with a wire from the meniscus of molten steel, the steel is added 50% so that Ti becomes 0.08% from the middle.
Ton cast. The slab has a thickness of 230 mm and a width of 1250.
It was mm. The electromagnet 7 for the electromagnetic brake is installed at a position 500 to 700 mm below the meniscus in the mold, and the two conditions of the case where the magnetic field is applied and the case where the magnetic field is not applied are changed during the casting of 50 tons described above. Carried out.

【0024】[0024]

【表1】 [Table 1]

【0025】磁場を印加した場合と印加しなかった場合
の、鋼中のTiの量がワイヤを添加してから0.08%
になるまでの鋳片の長さと、Tiが0.08%になった
後のTiのばらつきは、表2の通りであった。
The amount of Ti in the steel with and without application of a magnetic field was 0.08% after the wire was added.
Table 2 shows the length of the cast slab and the variation in Ti after the Ti content was 0.08%.

【0026】[0026]

【表2】 [Table 2]

【0027】表2からわかるように、本発明法により鋳
片のTiの量が所定の値になるまでの鋳片の長さは大き
く短縮することができ、かつその後の濃度のばらつきも
小さい。
As can be seen from Table 2, the length of the slab until the amount of Ti in the slab reaches a predetermined value can be greatly reduced by the method of the present invention, and the variation in the concentration thereafter is small.

【0028】〔実施例2〕表1に示す成分比(重量%)
の鋼Aと実質上同じ成分である溶鋼を通常の精錬方法で
得、連続鋳造機において鋳型内のメニスカスから溶鋼中
にワイヤにより合金成分を添加するに際して、ワイヤ内
の合金の種類とワイヤの送り速度を変更することによ
り、表3にある鋼B〜鋼Hをこの順序で鋳片として得
た。その際、磁場はワイヤ送給開始後連続して印加し
た。また、各鋼種のワイヤ内の合金の種類とワイヤ送り
速度を変更したときに、メニスカスに遮蔽板を挿入する
ことにより各鋼種の継目を明瞭にした。
[Example 2] Component ratios (% by weight) shown in Table 1
A molten steel having substantially the same composition as that of Steel A in Example 1 is obtained by an ordinary refining method, and when an alloy component is added to the molten steel from a meniscus in a mold by a wire in a continuous casting machine, the type of alloy in the wire and the feeding of the wire By changing the speed, Steel B to Steel H in Table 3 were obtained as cast pieces in this order. At that time, the magnetic field was continuously applied after the wire feeding was started. Moreover, when the type of alloy in the wire of each steel type and the wire feed speed were changed, the seam of each steel type was clarified by inserting a shielding plate into the meniscus.

【0029】[0029]

【表3】 [Table 3]

【0030】これらの鋳片について、スラブ抽出温度:
1250℃、仕上圧延終了温度:920℃、巻取温度:
600℃の条件で熱延を行い、板厚3mmの熱延鋼板を得
た。この熱延板について析出強化高強度鋼板の特徴が最
も発揮される再加熱試験を行い、圧延のままと再加熱試
験後の強度の差を求めた。再加熱試験は、熱延板を80
0℃のソルトバスに10分浸漬し、その後空冷した。ま
た、強度特性は、引張試験で評価した。引張試験は、J
ISZ2201記載の5号試験片を用い、同Z2241
記載の方法に従って行い、引張強度TSを測定した。試
験片長手方向は、製品の圧延方向とした。また、経済性
の評価として、本法による鋼Bから鋼Hの鋼片の重量を
必要量とし、それぞれの鋼を通常の方法である300ト
ン溶製した場合の差を不必要量として評価した。表4に
圧延のままと再加熱試験後のTSの差(ΔTS)と不必
要量、さらに300トンに対する比を示した。
For these slabs, the slab extraction temperature:
1250 ° C, finish rolling finish temperature: 920 ° C, winding temperature:
Hot rolling was performed under the condition of 600 ° C. to obtain a hot rolled steel sheet having a plate thickness of 3 mm. This hot rolled sheet was subjected to a reheating test that maximizes the characteristics of the precipitation strengthened high strength steel sheet, and the difference in strength between the as-rolled sheet and after the reheating test was determined. For the reheating test, 80
It was immersed in a 0 ° C. salt bath for 10 minutes and then air-cooled. The strength characteristics were evaluated by a tensile test. The tensile test is J
Using the No. 5 test piece described in ISZ2201, the same Z2241
According to the method described, the tensile strength TS was measured. The longitudinal direction of the test piece was the rolling direction of the product. In addition, as the evaluation of economic efficiency, the weight of the steel pieces from Steel B to Steel H according to this method was taken as the required amount, and the difference when each steel was melted by 300 tons, which is the usual method, was evaluated as the unnecessary amount. . Table 4 shows the difference (ΔTS) in TS between the as-rolled and after reheating tests, the unnecessary amount, and the ratio to 300 tons.

【0031】[0031]

【表4】 [Table 4]

【0032】ΔTSは少ないほど再加熱前後の強度が変
化せず、析出強度鋼としての特徴が現われる。その結果
を示したのが鋼C,E,F,Gである。いずれも析出強
化元素の成分比が、上述の第1実施態様および第2実施
態様において定義した範囲(以下、定義範囲)内にある
ものである。一方、元鋼材である鋼Aは評価の対象では
ないものの析出強化元素が含まれない特性を示し、定義
範囲外の含有量であった鋼B,D,Hは析出強化鋼とし
ての特性を示さなかった。
As ΔTS is smaller, the strength before and after reheating does not change, and the characteristic of precipitation strength steel appears. The results are shown for steels C, E, F and G. In each case, the composition ratio of the precipitation strengthening element is within the range defined in the first embodiment and the second embodiment (hereinafter, defined range). On the other hand, steel A, which is the original steel material, shows the characteristics that precipitation strengthening elements are not included although it is not the object of evaluation, and steels B, D, and H whose contents are out of the defined range show the characteristics as precipitation strengthening steels. There wasn't.

【0033】また、経済性を評価する指針として示した
通常の方法で製造する各鋼の不必要率は85%以上であ
り、本法が鋳造歩留りが良い経済的な方法であることを
示している。
Further, the unnecessary rate of each steel produced by the ordinary method shown as a guideline for evaluating the economical efficiency is 85% or more, showing that this method is an economical method with a good casting yield. There is.

【0034】[0034]

【発明の効果】本発明によれば、連続鋳造の途中で溶鋼
中に合金を加えて、該溶鋼の一部からこの合金を含有す
る鋳片を、合金成分の含有量が均一でかつその移行部分
を少なくするように製造することができる。さらに、必
要量は少ないものの重要な特性を発揮する析出強化型高
強度鋼を極めて経済的に製造することができる。
According to the present invention, an alloy is added to molten steel in the course of continuous casting, and a slab containing this alloy is made from a part of the molten steel to have a uniform alloy component content and transfer thereof. It can be manufactured to have fewer parts. Furthermore, precipitation-strengthened high-strength steel that exhibits important properties although the required amount is small can be manufactured extremely economically.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を一態様で実施する連続鋳造鋳型の長
片の縦断面図である。
FIG. 1 is a vertical cross-sectional view of a long piece of a continuous casting mold that embodies the present invention in one aspect.

【図2】 図1に示す鋳型の短片の縦断面図である。FIG. 2 is a vertical cross-sectional view of a short piece of the mold shown in FIG.

【符号の説明】[Explanation of symbols]

2:鋳型 3:ワイヤ 4:鋳型内の溶鋼 5:凝固シェル 6:鋳片内の溶鋼 7:電磁ブレーキ
用の電磁石 8:静磁界 9:電磁撹拌装置 10:鋳片の引き抜き方向 11:浸漬ノズル
2: Mold 3: Wire 4: Molten steel in mold 5: Solidified shell 6: Molten steel in cast piece 7: Electromagnet for electromagnetic brake 8: Static magnetic field 9: Electromagnetic stirrer 10: Extraction direction of cast piece 11: Immersion nozzle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/12 C22C 38/12 38/14 38/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22C 38/12 C22C 38/12 38/14 38/14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造鋳型に浸漬ノズルを介して鋳型外
部から実質上同一成分の溶鋼を連続的に供給しつつ鋳型
内溶鋼に合金成分を供給することにより異成分鋼又は異
成分比鋼を鋳造する連続鋳造方法において、 浸漬ノズルの下方の溶鋼に鋳片引抜き方向と交叉する方
向の制動磁界を印加することを特徴とする、異成分鋼又
は異成分比鋼の連続鋳造方法。
1. A different component steel or a different component ratio steel is obtained by continuously supplying molten steel having substantially the same composition from the outside of the mold to a continuous casting mold through an immersion nozzle while supplying an alloy component to the molten steel in the mold. In the continuous casting method for casting, a braking magnetic field is applied to the molten steel below the dipping nozzle in a direction intersecting with the slab withdrawal direction, a continuous casting method for different component steel or different component ratio steel.
【請求項2】合金成分の供給を開始したときと終了した
ときの少くとも一方で、浸漬ノズルの下方の溶鋼に、鋳
片引抜き方向と交叉する方向の制動磁界を印加する、請
求項1記載の、異成分鋼又は異成分比鋼の連続鋳造方
法。
2. A braking magnetic field in a direction intersecting with a casting product drawing direction is applied to the molten steel below the immersion nozzle at least at the start and end of the supply of the alloy components. The continuous casting method of different composition steel or different composition ratio steel.
【請求項3】合金成分の供給開始時に制動磁界を印加
し、それから、鋳片引抜き方向の該合成成分の重量比が
実質上一定になった溶鋼が所定位置を通過した後に制動
磁界の印加を停止し、合金成分の供給停止時に制動磁界
を印加し、それから、該合成成分を実質上含まない溶鋼
が所定位置を通過した後に制動磁界の印加を停止する、
請求項2記載の、異成分鋼又は異成分比鋼の連続鋳造方
法。
3. A braking magnetic field is applied at the start of the supply of alloy components, and then a braking magnetic field is applied after the molten steel having a substantially constant weight ratio of the composite components in the slab drawing direction has passed a predetermined position. Stopping, applying a braking magnetic field when the supply of the alloy component is stopped, and then stopping the application of the braking magnetic field after the molten steel substantially free of the synthetic component has passed a predetermined position,
The continuous casting method according to claim 2, wherein the different component steel or the different component ratio steel is cast.
【請求項4】少くとも溶鋼に合金成分を供給しかつ制動
磁界を印加している間は、制動磁界より上流側の溶鋼を
電磁撹拌する、請求項2又は請求項3記載の、異成分鋼
又は異成分比鋼の連続鋳造方法。
4. The heterogeneous steel according to claim 2 or 3, wherein the molten steel upstream of the braking magnetic field is electromagnetically stirred at least while supplying the alloying components to the molten steel and applying the braking magnetic field. Alternatively, a continuous casting method for steel with a different composition ratio.
【請求項5】均一な磁束密度を有する一方向の磁界を連
続鋳造用鋳型内溶鋼あるいは鋳型を出た鋳片を横切るよ
うに印加する電磁ブレーキを、鋳型の下部あるいは鋳型
よりも下方に配設した連続鋳造機を用い、連続鋳造の途
中で前記磁界を印加し、かつ、該磁界の上流側の溶鋼中
に合金成分Ti,NbおよびVの少くとも一種を、一種
単独に添加する場合には重量比でTi:0.01%以
上,Nb:0.01%以上,V:0.01%以上、を、
2種以上を添加する場合にはその和0.01%以上を添
加する、析出強化型高強度鋼の連続鋳造方法。
5. An electromagnetic brake for applying a unidirectional magnetic field having a uniform magnetic flux density across the molten steel in the continuous casting mold or the slab leaving the mold is disposed below the mold or below the mold. In the case where the magnetic field is applied during the continuous casting and at least one of the alloy components Ti, Nb and V is added to the molten steel on the upstream side of the magnetic field by using the continuous casting machine described above, By weight ratio, Ti: 0.01% or more, Nb: 0.01% or more, V: 0.01% or more,
A continuous casting method for precipitation-strengthened high-strength steel, which comprises adding 0.01% or more of the sum when two or more kinds are added.
【請求項6】均一な磁束密度を有する一方向の磁界を連
続鋳造用鋳型内溶鋼あるいは鋳型を出た鋳片を横切るよ
うに印加する電磁ブレーキを、鋳型の下部あるいは鋳型
よりも下方に配設し、かつ該電磁ブレーキよりも上方に
鋳型内の溶鋼を撹拌する電磁撹拌装置を配設した連続鋳
造機を用い、前記磁界を印加した状態で該磁界よりも上
方の溶鋼中に合金成分Ti,NbおよびVの少くとも一
種を添加するに際して、一種単独に添加する場合には重
量比でTi:0.01%以上,Nb:0.01%以上,
V:0.01%以上、を、2種以上を添加する場合には
その和0.01%以上を、添加するとともに前記電磁撹
拌装置により鋳型内の、前記磁界よりも上流の溶鋼を撹
拌する、析出強化型高強度鋼の連続鋳造方法。
6. An electromagnetic brake for applying a magnetic field in one direction having a uniform magnetic flux density across the molten steel in the continuous casting mold or the slab leaving the mold is disposed below the mold or below the mold. And, using a continuous casting machine provided with an electromagnetic stirring device for stirring the molten steel in the mold above the electromagnetic brake, the alloy component Ti in the molten steel above the magnetic field with the magnetic field applied, When adding at least one of Nb and V, when added alone, Ti: 0.01% or more and Nb: 0.01% or more by weight ratio,
V: 0.01% or more, and in the case of adding two or more kinds, the sum of 0.01% or more is added and the molten steel in the mold upstream of the magnetic field is stirred by the electromagnetic stirring device. , A continuous casting method for precipitation strengthened high strength steel.
【請求項7】 合金成分を添加するに当り、鋳型内の溶
鋼の上下方向の混合を防止するための遮蔽盤を、鋳型内
の溶鋼の湯面に挿入することを特徴とする、請求項5ま
たは請求項6に記載の、析出強化型高強度鋼の連続鋳造
方法。
7. The method according to claim 5, wherein a shield plate for preventing the molten steel in the mold from being mixed in the vertical direction when the alloy component is added is inserted into the molten steel surface of the molten metal in the mold. Alternatively, the continuous casting method for precipitation-strengthened high-strength steel according to claim 6.
JP6559495A 1995-03-24 1995-03-24 Continuous casting method Withdrawn JPH08257701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6559495A JPH08257701A (en) 1995-03-24 1995-03-24 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6559495A JPH08257701A (en) 1995-03-24 1995-03-24 Continuous casting method

Publications (1)

Publication Number Publication Date
JPH08257701A true JPH08257701A (en) 1996-10-08

Family

ID=13291509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6559495A Withdrawn JPH08257701A (en) 1995-03-24 1995-03-24 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH08257701A (en)

Similar Documents

Publication Publication Date Title
JPH08257701A (en) Continuous casting method
US5657816A (en) Method for regulating flow of molten steel within mold by utilizing direct current magnetic field
JPH08257702A (en) Method for continuous casting precipitation enhance type high strength steel
CN1158770A (en) Electromagnetic stirring apparatus for use in slab continuous casting crystallizer
JPH08257705A (en) Method for continuous casting high strength steel containing copper
JP3456311B2 (en) Continuous casting method of multilayer slab
JP2003117636A (en) Method for controlling fluidity of molten steel in mold and device for forming electromagnetic field for this purpose
JPH08257703A (en) Method for continuous casting of high strength steel
JPH08257704A (en) Method for continuously casting high strength steel containing copper
JP3426383B2 (en) Steel continuous casting method
JP2898199B2 (en) Manufacturing method of continuous cast slab
DE2344005C3 (en) Process for melting magnetically attractable small metal particles
JPH07100608A (en) Method for continuously casting steel
JP4983320B2 (en) Method and apparatus for continuous casting of steel
JP2960288B2 (en) Manufacturing method of multilayer steel sheet by continuous casting
EP3238856B1 (en) A method of controlling the solidification process of continuously cast metals and alloys and a device for implementing the method
CN106521092A (en) Efficient pollution-free casting melt homogenous refinement treatment device and method
JP2000273581A (en) Continuously cast slab of extra-low carbon steel and production thereof
US20090114363A1 (en) Component for a Continuous Casting Mold and Method for Producing the Component
JP2969579B2 (en) Steel continuous casting method
JPH1177259A (en) Method for continuously casting steel
JPH0839196A (en) Production of continuously cast slab
JP5458779B2 (en) Continuous casting method for steel slabs
JP4595351B2 (en) Steel continuous casting method
JP4765774B2 (en) Continuous casting method for multi-layer slabs

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604