JP3388933B2 - Continuous casting method of titanium-added ultra low carbon steel - Google Patents

Continuous casting method of titanium-added ultra low carbon steel

Info

Publication number
JP3388933B2
JP3388933B2 JP06891595A JP6891595A JP3388933B2 JP 3388933 B2 JP3388933 B2 JP 3388933B2 JP 06891595 A JP06891595 A JP 06891595A JP 6891595 A JP6891595 A JP 6891595A JP 3388933 B2 JP3388933 B2 JP 3388933B2
Authority
JP
Japan
Prior art keywords
titanium
carbon steel
low carbon
steel
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06891595A
Other languages
Japanese (ja)
Other versions
JPH08243687A (en
Inventor
昌文 瀬々
良二 辻野
新 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06891595A priority Critical patent/JP3388933B2/en
Publication of JPH08243687A publication Critical patent/JPH08243687A/en
Application granted granted Critical
Publication of JP3388933B2 publication Critical patent/JP3388933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面性状の優れたチタ
ン添加極低炭素鋼板用の連続鋳造鋳片を製造する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a continuously cast slab for a titanium-added ultra low carbon steel sheet having excellent surface properties.

【0002】[0002]

【従来の技術】従来から主に自動車向け良加工性鋼板用
素材として、特公昭44−18066号「プレス成形性
に優れた冷延鋼板の製造法」に開示されているような、
鋼中の炭素(C)と窒素(N)の含有量をできるだけ少
なくした上、C,Nと化合物をつくるチタン(Ti)を
当量以上添加した、チタン添加極低炭素鋼が広く使われ
ている。
2. Description of the Related Art Conventionally, as a material for steel sheets having good workability mainly for automobiles, as disclosed in Japanese Examined Patent Publication No. 44-18066, "Manufacturing Method of Cold Rolled Steel Sheets with Excellent Press Formability",
An ultra-low carbon steel containing titanium is widely used in which the content of carbon (C) and nitrogen (N) in the steel is reduced as much as possible and titanium (Ti) that forms a compound with C and N is added in an equivalent amount or more. .

【0003】ここでの、チタン添加の目的は、深絞り強
加工時にストレッチャーストレインと呼ばれている、し
わ状の欠陥が生じるのを防止するために、マトリックス
から固溶しているCおよびNを、チタンと結合させて完
全に取り除き無害化するためである。
The purpose of adding titanium here is to prevent the formation of wrinkle-like defects, which are called stretcher strains, during deep-drawing and strong forming, so that C and N are dissolved from the matrix. This is because it is combined with titanium and completely removed to render it harmless.

【0004】このようなチタン添加極低炭素鋼板用鋳片
の鋳造方法としては、大量生産による製造コストの低
減、鋳片品質の高位安定化等の観点から、周囲を水冷銅
板で構成した中空鋳型内に溶鋼を連続的に供給し、かつ
凝固させることでスラブ鋳片を連続的に製造するいわゆ
る連続鋳造方法が一般に採用されている。
As a method for casting such a cast slab for a titanium-added ultra-low carbon steel sheet, a hollow mold having a periphery made of a water-cooled copper plate is used from the viewpoints of reduction of manufacturing cost by mass production and stabilization of high quality of cast slab. A so-called continuous casting method in which molten steel is continuously supplied and solidified to continuously produce a slab slab is generally adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記し
た従来の技術を用いて、チタン添加極低炭素鋼を鋳造し
圧延した場合、圧延前のスラブ鋳片加熱時に生成した、
表層の酸化スケールに起因した表面疵が多発し、製品で
の歩留まりが低下するといった問題が残されていた。
However, when a titanium-added ultra-low carbon steel is cast and rolled by using the above-mentioned conventional technique, it is generated when the slab slab is heated before rolling.
However, surface defects caused by the oxide scale on the surface layer frequently occur, and the yield of the product remains low.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者らはチ
タン添加極低炭素鋼板の表面性状の改善方法について、
研究を積み重ね、以下の手段を適用することで前記課題
を解決し、表面性状の優れたチタン添加極低炭素鋼板用
の連続鋳造鋳片が得られることを知見し、本発明を完成
するに至った。
Therefore, the present inventors have proposed a method for improving the surface properties of a titanium-added ultra-low carbon steel sheet as follows.
By accumulating research and solving the above problems by applying the following means, it was found that a continuous cast slab for a titanium-added ultra-low carbon steel sheet having excellent surface properties can be obtained, and the present invention has been completed. It was

【0007】すなわち本発明は、鋼中の炭素含有量が
0.01重量%以下で、かつ、チタンを0.005〜
0.150重量%の範囲で添加した極低炭素鋼を連続鋳
造するにあたり、連鋳鋳型内に鋳片の厚み方向に横切る
直流磁束を全幅に亘って付与し、該直流磁束によって鋳
型幅方向に形成される静磁場帯の下側に前記極低炭素鋼
を注入し、かつ、該静磁場帯の上側の溶鋼の炭素含有量
が0.01重量%より高くなるように、外部より炭素を
供給しながら鋳造することを特徴とするチタン添加極低
炭素鋼の連続鋳造方法である。ここにおいて、上記の外
部より炭素を供給ながら鋳造するに当たり、炭素を含有
したモールドフラックスより炭素を供給しながら鋳造す
ること、また炭素を含有したワイヤーにより炭素を供給
しながら鋳造することも特徴とする。
That is, according to the present invention, the carbon content in steel is 0.01% by weight or less, and the titanium content is 0.005 to 0.005%.
When continuously casting ultra-low carbon steel added in the range of 0.150% by weight, a direct current magnetic flux across the entire width in the thickness direction of the slab is applied in the continuous casting mold, and in the width direction of the mold by the direct current magnetic flux. The ultra-low carbon steel is injected below the static magnetic field band to be formed, and the carbon content of the molten steel above the static magnetic field band.
Is a continuous casting method for titanium-added ultra-low carbon steel, wherein the casting is carried out while supplying carbon from the outside so that the content becomes higher than 0.01% by weight . Where the above
Contains carbon when casting while supplying carbon from the part
Casting while supplying carbon from the mold flux
And supply carbon by wire containing carbon
It is also characterized by casting while.

【0008】[0008]

【作用】以下、本発明の作用を詳細に説明する。本発明
者らは、従来の技術における前記問題点を解決すべく、
まず、連続鋳造したスラブ鋳片を加熱した際に生じる、
酸化スケールの生成挙動を詳細に調査した。
The function of the present invention will be described in detail below. In order to solve the above problems in the prior art, the present inventors have
First, it occurs when heating the continuously cast slab slab,
The formation behavior of oxide scale was investigated in detail.

【0009】図1(a)はチタン添加極低炭素鋼(C:
0.0015重量%,Ti:0.05重量%)であり、
表層の酸化スケールに起因した表面疵が少ない。図1
(b)はアルミキルド低炭素鋼(C:0.05重量%)
を、1200℃で120分間加熱した後の、表層酸化ス
ケールの状況を模式的に示したものである。なお、加熱
炉内の雰囲気中の酸素濃度は3%とした。なお、以下の
本文中での(a)はチタン添加極低炭素鋼を表わし、同
様に(b)はアルミキルド鋼を表わす。
FIG. 1 (a) is a titanium-added ultra-low carbon steel (C:
0.0015% by weight, Ti: 0.05% by weight),
There are few surface defects due to the oxide scale on the surface. Figure 1
(B) Aluminum killed low carbon steel (C: 0.05% by weight)
Is a schematic view showing the state of the surface oxide scale after heating at 1200 ° C. for 120 minutes. The oxygen concentration in the atmosphere in the heating furnace was 3%. In the text below, (a) represents a titanium-added ultra-low carbon steel, and (b) similarly represents an aluminum killed steel.

【0010】(b)のアルミキルド低炭素鋼の場合、表
面スケールの他に地鉄側表層のC濃度が低下した脱炭層
が形成されるのが特徴である。一方、(a)のチタン添
加極低炭素鋼の場合、地鉄側表層の脱炭層の形成は顕著
ではなく、これに代わって表層の粒界や一部粒内が、局
部的に酸化されているのが特徴である。この局部的に酸
化されている部分の成分分析を行った結果、これらは主
に鋼中のチタンが酸化されたものであることが判明し
た。
The aluminum-killed low carbon steel of (b) is characterized in that a decarburized layer in which the C concentration in the surface layer on the base metal side is reduced is formed in addition to the surface scale. On the other hand, in the case of the titanium-added ultra-low carbon steel of (a), the formation of the decarburized layer on the surface side of the base metal is not remarkable, and instead, the grain boundary of the surface layer or a part of the grain is locally oxidized. The feature is that As a result of the compositional analysis of this locally oxidized portion, it was found that these were mainly the titanium in the steel that was oxidized.

【0011】図2は、地鉄側表層のビッカース硬度を測
定した結果である。(b)はアルミキルド低炭素鋼の場
合であり、内部と比較して表層の硬度が低下する傾向に
ある。これは、前記した表層の脱炭層の形成によるもの
と推定される。一方、(a)はチタン添加極低炭素鋼の
場合であり、逆に内部よりも表層の硬度が上昇する傾向
にある。これは、前記した表層のチタンの粒界あるいは
一部粒内での局部酸化によるものと推定される。
FIG. 2 shows the results of measuring the Vickers hardness of the surface layer on the base metal side. (B) is the case of aluminum killed low carbon steel, and the hardness of the surface layer tends to be lower than that of the inside. It is presumed that this is due to the formation of the decarburized surface layer. On the other hand, (a) is the case of a titanium-added ultra-low carbon steel, and on the contrary, the hardness of the surface layer tends to be higher than that of the inside. It is presumed that this is due to local oxidation at the grain boundary of titanium on the surface layer or in a part of grain.

【0012】以上のことから、圧延前のスラブ加熱時に
生成した酸化スケール起因の表面疵が発生しやすい
(a)のチタン添加極低炭素鋼と、同酸化スケール起因
の表面疵が少ない(b)のアルミキルド低炭素鋼では、
スラブ加熱時の酸化スケール、特に地鉄側表層のいわゆ
るサブスケールの生成挙動に大きな差異があることがわ
かる。
From the above, the titanium-added ultra-low carbon steel of (a), which is likely to cause surface flaws due to the oxide scale generated during heating of the slab before rolling, and the surface flaw due to the same oxide scale are small (b). Of aluminum killed low carbon steel,
It can be seen that there is a large difference in the formation behavior of oxide scales during slab heating, especially so-called subscales on the surface layer of the base metal.

【0013】つまり、(a)のチタン添加極低炭素鋼で
は表層近傍の粒界、あるいは一部粒内でのチタン酸化物
は、脱スケール処理(テスケーリング)後も表層に残留
するため、酸化スケール起因の表面疵が発生しやすくな
るものと考えられる。また、これらの酸化物の生成によ
り表層の硬度が局部的に増大することで、加工性が低下
することも、圧延時の酸化スケール起因の表面疵の発生
を助長しているものと推定される。
That is, in the titanium-added ultra-low carbon steel of (a), the titanium oxide in the grain boundaries near the surface layer or in some grains remains in the surface layer even after the descaling treatment (the scaling), and therefore is oxidized. It is considered that surface defects due to scale are likely to occur. It is also presumed that the surface layer hardness locally increases due to the formation of these oxides, resulting in a decrease in workability, which also promotes the generation of surface defects due to the oxide scale during rolling. .

【0014】このような、鋼中元素Mの酸化反応は、一
般的に次式のように表される。
Such an oxidation reaction of the element M in steel is generally represented by the following equation.

【0015】[0015]

【数1】 [Equation 1]

【0016】ここで、m,nは化学量論的な係数。ま
た、このときの、酸素1モル当たりの生成自由エネルギ
ー変化ΔGは、次式のように表される。
Here, m and n are stoichiometric coefficients. Further, the change in free energy of formation ΔG per mol of oxygen at this time is expressed by the following equation.

【0017】[0017]

【数2】 [Equation 2]

【0018】ここで、ΔGO は標準生成自由エネルギー
変化、Rは気体定数、Tは温度、aX はX成分の活量、
O2は酸素ポテンシアルである。また、ΔGが負の大き
な値をとるほど酸化物の生成傾向は強くなる。(2)式
より、酸化物の生成自由エネルギー変化ΔGは、鋼中の
成分の活量と酸素ポテンシアル、言い換えると、鋼中の
成分濃度と雰囲気中の酸素分圧に依存することがわか
る。
Where ΔG O is the standard free energy of formation change, R is the gas constant, T is the temperature, a X is the activity of the X component,
p O2 is oxygen potential. Also, the larger the negative value of ΔG, the stronger the tendency of oxide formation. From equation (2), it can be seen that the change in free energy of formation of oxide ΔG depends on the activity of the components in the steel and the oxygen potential, in other words, the concentration of the components in the steel and the oxygen partial pressure in the atmosphere.

【0019】表1は、雰囲気中の酸素分圧をスラブ加熱
炉中と、ほぼ同等な0.04atm(酸素濃度4%)と
仮定して、前記(a)チタン添加極低炭素鋼と(b)ア
ルミキルド低炭素鋼における、酸化物の生成自由エネル
ギー変化を試算した結果である。これより、(b)アル
ミキルド低炭素鋼では、地鉄の酸化よりも鋼中のCの酸
化傾向の方が強く表層の脱炭反応が起こりやすいことが
推察される。
Table 1 assumes that the oxygen partial pressure in the atmosphere is 0.04 atm (oxygen concentration 4%), which is almost the same as that in the slab heating furnace, and the (a) titanium-added ultra-low carbon steel (b) is used. ) This is the result of trial calculation of change in free energy of oxide formation in aluminum-killed low carbon steel. From this, it can be inferred that in the (b) aluminum-killed low carbon steel, the oxidation tendency of C in the steel is stronger than the oxidation of the base iron, and the decarburization reaction of the surface layer is likely to occur.

【0020】一方、(a)チタン添加極低炭素鋼の場
合、地鉄の酸化よりも鋼中のCの酸化傾向の方が弱く表
層の脱炭反応が起こりにくいこと、および、地鉄の酸化
よりもチタンの酸化傾向の方が強くチタンが優先酸化さ
れやすいことがわかる。同様の計算より、チタンが地鉄
よりも優先酸化されうる限界濃度は0.0002重量%
程度と見積もられ、工業的には極低炭素鋼に添加される
0.005〜0.150重量%の範囲では前記チタンの
優先酸化が起こり得る。
On the other hand, in the case of (a) titanium-added ultra-low carbon steel, the oxidation tendency of C in the steel is weaker than the oxidation of base iron, and the decarburization reaction of the surface layer is less likely to occur, and the oxidation of base iron It can be seen that the oxidation tendency of titanium is stronger than that of titanium and the titanium is more likely to be preferentially oxidized. From the same calculation, the limit concentration at which titanium can be preferentially oxidized over base iron is 0.0002% by weight.
It is estimated that the titanium is industrially added, and the titanium is preferentially oxidized in the range of 0.005 to 0.150% by weight, which is added to the ultra-low carbon steel.

【0021】[0021]

【表1】 [Table 1]

【0022】また、図3は鋼中のC濃度とCOの生成自
由エネルギー変化の関係を試算した結果である。ここで
は、酸素分圧は0.04atm,CO分圧は0.01a
tmと仮定して計算した。これより、C濃度が約0.0
1重量%以上では地鉄の酸化よりもCの酸化傾向の方が
強く脱炭反応が起こりやすいが、C濃度が約0.01重
量%以下では地鉄の酸化よりもCの酸化傾向の方が弱
く、脱炭反応が起こりにくくなることが推察される。こ
れは、C濃度の異なる種々のスラブ鋳片を加熱した場合
の表層の脱炭層の生成傾向とほぼ一致する。このよう
に、スラブ加熱時の酸化スケール、特にサブスケール生
成挙動が鋼種によって異なることが、熱力学的な検討結
果からも半定量的に説明することができる。
FIG. 3 shows the results of trial calculation of the relationship between the C concentration in steel and the change in free energy of formation of CO. Here, the oxygen partial pressure is 0.04 atm and the CO partial pressure is 0.01 a.
It was calculated assuming tm. From this, the C concentration is about 0.0
If it is 1% by weight or more, the deoxidization reaction tends to occur more easily than that of base iron, and if the concentration of C is less than about 0.01% by weight, it tends to oxidize C rather than the oxidation of base iron. It is presumed that the decarburization reaction is weak and that the decarburization reaction is unlikely to occur. This is almost in agreement with the formation tendency of the decarburized layer on the surface layer when various slab slabs having different C concentrations are heated. Thus, it can be explained semi-quantitatively from the results of thermodynamic studies that the oxide scale, especially the subscale formation behavior during slab heating differs depending on the steel type.

【0023】そこで、本発明者らは、鋼中のC濃度と圧
延後のスケール系表面疵の発生状況との関係について調
査した。図4は、チタンを0.05重量%含有する鋼の
C濃度を変えて、圧延後のスケール系表面疵の発生状況
を調査した結果である。なお、表面疵発生率は、冷延コ
イルより1m長さのサンプルを抜き取り採取した時の、
全抜き取り枚数に対するスラブ加熱時の酸化スケール起
因表面欠陥が検出された枚数の割合(%)である。前記
の圧延前のスラブ加熱時に生成するチタンの地鉄側表層
での粒界および一部粒内での局部酸化は、鋼中のC濃度
の増大とともに軽微になっていき、特にC濃度が約0.
01重量%より多い場合の脱炭反応が顕著な領域では表
面疵への影響としては、工業的にはほとんど無害である
ことがわかった。
Therefore, the present inventors investigated the relationship between the C concentration in steel and the occurrence of scale-based surface flaws after rolling. FIG. 4 shows the results of investigating the occurrence of scale-based surface flaws after rolling by changing the C concentration of steel containing 0.05% by weight of titanium. In addition, the surface flaw generation rate is obtained by sampling a 1 m long sample from the cold rolled coil,
It is the ratio (%) of the number of detected surface defects due to oxide scale during slab heating to the total number of extracted samples. The local oxidation of titanium generated during the heating of the slab before rolling at the grain boundary and a part of the grain in the surface layer on the base steel side becomes slight as the C concentration in the steel increases, and particularly the C concentration is about 0.
It was found that, in the region where the decarburization reaction was remarkable when the amount was more than 01% by weight, the effect on the surface flaw was almost harmless industrially.

【0024】次に、本発明者らは、スラブ鋳片の表層の
鋼中C濃度を0.01重量%以上とし、前記脱炭反応を
促進させることで、圧延前のスラブ加熱時に生成するチ
タンの地鉄側表層での粒界および一部粒内での局部酸化
に起因する表面疵を低減させる方法について、検討を積
み重ねた。その結果、連続鋳型内に鋳片の厚み方向に横
切る直流磁束を全幅に亘って付与し、該直流磁束によっ
て鋳型幅方向に形成される静磁場帯の下側に前記極低炭
素鋼を注入し、かつ、該静磁場帯の上側の溶鋼の炭素含
有量が0.01重量%以上になるように、外部より炭素
を供給しながら鋳造することで前記課題を解決できるこ
とを知見した。
Next, the present inventors set the C concentration in the steel of the surface layer of the slab slab to 0.01% by weight or more to promote the decarburization reaction, thereby producing titanium produced during heating of the slab before rolling. The studies were repeated on the method of reducing the surface defects caused by the local oxidation in the grain boundary and some grain in the surface layer of the steel. As a result, a DC magnetic flux across the width of the cast piece in the continuous mold is applied over the entire width, and the ultra-low carbon steel is injected below the static magnetic field band formed in the mold widthwise direction by the DC magnetic flux. It was also found that the above problems can be solved by casting while supplying carbon from the outside so that the carbon content of the molten steel on the upper side of the static magnetic field band is 0.01% by weight or more.

【0025】この方法では、まず、連続鋳型内に鋳片の
厚み方向に横切る直流磁束を全幅に亘って付与し、該直
流磁束によって鋳型幅方向に形成される静磁場帯の下側
に、耐火物製のノズル等で溶鋼を注入することで、鋳型
プール内の流動が該静磁場帯によって電磁的に制動さ
れ、該静磁場帯の上側には凝固シェルとして消費される
溶鋼量に見合う量の溶鋼が、該静磁場帯の下側から供給
されるのみで、該静磁場帯の上側から下側への溶鋼の供
給が抑制される。つぎに、該静磁場帯の上側の溶鋼に外
部よりCを所要量に見合うように供給すれば、該静磁場
帯の上側で形成される凝固シェルのC濃度は高く、その
後該静磁場の下側で形成される凝固シェルのC濃度が低
い鋳片、すなわち、表面のみがC濃度が高く内部はC濃
度が低い極低炭素鋼で構成されたいわゆる複層鋳片が得
られることになる。
According to this method, first, a DC magnetic flux that traverses the thickness direction of the slab is applied across the entire width in the continuous mold, and the fireproof is applied to the lower side of the static magnetic field band formed by the DC magnetic flux in the mold width direction. By injecting the molten steel with a material-made nozzle or the like, the flow in the mold pool is electromagnetically damped by the static magnetic field zone, and the upper side of the static magnetic field zone has an amount of molten steel that is consumed as a solidification shell. Only the molten steel is supplied from the lower side of the static magnetic field band, and the supply of the molten steel from the upper side to the lower side of the static magnetic field band is suppressed. Next, if C is supplied to the molten steel above the static magnetic field zone from the outside so as to meet the required amount, the C concentration of the solidified shell formed above the static magnetic field zone will be high, and after that A slab having a low C concentration in the solidified shell formed on the side, that is, a so-called multi-layer slab made of ultra-low carbon steel having a high C concentration only on the surface and a low C concentration inside is obtained.

【0026】本発明者らは、該静磁場帯の上側溶鋼への
Cの供給方法について、検討を積み重ね、鋼の連続鋳造
の際に鋳片と鋳型間の潤滑剤や、鋳型内溶鋼の保温剤等
として使用されるモールドフラックスのC濃度を高くし
て、鋳型内溶鋼の湯面上部から供給する方法や、Cを内
部に含有した合金添加用のワイヤーを溶鋼中に浸漬溶解
させる方法により工業的に安定でかつ安価にできること
を知見した。
The inventors of the present invention have made extensive studies on the method of supplying C to the upper molten steel in the static magnetic field zone, and in the continuous casting of steel, the lubricant between the slab and the mold, and the heat retention of the molten steel in the mold. By increasing the C concentration of the mold flux used as an agent and supplying it from the upper surface of the molten steel in the mold, or by dipping and melting an alloy-adding wire containing C in the molten steel We found that it can be made stable and inexpensive.

【0027】さらに、本発明者らは、圧延後の製品の材
質について調査を行い、本発明による複層型の極低炭素
鋼と従来の単層型の極低炭素鋼の材質特性に大きな差が
ないことを確認した。これは、鋳片の極表層のみC濃度
を高めただけでは、全体の鋳片の特性には大きな影響を
およぼさないことを意味している。しかし、表層のC濃
度が高すぎると、表面割れが起こりやすくなるなどの問
題も発生するため、表面のC濃度は現実的には表面割れ
の起こりにくい0.20重量%以下に制御することが望
ましい。
Further, the inventors of the present invention investigated the material properties of the product after rolling, and showed a large difference in the material properties between the multi-layer ultra low carbon steel according to the present invention and the conventional single layer ultra low carbon steel. It was confirmed that there was no. This means that merely increasing the C concentration only in the extreme surface layer of the slab does not have a great influence on the properties of the entire slab. However, if the C concentration in the surface layer is too high, problems such as surface cracking tend to occur. Therefore, it is practically possible to control the surface C concentration to 0.20% by weight or less where surface cracking does not easily occur. desirable.

【0028】[0028]

【実施例】図5(a)は連続鋳型内に静磁場発生装置
(直流電磁石)を設置した連続鋳造装置を模式的に示し
た。これによって形成される静磁場の下側に表2に示し
た化学成分を有するチタン添加極低炭素鋼を耐火物製の
浸漬ノズルを用いて注入した。さらに、該静磁場の上側
の溶鋼に(A)Cを5重量%含有したモールドフラック
スにより、あるいは、(B)Cを10重量%含有した合
金添加ワイヤーの供給により、該溶鋼のC濃度が0.0
1重量%以上になるようにした。
EXAMPLE FIG. 5 (a) schematically shows a continuous casting apparatus in which a static magnetic field generator (DC electromagnet) is installed in a continuous mold. Under the static magnetic field thus formed, a titanium-added ultra-low carbon steel having the chemical composition shown in Table 2 was injected using a refractory immersion nozzle. Further, by supplying a mold flux containing 5% by weight of (A) C to the molten steel above the static magnetic field, or by supplying an alloy-added wire containing (B) C of 10% by weight, the C concentration of the molten steel is reduced to 0. .0
It was made to be 1% by weight or more.

【0029】このときの主要な鋳造条件は、鋳込サイズ
=250mm厚×1200mm幅、鋳造速度Vc=1m
/min、タンディッシュでの溶鋼加熱度ΔT=25〜
45℃である。静磁場の磁束密度は0.5Tとした。鋳
型の長さは900mmで、静磁場帯の位置(直流電磁石
の鉄芯位置)は鋳型上端から250〜450mmであ
る。また、浸漬ノズルは図5(a)に示すような2孔型
のノズルを用い、吐出孔の上端位置が鋳型上端から50
0mmになるように設定した。なお、図5(b)は鋳造
鋳片の横断面図を示したものである。
The main casting conditions at this time are: casting size = 250 mm thickness × 1200 mm width, casting speed Vc = 1 m
/ Min, degree of molten steel heating in tundish ΔT = 25 ~
45 ° C. The magnetic flux density of the static magnetic field was 0.5T. The length of the mold is 900 mm, and the position of the static magnetic field band (the position of the iron core of the DC electromagnet) is 250 to 450 mm from the upper end of the mold. As the immersion nozzle, a two-hole type nozzle as shown in FIG. 5A is used, and the upper end position of the discharge hole is 50
It was set to be 0 mm. Note that FIG. 5B shows a cross-sectional view of the cast slab.

【0030】[0030]

【表2】 [Table 2]

【0031】鋳造後のスラブは雰囲気中の酸素濃度が3
〜4%のスラブ加熱炉にて、1200℃で約2時間の加
熱を行った後熱間圧延し、さらに冷間圧延した後表面性
状を検査した。表3は、スラブ加熱時の酸化スケールに
起因するスケール系表面疵の発生率を調査した結果であ
り、本発明例では前記表面疵の発生率が大幅に低減し製
品の歩留まりが格段と向上した。
The slab after casting has an oxygen concentration of 3 in the atmosphere.
After heating at 1200 ° C. for about 2 hours in a slab heating furnace of ˜4%, hot rolling was performed, and further cold rolling was performed, and then the surface texture was inspected. Table 3 shows the results of the investigation of the occurrence rate of scale-based surface flaws due to the oxide scale during slab heating. In the present invention example, the occurrence rate of the surface flaws was significantly reduced and the product yield was significantly improved. .

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【発明の効果】以上述べたように、本発明によれば、ス
ラブ加熱時の酸化スケール起因の表面疵の少ないチタン
添加極低炭素鋼の工業的に安定かつ安価な製造が可能と
なる。
As described above, according to the present invention, it is possible to industrially manufacture a titanium-added ultra-low carbon steel with few surface defects due to oxide scale during slab heating, which is stable and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)チタン添加極低炭素鋼と(b)アルミキ
ルド低炭素鋼のスラブ加熱時の表層酸化スケールの生成
状況を模式的に示した図
FIG. 1 is a diagram schematically showing the formation of surface oxide scale during slab heating in (a) titanium-added ultra-low carbon steel and (b) aluminum-killed low-carbon steel.

【図2】地鉄側表層のビッカース硬度を測定した結果を
示す図
FIG. 2 is a diagram showing the results of measuring the Vickers hardness of the surface layer on the ground iron side.

【図3】鋼中のC濃度とCOの生成自由エネルギー変化
の関係を試算した結果を示す図
FIG. 3 is a diagram showing a result of trial calculation of a relationship between a C concentration in steel and a change in free energy of CO formation.

【図4】C濃度と圧延後のスケール系表面疵の発生状況
の関係を示す図
FIG. 4 is a diagram showing the relationship between the C concentration and the occurrence status of scale-based surface flaws after rolling.

【図5】連鋳鋳型内に静磁場発生装置(直流電磁石)を
設置した連続鋳造装置とこれを用いた本発明例を示す模
式図で(a)は側面図、(b)は鋳片横断面図
5A and 5B are schematic views showing a continuous casting apparatus in which a static magnetic field generator (DC electromagnet) is installed in a continuous casting mold and an example of the present invention using the same. FIG. 5A is a side view, and FIG. Plan

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B22D 11/115 B22D 11/115 B (56)参考文献 特開 平4−313447(JP,A) 特開 平4−313448(JP,A) 特開 昭56−68562(JP,A) 特開 平3−243245(JP,A) 特開 昭51−107234(JP,A) 特開 平7−178521(JP,A) 特開 昭63−108947(JP,A) 特開 平4−279249(JP,A) 特開 平4−314844(JP,A) 特公 平3−20295(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B22D 11/00 B22D 11/04 311 B22D 11/108 B22D 11/115 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI B22D 11/115 B22D 11/115 B (56) References JP-A-4-313447 (JP, A) JP-A-4-313448 ( JP, A) JP 56-68562 (JP, A) JP 3-243245 (JP, A) JP 51-107234 (JP, A) JP 7-178521 (JP, A) JP Sho 63-108947 (JP, A) JP 4-279249 (JP, A) JP 4-314844 (JP, A) JP 3-20295 (JP, B2) (58) Fields investigated (Int .Cl. 7 , DB name) B22D 11/00 B22D 11/04 311 B22D 11/108 B22D 11/115

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼中の炭素含有量が0.01重量%以下
で、かつ、チタンを0.005〜0.150重量%の範
囲で添加した極低炭素鋼を連続鋳造するにあたり、連鋳
鋳型内に鋳片の厚み方向に横切る直流磁束を全幅に亘っ
て付与し、該直流磁束によって鋳型幅方向に形成される
静磁場帯の下側に前記極低炭素鋼を注入し、かつ、該静
磁場帯の上側の溶鋼の炭素含有量が0.01重量%より
高くなるように、外部より炭素を供給しながら鋳造する
ことを特徴とするチタン添加極低炭素鋼の連続鋳造方
法。
1. Continuous casting in continuous casting of ultra-low carbon steel having a carbon content of 0.01% by weight or less and titanium added in the range of 0.005 to 0.150% by weight. Direct current magnetic flux across the width in the thickness direction of the slab in the mold is applied over the entire width, the ultra-low carbon steel is injected below the static magnetic field band formed in the mold width direction by the direct current magnetic flux, and, A continuous casting method for a titanium-added ultra-low carbon steel, which comprises casting while supplying carbon from the outside so that the carbon content of the molten steel above the static magnetic field band is higher than 0.01% by weight.
【請求項2】 鋼中の炭素含有量が0.01重量%以下
で、かつ、チタンを0.005〜0.150重量%の範
囲で添加した極低炭素鋼を連続鋳造するにあたり、連鋳
鋳型内に鋳片の厚み方向に横切る直流磁束を全幅に亘っ
て付与し、該直流磁束によって鋳型幅方向に形成される
静磁場帯の下側に前記極低炭素鋼を注入し、かつ、該静
磁場帯の上側の溶鋼の炭素含有量が0.01重量%より
高くなるように、炭素を含有したモールドフラックスよ
り炭素を供給しながら鋳造することを特徴とする請求項
1記載のチタン添加極低炭素鋼の連続鋳造方法。
2. Continuous casting in continuous casting of ultra-low carbon steel having a carbon content of 0.01% by weight or less and titanium added in the range of 0.005 to 0.150% by weight. Direct current magnetic flux across the width in the thickness direction of the slab in the mold is applied over the entire width, the ultra-low carbon steel is injected below the static magnetic field band formed in the mold width direction by the direct current magnetic flux, and, The titanium-added electrode according to claim 1, wherein casting is performed while supplying carbon from a mold flux containing carbon so that the carbon content of the molten steel above the static magnetic field band is higher than 0.01% by weight. Continuous casting method for low carbon steel.
【請求項3】 鋼中の炭素含有量が0.01重量%以下
で、かつ、チタンを0.005〜0.150重量%の範
囲で添加した極低炭素鋼を連続鋳造するにあたり、連鋳
鋳型内に鋳片の厚み方向に横切る直流磁束を全幅に亘っ
て付与し、該直流磁束によって鋳型幅方向に形成される
静磁場帯の下側に前記極低炭素鋼を注入し、かつ、該静
磁場帯の上側の溶鋼の炭素含有量が0.01重量%より
高くなるように、炭素を含有したワイヤーにより炭素を
供給しながら鋳造することを特徴とする請求項1記載の
チタン添加極低炭素鋼の連続鋳造方法。
3. Continuous casting in continuous casting of an ultra-low carbon steel having a carbon content of 0.01% by weight or less and titanium added in the range of 0.005 to 0.150% by weight. Direct current magnetic flux across the width in the thickness direction of the slab in the mold is applied over the entire width, the ultra-low carbon steel is injected below the static magnetic field band formed in the mold width direction by the direct current magnetic flux, and, The titanium-added extra low according to claim 1, wherein casting is performed while supplying carbon with a wire containing carbon so that the carbon content of the molten steel above the static magnetic field band is higher than 0.01% by weight. Continuous casting method for carbon steel.
JP06891595A 1995-03-03 1995-03-03 Continuous casting method of titanium-added ultra low carbon steel Expired - Fee Related JP3388933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06891595A JP3388933B2 (en) 1995-03-03 1995-03-03 Continuous casting method of titanium-added ultra low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06891595A JP3388933B2 (en) 1995-03-03 1995-03-03 Continuous casting method of titanium-added ultra low carbon steel

Publications (2)

Publication Number Publication Date
JPH08243687A JPH08243687A (en) 1996-09-24
JP3388933B2 true JP3388933B2 (en) 2003-03-24

Family

ID=13387435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06891595A Expired - Fee Related JP3388933B2 (en) 1995-03-03 1995-03-03 Continuous casting method of titanium-added ultra low carbon steel

Country Status (1)

Country Link
JP (1) JP3388933B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045303A1 (en) * 2003-08-29 2005-03-03 Jfe Steel Corporation, A Corporation Of Japan Method for producing ultra low carbon steel slab

Also Published As

Publication number Publication date
JPH08243687A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
JP3276151B2 (en) Twin roll continuous casting method
KR101322703B1 (en) A steel product with a high austenite grain coarsening temperature, and method for making the same
EP1589124B1 (en) High strength high toughness high carbon steel wire rod and process for producing the same
JP4582916B2 (en) Method for twin-roll continuous casting of ferritic stainless steel without microcracks
KR100899706B1 (en) Method for Producing Austenitic Stainless Steel Sheet Using Strip Caster
JP3388933B2 (en) Continuous casting method of titanium-added ultra low carbon steel
JP3190319B2 (en) Twin roll continuous casting machine
EP0148957B1 (en) Steel plated with molten aluminum excellent in high-temperature oxidation resistance and high-temperature strength and process fo r its production
JP3388937B2 (en) Manufacturing method of ultra-low carbon steel
JP3115502B2 (en) Continuous casting method of titanium-added ultra low carbon steel
JP2000087185A (en) Hot rolled steel plate excellent in surface characteristic and scale adhesion, and its manufacture
KR20000031083A (en) Process for producing low carbon wire rod for cold rolling which has excellent scale property
JPH11179489A (en) Production of steel wire rod
JPH02247052A (en) Method for continuously casting cast slab for steel strip
JP2761179B2 (en) Method for producing thin steel sheet with extremely good surface properties
JP3775178B2 (en) Thin steel plate and manufacturing method thereof
JP3180702B2 (en) Continuous casting method
JP2831297B2 (en) Manufacturing method of stainless steel strip with excellent surface properties
JP3091792B2 (en) Method of manufacturing a stepped shaft
JPH11264022A (en) Production of steel sheet excellent in surface property
JPS62278225A (en) Production of high purity electromagnetic mild iron plate
JP2002307145A (en) Thin slab of austenitic stainless steel and twin roll type continuous casting method therefor
JP2004276042A (en) Method for continuously casting molten steel for non-oriented magnetic steel sheet and its cast slab
JPH02235551A (en) Production of steel sheet for enamel made by continuous casting having excellent resistance to surface breakage
JP2003105490A (en) Extralow carbon steel sheet having excellent surface property, and production method therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees