JPH08250982A - フィルタ係数の推定装置 - Google Patents

フィルタ係数の推定装置

Info

Publication number
JPH08250982A
JPH08250982A JP7050836A JP5083695A JPH08250982A JP H08250982 A JPH08250982 A JP H08250982A JP 7050836 A JP7050836 A JP 7050836A JP 5083695 A JP5083695 A JP 5083695A JP H08250982 A JPH08250982 A JP H08250982A
Authority
JP
Japan
Prior art keywords
coefficient
transmission system
filter
response
signal transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7050836A
Other languages
English (en)
Inventor
Kensaku Fujii
健作 藤井
Toshiro Oga
寿郎 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7050836A priority Critical patent/JPH08250982A/ja
Priority to US08/567,632 priority patent/US5790440A/en
Publication of JPH08250982A publication Critical patent/JPH08250982A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters

Landscapes

  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

(57)【要約】 【目的】特性が未知の信号伝達系に送出される既知の参
照信号とその伝達系の応答とから該信号伝達系の特性を
模擬する適応非巡回型フィルタの係数を推定する推定装
置の改良に関し,固定小数点型のプロセッサによりその
狭いダイナミックレンジでも係数更新が十分な性能で実
行可能とすることを目的とする。 【構成】誤差情報抽出部110によって、該信号伝達系
の応答及び該非巡回型フィルタの出力の差分並びに該参
照信号の極性の積を所定の区間加算した結果と、該区間
に生じる参照信号の絶対値の加算値との比から、該信号
伝達系のインパルス応答と該非巡回型フィルタの係数と
の誤差に関する情報を抽出し、その情報を利用して該非
巡回型フィルタの係数を更新するように構成される。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、特性が未知の信号伝達
系に送出される既知の参照信号とその伝達系の応答とか
ら該信号伝達系の特性を模擬する適応非巡回型フィルタ
の係数を推定する推定装置の改良に関する。
【0002】図2は本発明の適用によって動作の改善が
期待されるシステムの概念図である。但し、この概念図
において特性が未知の信号伝達系200の応答 gj =Σhj (i) Xj (i) (1) j :時刻( sample time index, iteration) Σ :i=1〜Iの加算(以下、同じ) hj (i) :信号伝達系200がもつインパルス応答hj
のi番目の標本値 Xj (i) :参照信号Xj の標本値のi標本化周期遅延し
た信号 I :信号伝達系200のインパルス応答の最大遅延 と外乱Nj とを加える加算器230は、具体的な装置あ
るいは回路として与えられない場合がある。
【0003】このシステムにおいて係数更新回路220
は、加算器230の出力 Yj =gj +Nj (2) と非巡回型(FIR:Finite Inpulse Response )フィ
ルタ210で合成された擬似応答 Gj =ΣHj (i) Xj (i) (3) との差分 Ej =Yj −Gj (4) が最小になるように非巡回型フィルタ210の係数Hj
を更新する。現在では、演算はディジタル信号プロセッ
サ(DSP:Digital signal processor)で実現される
ことが多い。
【0004】この設計に際して問題は、演算処理形態
(浮動小数点型/固定小数点型)の選択が処理時間や生
産費に大きく影響することである。一般に、固定小数点
型のプロセッサの方が処理が高速で低価格であり、この
点から装置の構成は固定小数点型のプロセッサの採用が
有利である。しかし、固定小数点型では参照信号のダイ
ナミックレンジが浮動小数点型に比べて広くとることが
できない。従って、その応用分野が限定される、という
欠点がある。また、浮動小数点型のプロセッサを使用す
る場合でも、その処理を固定小数点で実行する命令を多
用すれば処理の時間が短くて済む、すなわち、係数更新
に関する演算は可能な限り固定小数点で実行、処理でき
ることが望ましい。
【0005】
【従来の技術及び発明が解決しようとする課題】さて、
非巡回型フィルタ210の係数Hj を更新するアルゴリ
ズムとしてLMS(Least Mean Square) 法、あるいはそ
の変形方式と言える学習同定法(NLMS:Normalized
Least Mean Square Algorithm)は現時点で実用装置に
最も広く採用されている。しかし、この実用化には考慮
すべき問題も多く残されており、演算語長の制限にとも
なう収束特性の劣化もその重要な問題の一つになってい
る。
【0006】例えば、学習同定法では時刻j+1におけ
る非巡回型フィルタ210の第m番目のタップ係数の更
新に対して Hj+1(m)=Hj (m) +KEj j (m) /ΣXj 2(i) (5) K :ステップゲイン(0<K<2) Σ :i=1〜I(Iは非巡回型フィルタのタップ数)
の加算 と書かれる。この第2の演算に対して演算語長を、固定
小数点型プロセッサの最も代表的な16ビットを仮定す
ると、積Ej j (m) や自乗Xj 2(i)はこのままではそ
の演算後において語長が倍の32ビットに拡大される。
従って、この後の処理も続いて16ビットの固定小数点
で行う設計とすれば、当然ながら、その残る下位16ビ
ットは切り捨てられることになる。このことは、小さな
振幅の参照信号Xj あるいは係数更新が進んで小さくな
った残差Ej に対して0を強制的に与えることを意味
し、その後の係数更新が不能となることは明らかであ
る。すなわち、扱える参照信号Xj のダイナミンクレン
ジは狭く、また、高い推定精度は得られなくなる。
【0007】(1)サインアルゴリズム この切り捨ては積による語長の拡大を抑える手法の採用
によって解決される。サインアルゴリズム(Sign Algori
thm)は、LMS法による係数更新式 Hj+1(m)=Hj (m) +KEj j (m) (6) の第2項を構成する残差Ej を極性(±)だけとした Hj+1(m)=Hj (m) +KXj (m) sgn(Ej ) (7) と表される方法である。このsgn[ ]は[ ] 内の変数
の極性(+または−)をとることを意味する。この場
合、この第2項の積Xj (m) sgn(Ej ) は参照信号Xj
の語長を明らかに維持する。すなわち、サインアルゴリ
ズムにおいては小さな振幅の参照信号に対しても下位の
ビットの切り捨てが起こらず、係数更新が可能となる。
【0008】このサインアルゴリズムの問題は、その極
性化[sgn(Ej )]によって残差 Ej =[hj (m) −Hj (m)]Xj (m) +Σm [hj (i) −Hj (i)]Xj (i) +Nj (8) Σm :i=mを除くi=1〜Iの加算(以下、同じ) に含まれる第m番目のタップ係数の更新に必要な推定誤
差[hj (m) −Hj (m)]が正しく抽出できないことであ
る。それは、式(8)の第1項と第2項がsgn(E j ) に
よって分離されなくなることから容易に知られる。
【0009】図3はこのサインアルゴリズムとしてLM
S法に対して全ての演算を浮動小数点で実行したときの
応答相殺量〔 (gj −Gj 2 /gj 2 の短時間積分〕
の増加特性である。但し、非巡回型フィルタ210のタ
ップ数I=512,参照信号対外乱のパワ−比10dB,
LMS法のステップゲイン0.0022、 サインアルゴリズム
のステップゲイン0.000263としている。また、図4は図
3と同じ条件の下でサインアルゴリズムのステップゲイ
ンだけを0.000132と小さく与えて計算した応答相殺量の
増加特性である。明らかに、サインアルゴリズムにおい
て得られる応答相殺量の増加特性には劣化が観測され
る。
【0010】本発明の目的の一つは、学習同定法の場合
には式(5)第2項の分子と分母、LMS法では式
(6)第2項が参照信号と同じ語長で構成される演算法
を提供することである。
【0011】(2)個別正規化LMS法 一般には、固定小数点のプロセッサの方が処理が高速で
低価格である。すなわち、係数更新の全ての演算が固定
小数点で実行できることが望ましい。図5は、非巡回型
フィルタ210のタップ数I=512、参照信号対外乱
のパワ−比10dBに対して学習同定法による係数更新を全
て浮動小数点で計算した場合と、式(5)第2項を浮動
小数点で計算した後に16ビットの固定小数点に変換し
て係数H j (m) に加える構成とした場合の応答相殺量の
増加特性の比較である。この結果から第1に、係数更新
が進んで残差Ej が小さくなると、式(5)第2項とし
て得られる係数更新量が16ビットの演算語長では表せ
ないほど小さくなる(係数更新が不能となる)が知られ
る。
【0012】また、学習同定法では収束後に得られる応
答相殺量は小さなステップゲインKほど大きくなるとさ
れている。しかし、式(5)によれば係数更新量はステ
ップゲインKに比例して小さくなるために、固定小数点
で係数更新を実行する場合には逆効果となる場合がある
ことを図5は示している。このことは、積あるいは自乗
による語長の拡大を抑えるだけでは特性の劣化は防止で
きない可能性があることを意味している。すなわち、学
習同定法を適応アルゴリズムとする場合には固定少数点
型のプロセッサの採用が難しいこと、が知られる。
【0013】この理由は次のようにして説明される。す
なわち、式(5)の第2項 Ej j (m) /ΣXj 2(i) =[hj (m) −Hj (m)]Xj 2(m)/ΣXj 2(i) +{Σm [hj (i) −Hj (i)]Xj (i) +Nj }/ΣXj 2(i) (9) に含まれる係数更新に必要な推定誤差[hj (m) −Hj
(m)]はノルムΣXj 2(i)の除算を含んで与えられてい
る。すなわち、係数更新が進んで小さくなった[h
j (m) −Hj (m)]に対してノルムによる除算は係数更新
量を更に小さくし、単精度の固定小数点では表せなくな
る可能性を高める。当然ながら、この除算の結果が制限
語長を超えて小さくなれば係数更新は継続不能となる。
【0014】このノルムによる除算に起因する問題は、
本発明者によって導出された係数更新アルゴリズムが個
別正規化LMS法(Individually Normarized Least Me
an Square Algorithm,後掲の文献参照)の採用によっ
て解決可能である。本発明の一つはこの個別正規化LM
S法に改良を加えたものである。
【0015】ここで、その理解を助けるために個別正規
化LMS法による非巡回型フィルタ210の係数の更新
手順を簡単に説明しておく。まず、その係数更新はJ標
本化周期ごとに実行され、その手順は第n+1番目の係
数更新ブロックにおける非巡回型フィルタ210の第m
番目のタップ係数に対して Hn+1(m)=Hn (m) +KA(m) /Pn (m) (10) と書かれる。但し、 An (m) =ΣJ j j (m) (11) Pn (m) =ΣJ j 2(m) (12) ΣJ :j=nJ+1〜(n+1)Jの加算(以下同
じ) である。このΣJ はi=nJ+1から(n+1)Jまで
の加算、すなわちJ標本化周期を一つのブロックとする
加算を意味し、nはJ標本化周期ごとに行う係数更新の
起動時からの回数(ブロック番号)である。
【0016】次に、式(11)の一つの成分を取り出
し、 Ej j (m) =[Σ△j (i) Xj (i) +Nj ]Xj (m) =Δj (m) Xj 2(m)+ [Σm Δj (i) Xj (i) +Nj ] Xj (m) (13) と分離して表す。但し、△j (i) は推定誤差 △j (i) =hj (i) −Hj (i) (14) である。ここで、非巡回型フィルタ210の第m番目の
係数更新量として必要な値はその第1項 Δj (m) Xj 2(m)=[hj (m) −Hj (m)]Xj 2(m) (15) に含まれていることが分かる。
【0017】一方、個別正規化LMS法において係数更
新はJ標本化周期ごとに実行されること、従って、時刻
j=nJ+1〜(n+1)Jの間は係数がHn (m) に固
定されること、かつ、信号伝達系の特性(エコー経路の
インパルス応答)は適応フィルタの係数が収束するまで
一定〔すなわち、h(m) =hj (m) 〕とみなすことがで
きる。
【0018】そこで、h(m) =hj (m) となることに着
目して、式(11)を An (m) =ΣJ j (m) Xj 2(m) +ΣJ [Σm j (i) Xj (i) +Nj ]Xj (m) =ΣJ [h(m) −Hn(m)]Xj 2(m) +ΣJ [Σm j (i) Xj (i) +Nj ]Xj (m) =[h(m) −Hn (m)]ΣJ j 2(m) +ΣJ [Σm j (i) Xj (i) +Nj ]Xj (m) (16) と改める。明らかに、係数の更新に必要な情報[h(m)
−Hj (m)]は、式(12)に与える参照信号のパワ−P
n (m) との比を求めることにより、 An (m) /Pn (m) =[h(m) −Hn (m)] +ΣJ [Σm j (i) Xj (i) +Nj ]Xj (m) /ΣJ j 2(m) (17) の第1項として抽出される。すなわち、個別正規化LM
S法において係数更新に必要な推定誤差[h(m) −Hj
(m)]はノルムの除算によって小さく抑えられることなく
抽出され、従って、係数更新が不能となる可能性は抑え
られる。
【0019】図6は個別正規化LMS法が学習同定法と
同程度の性能を有することを確認するために行ったシミ
ュレーションの結果である。但し、非巡回型フィルタ2
10のタップ数I=512、ステップゲインK=0.01、
ブロック長J=I=512、参照信号対外乱のパワ−比
20dBとし、演算は全て浮動小数点で行っている。ま
た、図7は、参照信号対外乱のパワ−比10dBに対して
学習同定法と個別正規化LMS法による係数更新を固定
小数点で実行した場合の応答相殺量の増加特性である。
このように個別正規化LMS法によれば固定小数点の演
算によっても特性劣化の少ない係数更新が構築される。
【0020】しかしながら、個別LMS法でも、先に指
摘した『Xj 2(m)やEj j (m) が参照信号Xj (m) の
倍の語長となる』という問題が残る。これは、設計技術
として例えば、それらの積の結果を監視し、上位16ビ
ットが全て0である場合は下位16ビットを、上位16
ビットが0でない場合は上位16ビットをその積として
取り出す簡易的な浮動小数点演算を構成することで解決
される。しかしながら、このような調整は構成を複雑と
し、固定小数点演算プロセッサの高速性を損う要因とな
る。
【0021】本発明の目的は、浮動小数点型のプロセッ
サを用いるときには固定小数点で処理できる演算を増や
して処理時間を節約し、固定小数点型のプロセッサを用
いるときにはその狭いダイナミックレンジでも係数更新
が十分な性能で実行可能されるアルゴリズムによる信号
伝達系の特性を推定する装置を実現することである。
【0022】
【課題を解決するための手段及び作用】図1は本発明の
原理を説明するための図である。この図1に示す装置
は、特性が未知の信号伝達系に送出される参照信号とそ
の伝達系の応答とから該信号伝達系のインパルス応答に
等価な応答を出力する非巡回型フィルタの係数を推定す
る装置である。
【0023】この図1において、101は特性が未知の
信号伝達系に送出される参照信号の入力端子、100は
この信号伝達系の応答と非巡回型フィルタの出力との差
分である残差信号の入力端子、102は非巡回型フィル
タの係数を出力する端子、110は該参照信号の極性と
残差信号の絶対値に基づく演算により特性が未知の信号
伝達系のインパルス応答と該非巡回型フィルタの係数と
の誤差に関する情報を抽出する誤差情報抽出部、120
は誤差情報抽出部110で得た情報を該非巡回型フィル
タの係数に加え、記憶する係数記憶更新部である。
【0024】ここで、信号伝達系の応答と非巡回型フィ
ルタの出力の差分が第2の信号伝達系を介して観測され
る場合には、入力端子100へ入力される参照信号はそ
の第2の信号伝達系の応答を模擬するフィルタの出力
(第2の参照信号)であり、入力端子101に入力され
る残差信号はその第2の信号伝達系の応答となる。
【0025】上述の課題を解決するために、本発明のフ
ィルタ係数の推定装置は、該信号伝達系の応答及び該非
巡回型フィルタの出力の差分並びに該参照信号の極性の
積を所定の区間加算した結果と、該区間に生じる参照信
号の絶対値の加算値との比から、該信号伝達系のインパ
ルス応答と該非巡回型フィルタの係数との誤差に関する
情報を抽出し、その情報を利用して該非巡回型フィルタ
の係数を更新するように構成される。
【0026】また本発明のフィルタ係数の推定装置は、
他の形態として、上記推定装置において、1標本化周期
あたりに更新される係数の個数に制限を加え、該比の計
算に用いる該参照信号の絶対値の加算値の個数を該非巡
回型フィルタのタップ数未満とするように構成される。
【0027】また本発明のフィルタ係数の推定装置は、
他の形態として、該信号伝達系の応答及び該非巡回型フ
ィルタの出力の差分並びに該参照信号の極性の積と、該
非巡回型フィルタのタップ出力の絶対値和との比から、
該信号伝達系のインパルス応答と該非巡回型フィルタの
係数との誤差に関する情報を抽出し、その情報を利用し
て該非巡回型フィルタの係数を更新するように構成され
る。
【0028】また本発明のフィルタ係数の推定装置は、
他の形態として、該信号伝達系の応答及び該非巡回型フ
ィルタの出力の差分並びに該参照信号の極性の積を所定
の区間加算した結果と、該非巡回型フィルタのタップ出
力の絶対値和を該区間加算した結果との比から、該信号
伝達系のインパルス応答と該非巡回型フィルタの係数と
の誤差に関する情報を抽出し、その情報を利用して該非
巡回型フィルタの係数を更新するように構成される。
【0029】また本発明のフィルタ係数の推定装置は、
他の形態として、該第2の信号伝達系の応答と該第2の
参照信号の極性との積から、該信号伝達系のインパルス
応答と該非巡回型フィルタの係数との誤差に関する情報
を抽出し、その情報を利用して該非巡回型フィルタの係
数を更新するように構成される。
【0030】また本発明のフィルタ係数の推定装置は、
他の形態として、該該第2の信号伝達系の応答と該第2
の参照信号の極性との積積を所定の区間加算した結果
と、該区間に生じる該第2の参照信号の絶対値の加算値
との比を用いて該非巡回型フィルタの係数を更新するよ
うに構成される。
【0031】また本発明のフィルタ係数の推定装置は、
他の形態として、上記フィルタ係数の推定装置におい
て、1標本化周期あたりに更新される係数の個数に制限
を加え、該比の計算に用いる該第2の参照信号の絶対値
の加算値の個数を該非巡回型フィルタのタップ数未満と
するように構成される。
【0032】また本発明のフィルタ係数の推定装置は、
他の形態として、該第2の信号伝達系の応答と該第2の
参照信号の極性との積と、該非巡回型フィルタの全タッ
プに対応する該第2の参照信号の絶対値和との比を用い
て該非巡回型フィルタの係数を更新するように構成され
る。
【0033】また本発明のフィルタ係数の推定装置は、
他の形態として、該第2の信号伝達系の応答と該第2の
参照信号の極性との積に一定値を乗じた結果を係数更新
量として該非巡回型フィルタの係数に加えて該係数を更
新するように構成される。
【0034】また本発明のフィルタ係数の推定装置は、
他の形態として、該第2の信号伝達系の応答と該第2の
参照信号の極性との積を所定の区間加算した結果と、該
非巡回型フィルタの全タップに対応する該第2の参照信
号の絶対値和を該区間加算した結果との比を用いて該非
巡回型フィルタの係数を更新するように構成される。
【0035】また本発明のフィルタ係数の推定装置は、
上記計算される加算に際して、加算値が制限語長を超え
るか否かを観測し、超えると判断した場合にはその加算
値および加算入力に対し小さな定数を乗じて調整するこ
とにより、該加算値を制限語長内に抑えるように構成さ
れる。
【0036】
【実施例】以下、本発明の種々の実施例を図面を参照し
て説明する。
【0037】(1)個別正規化LMS法への適用(請求
項1)
【0038】まず初めに、個別正規化LMS法に本発明
を適用した場合の実施例を説明する。この実施例が適用
されるシステムは前述の図2と同様のシステムであり、
この係数更新回路220に本発明が適用される。
【0039】まず、個別正規化LMS法における残差E
j と参照信号Xj (m) との積を Ej sgn[Xj (m)]=[Σ△j (i) Xj (i) +Nj ] sgn[Xj (m)] =△j (m) abs[Xj (m)]+ [Σm j (i) Xj (i) +Nj ] sgn[Xj (m)] (18) と改める。但し、sgn[Xj (m)]はXj (m) の極性をとる
こと、また、abs[Xj (m)]は、Xj (m) の絶対値をとる
ことを意味する。この場合、非巡回型フィルタ210の
第m番目の係数更新量として必要な値はその第1項 △j (m) abs[Xj (m)]=[hj (m) −Hj (m)]abs[Xj (m)] (19) として取り出される。
【0040】ここで、先の説明と同様、個別正規化LM
S法において係数更新はJ標本化周期ごとに実行される
こと、従って、時刻j=nJ+1〜(n+1)Jの間は
係数がHn (m) に固定されること、かつ、信号伝達系の
特性(エコー経路のインパルス応答)は適応フィルタの
係数が収束するまで一定とみなせること〔すなわち、h
(m) −Hj (m) 〕に着目して、式(11)を An (m) =ΣJ Δj (m) abs[Xj (m)] +ΣJ [ Σm Δj (i) Xj (i) +Nj ] sgn[Xj (m)] =ΣJ [ h(m) −Hn (m)]abs[Xj (m)] +ΣJ [ Σm Δj (i) Xj (i) +Nj ] sgn[Xj (m)] = [h(m) −Hn (m) ] ΣJ abs[Xj (m)] +ΣJ [ Σm Δj (i) Xj (i) +Nj ] sgn[Xj (m)] (20) とおく。
【0041】明らかに、係数の更新に必要な情報 [h
(m) −Hn (m)]は、式(12)に与える参照信号のパワ
−Pn (m) を Pn (m) =ΣJ abs[Xj (m)] (21) と置き換え、それとの比を求めることにより、 An (m) /Pn (m) = [h(m) −Hn (m)] +ΣJ [ Σm Δj (i) Xj (i) +Nj ] sgn[Xj (m)]/ΣJ abs[Xj (m)] (22) の第1項として抽出される。
【0042】ここで、残差と参照信号の極性との積およ
び参照信号の絶対値化は語長(例えば16ビット)を倍
に拡大しないことに注意を払えば、従来の例にあった問
題点を解決し、参照信号の広い振幅変動に対応可能な固
定小数点演算が実現されることが理解される。
【0043】図8は本発明である『残差と参照信号の極
性との相関を、参照信号の絶対値によって個別に正規化
する係数更新アルゴリズム』が与える応答相殺量の増加
特性を学習同定法(全て浮動小数点で計算)と比較した
ものである。この結果において増加速度は同じ程度が得
られること、また、収束後に得られる応答相殺量の飽和
値は約2dBの劣化が生じる程度であることを示してい
る。
【0044】更に、図9は演算語長を全て16ビットと
する固定小数点演算で得た本方式による収束特性と固定
小数点で計算した学習同定法の増加特性との比較であ
る。同じ固定小数点の演算語長で計算した学習同定法に
比較して大幅に増加特性が改善されていること、また、
図8と図9を比較すると本方式では固定小数点で計算し
ても浮動小数点で計算した結果とほとんど変わらない特
性が得られることが確認される。
【0045】すなわち、本発明の特徴の一つ『参照信号
の極性を残差に乗じる』によれば係数更新に必要な情報
[h(m) −Hj (m)]が参照信号と同じ演算語長で抽出可
能となる。この点(すなわち、本発明では [h(m) −H
j (m)]が分離されて抽出されること)がその増加性にお
いて『参照信号を残差の極性に乗じる』従来のサインア
ルゴリズムとの違いが生じる理由となっている。
【0046】当然ながら、本発明の原理『参照信号の特
性を残差に乗じる』は個別正規化LMS法の異なる演算
法への適用が可能である。
【0047】(2)分散更新法への適用(請求項2)
【0048】例えば、個別正規化LMS法による係数更
新量の計算法の1つである『1標本化周期あたりに更新
される係数を1個とする』分散更新法に適用した場合、
式(11)および(12)は An (m) =ΣJ*j j (m) (23) ΣJ* :j=nJ+1+ (m−1) 〜 (n+1) J+
(m−1) の加算(以下同じ) Pn (m) =ΣJ j 2 (1) (24) と書き換えられる[後掲の文献参照]。すなわち、正
規化パワ−は全係数に共通となり、係数更新が1標本化
周期に1回となることによって計算量の削減が実現され
る。本発明の適用は式(23)、(24)を An (m) =ΣJ*j sgn[Xj (m)] (25) Pn (m) =ΣJ abs[Xj (1)] (26) と書き換えることによって得られる。
【0049】図10は本方式と学習同定法の収束特性の
比較である。但し、演算は全て16ビットの固定小数点
で実行されている。明らかに、図9と同じ特性が得られ
ている。
【0050】更に本発明は『プロセッサとしては固定小
数点型を用いるけれども固定小数点による演算を多用し
て処理時間の削減をはかる場合』には従来からある様々
な適応アルゴリズムに適応可能である。
【0051】(3)学習同定法への適用(請求項3)
【0052】この適用に対して(5)に与える係数更新
式は Hj+1(m)=Hj (m) +KEj sgn[Xj (m) /Σabs[Xj (i)] (27) と書き換えられる。すなわち、上式(27)を Hj+1(m)=Hj (m) +K [ΣΔj (i) Xj (i) +Nj ] sgn[Xj (m)]/Σabs[Xj (i) ] =Hj (m) +K [Δj (m) Xj (m) +Σm Δj (i) Xj (i) +Nj ]sgn[ Xj (m)]/Σabs[Xj (i) ] =Hj (m) + [hj (m) −Hj (m) ] Kabs[Xj (m)]/abs[Xj (i)] +K [Σm Δj (i) Xj (i) +Nj ] sgn[Xj (m)]/Σabs[Xj (i)] (28) と整理すれば、式(9)と同様な形で係数更新に必要な
情報 [hj (m) −Hj (m) ] が取り出されていることが
確認される。すなわち、『参照信号の極性を残差に乗じ
るアルゴリズムの絶対値による正規化』法においても通
常の学習同定法と同様に非巡回型フィルタ210の係数
が分離して抽出される。ここがサインアルゴリズムと異
なる点である。
【0053】図11に示す結果は、式(27)の第2項
の分子と分母をそれぞれ固定小数点で計算し、その商を
浮動小数点で得た後に第1項に加算する方式で得た応答
相殺量の増加特性である。明らかに、サインアルゴリズ
ム(図3、図4)で得た特性に対して改善されているこ
とが確認される。
【0054】(4)加算正規化LMS法(文献)への
適用(請求項4)
【0055】この加算正規化LMS法は Hj+1(m)=Hj (m) +KΣJ j j (m) /ΣJ ΣXj 2 (i) (29) と表される。本発明の適用は単に、 Hj+1(m)=Hj (m) +KΣJ j sgn[Xj (m)]/ΣJ Σabs[Xj (i)] (30) と置き換えるだけである。そして、係数更新に必要な情
報 [hj (m) −Hj (m)]がこの第2項において抽出され
ることは学習同定法に同じである。この方法の利点は、
同じ収束特性を得るのに加算項数Jに比例してステップ
ゲインKを大きくできることである。ステップゲインK
を大きくとれば正規化以降の計算を含めて全演算を固定
小数点で実行できる可能性が高くなる。
【0056】図12は加算項数Jを32、ステップゲイ
ンKを0.32として全て固定小数点で計算した応答相
殺量の増加特性である。本発明の加算正規化LMS法へ
の適用は固定小数点演算に対して増加特性が大幅に改善
されることが確認される。
【0057】以上の例は、図13に示す音響エコーキャ
ンセラのように残差Ej が電気信号として観測されるシ
ステムについて有効な係数更新アルゴリズムである。
【0058】この図13に示す装置はハンズフリー通話
装置と称される装置であり、手放しで双方向同時に通話
できるようにスピーカ201とマイクロホン202の間
の音響結合を低減する効果をもつ音響エコーキャンセラ
200が導入されているところに特徴がある。すなわ
ち、この装置は音響エコーキャンセラ200と信号伝達
系100で構成され、信号伝達系100は遠端話者音声
を出力するスピーカ201、近端話者音声を入力するマ
イクロホン202を含み、音響エコーキャンセラ200
は信号伝達系を模擬する適応フィルタ210、マイクロ
ホン202の採取信号から回り込みエコーを除去する減
算器240、適応フィルタ210の係数更新を行う係数
更新回路220などを含み構成される。
【0059】この図13に示す装置において、スピーカ
201を含む信号伝達系100に送出された遠端話者信
号(前記の既知信号に相当)Xj はエコー〔前式(1)
の信号伝達系の応答に相当〕 gj =Σhj (i) Xj (i) となってマイクロホン202に回り込む。音響エコーキ
ャンセラはこのエコーg j を非巡回型(FIR)の適応
フィルタ210で合成された疑似エコー〔前式(3)の
擬似応答〕 Gj =ΣHj (i) Xj (i) をもって減算器240で減算することで相殺する。ただ
し、適応フィルタのタップ数はエコーの最大遅延Iに等
しいとしている。
【0060】ここで、この減算の結果として得られるエ
コー相殺の程度は、係数更新回路220によって算定さ
れる適応フィルタの係数Hj (i) と信号伝達系100の
伝達特性を規定するインパルス応答hj (i) との誤差 Δj (i) =hj (i) −Hj (i) によって測られ、この音響エコーキャンセラを導入した
ことによって得られる効果は以下の差分(残留エコー) Ej =ΣΔj (i) Xj (i) +Njj :周囲雑音 が最も小さくなるときに最大となる。
【0061】この図13に示す構成例において、係数更
新回路220は本発明に言うフィルタ係数の推定装置に
等価であり、この係数更新回路220は上記の差分Ej
が最小となるように適応フィルタ210のフィルタ係数
j (i) を調整して信号伝達系100の特性を記述する
インパルス応答をもったフィルタを構築する。
【0062】図18はかかる音響エコーキャンセラにお
いて本発明を分散更新法に適用した場合の収束特性を従
来の学習同定法の場合と比較して示したもので、分散更
新法に本発明を適用して実音声で計算した収束特性であ
る。(イ)は学習同定法の場合の収束特性、(ロ)は分
散更新法に本発明を適用した場合の収束特性である。但
し、ステップゲインは本発明方式にはK=1/128、
学習同定法には発声強度の許容変動幅に強い制限(参照
信号のパワーが所要推定制度の確保に必要な大きさ以下
となったときには係数更新を休止)を加えることによ
り、K=1/4と大きく与えている。分散更新法に本発
明を適用した係数更新法における良好な収束特性が明ら
かである。
【0063】また図19はかかる音響エコーキャンセラ
において加算正規化LMS法と学習同定法に本発明を適
用した場合の収束特性であり、発声強度の許容変動下限
を遠端側の周囲騒音レベルとした場合の実音声による収
束特性である。図中、(イ)は学習同定法に本発明を適
用した場合の収束特性、(ロ)は加算正規化LMS法に
本発明を適用した場合の収束特性である。但し、この特
性は近端側と遠端側の周囲騒音レベルを等しいとおき、
また、音声対周囲騒音比を20dB、安定した動作に必要
なエコー消去量として20dBを仮定してステップゲイン
Kを1/128、加算項数J=128とおいて計算して
いる。加算正規化LMS法に本発明を適用した本係数更
新法における良好な収束特性から、発声強度の変動は大
きく許容されることが分かる。
【0064】(5)誤差伝播系を有するシステムへの適
用(請求項5)
【0065】未知の信号伝達系の特性を推定するシステ
ムには図14に示す誤差伝播系を介して残差Ej が観測
される場合もある。図15に示す能動騒音制御装置はそ
のような例の一つである。但し、図14に示すシステム
では図15に与える『スピーカからマイクロホンAに回
り込む系』は帰還制御フィルタ340によって完全に模
擬されると仮定している。
【0066】図15の能動騒音制御装置において、ファ
ン305側で発生する騒音をダクト400内で消去する
もので、騒音を収集する騒音収集マイクロホン302、
擬似騒音を生成する騒音生成フィルタ320、擬似騒音
を出力するスピーカ303、騒音消し残りの誤差を収集
する誤差収集マイクロホン304、帰還系を模擬する帰
還制御フィルタ340、騒音制御フィルタ210の係数
更新を行う係数更新回路220、騒音制御フィルタ21
0から誤差収集マイクロホン304を経て係数更新回路
220に至る系を模擬する誤差伝播系フィルタ310な
どを含み構成される。
【0067】この能動騒音制御装置の原理は、ダクト4
00中を流れる騒音と誤差収集マイクロホン304の位
置で同振幅・逆位相となる擬似騒音をスピーカ303に
より出力し、同マイクロホン304位置において騒音を
相殺することによりダクト外へ流れる騒音を抑制するこ
とにある。ただし、ここではスピーカ303から騒音収
集マイクロホン302に至る系に生じる擬似騒音の回り
込みは、帰還制御フィルタ340の出力によって完全に
相殺されると仮定しておく。
【0068】また、この装置において、先に与えた『特
性が未知の信号伝達系』は騒音収集マイクロホン302
から誤差収集マイクロホン304に至る騒音伝搬系に相
当し、信号伝達系に送出する信号は騒音収集マイクロホ
ン302によって採取されるファンの騒音Xj に、信号
伝達系の特性を模擬するフィルタは騒音制御フィルタ2
10に、係数更新回路220は本発明に言うフィルタ係
数の推定装置に相当する。
【0069】この能動騒音制御装置において、係数更新
回路220はマイクロホン304の出力ej が最も小さ
くなるように騒音制御フィルタ210の係数Hj を調整
する。また、このときにおいてダクト出口から放射され
る騒音は最も小さくなる。
【0070】このように誤差伝播系を介してしか残差信
号を観測し得ない場合には、係数更新に際しては係数更
新式を構成する参照信号Xj を誤差伝播系を模擬するフ
ィルタ310の出力Yj で置き換える変形[請求の範囲
(7) ]が必要となる。
【0071】(6)誤差伝播系を有するシステムに対す
る個別正規化LMS法の適用(請求項6)
【0072】まず、誤差伝播系を有するシステムに対し
て本発明を適用した個別正規化LMS法は式(10)第
2項の分子と分母を An (m) =ΣJ j sgn[Yj (m)] (31) Pn (m) =ΣJ abs[Yj (m)] (32) と置き換えることで得られる。
【0073】例えば、誤差伝播系300のインパルス応
答をa(t) 〔但し、t=1〜T〕と与え、誤差伝播系フ
ィルタ310が誤差伝播系300を完全に模擬している
と仮定して ej 1ΣT a (t) Ej-t (33)1 ΣT :t=1 〜Tの加算(以下同じ) Yj 1ΣT a (t) Xj-t (34) とおく。さらに、誤差Ej-t をタップmに関係する成分
とそれ以外の成分に分けて ej 1ΣT a (t) [h(m) −Hj-t (m)]Xj-t (m) + 1ΣT a (t) Σm [ h(i) −Hj-t (i)]Xj-t (i) (35) と分離して表す。
【0074】一方、1回の係数更新で変化する量は実際
にはわずかであることから、第n番目の区間における非
巡回型フィルタの係数は Hj-t (m) ≒Hn (m) (36) と近似されるとする。このとき、上式(35)は式(3
4)から ej = [h(m) −Hn (m) ] 1ΣT a (t) Xj-t (m) + 1ΣT a (t) Σm [ h(i) −Hj-t (i)]Xj-t (i) (37) と整理することができる。すなわち、これとsgn[Y
j (m)]との積は ej sgn[Yj (m)]= [h(m) −Hn (m) ] abs[Yj (m)] + 1ΣT a (t) Σm [ h(i) −Hj-t (i)]Xj-t (i) sgn[Yj (m)] (38) となるので、式(32)による正規化は係数更新に必要
な情報 [hj (m) −Hj(m) ] を生成することになる。
明らかに、誤差伝播系を有するシステムにおける係数更
新に本発明の原理の適用は可能である。
【0075】図16はそれぞれ浮動小数点と固定小数点
で計算したFiltered-X NLMS 法と、式(31)と(3
2)を用いて計算した個別正規化LMS法の応答相殺量
の増加特性である。全て固定小数点で計算した本発明方
式に対して収束の初期における収束速度はFiltered-X N
LMS 法(浮動小数点)よりも若干早く、また、最終的に
得られる応答相殺量において若干の劣化することが認め
られる。しかし、全て固定小数点で計算したFiltered-X
NLMS 法に比較してその劣化は大幅に少ないことが確認
される。
【0076】(7)誤差伝播系を有するシステムに対す
る分散更新法の適用(請求項7)
【0077】同様にして、個別正規化LMS法の分散更
新法も誤差伝播系を介して残差が観測されるシステムへ
の適用が次のようにして可能となる。すなわち、式(1
0)に与える係数更新式に対して An (m) =ΣJ*j sgn[Yj (m)] (39) Pn (m) =ΣJ abs[Yj (1)] (40) とおくことで構成される。
【0078】(8)誤差伝播系を有するシステムに対す
る学習同定法の適用(請求項8)
【0079】また、学習同定法に対しては Hj+1(m)=Hj (m) +KEj sgn[Yj (m)]/Σabs[Yj (i)] (41) と置き換えればよい。
【0080】(9)誤差伝播系を有するシステムに対す
るLMS法の適用(請求項9)
【0081】同様に、LMS法に対しては Hj+1(m)=Hj (m) +KEj sgn[Yj (m)] (42) と置き換えることで得られる。
【0082】(10)誤差伝播系を有するシステムに対
する加算正規化LMS法の適用(請求項10)
【0083】最後に加算正規化LMS法には Hj+1(m)=Hj (m) +KΣJ j sgn[Yj (m)]/ΣJ Σabs[Yj (i)] (43) とおけばよい。
【0084】以上(7)〜(9)に与えた変形に対して
その動作の確認を(9)の加算正規化LMS法について
だけ示す。図17はその結果である。この結果から、残
差が誤差伝播系を介して観測されるシステムも本発明の
適用が可能であること、また、加算正規化LMS法に対
しては式(43)の変形によって全て固定小数点で計算
する構成としても、浮動小数点で計算したFiltered-X N
LMS 法に対して劣化の少ない犠牲が実現されることが確
認される。
【0085】(11)加算値を制限語長内に抑える手法
(請求項11)
【0086】(9)学習同定法では参照信号の絶対値の
加算、加算正規化LMS法では更に残差信号と参照信号
の極性との積の加算が実行される。当然ながら、この加
算は加算値を徐々に大きくし、いずれ固定小数点演算に
おいて制限される語長以上の大きさとなる。当然なが
ら、その加算値はそのときにおいて真の値とはなりえ
ず、この加算値を用いた係数更新は誤りを引き起こす。
この誤動作を防止する最も簡単な方法には『オーバーフ
ローを引き起こさない程度に小さい定数を参照信号ある
いは該積に乗じた後に加算すること』である。しかし、
この乗算は下位のビットを切り捨てることに等しく、演
算語長の有効な利用の妨げから本方式の利点を減ずる効
果をもたらす。
【0087】この切り捨て効果を小さく留める方法とし
て、次の方法が考えられる。すなわち、該加算の監視に
よってその加算がオーバーフローを引き起こすと判断さ
れたときには加算値と加算入力のそれぞれに対して小さ
な定数を乗じる調整を繰り返すことである。例えば、次
の操作を加えることによって演算語長は最大限に利用さ
れる。
【0088】まず、参照信号Xj の絶対値は最大でも
0.5未満となるようにレベル調整を予め行うものと
し、定数M=1.0を初期値として加算値 SX =SX +abs[Xj ] M (44) を計算する。
【0089】Sx ≧0.5ならば次の加算(上記)
でオーバーフローする可能性がある。そこで、処理を2
つに分け、
【0090】Sx ≧0.5ならば Sx =0.5 S (45) としてオーバーフローを防ぐと同時に M=0.5M (46) とおく。この定数Mの調整は、既に加算されている参照
信号Xj の絶対値とこれから加えられる同絶対値の大き
さをそろえる効果をもつ。
【0091】〔参考文献〕 文献:藤井健作、大賀寿郎、『固定小数点演算に適し
た個別正規化LMS法に関する検討』信学技報、EA94-6
3、1994-11 』
【0092】文献:藤井健作、大賀寿郎、『適応フィ
ルタ係数の無音声雑音区間における更新の継続』信学技
報、BA94-00,1994-12
【0093】
【発明の効果】以上、本発明によれば、様々な適応アル
ゴリズムに適用可能であり、参照信号との積や自乗によ
る信号の語長拡大が幕なく、従って、参照信号の大幅な
振幅変動に対応できる非巡回型フィルタ係数の更新が可
能となる推定装置が実現される。
【図面の簡単な説明】
【図1】本発明に係る原理説明図である。
【図2】信号伝達系の特性を推定するシステムの概念図
である。
【図3】サインアルゴリズムによる応答相殺量の増加特
性Iを示す図である。
【図4】サイイアルゴリズムによる応答相殺量の増加特
性IIを示す図である。
【図5】応答相殺量の増加特性を示す図である。
【図6】個別正規化LMS法と学習同定法の応答相殺量
の増加特性(浮動小数点)を示す図である。
【図7】個別正規化LMS法と学習同定法の応答相殺量
の増加特性(固定小数点)を示す図である。
【図8】浮動小数点で計算した本発明の方式によって得
られる応答相殺量の学習同定法との比較を示す図であ
る。
【図9】固定小数点で計算した本発明方式による応答相
殺量の学習同定法との比較を示す図である。
【図10】固定少数点で計算した本発明方式(分散更新
法)による応答相殺量の学習同定法との比較を示す図で
ある。
【図11】全て浮動少数点で計算した学習同定法と本発
明方式による応答相殺量の増加特性の比較を示す図であ
る。
【図12】本発明の加算正規化LMS法への適用の場合
の応答相殺量の増加特性を示す図である。
【図13】音響エコーキャンセラの概念図である。
【図14】残差Ej の観測に誤差経路が介在する信号伝
達系の特性推定システムの概念図である。
【図15】能動騒音制御装置の構成例を示す図である。
【図16】残差が誤差伝播系を介して観測されるシステ
ムへ本発明を適用した場合の応答相殺量の増加特性を示
す図である。
【図17】誤差伝播系を有するシステムの係数更新に本
発明を適用した加算正規化LMS法による応答相殺量の
増加特性を示す図である。
【図18】本発明を分散更新法に適用した場合の実音声
による収束特性を示す図である。
【図19】本発明を学習同定法と加算正規化LMS法に
適用した場合の実音声による収束特性を示す図である。
【符号の説明】
10 信号伝達系 20 音響エコーキャンセラ 100 参照信号の入力端子路 101 残差信号の入力端子 110 誤差情報抽出部 120 係数記憶更新部 102 係数の出力端子 200 特性が未知の信号伝達系 210 非巡回型フィルタ 220 係数更新回路 201、303 スピーカ 202 マイクロホン 400 騒音消去用ダクト 302 騒音収集用マイクロホン 304 誤差収集用マイクロホン 305 ファン 340 帰還制御フィルタ 310 誤差伝播系フィルタ

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】特性が未知の信号伝達系に送出される参照
    信号とその伝達系の応答とから該信号伝達系のインパル
    ス応答に等価な応答を出力する非巡回型フィルタの係数
    を推定する装置において、 該信号伝達系の応答及び該非巡回型フィルタの出力の差
    分並びに該参照信号の極性の積を所定の区間加算した結
    果と、該区間に生じる参照信号の絶対値の加算値との比
    から、該信号伝達系のインパルス応答と該非巡回型フィ
    ルタの係数との誤差に関する情報を抽出し、その情報を
    利用して該非巡回型フィルタの係数を更新することを特
    徴とするフィルタ係数の推定装置。
  2. 【請求項2】1標本化周期あたりに更新される係数の個
    数に制限を加え、該比の計算に用いる該参照信号の絶対
    値の加算値の個数を該非巡回型フィルタのタップ数未満
    としたことを特徴とする請求項1記載のフィルタ係数の
    推定装置
  3. 【請求項3】特性が未知の信号伝達系に送出される参照
    信号とその伝達系の応答とから該信号伝達系のインパル
    ス応答に等価な応答を出力する非巡回型フィルタの係数
    を推定する装置において、 該信号伝達系の応答及び該非巡回型フィルタの出力の差
    分並びに該参照信号の極性の積と、該非巡回型フィルタ
    のタップ出力の絶対値和との比から、該信号伝達系のイ
    ンパルス応答と該非巡回型フィルタの係数との誤差に関
    する情報を抽出し、その情報を利用して該非巡回型フィ
    ルタの係数を更新することを特徴とするフィルタ係数の
    推定装置。
  4. 【請求項4】特性が未知の信号伝達系に送出される参照
    信号とその伝達系の応答とから該信号伝達系のインパル
    ス応答に等価な応答を出力する非巡回型フィルタの係数
    を推定する装置において、 該信号伝達系の応答及び該非巡回型フィルタの出力の差
    分並びに該参照信号の極性の積を所定の区間加算した結
    果と、該非巡回型フィルタのタップ出力の絶対値和を該
    区間加算した結果との比から、該信号伝達系のインパル
    ス応答と該非巡回型フィルタの係数との誤差に関する情
    報を抽出し、その情報を利用して該非巡回型フィルタの
    係数を更新することを特徴とするフィルタ係数の推定装
    置。
  5. 【請求項5】特性が未知の信号伝達系に送出される参照
    信号とその伝達系の応答とから該信号伝達系のインパル
    ス応答に等価な応答を出力する非巡回型フィルタの係数
    を推定する装置であって、該信号伝達系の応答と該非巡
    回型フィルタの出力との差分が第2の信号伝達系を介し
    て観測され、該第2の信号伝達系の応答を模擬するフィ
    ルタを設け、該フィルタの応答を新しく第2の参照信号
    とみなして該非巡回型フィルタの係数を推定するものに
    おいて、 該第2の信号伝達系の応答と該第2の参照信号の極性と
    の積から、該信号伝達系のインパルス応答と該非巡回型
    フィルタの係数との誤差に関する情報を抽出し、その情
    報を利用して該非巡回型フィルタの係数を更新すること
    を特徴とするフィルタ係数の推定装置。
  6. 【請求項6】該該第2の信号伝達系の応答と該第2の参
    照信号の極性との積から該非巡回型フィルタの係数を更
    新することに代えて、該積を所定の区間加算した結果
    と、該区間に生じる該第2の参照信号の絶対値の加算値
    との比を用いて該非巡回型フィルタの係数を更新するこ
    とを特徴とする請求項5記載のフィルタ係数の推定装置
  7. 【請求項7】1標本化周期あたりに更新される係数の個
    数に制限を加え、該比の計算に用いる該第2の参照信号
    の絶対値の加算値の個数を該非巡回型フィルタのタップ
    数未満としたことを特徴とする請求項6記載のフィルタ
    係数の推定装置
  8. 【請求項8】該第2の信号伝達系の応答と該第2の参照
    信号の極性との積から該非巡回型フィルタの係数を更新
    することに代えて、該積と、該非巡回型フィルタの全タ
    ップに対応する該第2の参照信号の絶対値和との比を用
    いて該非巡回型フィルタの係数を更新することを特徴と
    する請求項5記載のフィルタ係数の推定装置
  9. 【請求項9】該積に一定値を乗じた結果を係数更新量と
    して該非巡回型フィルタの係数に加えて該係数を更新す
    ることを特徴とする請求項5記載のフィルタ係数の推定
    装置
  10. 【請求項10】該第2の信号伝達系の応答と該第2の参
    照信号の極性との積から該非巡回型フィルタの係数を更
    新すること代えて、該積を所定の区間加算した結果と、
    該非巡回型フィルタの全タップに対応する該第2の参照
    信号の絶対値和を該区間加算した結果との比を用いて該
    非巡回型フィルタの係数を更新することを特徴とする請
    求項5記載のフィルタ係数の推定装置
  11. 【請求項11】上記計算される加算に際して、加算値が
    制限語長を超えるか否かを観測し、超えると判断した場
    合にはその加算値および加算入力に対し小さな定数を乗
    じて調整することにより、該加算値を制限語長内に抑え
    ることを特徴とする請求項1、2、3、4、6、7、8
    または10に記載のフィルタ係数の推定装置。
JP7050836A 1995-03-10 1995-03-10 フィルタ係数の推定装置 Withdrawn JPH08250982A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7050836A JPH08250982A (ja) 1995-03-10 1995-03-10 フィルタ係数の推定装置
US08/567,632 US5790440A (en) 1995-03-10 1995-12-05 Apparatus for estimating filter coefficients

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7050836A JPH08250982A (ja) 1995-03-10 1995-03-10 フィルタ係数の推定装置

Publications (1)

Publication Number Publication Date
JPH08250982A true JPH08250982A (ja) 1996-09-27

Family

ID=12869839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7050836A Withdrawn JPH08250982A (ja) 1995-03-10 1995-03-10 フィルタ係数の推定装置

Country Status (2)

Country Link
US (1) US5790440A (ja)
JP (1) JPH08250982A (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088445A (en) * 1997-08-01 2000-07-11 Crystal Semiconductor Corp. Adaptive filter system having mixed fixed point or floating point and block scale floating point operators
US6256383B1 (en) * 1997-11-07 2001-07-03 Legerity, Inc. IIR filter of adaptive balance circuit for long tail echo cancellation
JP3241328B2 (ja) * 1998-09-30 2001-12-25 沖電気工業株式会社 エコーキャンセラ
KR100307662B1 (ko) * 1998-10-13 2001-12-01 윤종용 가변적인수행속도를지원하는에코제거장치및방법
US7072465B1 (en) * 1999-01-06 2006-07-04 Agere Systems, Inc. Adaptive filter for network echo cancellation
US6581080B1 (en) * 1999-04-16 2003-06-17 Sony United Kingdom Limited Digital filters
JP3964092B2 (ja) * 2000-02-17 2007-08-22 アルパイン株式会社 オーディオ用適応イコライザ及びフィルタ係数の決定方法
US6904444B2 (en) * 2001-04-12 2005-06-07 The United States Of America As Represented By The Secretary Of The Navy Pseudo-median cascaded canceller
US7068736B2 (en) * 2001-07-11 2006-06-27 Agere Systems Inc. Methods and devices for shortening the convergence time of blind, adaptive equalizers
US7152084B2 (en) * 2002-11-08 2006-12-19 Socovar, S.E.C. Parallelized infinite impulse response (IIR) and integrator filters

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2842026B2 (ja) * 1991-02-20 1998-12-24 日本電気株式会社 適応フィルタの係数制御方法及び装置
JP3089082B2 (ja) * 1991-07-10 2000-09-18 シャープ株式会社 適応型ディジタルフィルタ
CA2074782C (en) * 1991-07-30 1997-10-07 Akihiko Sugiyama Method of and apparatus for identifying unknown system using adaptive filter
US5563817A (en) * 1992-07-14 1996-10-08 Noise Cancellation Technologies, Inc. Adaptive canceller filter module
JP3008763B2 (ja) * 1993-12-28 2000-02-14 日本電気株式会社 適応フィルタによるシステム同定の方法および装置
JPH08125593A (ja) * 1994-10-28 1996-05-17 Fujitsu Ltd フィルタ係数の推定装置
US5553014A (en) * 1994-10-31 1996-09-03 Lucent Technologies Inc. Adaptive finite impulse response filtering method and apparatus

Also Published As

Publication number Publication date
US5790440A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
Douglas Introduction to adaptive filters
EP0500096B1 (en) Method and apparatus for controlling coefficients of adaptive filter
EP2327156B1 (en) Method for determining updated filter coefficients of an adaptive filter adapted by an lms algorithm with pre-whitening
CN108172231B (zh) 一种基于卡尔曼滤波的去混响方法及系统
JP3008763B2 (ja) 適応フィルタによるシステム同定の方法および装置
US5638439A (en) Adaptive filter and echo canceller
WO1995006986A1 (en) Fast converging adaptive filter
Albu et al. Pseudo-affine projection algorithms for multichannel active noise control
US5638311A (en) Filter coefficient estimation apparatus
JP2004349806A (ja) 多チャネル音響エコー消去方法、その装置、そのプログラム及びその記録媒体
JPH08250982A (ja) フィルタ係数の推定装置
JP2654894B2 (ja) 反響消去装置およびその方法
CA2128666C (en) Adaptive transfer function estimating method and estimating device using the same
JP4041770B2 (ja) 音響エコー消去方法、その装置、プログラム及びその記録媒体
Wahbi et al. Enhancing the quality of voice communications by acoustic noise cancellation (ANC) using a low cost adaptive algorithm based Fast Fourier Transform (FFT) and circular convolution
JP3147864B2 (ja) 適応ステップサイズ制御適応フィルタ、及び適応ステップサイズ制御方法
EP0715407B1 (en) Method and apparatus for controlling coefficients of adaptive filter
JP2002533970A (ja) 安定適応フィルタおよびその方法
Hu et al. A robust secondary path modeling technique for narrowband active noise control systems
JP2602750B2 (ja) 反響消去装置
JP2001077730A (ja) 適応フィルタの係数推定装置
Srinivasan Adaptive Echo Noise Elimination for Speech Enhancement of Tamil letter ‘Zha’
JPH0447720A (ja) エコーキャンセラー
JPH0870268A (ja) フィルタ係数の推定装置
Verma et al. Echo Cancellation Using Different Adaptive Algorithm in Digital Signal Processing

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604