JP5045408B2 - Manufacturing method of continuous cast slab - Google Patents

Manufacturing method of continuous cast slab Download PDF

Info

Publication number
JP5045408B2
JP5045408B2 JP2007317811A JP2007317811A JP5045408B2 JP 5045408 B2 JP5045408 B2 JP 5045408B2 JP 2007317811 A JP2007317811 A JP 2007317811A JP 2007317811 A JP2007317811 A JP 2007317811A JP 5045408 B2 JP5045408 B2 JP 5045408B2
Authority
JP
Japan
Prior art keywords
slab
reduction
surface temperature
long side
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007317811A
Other languages
Japanese (ja)
Other versions
JP2009136909A (en
Inventor
真 鈴木
哲男 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007317811A priority Critical patent/JP5045408B2/en
Publication of JP2009136909A publication Critical patent/JP2009136909A/en
Application granted granted Critical
Publication of JP5045408B2 publication Critical patent/JP5045408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、連続鋳造鋳片の製造方法に関し、詳しくは、鋳片厚み中心部の中心偏析が軽微であり、且つ、鋳片上面側の鋳片厚の1/4位置付近の酸化物系非金属介在物が少ない鋼鋳片を製造することのできる、連続鋳造鋳片の製造方法に関するものである。   The present invention relates to a method for producing a continuous cast slab. More specifically, the center segregation at the center of the slab thickness is slight, and the non-oxide-based non-oxide near the slab thickness on the upper surface side of the slab. The present invention relates to a continuous casting slab manufacturing method capable of manufacturing a steel slab having few metal inclusions.

鋼の凝固現象では、炭素、燐、硫黄などの溶質元素は、凝固時の再分配により未凝固の液相側に濃化される。これがデンドライト樹間に形成されるミクロ偏析である。鋳片が凝固する際の凝固収縮や、連続鋳造機のロール間で発生するバルジング(「ロール間バルジング」と称す)などによって、鋳片中心部に空隙が形成されたり、負圧が生じたりすると、このミクロ偏析によって濃縮された溶鋼が流動し、鋳片中心部に集積して凝固する。このようにして形成された偏析スポットは、溶鋼の初期濃度に比べ格段に高濃度となっている。これを一般にマクロ偏析と呼び、その存在部位から、中心偏析と呼んでいる。   In the solidification phenomenon of steel, solute elements such as carbon, phosphorus and sulfur are concentrated on the unsolidified liquid phase side by redistribution during solidification. This is the microsegregation formed between dendrite trees. When a void is formed in the center of the slab or negative pressure is generated due to solidification shrinkage when the slab solidifies or bulging that occurs between rolls of a continuous casting machine (referred to as "bulging between rolls") The molten steel concentrated by this microsegregation flows, accumulates in the center of the slab and solidifies. The segregation spot formed in this way has a much higher concentration than the initial concentration of molten steel. This is generally called macrosegregation, and is called central segregation because of its existence site.

このような中心偏析は、一般に、鋼製品の品質を劣化させる。例えば、石油・天然ガス輸送用のラインパイプ材においては、サワーガスの作用により中心偏析を起点として水素誘起割れが発生する。また、飲料用の缶製品に用いられる深絞り材においては、成分の偏析により加工性に異方性が出現することもある。   Such central segregation generally degrades the quality of steel products. For example, in a line pipe material for oil / natural gas transportation, hydrogen-induced cracking occurs starting from central segregation due to the action of sour gas. Further, in deep drawn materials used for beverage can products, anisotropy may appear in workability due to segregation of components.

そのために、鋳造工程から圧延工程に至るまで、鋳片の中心偏析を低減する対策が多数提案されている。そのなかで、安価に且つ効果的に鋳片の中心偏析を低減する手段として、連続鋳造機内で、凝固末期の鋳片を鋳片の凝固収縮量に見合った圧下量で徐々に圧下する方法(以下、「軽圧下」と称す)が実施されている。この軽圧下技術は、圧下量が鋳片の凝固収縮量と熱収縮量とを加えた収縮量と同等の値となるように鋳片を徐々に圧下して未凝固相の体積を減少させ、鋳片中心部における空隙の形成を防止すると同時に濃化溶鋼の流動を防止し、これによって鋳片の中心偏析を軽減することを目的としている。   Therefore, many measures for reducing the center segregation of the slab have been proposed from the casting process to the rolling process. Among them, as a means to reduce the center segregation of the slab at low cost and effectively, a method of gradually reducing the slab at the end of solidification with a reduction amount corresponding to the solidification shrinkage amount of the slab in a continuous casting machine ( Hereinafter, this is referred to as “light reduction”). This light reduction technology reduces the volume of the unsolidified phase by gradually reducing the slab so that the reduction amount is equivalent to the shrinkage amount obtained by adding the solidification shrinkage amount and the heat shrinkage amount of the slab, The object is to prevent the formation of voids at the center of the slab and at the same time prevent the flow of concentrated molten steel, thereby reducing the center segregation of the slab.

この軽圧下技術として、例えば、特許文献1には、鋳片に軽圧下を付与するにあたり、鋳片表面温度を800〜900℃に制御しつつ、毎分0.3〜0.5%の歪速度の圧下力を鋳片に付与することが提案されている。また、特許文献2には、鋳片の液相線クレータエンド相当位置から固相線クレータエンド相当位置までの間の所定範囲で鋳片を一旦バルジングさせ、このバルジングの相当分を軽圧下するにあたり、鋳型直下から鋳片矯正点までの範囲の鋳片表面温度を1000℃以上に制御するとともに、前記矯正点から圧下開始位置までの鋳片表面温度を1000℃以下に制御することが提案されている。   As this light reduction technique, for example, in Patent Document 1, in applying light reduction to a slab, a slab surface temperature is controlled to 800 to 900 ° C., and a strain of 0.3 to 0.5% per minute is controlled. It has been proposed to apply a speed reduction force to the slab. Further, in Patent Document 2, the slab is temporarily bulged within a predetermined range between the position corresponding to the liquid phase crater end and the position corresponding to the solid phase crater end of the slab, and this bulging is lightly reduced. It has been proposed that the slab surface temperature in the range from directly under the mold to the slab correction point is controlled to 1000 ° C. or more, and the slab surface temperature from the correction point to the reduction start position is controlled to 1000 ° C. or less. Yes.

軽圧下技術では、200mm以上の厚みを有する鋳片の表面を圧下することにより、鋳片中心部の凝固界面にその圧下力を作用させているが、その圧下量の全てが厚み中心部の圧下に有効なわけではなく、鋳片の凝固した部分、つまり凝固シェルの強度・剛性などに応じて、付与した圧下力に対する凝固界面に働く圧下力の比率(この比率を「圧下効率」と称す)は、およそ10%から70%程度の範囲で変化する。特に、鋳片短辺の凝固シェルの影響が大きい。   In the light rolling technique, the rolling force is applied to the solidification interface at the center of the slab by rolling down the surface of the slab having a thickness of 200 mm or more. The ratio of the rolling force acting on the solidification interface to the applied rolling force, depending on the solidified part of the slab, that is, the strength and rigidity of the solidified shell (this ratio is called "rolling efficiency") Varies in the range of approximately 10% to 70%. In particular, the influence of the solidified shell on the short side of the slab is large.

鋳片の表面温度が低いなどの理由で、圧下効率が低いと、圧下力を付与しても、中心偏析の低減効果は十分には期待できない。それに加えて、圧下効率の低い状態で、それを補うために圧下量を増加させることは、連続鋳造機の鋳片支持ロール及びセグメントなどの構造物に負荷がかかり、設備的な不具合の原因や、ロールベアリングなどの設備寿命低下の原因になる。つまり、軽圧下技術では圧下効率が高くなる条件で鋳片を圧下することが重要となる。   If the rolling efficiency is low because the surface temperature of the slab is low, the effect of reducing the center segregation cannot be sufficiently expected even if a rolling force is applied. In addition, increasing the amount of reduction in order to compensate for this in a state where the reduction efficiency is low places a load on the structure such as the slab support roll and segments of the continuous casting machine, This will cause a reduction in the service life of equipment such as roll bearings. In other words, in the light reduction technique, it is important to reduce the slab under conditions that increase the reduction efficiency.

この観点から、上記従来技術を検証すると、上記特許文献1は、鋳片表面温度を800〜900℃に制御するとしているが、鋳片表面温度が低く、特に下限値の800℃近傍の場合には、鋳片の表面温度が低いことから、凝固シェルの強度が高く、鋳片圧下の効果は凝固シェルを変形させることに費やされることになり、中心偏析の発生する部位である鋳片厚み中心部における圧下効率は低下する。また、特許文献2は、軽圧下時の鋳片表面温度を1000℃以下に制御するとしているが、上限を定めているのみで下限値はなく、どのように制御するのか具体的でない。   From this point of view, when the above prior art is verified, the above-mentioned Patent Document 1 says that the slab surface temperature is controlled to 800 to 900 ° C., but the slab surface temperature is low, particularly in the vicinity of the lower limit of 800 ° C. Since the surface temperature of the slab is low, the strength of the solidified shell is high, and the effect of slab pressure reduction is spent on deforming the solidified shell, and the center of the slab thickness where the central segregation occurs The rolling efficiency at the part is lowered. Moreover, although patent document 2 is supposed to control the slab surface temperature at the time of light pressure to 1000 degrees C or less, there is no lower limit only by setting the upper limit, and it is not concrete how to control.

即ち、上記特許文献1〜2では、鋳片を軽圧下する場合に具体的にどのように鋳片表面温度を制御すべきかが明確でなく、改善の余地がある。   That is, in Patent Documents 1 and 2, it is not clear how the slab surface temperature should be controlled when the slab is lightly reduced, and there is room for improvement.

ところで、鋳片に含有される酸化物系非金属介在物(以下、単に「介在物」と記す)も前記水素誘起割れの原因となる。つまり、介在物の周囲に水素が濃化し、介在物を起点にして水素誘起割れが発生する。鋳型直下に1〜5m程度の垂直部を有し、その後、曲げ部及び曲げ戻し部を有する垂直曲げ型連続鋳造機(「垂直プログレッシブベンディング型連続鋳造機」とも称す)においては、連続鋳造機の形状の特性から、鋳片上面側のおよそ鋳片厚の1/4位置(以下、「1/4厚位置」と記す)付近に介在物が集積することが多く、この部位での水素誘起割れが問題となりやすい。   Incidentally, oxide-based nonmetallic inclusions (hereinafter simply referred to as “inclusions”) contained in the slab also cause the hydrogen-induced cracking. That is, hydrogen concentrates around the inclusions, and hydrogen-induced cracking occurs starting from the inclusions. In a vertical bending type continuous casting machine (also referred to as a “vertical progressive bending type continuous casting machine”) having a vertical portion of about 1 to 5 m directly under the mold and thereafter having a bending portion and a bending back portion, Due to the characteristics of the shape, inclusions often accumulate in the vicinity of ¼ position of the slab thickness on the upper surface side of the slab (hereinafter referred to as “1/4 thickness position”), and hydrogen-induced cracking at this part Is likely to be a problem.

従来、鋳片の介在物を浮上・分離させる対策として、鋳型直下の二次冷却帯において、鋳片に対して直流磁界を鋳片の厚み方向に印加し、溶鋼流動を抑制して溶鋼が鋳片未凝固相の奥深くまで侵入することを抑制する方法(例えば特許文献3を参照)や、鋳片幅方向に溶鋼を回転させる電磁攪拌装置を二次冷却帯に設置し、この電磁攪拌装置で溶鋼を幅方向に攪拌させて、溶鋼が鋳片未凝固相の奥深くまで侵入することを抑制する方法(例えば特許文献4を参照)が提案されている。   Conventionally, as a measure to float and separate the inclusions in the slab, a DC magnetic field is applied to the slab in the thickness direction of the slab in the secondary cooling zone directly below the mold to suppress the flow of the molten steel and the molten steel is cast. In the secondary cooling zone, a method for suppressing penetration of the unsolidified phase into the depth (for example, see Patent Document 3) and an electromagnetic stirrer for rotating the molten steel in the slab width direction are installed in the secondary cooling zone. There has been proposed a method (see, for example, Patent Document 4) in which molten steel is stirred in the width direction and the molten steel is prevented from penetrating deeply into the slab unsolidified phase.

しかしながら、静磁場発生装置や電磁攪拌装置を設置する場合には、設備費が必要であり、しかも、二次冷却帯に磁場発生装置を設置する際には、鋳片支持ロールの内部に電磁コイルを設置する、或いは、扁平形状などの特殊形状のコイルを設置するなどの対策が必要であり、設備費の上昇が避けられない。そのために、磁場発生装置を使用しなくても1/4厚位置付近の介在物を減少させることのできる手段が望まれていた。
特開昭63−252654号公報 特開2001−62551号公報 特開昭61−1459号公報 特開昭61−140356号公報
However, when installing a static magnetic field generator or electromagnetic stirrer, equipment costs are required, and when installing a magnetic field generator in the secondary cooling zone, an electromagnetic coil is placed inside the slab support roll. It is necessary to take measures such as installing a coil or a coil having a special shape such as a flat shape, and an increase in equipment cost is inevitable. Therefore, there has been a demand for means that can reduce inclusions near the 1/4 thickness position without using a magnetic field generator.
JP-A-63-252654 JP 2001-62551 A Japanese Patent Laid-Open No. 61-1459 Japanese Patent Laid-Open No. 61-140356

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳片厚み中心部の中心偏析が軽微であり、且つ、鋳片上面側の1/4厚位置付近の介在物が少ない鋼鋳片を安定して製造することのできる、連続鋳造鋳片の製造方法を提供することである。   The present invention has been made in view of the above circumstances. The object of the present invention is that the center segregation at the center portion of the slab thickness is slight, and inclusions in the vicinity of the ¼ thickness position on the upper surface side of the slab are present. It is an object of the present invention to provide a continuous casting slab manufacturing method capable of stably manufacturing a small number of steel slabs.

上記課題を解決するための第1の発明に係る連続鋳造鋳片の製造方法は、複数対の圧下ロールからなる軽圧下帯を備えた垂直曲げ型連続鋳造機を用い、鋳片の厚み中心部の固相率が0.4以下の時点から前記軽圧下帯にて0.6〜1.5mm/minの範囲内の圧下速度で鋳片の圧下を開始し、鋳片に圧下力を付与しながら軽圧下帯の範囲内で凝固完了させて鋼の連続鋳造鋳片を製造するに際し、鋳型直下の垂直部では鋳片長辺面の表面温度が800℃以下となるまで鋳片を冷却するとともに、前記垂直部に続く曲げ部以降で復熱させて鋳片長辺面の表面温度を900℃以上に確保し、鋳片長辺面の表面温度が900℃以上のままで前記軽圧下帯にて鋳片に圧下力を付与することを特徴とするものである。   The method for producing a continuous cast slab according to the first invention for solving the above-mentioned problem uses a vertical bending type continuous caster provided with a light reduction belt comprising a plurality of pairs of reduction rolls, and the thickness center portion of the slab From the time when the solid phase ratio of the steel sheet is 0.4 or less, the slab starts to be reduced at a reduction speed within the range of 0.6 to 1.5 mm / min in the light reduction zone, and a reduction force is applied to the slab. However, when producing a continuous cast slab of steel by completing solidification within the range of the light pressure lower zone, the slab is cooled until the surface temperature of the long side surface of the slab becomes 800 ° C. or less in the vertical portion immediately below the mold, After the bent portion that follows the vertical portion, reheating is performed to ensure the surface temperature of the long side surface of the slab at 900 ° C. or higher, and the surface temperature of the long side surface of the slab remains at 900 ° C. or higher in the light pressure zone. It is characterized by applying a rolling force.

第2の発明に係る連続鋳造鋳片の製造方法は、第1の発明において、前記曲げ部以降の鋳片長辺面の表面温度が900℃以上の状態で、ガイドロール群の鋳片厚み方向の間隔を広げて鋳片をバルジングさせ、バルジングさせた後に前記軽圧下帯にて鋳片に圧下力を付与することを特徴とするものである。   The method for producing a continuous cast slab according to the second invention is the method according to the first invention, wherein the surface temperature of the long side surface of the slab after the bent portion is 900 ° C. or more in the slab thickness direction of the guide roll group. The slab is bulged by widening the interval, and after bulging, a rolling force is applied to the slab at the light reduction zone.

本発明によれば、垂直曲げ型連続鋳造機の鋳型直下の垂直部において、鋳片長辺面の表面温度を800℃以下となるまで冷却するので、生成する凝固シェルの冷却速度が高まり、それによりデンドライト凝固組織が微細化されて、当該デンドライト凝固組織に捕捉される介在物が減少するとともに、捕捉される介在物のサイズが小さくなり、鋳片上面側の1/4厚位置付近の介在物を低減させることができる。また、一旦800℃以下まで冷却した後、垂直部に続く曲げ部以降で復熱させて鋳片長辺面の表面温度を900℃以上とし、鋳片長辺面の表面温度を900℃以上に保持した状態で鋳片に圧下力を付与するので、凝固シェルの変形抵抗は低く、圧下力は固界面に効率良く作用し、鋳片の中心偏析を大幅に低減することができる。これによって、近年の厳しい品質要求にも対処可能な鋳片を安定して製造することが可能となる。   According to the present invention, since the surface temperature of the long side surface of the slab is cooled to 800 ° C. or less in the vertical portion immediately below the mold of the vertical bending die continuous casting machine, the cooling rate of the solidified shell to be generated is increased, thereby The dendritic solidification structure is refined, and inclusions trapped in the dendritic solidification structure are reduced, and the size of the inclusions trapped is reduced. Inclusions near the ¼ thickness position on the upper surface side of the slab are removed. Can be reduced. Moreover, after cooling to 800 degrees C or less once, it reheats after the bending part following a perpendicular part, the surface temperature of the slab long side surface shall be 900 degreeC or more, and the surface temperature of the slab long side surface was kept at 900 degreeC or more Since the rolling force is applied to the slab in a state, the deformation resistance of the solidified shell is low, the rolling force acts efficiently on the solid interface, and the center segregation of the slab can be greatly reduced. This makes it possible to stably manufacture a slab that can cope with recent severe quality requirements.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明では、複数対の圧下ロールからなる軽圧下帯を備え、且つ、鋳型直下に1〜5m程度の垂直部を有し、その後、曲げ部及び曲げ戻し部を有する垂直曲げ型連続鋳造機で溶鋼を連続鋳造する際に、鋳型直下の垂直部において、鋳片長辺面を、その表面温度が鋳片長辺面幅方向全体にわたって800℃以下になるまで二次冷却水によって冷却する。これによって生成する凝固シェルの冷却速度が高まり、デンドライト凝固組織(「樹枝状晶」とも称す)が微細化され、凝固界面での隣り合うデンドライト樹枝の幹(「一次アーム」とも称す)と幹との間隔(「一次デンドライトアーム間隔」とも称す)が緻密化する。   In the present invention, a vertical bending type continuous casting machine having a light rolling belt composed of a plurality of pairs of rolling rolls, having a vertical portion of about 1 to 5 m directly under the mold, and thereafter having a bending portion and a bending back portion. When the molten steel is continuously cast, the long side surface of the slab is cooled with secondary cooling water in the vertical portion immediately below the mold until the surface temperature becomes 800 ° C. or less over the entire width direction of the slab long side surface. As a result, the cooling rate of the solidified shell generated is increased, the dendrite solidified structure (also referred to as “dendritic crystal”) is refined, and the trunk of the adjacent dendrite tree (also referred to as “primary arm”) and the trunk at the solidification interface. (Referred to also as “primary dendrite arm spacing”).

浸漬ノズルからの吐出流に伴って鋳片未凝固相の奥深くまで侵入した、溶鋼中に懸濁する介在物や気泡は、一次デンドライトアーム間隔に応じて凝固シェルへの捕捉のしやすさが変化する。これは、一次デンドライトアーム間隔は、通常、百ないし数百ミクロンの範囲であり、鋳片未凝固相の奥深くまで侵入する可能性のある介在物や気泡のサイズの上限とほぼ一致しており、介在物や気泡は、隣り合うデンドライト樹枝の幹と幹との間隙に捕捉されやすく、従って、一次デンドライトアーム間隔に応じて介在物や気泡の捕捉のされ方が変わることによる。つまり、一次デンドライトアーム間隔が狭いほど、捕捉される介在物や気泡は少なくなり、且つ小さくなる。   Inclusions and bubbles suspended in the molten steel that have penetrated deep into the unsolidified phase of the slab with the discharge flow from the immersion nozzle change the ease of trapping in the solidified shell according to the primary dendrite arm spacing. To do. This is because the primary dendrite arm spacing is typically in the range of one hundred to several hundred microns, which roughly matches the upper limit of inclusions and bubble sizes that can penetrate deep into the slab unsolidified phase, Inclusions and bubbles are likely to be trapped in the gap between the trunks of adjacent dendrite tree branches, and accordingly, the way in which inclusions and bubbles are trapped varies depending on the primary dendrite arm spacing. That is, the narrower the primary dendrite arm interval, the fewer inclusions and bubbles that are trapped.

鋳片に捕捉される介在物や気泡は、当然サイズが大きいほど鋼品質に対する悪影響が大きい。従って、垂直部において鋳片長辺面を800℃以下になるまで冷却することによって、生成するデンドライト樹枝の一次デンドライトアーム間隔を狭めることは、鋳片上面側の1/4厚位置付近に捕捉される介在物及び気泡が少なく、高品質の鋳片を製造する上で、極めて有効である。尚、凝固シェル厚みがおよそ1/4厚程度となる時点は、垂直部から曲げ部に移る位置あたりに該当する。換言すれば、垂直部から曲げ部に移る位置あたりで捕捉される介在物や気泡が、鋳片上面側の1/4厚位置付近の介在物集積帯を形成する。また、気泡には介在物が付着していることが多く、気泡の捕捉は介在物の捕捉と同等とみることができる。この気泡は、浸漬ノズルを流下する溶鋼中に吹き込まれるArガスである。   Inclusions and bubbles trapped in the slab naturally have a greater negative effect on steel quality as the size increases. Therefore, by cooling the long side surface of the slab in the vertical portion to 800 ° C. or less, narrowing the primary dendrite arm interval of the dendrite tree to be generated is captured in the vicinity of the ¼ thickness position on the upper surface side of the slab. There are few inclusions and bubbles, which is extremely effective in producing a high quality slab. In addition, the time when the solidified shell thickness becomes about 1/4 thickness corresponds to the position where the bent portion moves from the vertical portion. In other words, inclusions and bubbles trapped around the position moving from the vertical portion to the bent portion form an inclusion accumulation band near the ¼ thickness position on the upper surface side of the slab. In addition, inclusions are often attached to the bubbles, and trapping the bubbles can be regarded as equivalent to trapping inclusions. This bubble is Ar gas blown into the molten steel flowing down the immersion nozzle.

一方、凝固シェルの温度(凝固シェルの厚み方向平均温度)が低いと、鋳片短辺の凝固シェルの変形抵抗が高く、軽圧下帯で鋳片を圧下する際の圧下効率が低下し、中心偏析低減の効果が得られない。また、圧下効率の低い状態で、偏析低減に十分な圧下量を確保するために圧下量を増加させることは、連続鋳造機の鋳片支持ロール及びセグメントなどの構造物に過剰の負荷がかかり、設備的な不具合の原因や、ロールベアリングなどの設備寿命低下の原因になる。   On the other hand, when the temperature of the solidified shell (the average temperature in the thickness direction of the solidified shell) is low, the deformation resistance of the solidified shell on the short side of the slab is high, and the reduction efficiency when the slab is reduced in the light reduction zone decreases. The effect of reducing segregation cannot be obtained. Further, in order to ensure a sufficient amount of reduction for segregation reduction in a state where the reduction efficiency is low, an excessive load is applied to a structure such as a slab support roll and a segment of a continuous casting machine, This may cause equipment malfunctions and reduce the life of equipment such as roll bearings.

そこで、本発明においては、垂直部にて鋳片長辺面の表面温度が800℃以下となるまで冷却した鋳片を、曲げ部以降で二次冷却水による冷却を弱めて復熱させ、鋳片長辺面の表面温度を900℃以上に保持させ、そして、鋳片長辺面の表面温度が900℃以上のままで、軽圧下帯にて鋳片に圧下力を付与する。鋳片の温度が高くなることで、凝固シェルの変形抵抗は低下し、圧下効率が向上して中心偏析が軽減される。   Therefore, in the present invention, the slab cooled at the vertical part until the surface temperature of the long side surface of the slab becomes 800 ° C. or lower is reheated by weakening the cooling with the secondary cooling water after the bent part, The surface temperature of the side surface is maintained at 900 ° C. or higher, and a rolling force is applied to the slab at the light reduction zone while the surface temperature of the long side surface of the slab remains at 900 ° C. or higher. By increasing the temperature of the slab, the deformation resistance of the solidified shell is lowered, the rolling efficiency is improved, and the center segregation is reduced.

軽圧下を付与する際に、凝固完了位置を鋳片幅方向で均一化させる、或いは、鋳片短辺凝固シェルの変形抵抗を回避させるなどによって軽圧下の効率を高める目的で、鋳片を一旦意図的にバルジングさせ、その後、軽圧下を行う場合がある。この場合も、鋳片凝固シェルの温度が低いままであると、所望するバルジング量が得られ難く、バルジングさせる効果が十分に得られない。   For the purpose of increasing the efficiency of light reduction by making the solidification completion position uniform in the width direction of the slab or avoiding deformation resistance of the slab short side solidification shell when applying light reduction. In some cases, bulging is performed intentionally and then light reduction is performed. Also in this case, if the temperature of the slab solidified shell remains low, it is difficult to obtain the desired bulging amount, and the effect of bulging cannot be sufficiently obtained.

本発明では、鋳片長辺面を一旦800℃以下まで冷却するが、その後900℃以上に復熱させるので、意図的に鋳片を一旦バルジングさせる場合にも、所望するバルジング量を容易に得ることができる。即ち、本発明の好ましい形態として、鋳片を意図的に一旦バルジングさせる技術を採用することができる。   In the present invention, the long side surface of the slab is once cooled to 800 ° C. or lower, and then reheated to 900 ° C. or higher. Therefore, even when the slab is intentionally bulged once, a desired bulging amount can be easily obtained. Can do. That is, as a preferred embodiment of the present invention, a technique for intentionally bulging the slab once can be employed.

本発明では、上記のように、垂直曲げ型連続鋳造機にて未凝固鋳片を軽圧下する際に、鋳片長辺面の表面温度を所定の値に制御するので、介在物の捕捉が抑制され、鋳片上面側の1/4厚位置付近の介在物を低減することができると同時に、軽圧下による濃化溶鋼の流動抑制効果が有効に作用し、中心偏析を効果的に低減することができる。   In the present invention, as described above, the surface temperature of the long side surface of the slab is controlled to a predetermined value when the unsolidified slab is lightly reduced by the vertical bending die continuous casting machine, so that the trapping of inclusions is suppressed. In addition, it is possible to reduce inclusions near the ¼ thickness position on the upper surface side of the slab, and at the same time, the effect of suppressing the flow of the concentrated molten steel due to light pressure effectively acts, effectively reducing the center segregation. Can do.

尚、本発明においては、軽圧下を開始する時点は鋳片の厚み中心部の固相率が0.4以下の時点であり、且つ、軽圧下帯の範囲内で凝固を完了させる必要があり、従って、これらの条件を満足させるために、伝熱計算などに基づいて鋳片引抜速度または二次冷却水量を調整する。これは、鋳片厚み中心部の固相率が0.4を越えてから軽圧下を開始しても、それ以前に濃化溶鋼の流動が発生する可能性があり、これにより中心偏析が発生して、軽圧下の効果を十分に発揮することができなく、一方、凝固完了位置が軽圧下帯を越えて下流側に伸張した場合には、圧下力が働かず、中心偏析の改善効果が得られないからである。また、軽圧下帯における圧下速度は、0.6〜1.5mm/minの範囲内とする。圧下速度が0.6mm/min未満では、中心偏析を軽減する効果が少なく、一方、圧下速度が1.5mm/minを超えると、濃化溶鋼が鋳造方向とは逆方向に絞り出され、鋳片中心部には負偏析が生成される虞があるからである。また、総圧下量は2〜6mm程度とすれば十分である。   In the present invention, the time when light reduction starts is when the solid phase ratio at the center of the thickness of the slab is 0.4 or less, and it is necessary to complete solidification within the range of the light reduction zone. Therefore, in order to satisfy these conditions, the slab drawing speed or the amount of secondary cooling water is adjusted based on heat transfer calculation or the like. This is because, even if light reduction starts after the solid phase ratio at the center of the slab thickness exceeds 0.4, the flow of concentrated molten steel may occur before that, which causes center segregation. Therefore, if the effect of light reduction cannot be fully exhibited, and the solidification completion position extends downstream beyond the light pressure reduction zone, the reduction force does not work and the effect of improving center segregation is not achieved. It is because it cannot be obtained. The reduction speed in the light reduction zone is in the range of 0.6 to 1.5 mm / min. When the rolling speed is less than 0.6 mm / min, the effect of reducing the center segregation is small. On the other hand, when the rolling speed exceeds 1.5 mm / min, the concentrated molten steel is squeezed out in the direction opposite to the casting direction. This is because negative segregation may be generated at the center of the piece. Further, it is sufficient that the total reduction amount is about 2 to 6 mm.

次に、本発明の具体的な実施方法を、図面を参照して説明する。図1は、本発明を実施した垂直曲げ型スラブ連続鋳造機の側面概要図である。   Next, a specific implementation method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic side view of a vertical bending slab continuous casting machine embodying the present invention.

図1に示すように、垂直曲げ型スラブ連続鋳造機1には、溶鋼11を冷却して凝固させ、鋳片12の外殻形状を形成するための鋳型5が設置され、この鋳型5の上方所定位置には、取鍋(図示せず)から供給される溶鋼11を鋳型5に中継供給するためのタンディッシュ2が設置されている。一方、鋳型5の下方には、サポートロール6、ガイドロール7及びピンチロール8からなる複数対の鋳片支持ロールが配置されている。このうち、ピンチロール8は、鋳片12を支持すると同時に鋳片12を引抜くための駆動ロールである。鋳造方向に隣り合う鋳片支持ロールの間隙には、水スプレーノズル或いはエアーミストスプレーノズルなどのスプレーノズル(図示せず)が配置された二次冷却帯が構成され、二次冷却帯のスプレーノズルから噴霧される冷却水(「二次冷却水」とも称す)によって鋳片12は引抜かれながら冷却されるようになっている。この二次冷却帯は鋳造方向で幾つかのゾーンに分割され、二次冷却水量が各ゾーンで個別に調整できるようになっている。タンディッシュ2の底部には、タンディッシュ2から鋳型5に注入される溶鋼11の流量を調整するためのスライディングノズル3が設置され、このスライディングノズル3の下面には、溶鋼11を鋳型5に注入するための耐火物製の浸漬ノズル4が設置されている。また、鋳片支持ロールの下流側には、鋳造された鋳片12を搬送するための複数の搬送ロール9が設置されており、この搬送ロール9の上方には、鋳造される鋳片12から所定の長さの鋳片12aを切断するための鋳片切断機10が配置されている。   As shown in FIG. 1, a vertical bending slab continuous casting machine 1 is provided with a mold 5 for cooling and solidifying molten steel 11 to form an outer shell shape of a slab 12. A tundish 2 for relaying and supplying molten steel 11 supplied from a ladle (not shown) to the mold 5 is installed at a predetermined position. On the other hand, below the mold 5, a plurality of pairs of slab support rolls including a support roll 6, a guide roll 7 and a pinch roll 8 are arranged. Among these, the pinch roll 8 is a drive roll for drawing the slab 12 at the same time as supporting the slab 12. A secondary cooling zone in which a spray nozzle (not shown) such as a water spray nozzle or an air mist spray nozzle is arranged in the gap between the slab support rolls adjacent in the casting direction is configured. The slab 12 is cooled while being drawn out by cooling water sprayed from (also referred to as “secondary cooling water”). This secondary cooling zone is divided into several zones in the casting direction so that the amount of secondary cooling water can be adjusted individually in each zone. A sliding nozzle 3 for adjusting the flow rate of the molten steel 11 injected from the tundish 2 into the mold 5 is installed at the bottom of the tundish 2, and the molten steel 11 is injected into the mold 5 at the lower surface of the sliding nozzle 3. An immersion nozzle 4 made of a refractory material is installed. Further, on the downstream side of the slab support roll, a plurality of transport rolls 9 for transporting the cast slab 12 are installed, and above the transport roll 9, from the cast slab 12 to be cast. A slab cutting machine 10 for cutting a slab 12a having a predetermined length is disposed.

鋳型5の出口から1mないし5m程度離れた位置に配置される複数対のガイドロール7は、鋳片12の支持・案内方向が鉛直方向から湾曲方向へと方向を変える曲げ部17を構成している。同様に湾曲部が水平線に接触する位置の近傍に配置される複数対のガイドロール7は、鋳片12の支持・案内方向が湾曲方向から水平方向へと方向を変える曲げ戻し部18を構成している。尚、図1では、曲げ部17及び曲げ戻し部18ともに複数対のガイドロール7で構成されているが、一対のガイドロールのみで構成してもよい。   A plurality of pairs of guide rolls 7 arranged at a position about 1 to 5 m away from the exit of the mold 5 constitutes a bending portion 17 in which the support / guide direction of the slab 12 changes from the vertical direction to the bending direction. Yes. Similarly, the plurality of pairs of guide rolls 7 arranged in the vicinity of the position where the curved portion contacts the horizontal line constitutes a bending return portion 18 in which the support / guide direction of the slab 12 changes from the curved direction to the horizontal direction. ing. In addition, in FIG. 1, although the bending part 17 and the bending return part 18 are comprised with several pairs of guide rolls 7, you may comprise only with a pair of guide rolls.

鋳片12の凝固完了位置15を挟んで鋳造方向の前後には、対向するガイドロール7とガイドロール7との間隔(「ロール間隔」と称す)が鋳造方向下流に向かって順次狭くなるように設定された、複数対のガイドロール群から構成される軽圧下帯16が設置されている。軽圧下帯16では、その全域または一部選択した領域で、鋳片12に軽圧下を行うことが可能である。軽圧下帯16の各ガイドロール間にも鋳片12を冷却するためのスプレーノズルが配置されている。尚、ロール間隔が鋳造方向下流に向かって順次狭くなるように設定された状態を、「ロール勾配」とも称している。   Before and after the solidification completion position 15 of the slab 12 in the casting direction, an interval between the opposing guide rolls 7 and the guide rolls 7 (referred to as “roll interval”) is gradually narrowed toward the downstream in the casting direction. A light pressure lower belt 16 composed of a plurality of pairs of guide rolls is set. In the light reduction belt 16, it is possible to perform light reduction on the slab 12 in the entire region or a partially selected region. A spray nozzle for cooling the slab 12 is also disposed between the guide rolls of the light pressure lower belt 16. A state in which the roll interval is set so as to become narrower toward the downstream in the casting direction is also referred to as “roll gradient”.

この場合の、鋳型5の直下から垂直曲げ型スラブ連続鋳造機1の機端までのガイドロール7のロール間隔の設定を模式的に図2に示す。図2に示すように、ロール間隔は曲げ部17の直下で拡大し始め、徐々に拡大して最大値に至っている。このロール間隔の拡大するガイドロール群で鋳片12をバルジングさせる。ロール間隔は、最大値のまま曲げ戻し部18を経過した後、軽圧下帯16において所定の圧下速度で軽圧下されるように、鋳造方向下流に向かって順次狭くなるように設定されている。尚、本発明において、鋳片12をバルジングさせることは必須条件ではなく、バルジングさせない場合には、鋳型出口から軽圧下帯入口までのロール間隔を一定とし、軽圧下帯16で鋳造方向下流に向かって順次狭くなるように設定すればよい。   FIG. 2 schematically shows the setting of the roll interval of the guide roll 7 from directly under the mold 5 to the end of the vertical bending slab continuous casting machine 1 in this case. As shown in FIG. 2, the roll interval starts to increase immediately below the bent portion 17 and gradually increases to reach the maximum value. The slab 12 is bulged by the guide roll group in which the roll interval is increased. The roll interval is set so as to be gradually narrowed toward the downstream in the casting direction so that the roll is lightly reduced at a predetermined reduction speed in the light reduction belt 16 after the bending return portion 18 has passed with the maximum value. In the present invention, bulging the slab 12 is not an indispensable condition. If the slab 12 is not bulged, the roll interval from the mold outlet to the light pressure lower belt inlet is constant, and the light pressure lower belt 16 faces the downstream in the casting direction. Can be set so as to narrow sequentially.

このようにして構成される垂直曲げ型スラブ連続鋳造機1において、以下のようにして鋳片12aを製造する。   In the vertical bending slab continuous casting machine 1 configured as described above, the slab 12a is manufactured as follows.

浸漬ノズル4を介して鋳型5に溶鋼11を注入する。鋳型5に注入された溶鋼11は、鋳型5で冷却されて凝固シェル13を形成し、内部に未凝固相14を有する鋳片12として、鋳型5の下方に設けたサポートロール6、ガイドロール7及びピンチロール8に支持されつつ、ピンチロール8の駆動力により鋳型5の下方に連続的に引抜かれる。鋳片12は、これらの鋳片支持ロールを通過する間、二次冷却帯の二次冷却水で冷却され、凝固シェル13の厚みを増大させつつ、曲げ部17の直下から徐々にバルジングして厚みを増加させ、一方、軽圧下帯16では軽圧下されて徐々に厚みを減少させながら、軽圧下帯16の範囲内で中心部までの凝固を完了する。中心部までの凝固を完了する位置が凝固完了位置15である。その後、鋳片12は、鋳片切断機10によって切断されて鋳片12aとなる。   Molten steel 11 is injected into the mold 5 through the immersion nozzle 4. The molten steel 11 injected into the mold 5 is cooled by the mold 5 to form a solidified shell 13, and as a cast piece 12 having an unsolidified phase 14 therein, a support roll 6 and a guide roll 7 provided below the mold 5. And while being supported by the pinch roll 8, it is continuously pulled out below the mold 5 by the driving force of the pinch roll 8. While the slab 12 passes through these slab support rolls, the slab 12 is cooled by the secondary cooling water in the secondary cooling zone and gradually bulged from directly below the bending portion 17 while increasing the thickness of the solidified shell 13. While the thickness is increased, while the light pressure lower belt 16 is lightly reduced and gradually decreases in thickness, solidification to the center within the light pressure lower belt 16 is completed. A position at which the solidification to the center is completed is a solidification completion position 15. Thereafter, the slab 12 is cut by the slab cutting machine 10 to become a slab 12a.

このような連続鋳造操業の種々の鋳造条件において、予め伝熱計算などを用いて鋳片長辺面の表面温度、凝固シェル13の厚み及び鋳片厚み中心部の固相率を求め、鋳片12が曲げ部17に至るまでに鋳片長辺面の表面温度が800℃以下になるとともに、曲げ部17に到達した以降は鋳片長辺面の表面温度が900℃以上となり、鋳片長辺面の表面温度が900℃以上を保持した状態のままで軽圧下帯16を通過し、且つ、軽圧下帯16に入る時点での鋳片厚み中心部の固相率が0.4以下であり、軽圧下帯16の範囲内で鋳片中心部までの凝固が完了するように、鋳片引抜き速度及び二次冷却水量などの鋳造条件を調整する。軽圧下を開始する時点の鋳片厚み中心部の固相率は0.4以下であればいくらであっても構わない。鋳片12をバルジングさせる開始時点は、鋳片長辺面の表面温度が900℃以上となった以降とする。尚、軽圧下帯の設置範囲が鋳造方向に長く、軽圧下帯の中でも軽圧下を付与するロール群と軽圧下を付与しないロール群が存在する場合には、実際に軽圧下を付与するロール群のみを上記の軽圧下帯16とみなして操業すればよい。   Under various casting conditions in such a continuous casting operation, the surface temperature of the long side surface of the slab, the thickness of the solidified shell 13 and the solid phase ratio at the center of the slab thickness are obtained in advance using heat transfer calculation and the like. The surface temperature of the long side surface of the slab becomes 800 ° C. or lower before reaching the bent portion 17, and after reaching the bent portion 17, the surface temperature of the long side surface of the slab becomes 900 ° C. or higher. The solid phase ratio at the center of the slab thickness at the time of passing through the light pressure lower belt 16 while maintaining the temperature at 900 ° C. or higher and entering the light pressure lower belt 16 is 0.4 or less. The casting conditions such as the slab drawing speed and the amount of secondary cooling water are adjusted so that solidification to the center of the slab is completed within the range of the band 16. The solid phase ratio at the center of the slab thickness at the start of light reduction may be any amount as long as it is 0.4 or less. The start point of bulging the slab 12 is after the surface temperature of the long side surface of the slab becomes 900 ° C. or higher. In addition, when the installation range of the light reduction belt is long in the casting direction, and there are a roll group that applies light reduction and a roll group that does not apply light reduction, the roll group that actually applies light reduction. Only the above-mentioned light pressure lower belt 16 may be regarded as an operation.

二次冷却帯は、単一または複数のロールセグメント毎に二次冷却ゾーンが設定されており、各冷却ゾーン毎に二次冷却水量を決めることができる。この機能を用いて、曲げ部17に至るまでに鋳片長辺面の表面温度が800℃以下となり、曲げ部17以降では鋳片長辺面の表面温度が900℃以上になるように二次冷却水量を調整する。この場合、鋳片12の短辺面の表面温度も長辺面と同等に制御することが望ましい。   In the secondary cooling zone, a secondary cooling zone is set for each single or a plurality of roll segments, and the amount of secondary cooling water can be determined for each cooling zone. By using this function, the amount of secondary cooling water is such that the surface temperature of the long side surface of the slab becomes 800 ° C. or lower before reaching the bending portion 17, and the surface temperature of the long side surface of the slab becomes 900 ° C. or higher after the bending portion 17. Adjust. In this case, it is desirable to control the surface temperature of the short side surface of the slab 12 to be equal to that of the long side surface.

軽圧下帯16における圧下速度は、ロール勾配と鋳片12の引抜き速度との積で得られるので、圧下速度が0.6〜1.5mm/minの範囲内の所定の値になるように軽圧下帯16のロール勾配を設定すればよい。例えば、鋳片引抜き速度が1.5m/minの場合に圧下速度を1.2mm/minとするときには、ロール勾配は鋳造方向距離1mあたり0.8mm(0.8=1.2/1.5)となる。   Since the reduction speed in the light reduction belt 16 is obtained by the product of the roll gradient and the drawing speed of the slab 12, the reduction speed is light so that the reduction speed becomes a predetermined value within the range of 0.6 to 1.5 mm / min. What is necessary is just to set the roll gradient of the reduction zone 16. For example, when the slab drawing speed is 1.5 m / min and the rolling speed is 1.2 mm / min, the roll gradient is 0.8 mm (0.8 = 1.2 / 1.5 / m in the casting direction distance). )

このようにして鋼の連続鋳造を実施することで、鋳片12aの上面側の1/4厚位置付近の介在物を低減させることができるとともに、鋳片12には軽圧下が効果的且つ有効に作用し、凝固収縮などに伴う濃化溶鋼の流動が抑制されて、鋳片12aの中心偏析を大幅に低減することができる。   By performing continuous casting of steel in this way, inclusions near the 1/4 thickness position on the upper surface side of the slab 12a can be reduced, and light reduction is effective and effective for the slab 12 The flow of the concentrated molten steel accompanying solidification shrinkage or the like is suppressed, and the center segregation of the slab 12a can be greatly reduced.

図1に示すような垂直曲げ型スラブ連続鋳造機を用い、二次冷却強度を変化させて鋳造した。そのスラブ鋳片から試験片を採取し、各試験片の1/4厚位置付近の介在物及び中心偏析を調査して、1/4厚位置付近の介在物及び中心偏析に及ぼす二次冷却強度の影響を調査した。   Using a vertical bending slab continuous casting machine as shown in FIG. 1, casting was performed while changing the secondary cooling strength. Specimens are taken from the slab slab, and the inclusions and central segregation near the 1/4 thickness position of each test specimen are investigated, and the secondary cooling strength exerted on the inclusions and central segregation near the 1/4 thickness position. The effect of was investigated.

用いた連続鋳造機は、鋳型直下に2.8mの垂直部を有し、それに続く湾曲部の半径が10mである垂直曲げ型スラブ連続鋳造機で、軽圧下帯を鋳型内溶鋼湯面から16〜32mの範囲に設置してある。この軽圧下帯の範囲内で、鋳造条件に合わせて、軽圧下を行う位置・範囲・圧下量(圧下速度)を設定することができる。この連続鋳造機を用いて、炭素含有量が0.04〜0.05質量%の耐サワーラインパイプ用鋼を、厚み250mm、幅2000mmの鋳片として引抜き速度1.5m/分で鋳造した。   The continuous casting machine used is a vertical bending type slab continuous casting machine having a vertical portion of 2.8 m directly under the mold and a radius of the curved portion that follows that is 10 m. It is installed in the range of ~ 32m. Within the range of the light reduction zone, the position, range, and reduction amount (reduction speed) for light reduction can be set according to the casting conditions. Using this continuous casting machine, steel for a sour line pipe having a carbon content of 0.04 to 0.05 mass% was cast as a slab having a thickness of 250 mm and a width of 2000 mm at a drawing speed of 1.5 m / min.

この鋳造をシミュレートした伝熱計算を行い、各冷却条件における鋳片厚み中心部の固相率を推算した。軽圧下帯では鋳片厚み方向中心部の計算固相率が0.3ないし0.4となるまでは軽圧下せずに鋳片を支持するのみとし、それ以降のロール勾配を鋳造方向距離1mあたり0.9mm、即ち、軽圧下速度に換算すると1.35mm/min(1.35=1.5×0.9)とした。   The heat transfer calculation simulating this casting was performed to estimate the solid phase ratio at the center of the slab thickness under each cooling condition. In the lightly reduced belt, the slab is only supported without light reduction until the calculated solid fraction in the center of the slab thickness direction becomes 0.3 to 0.4, and the roll gradient thereafter is 1 m in the casting direction distance. 0.9 mm per unit, that is, 1.35 mm / min (1.35 = 1.5 × 0.9) when converted to a light rolling speed.

このような鋳造条件で、二次冷却条件を、計算固相率を基準として種々変化させて鋳造し、鋳片試験片の1/4厚位置付近の介在物及び中心偏析の調査結果の比較評価を行った。試験片の1/4厚位置付近の介在物は、鋳片幅方向の三ケ所(1/4幅、1/2幅、3/4幅)から採取した鋳片幅方向200mmのC断面(横断面)試料について超音波探傷(探傷深度1mm)を行い、大きさが100ミクロン以上の介在物が1個でも存在する場合は不合格とした。また、鋳片の中心偏析は、鋳片における炭素濃度の偏析度で評価し、炭素濃度の偏析度が1.20以下を合格とした。炭素の偏析度とは、鋳片中心部の炭素濃度値を鋳片バルク部(例えば1/4厚み位置)の炭素濃度値で除算した値である。鋳片長辺面の表面温度、並びに、1/4厚位置付近の介在物及び中心偏析の調査結果を表1に示す。尚、表1に示す品質評価の欄の「○」印は合格、「×」印は不合格を表している。   Under such casting conditions, the secondary cooling conditions are variously changed based on the calculated solid phase ratio, and the comparative evaluation of the investigation results of inclusions and central segregation near the 1/4 thickness position of the slab specimens. Went. Inclusions in the vicinity of the 1/4 thickness position of the test piece are C cross sections (transverse) in the slab width direction taken from three locations in the slab width direction (1/4 width, 1/2 width, 3/4 width). Surface) The sample was subjected to ultrasonic flaw detection (flaw detection depth: 1 mm), and even if there was even one inclusion having a size of 100 microns or more, the sample was rejected. The center segregation of the slab was evaluated based on the segregation degree of the carbon concentration in the slab, and the segregation degree of the carbon concentration was 1.20 or less. The degree of segregation of carbon is a value obtained by dividing the carbon concentration value at the center portion of the slab by the carbon concentration value at the slab bulk portion (for example, 1/4 thickness position). Table 1 shows the surface temperature of the long side surface of the slab and the investigation results of inclusions and central segregation near the 1/4 thickness position. In the quality evaluation column shown in Table 1, “◯” indicates pass, and “x” indicates failure.

Figure 0005045408
Figure 0005045408

表1に示すように、鋳型直下の垂直部で鋳片長辺面の表面温度を800℃以下に冷却することで、鋳片上面の1/4厚位置付近の介在物を低減できることが確認できた。また、鋳片の中心偏析は、鋳片引抜き速度、圧下量などが同じであっても、二次冷却条件によって変化し、鋳片の表面温度を基準にして中心偏析を判別できることが判明した。   As shown in Table 1, it was confirmed that inclusions near the 1/4 thickness position on the upper surface of the slab can be reduced by cooling the surface temperature of the long side surface of the slab to 800 ° C. or lower at the vertical portion directly below the mold. . Further, it has been found that the center segregation of the slab varies depending on the secondary cooling conditions even when the slab drawing speed, the amount of reduction, etc. are the same, and the center segregation can be determined based on the surface temperature of the slab.

本発明を実施した垂直曲げ型スラブ連続鋳造機の側面概要図である。It is a side surface schematic diagram of the vertical bending type slab continuous casting machine which implemented the present invention. ガイドロールのロール間隔の設定を模式的に示す図である。It is a figure which shows typically the setting of the roll space | interval of a guide roll.

符号の説明Explanation of symbols

1 垂直曲げ型スラブ連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 鋳型
6 サポートロール
7 ガイドロール
8 ピンチロール
9 搬送ロール
10 鋳片切断機
11 溶鋼
12 鋳片
13 凝固シェル
14 未凝固相
15 凝固完了位置
16 軽圧下帯
17 曲げ部
18 曲げ戻し部
DESCRIPTION OF SYMBOLS 1 Vertical bending type slab continuous casting machine 2 Tundish 3 Sliding nozzle 4 Immersion nozzle 5 Mold 6 Support roll 7 Guide roll 8 Pinch roll 9 Conveyance roll 10 Cast piece cutting machine 11 Molten steel 12 Cast piece 13 Solidified shell 14 Unsolidified phase 15 Solidified Completion position 16 Light pressure lower belt 17 Bending part 18 Bending part

Claims (2)

複数対の圧下ロールからなる軽圧下帯を備えた垂直曲げ型連続鋳造機を用い、鋳片の厚み中心部の固相率が0.4以下の時点から前記軽圧下帯にて0.6〜1.5mm/minの範囲内の圧下速度で鋳片の圧下を開始し、鋳片に圧下力を付与しながら軽圧下帯の範囲内で凝固完了させて鋼の連続鋳造鋳片を製造するに際し、鋳型直下の垂直部では鋳片長辺面の表面温度が800℃以下となるまで鋳片を冷却するとともに、前記垂直部に続く曲げ部以降で復熱させて鋳片長辺面の表面温度を900℃以上に確保し、鋳片長辺面の表面温度が900℃以上のままで前記軽圧下帯にて鋳片に圧下力を付与することを特徴とする、連続鋳造鋳片の製造方法。   Using a vertical bending type continuous casting machine equipped with a light reduction belt composed of a plurality of pairs of reduction rolls, the solid pressure ratio at the center of the thickness of the slab is 0.4 or less in the light reduction zone from the point of time of 0.4 or less. When producing a continuous cast slab of steel by starting to reduce the slab at a reduction speed in the range of 1.5 mm / min and completing solidification within the light reduction zone while applying a reduction force to the slab. In addition, the slab is cooled until the surface temperature of the long side surface of the slab becomes 800 ° C. or less at the vertical part immediately below the mold, and the surface temperature of the long side surface of the slab is set to 900 ° C. by reheating after the bent part following the vertical part. A method for producing a continuous cast slab, characterized in that a pressing force is applied to the slab at the above-described lightly-reduced band while the surface temperature of the slab long side surface is maintained at 900 ° C. or higher. 前記曲げ部以降の鋳片長辺面の表面温度が900℃以上の状態で、ガイドロール群の鋳片厚み方向の間隔を広げて鋳片をバルジングさせ、バルジングさせた後に前記軽圧下帯にて鋳片に圧下力を付与することを特徴とする、請求項1に記載の連続鋳造鋳片の製造方法。   In the state where the surface temperature of the long side surface of the slab after the bent portion is 900 ° C. or higher, the slab is bulged by widening the gap in the slab thickness direction of the guide roll group, and then casted in the lightly pressed belt. 2. The method for producing a continuous cast slab according to claim 1, wherein a rolling force is applied to the piece.
JP2007317811A 2007-12-10 2007-12-10 Manufacturing method of continuous cast slab Active JP5045408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007317811A JP5045408B2 (en) 2007-12-10 2007-12-10 Manufacturing method of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317811A JP5045408B2 (en) 2007-12-10 2007-12-10 Manufacturing method of continuous cast slab

Publications (2)

Publication Number Publication Date
JP2009136909A JP2009136909A (en) 2009-06-25
JP5045408B2 true JP5045408B2 (en) 2012-10-10

Family

ID=40868103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317811A Active JP5045408B2 (en) 2007-12-10 2007-12-10 Manufacturing method of continuous cast slab

Country Status (1)

Country Link
JP (1) JP5045408B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020860A1 (en) * 2012-07-31 2014-02-06 Jfeスチール株式会社 Method for continuously casting steel
JP6169025B2 (en) * 2013-03-29 2017-07-26 株式会社神戸製鋼所 Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness
JP6115735B2 (en) * 2014-07-25 2017-04-19 Jfeスチール株式会社 Steel continuous casting method
JP6413644B2 (en) * 2014-10-31 2018-10-31 新日鐵住金株式会社 Steel continuous casting method and continuous cast slab
AT522265B1 (en) * 2019-03-06 2021-12-15 Primetals Technologies Austria GmbH MODIFICATION OF A CONTINUOUS CASTING PLANT FOR BILLETS OR BLOCKS

Also Published As

Publication number Publication date
JP2009136909A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP6115735B2 (en) Steel continuous casting method
JP5776285B2 (en) Manufacturing method of continuous cast slab
JP5045408B2 (en) Manufacturing method of continuous cast slab
JP5380968B2 (en) Manufacturing method of continuous cast slab
JP2010082638A (en) Method for producing continuously cast slab
WO2016103293A1 (en) Continuous casting method for steel
JP2015062918A (en) Continuous casting method of steel
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP5245800B2 (en) Continuous casting mold and steel continuous casting method
JP6075336B2 (en) Steel continuous casting method
JP2010274299A (en) Continuous casting method for steel
JP4998734B2 (en) Manufacturing method of continuous cast slab
JP5870966B2 (en) Manufacturing method of continuous cast slab
JP3511973B2 (en) Continuous casting method
JP2011005525A (en) Method for continuously casting steel cast slab
JP5648300B2 (en) Steel continuous casting method
JP6152824B2 (en) Steel continuous casting method
KR102356745B1 (en) Method of continuous casting of steel
JP5929836B2 (en) Steel continuous casting method
JP4692164B2 (en) Continuous casting method of high carbon steel
JP5915453B2 (en) Steel continuous casting method
JP2008207201A (en) Method for manufacturing continuously cast slab
JP5920083B2 (en) Continuous casting method for steel slabs
JP3846676B2 (en) Steel continuous casting method
JP5910577B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5045408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250