JPH08250742A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH08250742A
JPH08250742A JP5404195A JP5404195A JPH08250742A JP H08250742 A JPH08250742 A JP H08250742A JP 5404195 A JP5404195 A JP 5404195A JP 5404195 A JP5404195 A JP 5404195A JP H08250742 A JPH08250742 A JP H08250742A
Authority
JP
Japan
Prior art keywords
tft
insulating film
gate insulating
type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5404195A
Other languages
Japanese (ja)
Inventor
Yasumasa Goto
康正 後藤
Arichika Ishida
有親 石田
Yasuto Kawahisa
慶人 川久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5404195A priority Critical patent/JPH08250742A/en
Publication of JPH08250742A publication Critical patent/JPH08250742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE: To control a threshold voltage without lowering the mobility by providing polycrystalline semiconductor thin film field-effect transistor exceeding two kinds in different thickness of gate insulating films on the same insulating substrate. CONSTITUTION: Polysilicon TFT in different insulating film thickness is used for e.g. a switching TFT and a drive TFT on an active matrix substrate 2 comprising one of a pair of substrates holding a liquid crystal layer. That is, a drive circuit e.g. as an assembly of C-MOS circuits 20 is formed into the circuits by TFT on the same substrate as the switching TFT 15 matrix-arrayed together with picture elements. Next, in order to control the characteristics of this C-MOS circuit, the gate insulating film thickness is changed in n-type 21 and p-type 22 comprising the C-MOS. Through these procedures, the TFTs in different solid charge density can be manufactured thereby enabling the threshold value of the TFTs to be controlled without deteriorating the mobility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多結晶半導体薄膜電界効
果トランジスタを備えた半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a polycrystalline semiconductor thin film field effect transistor.

【0002】[0002]

【従来の技術】近年、多結晶薄膜電界効果トランジスタ
(以下、p−SiTFTと略記)は、液晶表示装置、密
着センサ等に実用化されるようになり、さらに開発が活
発に進められている。
2. Description of the Related Art In recent years, a polycrystalline thin film field effect transistor (hereinafter abbreviated as p-SiTFT) has been put to practical use in a liquid crystal display device, a contact sensor, etc., and further actively developed.

【0003】また、特に液晶表示装置においては、その
画像表示の画素部分のスイッチング用TFTと、同一基
板の画像表示周辺上に画素を駆動するために周辺駆動回
路系(いわゆるLCDドライバー;液晶駆動回路)とを
TFTにより作り込んだ構成の駆動回路一体型液晶表示
装置が開発されてきている。上述のp−SiTFTは、
特にこの分野に好適の技術として注目されている。
Further, particularly in a liquid crystal display device, a peripheral driving circuit system (so-called LCD driver; liquid crystal driving circuit) for driving a pixel on a switching TFT of a pixel portion of the image display and an image display periphery of the same substrate. ) And a drive circuit integrated liquid crystal display device having a structure in which they are formed by a TFT have been developed. The p-Si TFT described above is
In particular, it is drawing attention as a technique suitable for this field.

【0004】ところで、このp−SiTFTを駆動回路
に用いるに際しての課題の1つに、しきい値電圧の制御
がある。これは、しきい値電圧が極端に高い場合駆動電
圧を上げる必要が生じ、また、しきい値電圧が極端に低
い場合消費電力が大きくなってしまうためである。この
ようなしきい値電圧をもつTFTでは、駆動回路を十分
に駆動させることができない。
By the way, one of the problems in using the p-Si TFT in a driving circuit is controlling the threshold voltage. This is because when the threshold voltage is extremely high, it is necessary to increase the drive voltage, and when the threshold voltage is extremely low, power consumption increases. With a TFT having such a threshold voltage, the driving circuit cannot be driven sufficiently.

【0005】このようなp−SiTFTのしきい値電圧
制御の対策としては、既に知られた技術として、チャネ
ルドーピング法がある。これは、TFTのチャネル領域
にキャリアとなり得る不純物を注入することにより、し
きい値電圧を制御しようとするものである。例えば、n
型TFTでは、チャネル領域にリンを注入することによ
りしきい値電圧を正方向に、ボロンを注入することによ
りしきい値電圧を負方向にシフトすることができる。
As a measure for controlling the threshold voltage of such a p-Si TFT, there is a channel doping method as a known technique. This is intended to control the threshold voltage by injecting impurities that can serve as carriers into the channel region of the TFT. For example, n
In the type TFT, the threshold voltage can be shifted in the positive direction by injecting phosphorus into the channel region, and can be shifted in the negative direction by injecting boron.

【0006】しかしながら、チャネルドープによるしき
い値制御では、キャリアが移動するチャネル領域に不純
物が注入されているので、キャリアを拡散してしまい移
動度が低下するという問題がある。
However, in the threshold control by channel doping, since the impurities are injected into the channel region where the carriers move, there is a problem that the carriers are diffused and the mobility is lowered.

【0007】[0007]

【発明が解決しようとする課題】上述のように、従来の
p−SiTFTでは所望のしきい値電圧にしなければ、
駆動回路を充分有効に駆動されないという問題があっ
た。
As described above, in the conventional p-Si TFT, if the desired threshold voltage is not achieved,
There is a problem that the drive circuit cannot be driven effectively.

【0008】また、しきい値を制御したチャネルドープ
p−SiTFTでは、しきい値制御を行っていないTF
Tに比べて、移動度が低下するという問題があった。
Further, in the channel-doped p-Si TFT whose threshold value is controlled, the TF in which the threshold value is not controlled is used.
There is a problem that the mobility is lower than that of T.

【0009】本発明は、上記問題を考慮してなされ、p
−SiTFTの移動度を低下させることなく、しきい値
電圧の制御を行う半導体装置を提供することにある。
The present invention has been made in consideration of the above problems, and p
-To provide a semiconductor device that controls the threshold voltage without reducing the mobility of the SiTFT.

【0010】[0010]

【課題を解決するための手段】本発明は、同一絶縁基板
上に、ゲート絶縁膜膜厚が異なる2種類以上の多結晶半
導体薄膜電界効果トランジスタを具備していることを特
徴とする半導体装置を得るものである。
According to the present invention, there is provided a semiconductor device comprising two or more types of polycrystalline semiconductor thin film field effect transistors having different gate insulating film thicknesses on the same insulating substrate. I will get it.

【0011】[0011]

【作用】本発明の半導体装置は、液晶表示装置のアクテ
ィアブマトリクス基板に用いると好適である。
The semiconductor device of the present invention is suitable for use in an active matrix substrate of a liquid crystal display device.

【0012】本発明は液晶層を挟持する一対の基板の一
方を構成するアクティアブマトリクス基板上に、ゲート
絶縁膜膜厚が異なる例えばポリシリコンの半導体薄膜電
界効果トランジスタ(TFT)を、スイッチングTFT
と駆動用のTFTに用いる。すなわち、駆動用回路は、
例えば図4に示すようなC−MOS回路20の組み合わ
せであり、画素ごとにマトリクス配列したスイッチング
TFTと同じ基板に、TFTによる回路を形成する。
According to the present invention, a semiconductor thin film field effect transistor (TFT) of, for example, polysilicon having a different gate insulating film thickness is provided on a switching matrix TFT on an active matrix substrate which constitutes one of a pair of substrates sandwiching a liquid crystal layer.
And used for driving TFT. That is, the drive circuit is
For example, it is a combination of C-MOS circuits 20 as shown in FIG. 4, and a circuit of TFTs is formed on the same substrate as the switching TFTs arranged in a matrix for each pixel.

【0013】このC−MOS回路の特性を制御するた
め、C−MOSを構成するn型、p型TFTにおいてゲ
ート絶縁膜膜厚を異ならせて、しきい値を制御する。さ
らに、片方のTFTの酸化膜を積層構造にすることによ
り、膜の界面数を変えて、固定電荷密度を異ならせる
と、TFTのしきい値電圧は固定電荷密度に依存するこ
とから、各々のTFTの固定電荷密度を制御することに
よりTFTのしきい値をさらに容易に制御することが可
能になる。
In order to control the characteristics of this C-MOS circuit, the threshold value is controlled by making the gate insulating film thickness different in the n-type and p-type TFTs forming the C-MOS. Furthermore, if the fixed charge density is changed by changing the number of interfaces of the films by making the oxide film of one TFT into a laminated structure, the threshold voltage of the TFT depends on the fixed charge density. By controlling the fixed charge density of the TFT, the threshold value of the TFT can be controlled more easily.

【0014】[0014]

【実施例】以下、実施例を示し、本発明を詳細に説明す
る。
The present invention will be described in detail below with reference to examples.

【0015】図1乃至図4は本発明の一実施例を液晶表
示装置に適用したもので、図1において、ガラス板でで
きた透明な絶縁性の観察側基板11の一面にITO(イ
ンジウム錫酸化物)の導電膜でできた透明共通電極13
が被着され、この観察側基板11に対して所定の間隙で
対向するガラス基板の透明な絶縁性の対向基板12の対
向面に各画素ごとにマトリクス配列されたITOの画素
電極14と各画素電極に接続されたスイッチングTFT
15、配線層16が配置される。この配線層として図4
に示すように、ゲート線18、データ線19および図示
しない蓄積容量線がある。これら基板11、12の間隙
には液晶層17が基板間に挟持されるように充填封入さ
れる。
1 to 4 show an embodiment of the present invention applied to a liquid crystal display device. In FIG. 1, ITO (indium tin) is formed on one surface of a transparent insulating observing side substrate 11 made of a glass plate. Transparent common electrode 13 made of conductive film of oxide)
And a pixel electrode 14 of ITO arranged in a matrix for each pixel and each pixel on the opposing surface of the transparent insulating counter substrate 12 of the glass substrate facing the observation side substrate 11 with a predetermined gap. Switching TFT connected to the electrode
15 and the wiring layer 16 are arranged. This wiring layer is shown in FIG.
As shown in, there are a gate line 18, a data line 19 and a storage capacitance line (not shown). A liquid crystal layer 17 is filled and sealed in the gap between the substrates 11 and 12 so as to be sandwiched between the substrates.

【0016】液晶駆動時は、透明共通電極13は接地さ
れ、画素電極14に各付属するスイッチングTFT15
を介して選択的に電圧が印加される。
When the liquid crystal is driven, the transparent common electrode 13 is grounded, and the switching TFTs 15 attached to the pixel electrodes 14 are provided.
A voltage is selectively applied via.

【0017】図4は駆動回路の一部としてゲート線18
の始端に接続されたCMOS回路20および各画素のス
イッチングTFT15、15…をマトリクス配列のゲー
ト線18、データ線19とともに示している。
FIG. 4 shows a gate line 18 as a part of the driving circuit.
The CMOS circuit 20 and the switching TFTs 15, 15 ... Of each pixel connected to the start end of the are shown together with the gate line 18 and the data line 19 in a matrix arrangement.

【0018】CMOS回路20はn型p−SiTFT2
1とp型p−SiTFT22とからなるバッファ回路を
形成しており、また、スイッチングTFT15はn型p
−SiTFTからなる。ここで符号171 は各画素領域
の液晶層であり、符号23は蓄積容量線を含む各画素ご
との容量を示す。スイッチングTFT15のスイッチン
グにより、画素単位で液晶層の液晶分子配列が制御さ
れ、透過する光に対して光スイッチまたは光バルブとし
て働く。
The CMOS circuit 20 is an n-type p-SiTFT2.
1 and a p-type p-Si TFT 22 form a buffer circuit, and the switching TFT 15 is an n-type p-Si TFT 22.
-It consists of SiTFT. Here, reference numeral 171 is a liquid crystal layer in each pixel region, and reference numeral 23 is a capacitance for each pixel including a storage capacitance line. The switching of the switching TFT 15 controls the alignment of the liquid crystal molecules in the liquid crystal layer on a pixel-by-pixel basis, and acts as an optical switch or a light valve for the transmitted light.

【0019】図2および図3は図1および図4に示す液
晶表示装置のアクティブマトリクス基板すなわち対向基
板12上に形成されるp−SiTFT構造を示してい
る。なお、図に付した符号を図5で説明する各部分に対
応して合わせている。各p−SiTFTにおいて、基板
12上でn型p−SiTFT21とp型p−SiTFT
22が相互接続されてCMOS回路を形成しており、さ
らに、スイッチングTFTとしてn型p−SiTFT1
5が同一基板12上においてITO画素電極14に接続
されている。
2 and 3 show a p-SiTFT structure formed on the active matrix substrate, that is, the counter substrate 12 of the liquid crystal display device shown in FIGS. Note that the reference numerals attached to the drawings are matched to correspond to the respective parts described in FIG. In each p-SiTFT, the n-type p-SiTFT 21 and the p-type p-SiTFT are formed on the substrate 12.
22 are interconnected to form a CMOS circuit, and an n-type p-SiTFT1 is used as a switching TFT.
5 are connected to the ITO pixel electrode 14 on the same substrate 12.

【0020】n型p−SiTFT21はゲート絶縁膜が
第1のゲート絶縁膜33と第2のゲート絶縁膜34から
なり、一方、p型p−SiTFT22はゲート絶縁膜が
第2のゲート絶縁膜34のみからなる。n型p−SiT
FT15、22のゲート絶縁膜は膜33と34の膜厚の
加算となるので、p型p−SiTFT21のそれよりも
厚い。すなわち、n型とp型とでゲート絶縁膜の膜厚を
異ならせて、TFTのしきい値電圧を独立に制御し、ス
イッチングTFT、CMOS回路として組み合わせたと
きに良好な回路特性を設計することができる。
The n-type p-Si TFT 21 has a gate insulating film composed of a first gate insulating film 33 and a second gate insulating film 34, while the p-type p-Si TFT 22 has a second gate insulating film 34. Consists of only. n-type p-SiT
The gate insulating film of the FTs 15 and 22 is the sum of the film thicknesses of the films 33 and 34, and thus is thicker than that of the p-type p-Si TFT 21. That is, the thickness of the gate insulating film is made different between the n-type and the p-type, the threshold voltage of the TFT is independently controlled, and good circuit characteristics are designed when combined as a switching TFT and a CMOS circuit. You can

【0021】さらに、2層のゲート絶縁膜の積層によ
り、膜間の界面を増加させる結果、固定電荷密度を容易
に異ならせることができ、さらに一層、TFTのしきい
値電圧の設定幅を大きく制御可能である。
Further, by stacking two layers of gate insulating films, the interface between the films is increased, so that the fixed charge densities can be easily made different, and the setting range of the threshold voltage of the TFT is further increased. It is controllable.

【0022】さらに、図3に示すように複数層のゲート
絶縁膜の形成の利点の一つは、i型ポリシリコン膜にド
ープする不純物量を電極、ゲート絶縁膜厚の変化で制御
してTFTの特性を改善できることである。図はLDD
(Lightly Doped Drain )構造のn型TFTを示してお
り、第1のゲート絶縁膜33、第2のゲート絶縁膜34
およびゲート電極膜35の積層構造をマスクとして、後
述するように、例えばn型不純物であるリンをイオン注
入すると、ゲート電極膜35下は注入がなく、iのチャ
ンネル領域となり、第1と第2のゲート絶縁膜下はn-
領域となり、第2の絶縁膜34のみの部分はn+ 領域と
なる。すなわち、ゲート電極35の幅よりも外側にn-
領域が存在するTFTとなり、電圧特性が改善される。
Further, as shown in FIG. 3, one of the advantages of forming a multi-layered gate insulating film is that the amount of impurities to be doped into the i-type polysilicon film is controlled by changing the thickness of the electrode and the gate insulating film. That is, the characteristics of can be improved. The figure shows LDD
It shows an n-type TFT having a (Lightly Doped Drain) structure, and includes a first gate insulating film 33 and a second gate insulating film 34.
As described later, when phosphorus, which is an n-type impurity, is ion-implanted using the stacked structure of the gate electrode film 35 as a mask, there is no implantation below the gate electrode film 35, and the i-channel region is formed. under the gate insulating film the n -
The second insulating film 34 serves as an n + region. That is, n outside the width of the gate electrode 35.
The TFT has a region, and the voltage characteristic is improved.

【0023】さらに、ゲート絶縁膜の各層の膜厚の調節
によりn- 領域の部分をi領域のままに残すオフセット
構造とすることができるなど、p−SiTFTの特性制
御をさらに容易にする。
Further, by adjusting the film thickness of each layer of the gate insulating film, an offset structure in which the n region is left as it is can be left as it is, thereby facilitating the characteristic control of the p-Si TFT.

【0024】図5は、本実施例に係る液晶表示装置用ア
クティブマトリクス基板の製造プロセスを示す。
FIG. 5 shows a manufacturing process of an active matrix substrate for a liquid crystal display device according to this embodiment.

【0025】工程(a):例えばガラス基板等の透光性
基板12上にプラズマCVD法により、SiO2 等から
なるバッファ層31を形成する。更に、プラズマCVD
法などにより500A(オングストローム)のアモルフ
ァスシリコン膜を被着し、エキシマレーザアニール法に
よりポリシリコン(p−Si)とした後に、フォトリソ
グラフィーおよび、エッチングによりp−Siパターン
32を形成する。
Step (a): A buffer layer 31 made of SiO 2 or the like is formed on the transparent substrate 12 such as a glass substrate by plasma CVD. Furthermore, plasma CVD
A 500 A (angstrom) amorphous silicon film is deposited by a method such as a method, and polysilicon (p-Si) is formed by an excimer laser annealing method, and then a p-Si pattern 32 is formed by photolithography and etching.

【0026】工程(b):次いで、プラズマCVD(P
ECVD)法等によりSiO2 からなる第1のゲート絶
縁膜33を300A〜400A厚に形成する。
Step (b): Next, plasma CVD (P
A first gate insulating film 33 made of SiO 2 is formed to a thickness of 300 A to 400 A by the ECVD method or the like.

【0027】工程(c):フォトリソグラフィーおよ
び、エッチングによりゲート電極膜33のパターンを形
成する。このとき、画素部TFT15において第1の絶
縁膜のパターン33はLDD(Lightly Doped Drain)あ
るいは、オフセット構造をとるためのマスクとなってい
る。
Step (c): The pattern of the gate electrode film 33 is formed by photolithography and etching. At this time, in the pixel portion TFT 15, the pattern 33 of the first insulating film serves as a mask for taking an LDD (Lightly Doped Drain) or an offset structure.

【0028】本実施例では、LDD構造を製造するプロ
セスを以下に述べる。
In this example, the process for manufacturing the LDD structure is described below.

【0029】工程(d):ECRプラズマCVD法によ
り、例えばSiO2 からなる第2のゲート絶縁膜34を
700A被着する。このとき、n型TFT15、21と
p型TFT22では、ゲート絶縁膜膜厚、およびゲート
絶縁膜とp−Siとの界面数が異なっている。すなわ
ち、p型TFT22では第2のゲート絶縁膜34のみで
あり、n型TFT15、21ではこれに第1のゲート絶
縁膜33が付加される。
Step (d): A second gate insulating film 34 made of, for example, SiO 2 is deposited by 700 A by ECR plasma CVD method. At this time, the n-type TFTs 15 and 21 and the p-type TFT 22 differ in the thickness of the gate insulating film and the number of interfaces between the gate insulating film and p-Si. That is, the p-type TFT 22 has only the second gate insulating film 34, and the n-type TFTs 15 and 21 have the first gate insulating film 33 added thereto.

【0030】工程(e):この第2のゲート絶縁膜34
上にスパッタリング法により、Cr、MoTa等の金属
膜を被着し、リソグラフィーおよびエッチングにより、
パターニングしてゲート電極35を形成する。
Step (e): This second gate insulating film 34
A metal film of Cr, MoTa or the like is deposited on the top by a sputtering method, and by lithography and etching,
Patterning is performed to form the gate electrode 35.

【0031】工程(f):その後、p型TFT22だ
け、レジスト、感光性ポリイミド等で保護膜36を形成
し、n型TFT15、21にゲート電極35をマスクと
して自己整合的にリンを注入して、n型TFTのソース
・ドレイン部を形成する。このとき、スイッチングTF
T15のソース・ドレイン部は図3に示すように、リン
の高濃度注入(n+ )領域と低濃度注入(n- )領域が
自動的に形成される。
Step (f): After that, a protective film 36 is formed only on the p-type TFT 22 with a resist, a photosensitive polyimide or the like, and phosphorus is injected into the n-type TFTs 15 and 21 in a self-aligned manner using the gate electrode 35 as a mask. , Source / drain portions of the n-type TFT are formed. At this time, switching TF
In the source / drain portion of T15, as shown in FIG. 3, a high concentration implantation (n + ) region and a low concentration implantation (n ) region of phosphorus are automatically formed.

【0032】工程(g):マスクをエッチングし、今度
はp型TFT22だけ、レジスト、感光性ポリイミド等
で保護膜37を形成し、p型TFTにゲート電極をマス
クとして自己整合的にリンを注入して、p型TFTのソ
ース・ドレイン部(p+ 領域)を形成する。
Step (g): The mask is etched, only the p-type TFT 22 is formed with a protective film 37 of resist, photosensitive polyimide, etc., and phosphorus is self-alignedly injected into the p-type TFT using the gate electrode as a mask. Then, the source / drain portions (p + regions) of the p-type TFT are formed.

【0033】工程(h):その後、マスクをエッチング
して、PECVD法によりSiO2を層間絶縁膜38と
して被着し、レーザアニーリング法により、ソース・ド
レインの活性化を行う。
Step (h): After that, the mask is etched, SiO 2 is deposited as an interlayer insulating film 38 by the PECVD method, and the source / drain is activated by the laser annealing method.

【0034】工程(i):フォトリソグラフィーおよ
び、エッチングによりコンタクトホールを開孔し、スパ
ッタリング法等によりAl等金属膜を被着後、フォトリ
ソグラフィーおよび、エッチングによりソース・ドレイ
ン電極39を形成し、その後、ITO膜14を被着し、
画素電極のパターンとしてアクティブマトリクス基板が
完成する。
Step (i): A contact hole is opened by photolithography and etching, a metal film such as Al is deposited by a sputtering method, etc., and then source / drain electrodes 39 are formed by photolithography and etching, and thereafter. , Deposit the ITO film 14,
An active matrix substrate is completed as a pattern of pixel electrodes.

【0035】なお、本発明は、上述の実施例に限られる
ことなく、例えば、第2のゲート絶縁膜をSiNxとす
るように、第1のゲート絶縁膜と第2のゲート絶縁膜の
ゲート絶縁膜の材質を変えても良い。また、p型、n型
TFTのゲート絶縁膜膜厚を変えるのみならず、液晶表
示画素部TFTと駆動部TFTのゲート絶縁膜膜厚を変
えることにより駆動部TFTと画素部TFTのしきい値
電圧を異ならすことにも用いることができる。また、画
素部TFTにおいて、プラズマの加速電圧、ゲート絶縁
膜膜厚を変えることにより、オフセット型TFTも作製
することができる。
The present invention is not limited to the above-described embodiment, but the gate insulation of the first gate insulation film and the second gate insulation film is made so that the second gate insulation film is SiNx, for example. The material of the film may be changed. In addition to changing the gate insulating film thickness of the p-type and n-type TFTs, by changing the gate insulating film thickness of the liquid crystal display pixel unit TFT and the driving unit TFT, the threshold value of the driving unit TFT and the pixel unit TFT It can also be used to vary the voltage. Further, in the pixel portion TFT, an offset type TFT can be manufactured by changing the plasma accelerating voltage and the gate insulating film thickness.

【0036】[0036]

【発明の効果】以上の述べたように、本発明の構造の半
導体装置では、ゲート絶縁膜を積層数の違いにより、ゲ
ート絶縁膜膜厚を異にするため、固定電荷密度が異なる
TFTを製造することができ、移動度を低下させること
なくTFTのしきい値を制御することが可能になる。
As described above, in the semiconductor device having the structure of the present invention, since the thickness of the gate insulating film is different depending on the number of stacked gate insulating films, a TFT having a different fixed charge density is manufactured. Therefore, the threshold value of the TFT can be controlled without lowering the mobility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の液晶表示装置の概略断面
図。
FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present invention.

【図2】図1のTFTの要部を示す断面図。FIG. 2 is a sectional view showing a main part of the TFT of FIG.

【図3】図2のさらに要部を拡大して示す断面図。FIG. 3 is a cross-sectional view showing an enlarged main part of FIG.

【図4】本発明の一実施例のアクティブマトリクス基板
に形成する回路を示す回路略図。
FIG. 4 is a schematic circuit diagram showing a circuit formed on an active matrix substrate according to an embodiment of the present invention.

【図5】本発明の実施例の製造工程を説明する断面図。FIG. 5 is a cross-sectional view illustrating the manufacturing process of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11、12…基板 13…透明共通基板 14…画素電極 15…スイッチングTFT 16…配線層 17…液晶層 20…CMOS回路 21…n型p−SiTFT 22…p型p−SiTFT 33…第1のゲート絶縁膜 34…第2のゲート絶縁膜 35…ゲート電極 39…ソース・ドレイン電極 11, 12 ... Substrate 13 ... Transparent common substrate 14 ... Pixel electrode 15 ... Switching TFT 16 ... Wiring layer 17 ... Liquid crystal layer 20 ... CMOS circuit 21 ... N-type p-SiTFT 22 ... P-type p-SiTFT 33 ... First gate Insulating film 34 ... Second gate insulating film 35 ... Gate electrode 39 ... Source / drain electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同一絶縁基板上に、ゲート絶縁膜膜厚が
異なる2種類以上の多結晶半導体薄膜電界効果トランジ
スタを具備していることを特徴とする半導体装置。
1. A semiconductor device comprising, on the same insulating substrate, two or more types of polycrystalline semiconductor thin film field effect transistors having different gate insulating film thicknesses.
JP5404195A 1995-03-14 1995-03-14 Semiconductor device Pending JPH08250742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5404195A JPH08250742A (en) 1995-03-14 1995-03-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5404195A JPH08250742A (en) 1995-03-14 1995-03-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH08250742A true JPH08250742A (en) 1996-09-27

Family

ID=12959521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5404195A Pending JPH08250742A (en) 1995-03-14 1995-03-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH08250742A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255560A (en) * 2000-03-13 2001-09-21 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
JP2002170889A (en) * 2000-11-30 2002-06-14 Nec Corp Semiconductor device and manufacturing method thereof
WO2003049188A1 (en) * 2001-11-30 2003-06-12 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method thereof
JP2005070629A (en) * 2003-08-27 2005-03-17 Seiko Epson Corp Electrooptical device and electronic equipment using the same
US6900464B2 (en) 2001-12-20 2005-05-31 Fujitsu Display Technologies Corporation Thin film transistor device and method of manufacturing the same, and liquid crystal display device
JP2006261692A (en) * 2006-05-16 2006-09-28 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit
CN1309091C (en) * 2003-02-20 2007-04-04 日本电气株式会社 Thin film transistor substrate and method for making same
KR100837986B1 (en) * 2006-05-29 2008-06-13 우 옵트로닉스 코포레이션 Pixel structure and fabrication method thereof
JP2008277836A (en) * 1999-04-26 2008-11-13 Renesas Technology Corp Semiconductor integrated circuit device
WO2008142873A1 (en) * 2007-05-21 2008-11-27 Sharp Kabushiki Kaisha Semiconductor device and its manufacturing method
JP2009200528A (en) * 2009-06-03 2009-09-03 Sharp Corp Thin film transistor device, and manufacturing method thereof
US7589383B2 (en) 2005-05-27 2009-09-15 Nec Corporation Thin film semiconductor device and method of manufacturing the same
JP2011035407A (en) * 2010-08-20 2011-02-17 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2015127814A (en) * 2015-01-15 2015-07-09 株式会社半導体エネルギー研究所 Semiconductor device
JPWO2015037327A1 (en) * 2013-09-12 2017-03-02 ソニー株式会社 Display device, manufacturing method thereof, and electronic device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277836A (en) * 1999-04-26 2008-11-13 Renesas Technology Corp Semiconductor integrated circuit device
US7995183B2 (en) 2000-03-13 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
JP2001255560A (en) * 2000-03-13 2001-09-21 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
US8934066B2 (en) 2000-03-13 2015-01-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having stick drivers and a method of manufacturing the same
JP4700160B2 (en) * 2000-03-13 2011-06-15 株式会社半導体エネルギー研究所 Semiconductor device
JP2002170889A (en) * 2000-11-30 2002-06-14 Nec Corp Semiconductor device and manufacturing method thereof
JPWO2003049188A1 (en) * 2001-11-30 2005-04-21 株式会社ルネサステクノロジ Semiconductor integrated circuit device and manufacturing method thereof
CN100334732C (en) * 2001-11-30 2007-08-29 株式会社瑞萨科技 Semiconductor integrated circuit device and its mfg. method
US7335561B2 (en) 2001-11-30 2008-02-26 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method thereof
US7897467B2 (en) 2001-11-30 2011-03-01 Renesas Electronics Corporation Semiconductor integrated circuit device and manufacturing method thereof
US7741677B2 (en) 2001-11-30 2010-06-22 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method thereof
US7560772B2 (en) 2001-11-30 2009-07-14 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method thereof
WO2003049188A1 (en) * 2001-11-30 2003-06-12 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method thereof
US6900464B2 (en) 2001-12-20 2005-05-31 Fujitsu Display Technologies Corporation Thin film transistor device and method of manufacturing the same, and liquid crystal display device
KR100812492B1 (en) * 2001-12-20 2008-03-11 샤프 가부시키가이샤 Thin film transistor device and method of manufacturing the same, and liquid crystal display device
US7700495B2 (en) 2001-12-20 2010-04-20 Sharp Kabushiki Kaisha Thin film transistor device and method of manufacturing the same, and liquid crystal display device
US7709904B2 (en) 2003-02-20 2010-05-04 Nec Corporation Thin film transistor substrate and method for manufacturing the same
CN1309091C (en) * 2003-02-20 2007-04-04 日本电气株式会社 Thin film transistor substrate and method for making same
JP2005070629A (en) * 2003-08-27 2005-03-17 Seiko Epson Corp Electrooptical device and electronic equipment using the same
US7589383B2 (en) 2005-05-27 2009-09-15 Nec Corporation Thin film semiconductor device and method of manufacturing the same
JP2006261692A (en) * 2006-05-16 2006-09-28 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit
US7709850B2 (en) 2006-05-29 2010-05-04 Au Optronics Corporation Pixel structure and fabrication method thereof
KR100837986B1 (en) * 2006-05-29 2008-06-13 우 옵트로닉스 코포레이션 Pixel structure and fabrication method thereof
WO2008142873A1 (en) * 2007-05-21 2008-11-27 Sharp Kabushiki Kaisha Semiconductor device and its manufacturing method
JP5243414B2 (en) * 2007-05-21 2013-07-24 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP2009200528A (en) * 2009-06-03 2009-09-03 Sharp Corp Thin film transistor device, and manufacturing method thereof
JP2011035407A (en) * 2010-08-20 2011-02-17 Semiconductor Energy Lab Co Ltd Semiconductor device
US10147779B2 (en) 2013-09-12 2018-12-04 Sony Corporation Display device, method of manufacturing the same, and electronic apparatus
JPWO2015037327A1 (en) * 2013-09-12 2017-03-02 ソニー株式会社 Display device, manufacturing method thereof, and electronic device
US10026796B2 (en) 2013-09-12 2018-07-17 Sony Corporation Display device, method of manufacturing the same, and electronic apparatus
US10103212B2 (en) 2013-09-12 2018-10-16 Sony Corporation Display device, method of manufacturing the same, and electronic apparatus
US10121841B2 (en) 2013-09-12 2018-11-06 Sony Corporation Display device, method of manufacturing the same, and electronic apparatus
US10312314B2 (en) 2013-09-12 2019-06-04 Sony Corporation Display device, method of manufacturing the same, and electronic apparatus
US10615237B2 (en) 2013-09-12 2020-04-07 Sony Corporation Display device, method of manufacturing the same, and electronic apparatus
US10615238B2 (en) 2013-09-12 2020-04-07 Sony Corporation Display device, method of manufacturing the same, and electronic apparatus
US11004924B2 (en) 2013-09-12 2021-05-11 Sony Corporation Display device, method of manufacturing the same, and electronic apparatus
US11233109B2 (en) 2013-09-12 2022-01-25 Sony Group Corporation Display device, method of manufacturing the same, and electronic apparatus
US11569325B2 (en) 2013-09-12 2023-01-31 Sony Group Corporation Display device, method of manufacturing the same, and electronic apparatus
JP2015127814A (en) * 2015-01-15 2015-07-09 株式会社半導体エネルギー研究所 Semiconductor device

Similar Documents

Publication Publication Date Title
US7078274B2 (en) Method of forming active matrix type display including a metal layer having a light shield function
US7276730B2 (en) Semiconductor device having a pixel matrix circuit that includes a pixel TFT and a storage capacitor
KR100657387B1 (en) Thin film transistor, fabrication method thereof and liquid crystal display having the thin film transistor
KR100195596B1 (en) Thin film transistor semiconductor device and lcd device
US8643015B2 (en) Semiconductor device having a pixel matrix circuit that includes a pixel TFT and a storage capacitor
US5940151A (en) Liquid crystal display and method for fabricating the same
US20040232423A1 (en) Semiconductor integrated circuit and fabrication method thereof
KR100466582B1 (en) Flat display device and method of manufacturing the same
US10361229B2 (en) Display device
JPH0990405A (en) Thin-film transistor
JP2002185010A (en) Thin-film transistor, its manufacturing method and liquid crystal display device
KR100532082B1 (en) An poly-crystalline thin film transistor and a method of fabricating thereof
JPH08250742A (en) Semiconductor device
KR100198728B1 (en) A liquid crystal display device integrated with a driving circuit band and method for fabricating thereof
JP2005079283A (en) Thin film semiconductor device and its manufacturing method, electro-optical device, and electronic apparatus
US8279389B2 (en) Liquid crystal display device having storage lines overlapping active layers formed of polysilicon material
JPH0982969A (en) Thin-film transistor and liquid-crystal display
JP2001085695A (en) Method for manufacturing semiconductor device, manufacture of active matrix substrate and electro- optical device
JPH09146119A (en) Liquid crystal display device
JPH1065177A (en) Thin-film transistor device, manufacturing method thereof, and liquid crystal display device
JPH1187721A (en) Thin-film transistor and liquid crystal display device comprising the same, and manufacture of tft array substrate
JPH10256557A (en) Thin-film transistor and liquid crystal display device
JPH0385529A (en) Thin-film semiconductor display device
US7750349B2 (en) Switching element substrate, for a liquid crystal display device, including an insulating substrate
JPH09107107A (en) Thin film transistor, this film transistor array and liquid crystal display device