JPH08248312A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH08248312A
JPH08248312A JP7048341A JP4834195A JPH08248312A JP H08248312 A JPH08248312 A JP H08248312A JP 7048341 A JP7048341 A JP 7048341A JP 4834195 A JP4834195 A JP 4834195A JP H08248312 A JPH08248312 A JP H08248312A
Authority
JP
Japan
Prior art keywords
lens group
lens
wide
distance
angle end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7048341A
Other languages
Japanese (ja)
Other versions
JP3590807B2 (en
Inventor
Atsushi Shibayama
敦史 芝山
Masatoshi Suzuki
正敏 鈴木
Takanori Fujita
貴徳 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP04834195A priority Critical patent/JP3590807B2/en
Priority to US08/613,254 priority patent/US5668668A/en
Publication of JPH08248312A publication Critical patent/JPH08248312A/en
Priority to US08/736,674 priority patent/US5798871A/en
Priority to US08/736,673 priority patent/US5721642A/en
Application granted granted Critical
Publication of JP3590807B2 publication Critical patent/JP3590807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE: To make the amount of extension of a focusing lens group required for focusing to an object at the same distance by changing the intervals between the lens groups and satisfying a specified condition at the time of zooming from the wide-angle end to the telescopic end. CONSTITUTION: This zoom lens is composed, in order from the object side, a first negative lens group G1, a second positive lens group G2 and a third positive lens group G3. At the time of zooming from the wide-angle end to the telescopic end, the interval between the lens groups G1 and G2 is decreased, the interval between the lens groups G2 and G3 is changed and conditional relations: (1) 1<1f11/fw<1.5 (f1<0), (2) 0.5<f2/f3<2, (3) 0.8<x2/x3<1.2 are satisfied. In the relations, fw: the focal distance of the whole system at the wide-angle end, f1: the focal distance of the lens group G1, f2: the focal distance of the lens group G2, f3: the focal distance of the lens group G3, x2: the moving amount for zooming of the lens group G2 to the image plane and x3: the moving amount for zooming of the lens group G3 to the image plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はズームレンズの変倍方式
に関し、特にインナーフォーカス方式に適したズームレ
ンズの変倍方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens zooming system, and more particularly to a zoom lens zooming system suitable for an inner focus system.

【0002】[0002]

【従来の技術】ズームレンズのフォーカシング方式は、
第1レンズ群を繰り出す、いわゆる1群繰り出し方式が
一般的である。この1群繰り出し方式は、同一距離の被
写体へのフォーカシングに要する第1レンズ群の繰り出
し量が、ズームポジションに依存しないという利点があ
り広く用いられている。
2. Description of the Related Art Focusing systems for zoom lenses are
A so-called one-group moving-out method of moving out the first lens group is general. This one-group extension method is widely used because it has the advantage that the extension amount of the first lens group required for focusing on a subject at the same distance does not depend on the zoom position.

【0003】また、第1レンズ群より像面側に位置する
レンズ群を移動させるインナーフォーカス方式、または
リアーフォーカス方式のズームレンズも特開昭57−5
012号公報等で提案されている。
Further, an inner focus type or rear focus type zoom lens for moving a lens unit positioned on the image plane side of the first lens unit is also disclosed in Japanese Patent Laid-Open No. 57-5.
No. 012 publication and the like are proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、1群繰
り出し方式では、比較的大きく重い第1レンズ群を動か
してフォーカシングを行うため、オートフォーカスを行
う場合のフォーカシング速度は、インナーフォーカス方
式やリアーフォーカス方式に比べて遅いという問題があ
った。また、最も外側のレンズ群が移動するため、防滴
または防水カメラには不向きであった。
However, in the first group extension method, focusing is performed by moving the relatively large and heavy first lens group. Therefore, the focusing speed in performing autofocus is the inner focus method or the rear focus method. There was a problem that it was slow compared to. Further, since the outermost lens group moves, it is not suitable for a drip-proof or waterproof camera.

【0005】一方、特開昭57−5012号公報で提案
されているリアーフォーカス方式のズームレンズでは、
同一距離の被写体へのフォーカシングに要するフォーカ
シングレンズ群の繰り出し量が、ズームポジションによ
って大きく異なり、近距離物体にフォーカシングした後
にズーミングを行うと、ピントがはずれるという問題が
あった。
On the other hand, in the rear focus type zoom lens proposed in Japanese Patent Laid-Open No. 57-5012,
There is a problem that the amount of extension of the focusing lens group required for focusing on a subject at the same distance greatly varies depending on the zoom position, and when focusing is performed on an object at a short distance and then zooming is performed, the focus is out of focus.

【0006】本発明においては、インナーフォーカス方
式を採用しても、同一距離の被写体へのフォーカシング
に要するフォーカシングレンズ群の繰り出し量が、ズー
ムポジションによらずほぼ一定とすることが可能なズー
ムレンズの提供を目的としている。
According to the present invention, even if the inner focus system is adopted, the amount of extension of the focusing lens group required for focusing on a subject at the same distance can be made substantially constant regardless of the zoom position. It is intended to be provided.

【0007】[0007]

【課題を解決するための手段】本発明のズームレンズ
は、物体側から順に、物体側に凸面を向けた負メニスカ
スレンズと、負レンズと、正レンズで構成され、全体と
して負の屈折力を有する第1レンズ群と、正の屈折力を
有する第2レンズ群と、正の屈折力を有する第3レンズ
群を有し、広角端から望遠端へのズーミングに際して、
前記第1レンズ群と前記第2レンズ群との間隔が縮小
し、前記第2レンズ群と前記第3レンズ群との間隔が変
化し、以下の条件を満足することを特徴としている。 (1) 1 < |f1|/fw < 1.5 (f1<0) (2) 0.5 < f2/f3 < 2 但し、fw:広角端における全系の焦点距離、 f1:前記第1レンズ群の焦点距離、 f2:前記第2レンズ群の焦点距離、 f3:前記第3レンズ群の焦点距離である。
A zoom lens according to the present invention comprises, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a negative lens and a positive lens, and has a negative refracting power as a whole. In zooming from the wide-angle end to the telephoto end, the first lens group has, the second lens group having a positive refractive power, and the third lens group having a positive refractive power,
The distance between the first lens group and the second lens group is reduced, the distance between the second lens group and the third lens group is changed, and the following conditions are satisfied. (1) 1 <| f1 | / fw <1.5 (f1 <0) (2) 0.5 <f2 / f3 <2 where fw: focal length of the entire system at the wide-angle end, f1: the first lens F2: focal length of the second lens group, f3: focal length of the third lens group

【0008】あるいは、物体側から順に、負の屈折力を
有する第1レンズ群と、正の屈折力を有する第2レンズ
群と、正の屈折力を有する第3レンズ群を有し、広角端
から望遠端へのズーミングに際して、前記第1レンズ群
と前記第2レンズ群との間隔が縮小し、前記第2レンズ
群と前記第3レンズ群との間隔が変化し、以下の条件を
満足することを特徴としている。 (1) 1 < |f1|/fw < 1.5 (f1<0) (2) 0.5 < f2/f3 < 2 (3) 0.8 < x2/x3 < 1.2 但し、fw:広角端における全系の焦点距離、 f1:前記第1レンズ群の焦点距離、 f2:前記第2レンズ群の焦点距離、 f3:前記第3レンズ群の焦点距離、 x2:像面に対する前記第2レンズ群のズーミング移動
量、 x3:像面に対する前記第3レンズ群のズーミング移動
量である。
Alternatively, in order from the object side, a first lens group having a negative refracting power, a second lens group having a positive refracting power, and a third lens group having a positive refracting power are provided, and the wide-angle end is provided. During zooming from the zoom lens to the telephoto end, the distance between the first lens group and the second lens group is reduced, and the distance between the second lens group and the third lens group is changed to satisfy the following conditions. It is characterized by that. (1) 1 <| f1 | / fw <1.5 (f1 <0) (2) 0.5 <f2 / f3 <2 (3) 0.8 <x2 / x3 <1.2 where fw: wide angle F1: focal length of the first lens group, f2: focal length of the second lens group, f3: focal length of the third lens group, x2: the second lens with respect to the image plane Zooming movement amount of the group, x3: Zooming movement amount of the third lens group with respect to the image plane.

【0009】上記構成のもとで、以下の条件のうち少な
くとも一つを満足するのが好ましい。 (4) f2/(|f1|+e1t) > 0.8 (5) f2/(|f1|+e1w) < 1.2 (6) |β2t|>2 (7) |β2w|>2 (8) β2t>2 (9) β2w<−2 但し、β2t:望遠端における第2レンズ群の結像倍
率、 β2w:広角端における第2レンズ群の結像倍率、 fw:広角端における全系の焦点距離 f1:第1レンズ群の焦点距離、 f2:第2レンズ群の焦点距離、 f3:第3レンズ群の焦点距離、 e1w:広角端における第1レンズ群の像側主点から第
2レンズ群の物側主点までの距離、 e1t:望遠端における第1レンズ群の像側主点から第
2レンズ群の物側主点までの距離である。
Under the above structure, it is preferable that at least one of the following conditions is satisfied. (4) f2 / (| f1 | + e1t)> 0.8 (5) f2 / (| f1 | + e1w) <1.2 (6) | β2t |> 2 (7) | β2w |> 2 (8) β2t > 2 (9) β2w <-2 where β2t is the imaging magnification of the second lens group at the telephoto end, β2w is the imaging magnification of the second lens group at the wide angle end, and fw is the focal length of the entire system at the wide angle end f1 : Focal length of the first lens group, f2: focal length of the second lens group, f3: focal length of the third lens group, e1w: object from the image side principal point of the first lens group to the second lens group at the wide-angle end Distance to the side principal point, e1t: Distance from the image side principal point of the first lens group to the object side principal point of the second lens group at the telephoto end.

【0010】また、負の第1レンズ群と、正の第2レン
ズ群と、正の第3レンズ群からなるズームレンズの場合
には、以下の条件を満足するのが望ましい。 (10) f3/e3w > 0.8 (11) f3/e3t < 1.2 但し、e3w:広角端における第3レンズ群の像側主点
から像面までの距離、 e3t:望遠端における第3レンズ群の像側主点から像
面までの距離である。
Further, in the case of a zoom lens including a negative first lens group, a positive second lens group, and a positive third lens group, it is desirable to satisfy the following conditions. (10) f3 / e3w> 0.8 (11) f3 / e3t <1.2 where e3w: distance from the image-side principal point of the third lens group to the image plane at the wide-angle end, e3t: third at the telephoto end It is the distance from the image-side principal point of the lens group to the image plane.

【0011】[0011]

【作用】本発明のズームレンズにおいては、物体側から
順に、負の第1レンズ群と正の第2レンズ群と正の第3
レンズ群を有する構成とし、第2レンズ群での結像倍率
が広角端から望遠端までのズーム全域で大きな拡大倍率
となるように構成する。このような構成のもとで、第2
レンズ群を像面方向に移動させてフォーカシングを行う
と、第2レンズ群のフォーカシング移動量Δは以下の近
似式で与えられる。
In the zoom lens of the present invention, in order from the object side, the negative first lens group, the positive second lens group, and the positive third lens group.
The lens group is included, and the image formation magnification in the second lens group is set to be a large enlargement magnification in the entire zoom range from the wide-angle end to the telephoto end. With such a configuration, the second
When focusing is performed by moving the lens unit in the image plane direction, the focusing movement amount Δ of the second lens unit is given by the following approximate expression.

【0012】 Δ ≒ {β2/(β2−1)}・{f12/(D0−f1)} (12) 但し、β:第2レンズ群の結像倍率、 f1:第1レンズ群の焦点距離、 D0:物点から第1レンズ群の物側主点までの距離であ
る。 式(12)の右辺のf1は定数であり、D0はズーミン
グによる全長の変化が撮影距離に比べて小さければ、ほ
ぼ定数となる。一方、βはズーミングによって変化する
が、βの絶対値が大きくなるよう構成すると、{β2
(β2−1)}は1に近い値となりズーミング時の変化
は小さくなる。
Δ≈ {β 2 / (β 2 −1)} · {f1 2 / (D0-f1)} (12) where β is the image formation magnification of the second lens group, and f1: is the first lens group. Focal length, D0: Distance from the object point to the object-side principal point of the first lens group. F1 on the right side of Expression (12) is a constant, and D0 is a constant if the change in the total length due to zooming is smaller than the shooting distance. On the other hand, β changes due to zooming, but if configured so that the absolute value of β becomes large, {β 2 /
2 -1)} has a value close to 1 and the change during zooming is small.

【0013】このことから、第2レンズ群のフォーカシ
ング移動量のズーミングによる変化を小さくするには、
|β|を大きくすることが必要である。また、D0のズ
ーミングによる変化がないこと、すなわち、第1レンズ
群がズーミング時に移動しないことが望ましい。また、
|f1|を小さくすると、式(12)から明らかなよう
に、第2レンズ群のフォーカシング移動量が小さくなる
とともに、第2レンズ群のフォーカシング移動量のズー
ミングによる変化を小さくすることができる。
Therefore, in order to reduce the change in the focusing movement amount of the second lens unit due to zooming,
It is necessary to increase | β |. Further, it is desirable that D0 does not change due to zooming, that is, the first lens group does not move during zooming. Also,
When | f1 | is made small, as is clear from the equation (12), the focusing movement amount of the second lens group becomes small, and the variation of the focusing movement amount of the second lens group due to zooming can be made small.

【0014】条件(1)は第1レンズ群の適切な焦点距
離を規定する。条件(1)の上限を越えると、レンズ全
長の小型化に障害となる。また、第2レンズ群を像面方
向に移動させてフォーカシングを行う場合、第2レンズ
群のフォーカシング移動量のズーミングによる変化なら
びに第2レンズ群のフォーカシング移動量を小さくする
ためには、条件(1)の上限を満足することが望まし
い。第2レンズ群のフォーカシング移動量を小さくする
ことは、フォーカシングによる収差の変動を小さくする
ことに有効である。一方、条件(1)の下限を越える
と、広角端で負の歪曲収差が増大し好ましくない。
The condition (1) defines an appropriate focal length of the first lens group. If the upper limit of the condition (1) is exceeded, it will be an obstacle to downsizing of the entire lens length. When focusing is performed by moving the second lens group in the image plane direction, in order to reduce the change in focusing movement amount of the second lens group due to zooming and the focusing movement amount of the second lens group, the condition (1 It is desirable to satisfy the upper limit of. Reducing the amount of focusing movement of the second lens group is effective in reducing the variation of aberration due to focusing. On the other hand, when the value goes below the lower limit of the condition (1), negative distortion is increased at the wide-angle end, which is not preferable.

【0015】また、条件(2)は第2レンズ群と第3レ
ンズ群の焦点距離の適切な比を規定する。条件(2)の
下限を越えると第2レンズ群の屈折力が大きくなり、球
面収差の補正が困難となる。反対に条件(2)の上限を
越えると、バックフォーカスの確保と、ズームレンズ全
長の小型化が困難となる。また、条件(3)は第2レン
ズ群と第3レンズ群のズーミング移動量の適切な比を規
定する。条件(3)の下限を越えると、広角端での第2
レンズ群と第3レンズ群の間隔が増大し、小型化の障害
となると共に、歪曲収差をはじめとする軸外諸収差の補
正が困難になる。一方、条件(3)の上限を越えると、
望遠端での全長が大きくなり、物点から第1レンズ群の
物側主点までの距離D0が広角端でのD0に比べて小さ
くなる。このことは式(12)に従って、第2レンズ群
のフォーカシング移動量のズーミングによる変化が大き
くなり好ましくない。
The condition (2) defines an appropriate ratio of the focal lengths of the second lens group and the third lens group. When the value goes below the lower limit of the condition (2), the refractive power of the second lens group becomes large, and it becomes difficult to correct spherical aberration. On the contrary, if the upper limit of the condition (2) is exceeded, it becomes difficult to secure the back focus and reduce the overall length of the zoom lens. The condition (3) defines an appropriate ratio of zooming movement amounts of the second lens unit and the third lens unit. If the lower limit of condition (3) is exceeded, the second lens at the wide-angle end
The distance between the lens group and the third lens group increases, which hinders miniaturization and makes it difficult to correct various off-axis aberrations such as distortion. On the other hand, if the upper limit of condition (3) is exceeded,
The total length at the telephoto end becomes large, and the distance D0 from the object point to the object-side principal point of the first lens group becomes smaller than D0 at the wide-angle end. This is not preferable because the change of the focusing movement amount of the second lens unit due to zooming becomes large according to the equation (12).

【0016】また、条件(4)と条件(5)は、第1レ
ンズ群と第2レンズ群の焦点距離の適切な関係を規定す
る。条件(4)の下限・条件(5)の上限のいづれを外
れても、第2レンズ群のフォーカシング移動量のズーミ
ングによる変化が大きくなり好ましくない。条件(6)
および条件(7)は、広角端と望遠端における|β|の
値を規定している。条件(6)および条件(7)の下限
を越えると、第2レンズ群のフォーカシング移動量のズ
ーミングによる変化が大きくなり好ましくない。なお、
条件(6)および条件(7)の下限値を3とすると、第
2レンズ群のフォーカシング移動量のズーミングによる
変化をより小さくすることが可能となる。
The conditions (4) and (5) define an appropriate relationship between the focal lengths of the first lens group and the second lens group. Even if either the lower limit of the condition (4) or the upper limit of the condition (5) is deviated, a change in focusing movement amount of the second lens unit due to zooming becomes large, which is not preferable. Condition (6)
The condition (7) defines the value of | β | at the wide-angle end and the telephoto end. If the lower limits of the conditions (6) and (7) are exceeded, the change in the focusing movement amount of the second lens group due to zooming becomes large, which is not preferable. In addition,
By setting the lower limit values of the condition (6) and the condition (7) to 3, it is possible to further reduce the change of the focusing movement amount of the second lens group due to zooming.

【0017】また、広角端と望遠端とで|β|の値をほ
ぼ等しくすると、広角端と望遠端での第2レンズ群のフ
ォーカシング移動量をほぼ等しくすることができる。こ
の場合、広角端での第2レンズ群の結像倍率β2wを負
の値、望遠端での第2レンズ群の結像倍率β2tを正の
値とするのが、ズーミングを効率よく行うために望まし
く、条件(8)および条件(9)を満足することが望ま
しい。
Further, if the values of | β | are substantially equal at the wide-angle end and the telephoto end, the focusing movement amount of the second lens group at the wide-angle end and the telephoto end can be made substantially equal. In this case, the imaging magnification β2w of the second lens group at the wide-angle end is set to a negative value, and the imaging magnification β2t of the second lens group at the telephoto end is set to a positive value in order to efficiently perform zooming. It is desirable that the conditions (8) and (9) are satisfied.

【0018】条件(10)と条件(11)は、負の第1
レンズ群と正の第2レンズ群と正の第3レンズ群からな
るズームレンズにおいて、第2レンズ群でフォーカシン
グする場合の第3レンズ群の焦点距離の適切な範囲を規
定する。条件(10)の下限・条件(11)の上限のい
づれを外れても、第2レンズ群のフォーカシング移動量
のズーミングによる変化が大きくなり好ましくない。
Condition (10) and condition (11) are the first negative
In a zoom lens including a lens group, a positive second lens group, and a positive third lens group, an appropriate range of the focal length of the third lens group when focusing with the second lens group is defined. If either the lower limit of the condition (10) or the upper limit of the condition (11) is deviated, a change in the focusing movement amount of the second lens unit due to zooming becomes large, which is not preferable.

【0019】また、第2レンズ群または第3レンズ群を
コンペンセーターとすることにより、第1レンズ群を固
定することが可能である。この場合、広角端から望遠端
へのズーミングの際に、第2レンズ群と第3レンズ群の
間隔が広角端近傍では拡大し、望遠端近傍では縮小する
と、レンズ全長を小型化するのに有効である。また、第
2レンズ群でフォーカシングする場合、フォーカシング
による収差の変動を小さくするためには、第2レンズ群
が貼り合わせ正レンズと物体側に凸面を向けた負メニス
カスレンズとから成ることが望ましい。
The first lens group can be fixed by using the second lens group or the third lens group as a compensator. In this case, when zooming from the wide-angle end to the telephoto end, if the distance between the second lens group and the third lens group increases near the wide-angle end and decreases near the telephoto end, it is effective in reducing the overall lens length. Is. Further, when focusing with the second lens group, it is desirable that the second lens group includes a cemented positive lens and a negative meniscus lens having a convex surface facing the object side in order to reduce fluctuation of aberration due to focusing.

【0020】また、第1レンズ群の構成を物体側から順
に物体側に凸面を向けた負メニスカスレンズ、負レン
ズ、正レンズとすることは、比較的簡単な構成で良好な
収差を得ることに有効である。さらに、前記負メニスカ
スレンズの物体側に正レンズを付加することは、特に広
角端における歪曲収差の補正に有効であり、広画角化を
はかることができる。
Further, the configuration of the first lens group is a negative meniscus lens, a negative lens, and a positive lens whose convex surfaces are directed toward the object side from the object side in order to obtain good aberrations with a relatively simple structure. It is valid. Furthermore, adding a positive lens to the object side of the negative meniscus lens is particularly effective in correcting distortion at the wide-angle end, and a wide angle of view can be achieved.

【0021】また、第1レンズ群に少なくとも1枚の非
球面レンズを有することは、特に広角端における非点収
差の補正に有効である。また、第3レンズ群に物体側か
ら順に正レンズと、負レンズと、正レンズとからなる構
成を有することは、比較的簡単な構成で全焦点距離にお
ける球面収差の補正に有効である。
Having at least one aspherical lens in the first lens group is particularly effective for correcting astigmatism at the wide-angle end. In addition, it is effective for correcting spherical aberration at all focal lengths with a relatively simple structure that the third lens group has a configuration including a positive lens, a negative lens, and a positive lens in order from the object side.

【0022】また、広角端から望遠端までの全焦点距離
における各収差を良好にするためには、第2レンズ群と
第3レンズ群との間に絞りを有することが望ましい。ま
た、本発明は、負の第1レンズ群と正の第2レンズ群と
正の第3レンズ群からなる3群ズームレンズを基本とし
ているが、この3群ズームレンズの像側に正または負の
第4レンズ群を付加して、大口径比化または小型化をは
かってもよい。
Further, in order to improve each aberration at all focal lengths from the wide-angle end to the telephoto end, it is desirable to have a diaphragm between the second lens group and the third lens group. Further, the present invention is based on a three-group zoom lens including a negative first lens group, a positive second lens group, and a positive third lens group. The fourth lens group may be added to increase the aperture ratio or reduce the size.

【0023】[0023]

【実施例】以下に,本発明による各実施例について説明
する。 〔実施例1〕図1は、実施例1のレンズ構成図であり、
上部に広角端、下部に望遠端でのレンズ構成を示してい
る。物体側から順に、負の第1レンズ群G1と、正の第
2レンズ群G2と、正の第3レンズ群G3とから構成
し、第2レンズ群と第3レンズ群の間に絞りを有し、広
角端から望遠端への変倍に際して、第1レンズ群は広角
側では像方向に、望遠側では物体方向に移動し、第2レ
ンズ群、第3レンズ群はいずれも物体方向に移動し、第
1レンズ群と第2レンズ群との空気間隔は減少し、第2
レンズ群と第3レンズ群との空気間隔は拡大する。
EXAMPLES Each example according to the present invention will be described below. Example 1 FIG. 1 is a lens configuration diagram of Example 1,
The lens configuration at the wide-angle end is shown at the top and at the telephoto end at the bottom. It is composed of a negative first lens group G1, a positive second lens group G2, and a positive third lens group G3 in order from the object side, and a diaphragm is provided between the second lens group and the third lens group. During zooming from the wide-angle end to the telephoto end, the first lens unit moves in the image direction on the wide-angle side, in the object direction on the telephoto side, and the second and third lens units move in the object direction. However, the air gap between the first lens group and the second lens group decreases,
The air gap between the lens group and the third lens group is expanded.

【0024】遠距離物体から近距離物体へのフォーカシ
ングは、第2レンズ群を像面側に移動させて行なう。以
下の表1に、本発明における実施例1の諸元の値を掲げ
る。実施例の諸元表中のfは焦点距離、FはFナンバ
ー、 2ωは画角を表す。そして、左端の数字は物体側か
らの順序を表し、rはレンズ面の曲率半径、dはレンズ
面間隔、n及びνは屈折率及びアッベ数のd線(λ=58
7.6nm)に対する値である。また、可変間隔表中のRは
撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens unit to the image plane side. Table 1 below lists values of specifications of the first embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the refractive index and the Abbe number d line (λ = 58).
7.6 nm). Further, R in the variable interval table is a shooting distance.

【0025】[0025]

【表1】 可変間隔表 f 36.00 50.00 68.00 R inf inf inf d 6 24.21825 10.54825 1.00115 d 11 9.62060 10.91310 12.61650 f 36.00 50.00 68.00 R 500.00 500.00 500.00 d 6 29.34137 15.49170 6.16728 d 11 4.49748 5.96965 7.45037 条件対応値 |f1|/fw=1.278 f2/f3=0.957 x2/x3=1.129 f2/(|f1|+e1w)=0.846 f2/(|f1|+e1t)=1.196 β2t= 6.102 β2w=−5.475 f3/e3w=1.137 f3/e3t=0.826 図2、図3は、それぞれ実施例1の撮影距離R=inf
における広角端での諸収差図、望遠端での諸収差図を示
し、図4、図5は、それぞれ実施例1の撮影距離R=5
00における広角端での諸収差図、望遠端での諸収差図
を示す。各収差図において、FNOはFナンバー、NAは
開口数、Yは像高、dはd線(λ=587.6nm)及びgはg
線(λ=435.6nm)を示している。球面収差図における破
線はd線の正弦条件を示し、非点収差図における実線は
サジタル像面を、破線はメリジオナル像面をそれぞれ示
す。
[Table 1] Variable interval table f 36.00 50.00 68.00 R inf inf inf d 6 24.21825 10.54825 1.00115 d 11 9.62060 10.91310 12.61650 f 36.00 50.00 68.00 R 500.00 500.00 500.00 d 6 29.34137 15.49170 6.16728 d 11 4.49748 5.96965 7.45037 Condition corresponding value | f1 | f1 278 f2 / f3 = 0.957 x2 / x3 = 1.129 f2 / (| f1 | + e1w) = 0.846 f2 / (| f1 | + e1t) = 1.196 β2t = 6.102 β2w = −5.475 f3 / e3w = 1.137 f3 / e3t = 0.826 FIGS. 2 and 3 show the shooting distance R = inf of the first embodiment, respectively.
FIGS. 4A and 4B are graphs showing various aberrations at the wide-angle end and at the telephoto end in FIGS. 4 and 5, respectively.
00 shows various aberration diagrams at the wide-angle end and at 00 at the telephoto end. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, d is the d line (λ = 587.6 nm), and g is g.
The line (λ = 435.6 nm) is shown. The broken line in the spherical aberration diagram shows the sine condition of the d-line, the solid line in the astigmatism diagram shows the sagittal image plane, and the broken line shows the meridional image plane.

【0026】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例2〕図6は、実施例2のレンズ構成図であり、
上部に広角端、下部に望遠端でのレンズ構成を示してい
る。物体側から順に、負の第1レンズ群G1と、正の第
2レンズ群G2と、正の第3レンズ群G3と、負の第4
レンズ群G4とから構成し、第2レンズ群と第3レンズ
群の間に絞りを有し、広角端から望遠端への変倍に際し
て、第1レンズ群は広角側では像方向に、望遠側では物
体方向に移動し、第2レンズ群、第3レンズ群はいずれ
も物体方向に移動し、第4レンズ群は静止し、第1レン
ズ群と第2レンズ群との空気間隔は縮小し、第2レンズ
群と第3レンズ群との空気間隔は拡大し、第3レンズ群
と第4レンズ群の空気間隔は拡大する。また、遠距離物
体から近距離物体へのフォーカシングは、第2レンズ群
を像面側に移動させて行なう。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this example has excellent imaging performance. Example 2 FIG. 6 is a lens configuration diagram of Example 2,
The lens configuration at the wide-angle end is shown at the top and at the telephoto end at the bottom. In order from the object side, the negative first lens group G1, the positive second lens group G2, the positive third lens group G3, and the negative fourth lens group G2.
The zoom lens is composed of the lens group G4, and has a diaphragm between the second lens group and the third lens group, and at the time of zooming from the wide-angle end to the telephoto end, the first lens group is at the wide-angle side in the image direction and at the telephoto side. Then, the second lens group and the third lens group both move in the object direction, the fourth lens group remains stationary, and the air gap between the first lens group and the second lens group decreases, The air gap between the second lens group and the third lens group is expanded, and the air gap between the third lens group and the fourth lens group is expanded. Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side.

【0027】以下の表2に、本発明における実施例2の
諸元の値を掲げる。実施例の諸元表中のfは焦点距離、
FはFナンバー、 2ωは画角を表す。そして、左端の数
字は物体側からの順序を表し、rはレンズ面の曲率半
径、dはレンズ面間隔、n及びνは屈折率及びアッベ数
のd線(λ=587.6nm)に対する値である。また、可変間
隔表中のRは撮影距離である。
Table 2 below lists values of specifications of the second embodiment of the present invention. F in the specification table of the embodiment is the focal length,
F is the F number and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, and n and ν are the values of the refractive index and Abbe number for the d line (λ = 587.6 nm). . Further, R in the variable interval table is a shooting distance.

【0028】[0028]

【表2】 可変間隔表 f 41.00 55.00 78.00 R inf inf inf d 6 25.41124 12.32584 1.97394 d 11 8.50475 9.71815 11.54295 d 18 1.02639 11.94699 28.37009 f 41.00 55.00 78.00 R 500.00 500.00 500.00 d 6 30.59858 17.32515 7.21035 d 11 3.31741 4.71884 6.30654 d 18 1.02639 11.94699 28.37009 条件対応値 |f1|/fw=1.122 f2/f3=0.957 x2/x3=1.111 f2/(|f1|+e1w)=0.845 f2/(|f1|+e1t)=1.199 β2t= 6.017 β2w=−5.446 図7、図8は、それぞれ実施例2の撮影距離R=inf
における広角端での諸収差図、望遠端での諸収差図を示
し、図9、図10は、それぞれ実施例2の撮影距離R=
500における広角端での諸収差図、望遠端での諸収差
図を示す。各収差図において、FNOはFナンバー、NA
は開口数、Yは像高、dはd線(λ=587.6nm)及びgは
g線(λ=435.6nm)を示している。球面収差図における
破線はd線の正弦条件を示し、非点収差図における実線
はサジタル像面を、破線はメリジオナル像面をそれぞれ
示す。
[Table 2] Variable interval table f 41.00 55.00 78.00 R inf inf inf d 6 25.41124 12.32584 1.97394 d 11 8.50475 9.71815 11.54295 d 18 1.02639 11.94699 28.37009 f 41.00 55.00 78.00 R 500.00 500.00 500.00 d 6 30.59858.26 30.59858. Corresponding value | f1 | /fw=1.122 f2 / f3 = 0.957 x2 / x3 = 1.111 f2 / (| f1 | + e1w) = 0.845 f2 / (| f1 | + e1t) = 1.199 β2t = 6.017 β2w = -5.446 FIGS. 7 and 8 show the shooting distance R = inf of the second embodiment, respectively.
Various aberration diagrams at the wide angle end and various aberration diagrams at the telephoto end are shown in FIGS. 9 and 10, respectively, and FIG. 9 and FIG.
The various aberration diagrams at the wide-angle end and the various aberration diagrams at the telephoto end in 500 are shown. In each aberration diagram, FNO is F number, NA
Is the numerical aperture, Y is the image height, d is the d-line (λ = 587.6 nm) and g is the g-line (λ = 435.6 nm). The broken line in the spherical aberration diagram shows the sine condition of the d-line, the solid line in the astigmatism diagram shows the sagittal image plane, and the broken line shows the meridional image plane.

【0029】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例3〕図11は、実施例3のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3とから構
成し、第2レンズ群と第3レンズ群との間に絞りを有
し、広角端から望遠端への変倍に際して、第1レンズ群
は広角側では像方向に、望遠側では物体方向に移動し、
第2レンズ群、第3レンズ群はいずれも物体方向に移動
し、第1レンズ群と第2レンズ群との空気間隔は減少
し、第2レンズ群と第3レンズ群との空気間隔は広角端
近傍では拡大し、望遠端近傍では縮小する。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this embodiment has excellent image forming performance. [Third Embodiment] FIG. 11 is a lens configuration diagram of a third embodiment, in which the upper part shows the lens structure at the wide-angle end and the lower part shows the lens structure at the telephoto end. It is composed of a negative first lens group G1, a positive second lens group G2, and a positive third lens group G3 in order from the object side, and a diaphragm is provided between the second lens group and the third lens group. When zooming from the wide-angle end to the telephoto end, the first lens group moves in the image direction on the wide-angle side and in the object direction on the telephoto side,
Both the second lens group and the third lens group move in the object direction, the air gap between the first lens group and the second lens group decreases, and the air gap between the second lens group and the third lens group wide angle. It expands near the edge and shrinks near the telephoto edge.

【0030】遠距離物体から近距離物体へのフォーカシ
ングは、第2レンズ群を像面側に移動させて行なう。以
下の表3に、本発明における実施例3の諸元の値を掲げ
る。実施例の諸元表中のfは焦点距離、FはFナンバ
ー、 2ωは画角を表す。そして、左端の数字は物体側か
らの順序を表し、rはレンズ面の曲率半径、dはレンズ
面間隔、n及びνは屈折率及びアッベ数のd線(λ=58
7.6nm)に対する値である。また、可変間隔表中のRは
撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. Table 3 below lists values of specifications of the third embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the refractive index and the Abbe number d line (λ = 58).
7.6 nm). Further, R in the variable interval table is a shooting distance.

【0031】[0031]

【表3】 可変間隔表 f 29.02 35.00 53.93 R inf inf inf d 6 23.69493 9.80393 0.99703 d 12 6.76153 6.89333 5.20253 f 29.02 35.00 53.93 R 500.00 500.00 500.00 d 6 27.83455 13.84173 5.19807 d 12 2.62191 2.85553 1.00149 条件対応値 |f1|/fw=1.447 f2/f3=1.182 x2/x3=0.922 f2/(|f1|+e1w)=0.877 f2/(|f1|+e1t)=1.265 β2t= 4.777 β2w=−7.149 f3/e3w=1.107 f3/e3t=0.788 図12、図13は、それぞれ実施例3の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図14、図15は、それぞれ実施例3の撮影距
離R=500における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。球面収差図
における破線はd線の正弦条件を示し、非点収差図にお
ける実線はサジタル像面を、破線はメリジオナル像面を
それぞれ示す。
[Table 3] Variable interval table f 29.02 35.00 53.93 R inf inf inf d 6 23.69493 9.80393 0.99703 d 12 6.76153 6.89333 5.20253 f 29.02 35.00 53.93 R 500.00 500.00 500.00 d 6 27.83455 13.84173 5.19807 d 12 2.62191 2.85553 1.00149 Condition corresponding value f1 / f1 | f1 447 f2 / f3 = 1.182 x2 / x3 = 0.922 f2 / (| f1 | + e1w) = 0.877 f2 / (| f1 | + e1t) = 1.265 β2t = 4.777 β2w = -7.149 f3 / e3w = 1.107 f3 / e3t = 0.788 FIGS. 12 and 13 show the shooting distance R = i of the third embodiment, respectively.
FIGS. 14 and 15 show various aberration diagrams at the wide-angle end and the telephoto end at nf, and FIGS. 14 and 15 show various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 500 of Example 3, respectively. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). The broken line in the spherical aberration diagram shows the sine condition of the d-line, the solid line in the astigmatism diagram shows the sagittal image plane, and the broken line shows the meridional image plane.

【0032】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例4〕図16は、実施例4のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3とから構
成し、第2レンズ群と第3レンズ群との間に絞りを有
し、広角端から望遠端への変倍に際して、第1レンズ群
は広角側では像方向に、望遠側では物体方向に移動し、
第2レンズ群と第3レンズ群はいずれも物体方向に移動
し、第1レンズ群と第2レンズ群との空気間隔は減少
し、第2レンズ群と第3レンズ群との空気間隔は縮小す
る。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this example has excellent image forming performance. [Embodiment 4] FIG. 16 is a lens configuration diagram of Embodiment 4, in which the lens configuration at the wide-angle end is shown at the upper portion and at the telephoto end at the lower portion. It is composed of a negative first lens group G1, a positive second lens group G2, and a positive third lens group G3 in order from the object side, and a diaphragm is provided between the second lens group and the third lens group. When zooming from the wide-angle end to the telephoto end, the first lens group moves in the image direction on the wide-angle side and in the object direction on the telephoto side,
Both the second lens group and the third lens group move in the object direction, the air gap between the first lens group and the second lens group decreases, and the air gap between the second lens group and the third lens group decreases. To do.

【0033】第1レンズ群の物体側から2番目のレンズ
面は非球面であり、非球面形状は次の式で与えられる。 X(y)=y2/[r・{1+(1−k・y2/r21/2}] +C2・y2+C4・y4+C6・y6+C8・y8+C10・y10 但し、X(y)は非球面の頂点における接平面から高さ
yにおける非球面上の位置までの光軸方向に沿った距
離、rは近軸の曲率半径、kは円錐定数、Ciは第i次の
非球面係数である。
The second lens surface of the first lens group from the object side is an aspherical surface, and the aspherical shape is given by the following equation. X (y) = y 2 / [r · {1+ (1-k · y 2 / r 2) 1/2}] + C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 where , X (y) is the distance along the optical axis from the tangent plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, r is the paraxial radius of curvature, k is the conic constant, and Ci is the i-th The following aspherical coefficients.

【0034】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。以下の表4に、本発明における実施例4の諸元の値
を掲げる。実施例の諸元表中のfは焦点距離、FはFナ
ンバー、 2ωは画角を表す。そして、左端の数字は物体
側からの順序を表し、rはレンズ面の曲率半径、dはレ
ンズ面間隔、n及びνは屈折率及びアッベ数のd線(λ
=587.6nm)に対する値である。また、可変間隔表中のR
は撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. Table 4 below lists values of specifications of the fourth embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The number at the left end represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, n and ν are the refractive index and the Abbe number d line (λ
= 587.6 nm). Also, R in the variable interval table
Is the shooting distance.

【0035】[0035]

【表4】 第2面非球面係数 k = 0.5871 C2 = 0.0000 C4 =-7.3809E-10 C6 = 3.5998E-14 C8 =-4.7697E-12 C10= 1.8500E-14 可変間隔表 f 25.50 35.00 48.80 R inf inf inf d 6 25.03527 11.75045 1.61160 d 8 4.90539 4.45554 3.80098 f 25.50 35.00 48.80 R 500.00 500.00 500.00 d 6 28.14368 14.73325 4.71730 d 8 1.79698 1.47275 0.69528 条件対応値 |f1|/fw=1.386 f2/f3=1.066 x2/x3=0.952 f2/(|f1|+e1w)=0.850 f2/(|f1|+e1t)=1.226 β2t= 5.433 β2w=−5.672 f3/e3w=1.146 f3/e3t=0.798 図17、図18は、それぞれ実施例4の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図19、図20は、それぞれ実施例4の撮影距
離R=500における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。球面収差図
における破線はd線の正弦条件を示し、非点収差図にお
ける実線はサジタル像面を、破線はメリジオナル像面を
それぞれ示す。
[Table 4] Second surface aspherical coefficient k = 0.5871 C2 = 0.0000 C4 = -7.3809E-10 C6 = 3.5998E-14 C8 = -4.7697E-12 C10 = 1.8500E-14 Variable spacing table f 25.50 35.00 48.80 R inf inf inf d 6 25.03527 11.75045 1.61160 d 8 4.90539 4.45554 3.80098 f 25.50 35.00 48.80 R 500.00 500.00 500.00 d 6 28.14368 14.73325 4.71730 d 8 1.79698 1.47275 0.69528 Condition corresponding value | f1 | /fw=1.386 f2 / f3 = 1.066 x2 / x3 = 0.952 f2 / (| f1 | + e1w) = 0.850 f2 / (| f1 | + e1t) = 1.226 β2t = 5.433 β2w = −5.672 f3 / e3w = 1.146 f3 / e3t = 0 17 and 18 are the photographing distance R = i of the fourth embodiment, respectively.
Various aberration diagrams at the wide-angle end at nf and various aberration diagrams at the telephoto end are shown, and FIGS. 19 and 20 show various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 500 of Example 4, respectively. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). The broken line in the spherical aberration diagram shows the sine condition of the d-line, the solid line in the astigmatism diagram shows the sagittal image plane, and the broken line shows the meridional image plane.

【0036】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例5〕図21は、実施例5のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3とから構
成し、第2レンズ群と第3レンズ群との間に絞りを有
し、広角端から望遠端への変倍に際して、第1レンズ群
は静止し、第2レンズ群と第3レンズ群はいずれも物体
方向に移動し、第1レンズ群と第2レンズ群との空気間
隔は減少し、第2レンズ群と第3レンズ群との空気間隔
は広角端近傍では拡大し、望遠端近傍では縮小する。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and the image forming performance is excellent in this example. [Embodiment 5] FIG. 21 is a lens configuration diagram of Embodiment 5, showing the lens configuration at the wide-angle end at the upper portion and at the telephoto end at the lower portion. It is composed of a negative first lens group G1, a positive second lens group G2, and a positive third lens group G3 in order from the object side, and a diaphragm is provided between the second lens group and the third lens group. In zooming from the wide-angle end to the telephoto end, the first lens group is stationary, both the second lens group and the third lens group move in the object direction, and the first lens group and the second lens group The air distance between the second lens group and the third lens group is increased near the wide-angle end, and is decreased near the telephoto end.

【0037】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。以下の表5に、本発明における実施例5の諸元の値
を掲げる。実施例の諸元表中のfは焦点距離、FはFナ
ンバー、 2ωは画角を表す。そして、左端の数字は物体
側からの順序を表し、rはレンズ面の曲率半径、dはレ
ンズ面間隔、n及びνは屈折率及びアッベ数のd線(λ
=587.6nm)に対する値である。また、可変間隔表中のR
は撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. Table 5 below lists values of specifications of the fifth embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The number at the left end represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, n and ν are the refractive index and the Abbe number d line (λ
= 587.6 nm). Also, R in the variable interval table
Is the shooting distance.

【0038】[0038]

【表5】 可変間隔表 f 36.00 50.00 68.00 R inf inf inf d 6 27.81068 12.47948 2.00008 d 11 9.12937 13.42177 9.64957 f 36.00 50.00 68.00 R 500.00 500.00 500.00 d 6 33.94051 18.30951 7.96204 d 11 2.99954 7.59174 3.68761 条件対応値 |f1|/fw=1.389 f2/f3=1.000 x2/x3=1.021 f2/(|f1|+e1w)=0.820 f2/(|f1|+e1t)=1.176 β2t= 6.680 β2w=−4.566 f3/e3w=1.187 f3/e3t=0.831 図22、図23は、それぞれ実施例5の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図24、図25は、それぞれ実施例5の撮影距
離R=500における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。球面収差図
における破線はd線の正弦条件を示し、非点収差図にお
ける実線はサジタル像面を、破線はメリジオナル像面を
それぞれ示す。
[Table 5] Variable interval table f 36.00 50.00 68.00 R inf inf inf d 6 27.81068 12.47948 2.00008 d 11 9.12937 13.42177 9.64957 f 36.00 50.00 68.00 R 500.00 500.00 500.00 d 6 33.94051 18.30951 7.96204 d 11 2.99954 7.59174 3.68761 Condition corresponding value f1 / f1 | 389 f2 / f3 = 1.000 x2 / x3 = 1.021 f2 / (| f1 | + e1w) = 0.820 f2 / (| f1 | + e1t) = 1.176 β2t = 6.680 β2w = −4.566 f3 / e3w = 1.187 f3 / e3t = 0.831 FIG. 22 and FIG. 23 show the shooting distance R = i of the fifth embodiment, respectively.
Various aberration diagrams at the wide-angle end at nf and various aberration diagrams at the telephoto end are shown. FIGS. 24 and 25 show various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 500 of Example 5, respectively. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). The broken line in the spherical aberration diagram shows the sine condition of the d-line, the solid line in the astigmatism diagram shows the sagittal image plane, and the broken line shows the meridional image plane.

【0039】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例6〕図26は、実施例6のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3と、負の
第4レンズ群G4から構成し、第2レンズ群と第3レン
ズ群との間に絞りを有し、広角端から望遠端への変倍に
際して、第1レンズ群と第4レンズ群は静止し、第2レ
ンズ群と第3レンズ群はいずれも物体方向に移動し、第
1レンズ群と第2レンズ群との空気間隔は減少し、第2
レンズ群と第3レンズ群との空気間隔は広角端近傍では
拡大し、望遠端近傍では縮小し、第3レンズ群と第4レ
ンズ群の空気間隔は拡大する。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and the image forming performance is excellent in this embodiment. [Sixth Embodiment] FIG. 26 is a lens configuration diagram of a sixth embodiment, in which the lens configuration at the wide-angle end is shown at the upper portion and at the telephoto end at the lower portion. It is composed of a negative first lens group G1, a positive second lens group G2, a positive third lens group G3, and a negative fourth lens group G4 in this order from the object side. An aperture is provided between the lens unit and the first lens unit and the fourth lens unit are stationary while the second lens unit and the third lens unit are both in the object direction during zooming from the wide-angle end to the telephoto end. The air gap between the first lens group and the second lens group decreases,
The air distance between the lens group and the third lens group increases near the wide-angle end, decreases near the telephoto end, and the air distance between the third lens group and the fourth lens group increases.

【0040】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。以下の表6に、本発明における実施例6の諸元の値
を掲げる。実施例の諸元表中のfは焦点距離、FはFナ
ンバー、 2ωは画角を表す。そして、左端の数字は物体
側からの順序を表し、rはレンズ面の曲率半径、dはレ
ンズ面間隔、n及びνは屈折率及びアッベ数のd線(λ
=587.6nm)に対する値である。また、可変間隔表中のR
は撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. Table 6 below lists values of specifications of the sixth embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The number at the left end represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, n and ν are the refractive index and the Abbe number d line (λ
= 587.6 nm). Also, R in the variable interval table
Is the shooting distance.

【0041】[0041]

【表6】 可変間隔表 f 41.00 55.00 78.00 R inf inf inf d 6 29.85350 16.02182 3.99996 d 11 10.00955 14.11697 10.05648 d 18 6.99989 16.72415 32.80650 f 41.00 55.00 78.00 R 500.00 500.00 500.00 d 6 36.05087 21.92996 10.04931 d 11 3.81218 8.20883 4.00713 d 18 6.99989 16.72415 32.80650 条件対応値 |f1|/fw=1.220 f2/f3=1.000 x2/x3=1.002 f2/(|f1|+e1w)=0.823 f2/(|f1|+e1t)=1.183 β2t= 6.463 β2w=−4.660 図27、図28は、それぞれ実施例6の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図29、図30は、それぞれ実施例6の撮影距
離R=500における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。球面収差図
における破線はd線の正弦条件を示し、非点収差図にお
ける実線はサジタル像面を、破線はメリジオナル像面を
それぞれ示す。
[Table 6] Variable interval table f 41.00 55.00 78.00 R inf inf inf d 6 29.85350 16.02182 3.99996 d 11 10.00955 14.11697 10.05648 d 18 6.99989 16.72415 32.80650 f 41.00 55.00 78.00 R 500.00 500.00 500.00 d 6 36.05087 21.92996 10.04931 18d. Corresponding value | f1 | /fw=1.220 f2 / f3 = 1.000 x2 / x3 = 1.002 f2 / (| f1 | + e1w) = 0.823 f2 / (| f1 | + e1t) = 1.183 β2t = 6.463 β2w = −4.660 FIGS. 27 and 28 show the shooting distance R = i of the sixth embodiment, respectively.
FIGS. 29 and 30 show various aberration diagrams at the wide-angle end and the telephoto end at nf, and FIGS. 29 and 30 show various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 500 of Example 6, respectively. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). The broken line in the spherical aberration diagram shows the sine condition of the d-line, the solid line in the astigmatism diagram shows the sagittal image plane, and the broken line shows the meridional image plane.

【0042】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例7〕図31は、実施例7のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3とから構
成し、第2レンズ群と第3レンズ群との間に絞りを有
し、広角端から望遠端への変倍に際して、第1レンズ群
は静止し、第2レンズ群と第3レンズ群はいずれも物体
方向に移動し、第1レンズ群と第2レンズ群との空気間
隔は減少し、第2レンズ群と第3レンズ群との空気間隔
は広角端近傍では拡大し、望遠端近傍では縮小する。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this example has excellent image forming performance. [Embodiment 7] FIG. 31 is a lens configuration diagram of Embodiment 7, showing the lens configuration at the wide-angle end at the upper portion and at the telephoto end at the lower portion. It is composed of a negative first lens group G1, a positive second lens group G2, and a positive third lens group G3 in order from the object side, and a diaphragm is provided between the second lens group and the third lens group. In zooming from the wide-angle end to the telephoto end, the first lens group is stationary, both the second lens group and the third lens group move in the object direction, and the first lens group and the second lens group The air distance between the second lens group and the third lens group is increased near the wide-angle end, and is decreased near the telephoto end.

【0043】第1レンズ群の物体側から4番目のレンズ
面は非球面であり、非球面形状は次の式で与えられる。 X(y)=y2/[r・{1+(1−k・y2/r21/2}] +C2・y2+C4・y4+C6・y6+C8・y8+C10・y10 但し、X(y)は非球面の頂点における接平面から高さ
yにおける非球面上の位置までの光軸方向に沿った距
離、rは近軸の曲率半径、kは円錐定数、Ciは第i次の
非球面係数である。
The fourth lens surface of the first lens group from the object side is an aspherical surface, and the aspherical shape is given by the following equation. X (y) = y 2 / [r · {1+ (1-k · y 2 / r 2) 1/2}] + C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 where , X (y) is the distance along the optical axis from the tangent plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, r is the paraxial radius of curvature, k is the conic constant, and Ci is the i-th The following aspherical coefficients.

【0044】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。以下の表7に、本発明における実施例7の諸元の値
を掲げる。実施例の諸元表中のfは焦点距離、FはFナ
ンバー、 2ωは画角を表す。そして、左端の数字は物体
側からの順序を表し、rはレンズ面の曲率半径、dはレ
ンズ面間隔、n及びνは屈折率及びアッベ数のd線(λ
=587.6nm)に対する値である。また、可変間隔表中のR
は撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. Table 7 below lists values of specifications of Example 7 in the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The number at the left end represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, n and ν are the refractive index and the Abbe number d line (λ
= 587.6 nm). Also, R in the variable interval table
Is the shooting distance.

【0045】[0045]

【表7】 第4面非球面係数 k = 0.7165 C2 = 0.0000 C4 =-7.8400E-7 C6 = 1.2600E-9 C8 =-4.7300E-12 C10=-1.9400E-14 可変間隔表 f 24.50 35.00 49.00 R inf inf inf d 8 27.37057 11.99727 1.93247 d 11 3.43385 8.59145 5.24725 f 24.50 35.00 49.00 R 500.00 500.00 500.00 d 8 30.51639 15.09256 5.19064 d 11 0.28803 5.49616 1.98908 条件対応値 |f1|/fw=1.469 f2/f3=1.182 x2/x3=1.077 f2/(|f1|+e1w)=0.868 f2/(|f1|+e1t)=1.315 β2t= 4.170 β2w=−6.598 f3/e3w=1.115 f3/e3t=0.754 図32、図33は、それぞれ実施例7の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図34、図35は、それぞれ実施例7の撮影距
離R=500における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。球面収差図
における破線はd線の正弦条件を示し、非点収差図にお
ける実線はサジタル像面を、破線はメリジオナル像面を
それぞれ示す。
[Table 7] 4th surface aspherical coefficient k = 0.7165 C2 = 0.0000 C4 = -7.8400E-7 C6 = 1.2600E-9 C8 = -4.7300E-12 C10 = -1.9400E-14 Variable spacing table f 24.50 35.00 49.00 R inf inf inf d 8 27.37057 11.99727 1.93247 d 11 3.43385 8.59145 5.24725 f 24.50 35.00 49.00 R 500.00 500.00 500.00 d 8 30.51639 15.09256 5.19064 d 11 0.28803 5.49616 1.98908 Condition corresponding value | f1 | /fw=1.469 f2 / f3 = 1.182 x2 / x3 = 1.077 f2 / (| f1 | + e1w) = 0.868 f2 / (| f1 | + e1t) = 1.315 β2t = 4.170 β2w = −6.598 f3 / e3w = 1.115 f3 / e3t = 0.754 FIGS. 32 and 33 show the shooting distance R = i of the seventh embodiment, respectively.
Various aberration diagrams at the wide-angle end at nf and various aberration diagrams at the telephoto end are shown, and FIGS. 34 and 35 show various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 500 of Example 7, respectively. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). The broken line in the spherical aberration diagram shows the sine condition of the d-line, the solid line in the astigmatism diagram shows the sagittal image plane, and the broken line shows the meridional image plane.

【0046】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例8〕図36は、実施例8のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3と、負の
第4レンズ群G4とから構成し、第2レンズ群と第3レ
ンズ群との間に絞りを有し、広角端から望遠端への変倍
に際して、第1レンズ群と第4レンズ群は静止し、第2
レンズ群と第3レンズ群はいずれも物体方向に移動し、
第1レンズ群と第2レンズ群との空気間隔は減少し、第
2レンズ群と第3レンズ群との空気間隔は広角端近傍で
は拡大し、望遠端近傍では縮小し、第3レンズ群と第4
レンズ群の空気間隔は拡大する。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this example has excellent imaging performance. [Embodiment 8] FIG. 36 is a lens configuration diagram of Embodiment 8, showing the lens configuration at the wide-angle end at the upper portion and at the telephoto end at the lower portion. It is composed of a negative first lens group G1, a positive second lens group G2, a positive third lens group G3, and a negative fourth lens group G4 in order from the object side. An aperture is provided between the third lens group and the first lens group and the fourth lens group at the time of zooming from the wide-angle end to the telephoto end,
Both the lens group and the third lens group move toward the object,
The air distance between the first lens group and the second lens group decreases, the air distance between the second lens group and the third lens group increases near the wide-angle end, decreases near the telephoto end, and decreases with the third lens group. Fourth
The air space of the lens group is enlarged.

【0047】第1レンズ群の物体側から2番目のレンズ
面は非球面であり、非球面形状は次の式で与えられる。 X(y)=y2/[r・{1+(1−k・y2/r21/2}] +C2・y2+C4・y4+C6・y6+C8・y8+C10・y10 但し、X(y)は非球面の頂点における接平面から高さ
yにおける非球面上の位置までの光軸方向に沿った距
離、rは近軸の曲率半径、kは円錐定数、Ciは第i次の
非球面係数である。
The second lens surface from the object side of the first lens group is an aspherical surface, and the aspherical shape is given by the following equation. X (y) = y 2 / [r · {1+ (1-k · y 2 / r 2) 1/2}] + C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 where , X (y) is the distance along the optical axis from the tangent plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, r is the paraxial radius of curvature, k is the conic constant, and Ci is the i-th The following aspherical coefficients.

【0048】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。以下の表8に、本発明における実施例8の諸元の値
を掲げる。実施例の諸元表中のfは焦点距離、FはFナ
ンバー、 2ωは画角を表す。そして、左端の数字は物体
側からの順序を表し、rはレンズ面の曲率半径、dはレ
ンズ面間隔、n及びνは屈折率及びアッベ数のd線(λ
=587.6nm)に対する値である。また、可変間隔表中のR
は撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. Table 8 below lists values of specifications of Example 8 in the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The number at the left end represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, n and ν are the refractive index and the Abbe number d line (λ
= 587.6 nm). Also, R in the variable interval table
Is the shooting distance.

【0049】[0049]

【表8】 第2面非球面係数 k = 0.7249 C2 = 0.0000 C4 = 0.0000 C6 = 0.0000 C8 = 3.6018E-11 C10=-1.8653E-13 可変間隔表 f 25.85 35.00 48.80 R inf inf inf d 6 26.10426 12.71992 1.58658 d 10 3.47119 9.09754 8.05943 d 19 6.72166 14.47964 26.65110 f 25.85 35.00 48.80 R 500.00 500.00 500.00 d 6 29.15901 15.65564 4.63303 d 10 0.41644 6.16182 5.01298 d 19 6.72166 14.47964 26.65110 条件対応値 |f1|/fw=1.358 f2/f3=1.157 x2/x3=1.101 f2/(|f1|+e1w)=0.835 f2/(|f1|+e1t)=1.238 β2t= 5.205 β2w=−5.075 図37、図38は、それぞれ実施例8の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図39、図40は、それぞれ実施例8の撮影距
離R=500における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。球面収差図
における破線はd線の正弦条件を示し、非点収差図にお
ける実線はサジタル像面を、破線はメリジオナル像面を
それぞれ示す。
[Table 8] Second surface aspherical coefficient k = 0.7249 C2 = 0.0000 C4 = 0.0000 C6 = 0.0000 C8 = 3.6018E-11 C10 = -1.8653E-13 Variable spacing table f 25.85 35.00 48.80 R inf inf inf d 6 26.10426 12.71992 1.58658 d 10 3.47119 9.09754 8.05943 d 19 6.72166 14.47964 26.65110 f 25.85 35.00 48.80 R 500.00 500.00 500.00 d 6 29.15901 15.65564 4.63303 d 10 0.41644 6.16182 5.01298 d 19 6.72166 14.47964 26.65110 Condition corresponding value | f1 | /fw=1.358 f2 / f3 = 572/57 /X3=1.101 f2 / (| f1 | + e1w) = 0.835 f2 / (| f1 | + e1t) = 1.238 β2t = 5.205 β2w = −5.075 FIGS. 37 and 38 are respectively implemented. Shooting distance R = i in Example 8
FIGS. 39 and 40 show various aberration diagrams at the wide-angle end and the telephoto end at nf, and FIGS. 39 and 40 respectively show the various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 500 of the eighth embodiment. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). The broken line in the spherical aberration diagram shows the sine condition of the d-line, the solid line in the astigmatism diagram shows the sagittal image plane, and the broken line shows the meridional image plane.

【0050】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。 〔実施例9〕図41は、実施例9のレンズ構成図であ
り、上部に広角端、下部に望遠端でのレンズ構成を示し
ている。物体側から順に、負の第1レンズ群G1と、正
の第2レンズ群G2と、正の第3レンズ群G3と、正の
第4レンズ群G4とから構成し、第2レンズ群と第3レ
ンズ群との間に絞りを有し、広角端から望遠端への変倍
に際して、第1レンズ群と第4レンズ群は静止し、第2
レンズ群と第3レンズ群はいずれも物体方向に移動し、
第1レンズ群と第2レンズ群との空気間隔は減少し、第
2レンズ群と第3レンズ群との空気間隔は広角端近傍で
は拡大し、望遠端近傍では縮小し、第3レンズ群と第4
レンズ群の空気間隔は拡大する。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this example has excellent imaging performance. [Embodiment 9] FIG. 41 is a lens configuration diagram of Embodiment 9, and shows the lens configuration at the wide-angle end at the upper portion and at the telephoto end at the lower portion. It is composed of, in order from the object side, a negative first lens group G1, a positive second lens group G2, a positive third lens group G3, and a positive fourth lens group G4. An aperture is provided between the third lens group and the first lens group and the fourth lens group at the time of zooming from the wide-angle end to the telephoto end,
Both the lens group and the third lens group move toward the object,
The air distance between the first lens group and the second lens group decreases, the air distance between the second lens group and the third lens group increases near the wide-angle end, decreases near the telephoto end, and decreases with the third lens group. Fourth
The air space of the lens group is enlarged.

【0051】第1レンズ群の物体側から2番目のレンズ
面は非球面であり、非球面形状は次の式で与えられる。 X(y)=y2/[r・{1+(1−k・y2/r21/2}] +C2・y2+C4・y4+C6・y6+C8・y8+C10・y10 但し、X(y)は非球面の頂点における接平面から高さ
yにおける非球面上の位置までの光軸方向に沿った距
離、rは近軸の曲率半径、kは円錐定数、Ciは第i次の
非球面係数である。
The second lens surface of the first lens group from the object side is an aspherical surface, and the aspherical shape is given by the following equation. X (y) = y 2 / [r · {1+ (1-k · y 2 / r 2) 1/2}] + C2 · y 2 + C4 · y 4 + C6 · y 6 + C8 · y 8 + C10 · y 10 where , X (y) is the distance along the optical axis from the tangent plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, r is the paraxial radius of curvature, k is the conic constant, and Ci is the i-th The following aspherical coefficients.

【0052】また、遠距離物体から近距離物体へのフォ
ーカシングは、第2レンズ群を像面側に移動させて行な
う。以下の表9に、本発明における実施例9の諸元の値
を掲げる。実施例の諸元表中のfは焦点距離、FはFナ
ンバー、 2ωは画角を表す。そして、左端の数字は物体
側からの順序を表し、rはレンズ面の曲率半径、dはレ
ンズ面間隔、n及びνは屈折率及びアッベ数のd線(λ
=587.6nm)に対する値である。また、可変間隔表中のR
は撮影距離である。
Focusing from a long-distance object to a short-distance object is performed by moving the second lens group to the image plane side. Table 9 below lists values of specifications of the ninth embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The number at the left end represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, n and ν are the refractive index and the Abbe number d line (λ
= 587.6 nm). Also, R in the variable interval table
Is the shooting distance.

【0053】[0053]

【表9】 第2面非球面係数 k = 0.5590 C2 = 0.0000 C4 = 1.9300E-7 C6 = 3.1800E-9 C8 =-3.0000E-12 C10= 8.0000E-14 可変間隔表 f 25.85 35.00 48.80 R inf inf inf d 6 23.11846 10.70690 1.65476 d 8 7.95829 9.59439 3.51470 d 17 0.46783 11.24329 26.37513 f 25.85 35.00 48.80 R 500.00 500.00 500.00 d 6 26.13220 13.62221 4.65526 d 8 4.94455 6.67908 0.51420 d 17 0.46783 11.24329 26.37513 条件対応値 |f1|/fw=1.373 f2/f3=0.953 x2/x3=0.828 f2/(|f1|+e1w)=0.852 f2/(|f1|+e1t)=1.206 β2t= 5.860 β2w=−5.746 図42、図43は、それぞれ実施例9の撮影距離R=i
nfにおける広角端での諸収差図、望遠端での諸収差図
を示し、図44、図45は、それぞれ実施例9の撮影距
離R=500における広角端での諸収差図、望遠端での
諸収差図を示す。各収差図において、FNOはFナンバ
ー、NAは開口数、Yは像高、dはd線(λ=587.6nm)
及びgはg線(λ=435.6nm)を示している。球面収差図
における破線はd線の正弦条件を示し、非点収差図にお
ける実線はサジタル像面を、破線はメリジオナル像面を
それぞれ示す。
[Table 9] Second surface aspherical coefficient k = 0.5590 C2 = 0.0000 C4 = 1.9300E-7 C6 = 3.1800E-9 C8 = -3.0000E-12 C10 = 8.0000E-14 Variable spacing table f 25.85 35.00 48.80 R inf inf inf d 6 23.11846 10.70690 1.65476 d 8 7.95829 9.59439 3.51470 d 17 0.46783 11.24329 26.37513 f 25.85 35.00 48.80 R 500.00 500.00 500.00 d 6 26.13220 13.62221 4.65526 d 8 4.94455 6.67908 0.51420 d 17 0.46783 11.24329 26.375131 | f / f2 / 2 | f3 = 0.953 x2 / x3 = 0.828 f2 / (| f1 | + e1w) = 0.852 f2 / (| f1 | + e1t) = 1.206 β2t = 5.860 β2w = −5.746 FIG. 42, FIG. 43 shows the shooting distance R = i of the ninth embodiment.
Various aberration diagrams at the wide-angle end at nf and various aberration diagrams at the telephoto end are shown, and FIGS. 44 and 45 show various aberration diagrams at the wide-angle end and the telephoto end at the shooting distance R = 500 of Example 9, respectively. The various aberration figures are shown. In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, and d is the d line (λ = 587.6 nm).
And g are g lines (λ = 435.6 nm). The broken line in the spherical aberration diagram shows the sine condition of the d-line, the solid line in the astigmatism diagram shows the sagittal image plane, and the broken line shows the meridional image plane.

【0054】各収差図から、本実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。
From each aberration diagram, it is apparent that various aberrations are satisfactorily corrected and that this example has excellent imaging performance.

【0055】[0055]

【発明の効果】このように本発明によれば、インナーフ
ォーカス方式を採用しても、同一距離の被写体へのフォ
ーカシングに要するフォーカシングレンズ群の繰り出し
量が、ズームポジションによらずほぼ一定とすることが
可能なズームレンズの提供が可能となり、オートフォー
カス時のレンズ駆動の高速化とマニュアルフォーカス時
の操作性の両立が可能である。また、インナーフォーカ
スの採用により、最も物体側のレンズ群を固定にでき、
防滴カメラ、防水カメラ、防塵カメラ等の撮影レンズと
して利用できる。
As described above, according to the present invention, even if the inner focus method is adopted, the amount of extension of the focusing lens group required for focusing on a subject at the same distance is substantially constant regardless of the zoom position. It becomes possible to provide a zoom lens capable of achieving high speed, and it is possible to achieve both high-speed lens drive during autofocus and operability during manual focus. Also, by adopting the inner focus, the lens group closest to the object can be fixed,
It can be used as a shooting lens for drip-proof cameras, waterproof cameras, dust-proof cameras, etc.

【0056】さらに、いずれかのレンズ群を光軸と直交
する方向に移動させることにより、ぶれの補正が可能で
ある。なお、ぶれ補正レンズ群として、比較的小型の第
2レンズ群、あるいは第3レンズ群を選択すると、駆動
機構が小型化でき、好ましい。
Further, the blur can be corrected by moving any of the lens groups in the direction orthogonal to the optical axis. It is preferable to select the relatively small second lens group or the third lens group as the blur correction lens group because the drive mechanism can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のレンズ構成図である。FIG. 1 is a lens configuration diagram of a first embodiment of the present invention.

【図2】実施例1の撮影距離R=infにおける広角端
での諸収差図。
FIG. 2 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 1.

【図3】実施例1の撮影距離R=infにおける望遠端
での諸収差図。
FIG. 3 is a diagram of various types of aberration at the telephoto end at a shooting distance R = inf of Example 1.

【図4】実施例1の撮影距離R=500における広角端
での諸収差図。
FIG. 4 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the first exemplary embodiment.

【図5】実施例1の撮影距離R=500における望遠端
での諸収差図。
FIG. 5 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the first embodiment.

【図6】本発明の実施例2のレンズ構成図である。FIG. 6 is a lens configuration diagram of a second embodiment of the present invention.

【図7】実施例2の撮影距離R=infにおける広角端
での諸収差図。
FIG. 7 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 2.

【図8】実施例2の撮影距離R=infにおける望遠端
での諸収差図。
FIG. 8 is a diagram of various types of aberration at the telephoto end at a shooting distance R = inf of Example 2;

【図9】実施例2の撮影距離R=500における広角端
での諸収差図。
FIG. 9 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the second embodiment.

【図10】実施例2の撮影距離R=500における望遠
端での諸収差図。
FIG. 10 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the second embodiment.

【図11】本発明の実施例3のレンズ構成図である。FIG. 11 is a lens configuration diagram of Example 3 of the present invention.

【図12】実施例3の撮影距離R=infにおける広角
端での諸収差図。
FIG. 12 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 3.

【図13】実施例3の撮影距離R=infにおける望遠
端での諸収差図。
FIG. 13 is a diagram of various types of aberration at the telephoto end at a shooting distance R = inf of Example 3;

【図14】実施例3の撮影距離R=500における広角
端での諸収差図。
FIG. 14 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the third embodiment.

【図15】実施例3の撮影距離R=500における望遠
端での諸収差図。
FIG. 15 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the third embodiment.

【図16】本発明の実施例4のレンズ構成図である。FIG. 16 is a lens configuration diagram of Example 4 of the present invention.

【図17】実施例4の撮影距離R=infにおける広角
端での諸収差図。
FIG. 17 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 4.

【図18】実施例4の撮影距離R=infにおける望遠
端での諸収差図。
FIG. 18 is a diagram of various types of aberration at the telephoto end at the shooting distance R = inf of Example 4.

【図19】実施例4の撮影距離R=500における広角
端での諸収差図。
FIG. 19 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the fourth embodiment.

【図20】実施例4の撮影距離R=500における望遠
端での諸収差図。
FIG. 20 is a diagram of various types of aberration at the telephoto end at the shooting distance R = 500 according to the fourth embodiment.

【図21】本発明の実施例5のレンズ構成図である。FIG. 21 is a lens configuration diagram of Example 5 of the present invention.

【図22】実施例5の撮影距離R=infにおける広角
端での諸収差図。
FIG. 22 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 5.

【図23】実施例5の撮影距離R=infにおける望遠
端での諸収差図。
23 is a diagram of various types of aberration at the telephoto end at the shooting distance R = inf of Example 5. FIG.

【図24】実施例5の撮影距離R=500における広角
端での諸収差図。
FIG. 24 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the fifth embodiment.

【図25】実施例5の撮影距離R=500における望遠
端での諸収差図。
FIG. 25 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the fifth embodiment.

【図26】本発明の実施例6のレンズ構成図である。FIG. 26 is a lens configuration diagram of Example 6 of the present invention.

【図27】実施例6の撮影距離R=infにおける広角
端での諸収差図。
27 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 6. FIG.

【図28】実施例6の撮影距離R=infにおける望遠
端での諸収差図。
28 is a diagram of various types of aberration at the telephoto end at the shooting distance R = inf of Example 6. FIG.

【図29】実施例6の撮影距離R=500における広角
端での諸収差図。
FIG. 29 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the sixth embodiment.

【図30】実施例6の撮影距離R=500における望遠
端での諸収差図。
FIG. 30 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the sixth embodiment.

【図31】本発明の実施例7のレンズ構成図である。FIG. 31 is a lens configuration diagram of Example 7 of the present invention.

【図32】実施例7の撮影距離R=infにおける広角
端での諸収差図。
FIG. 32 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 7.

【図33】実施例7の撮影距離R=infにおける望遠
端での諸収差図。
FIG. 33 is a diagram of various types of aberration at the telephoto end at the shooting distance R = inf of Example 7.

【図34】実施例7の撮影距離R=500における広角
端での諸収差図。
FIG. 34 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the seventh embodiment.

【図35】実施例7の撮影距離R=500における望遠
端での諸収差図。
FIG. 35 is a diagram of various types of aberration at the telephoto end at a shooting distance R = 500 according to the seventh embodiment.

【図36】本発明の実施例8のレンズ構成図である。FIG. 36 is a lens configuration diagram of Example 8 of the present invention.

【図37】実施例8の撮影距離R=infにおける広角
端での諸収差図。
FIG. 37 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 8.

【図38】実施例8の撮影距離R=infにおける望遠
端での諸収差図。
FIG. 38 is a diagram of various types of aberration at the telephoto end at the shooting distance R = inf of Example 8.

【図39】実施例8の撮影距離R=500における広角
端での諸収差図。
FIG. 39 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = 500 according to the eighth embodiment.

【図40】実施例8の撮影距離R=500における望遠
端での諸収差図。
FIG. 40 is a diagram of aberrations of Example 8 at the telephoto end at a shooting distance R = 500.

【図41】本発明の実施例9のレンズ構成図である。FIG. 41 is a lens configuration diagram of Example 9 of the present invention.

【図42】実施例9の撮影距離R=infにおける広角
端での諸収差図。
FIG. 42 is a diagram of various types of aberration at the wide-angle end at the shooting distance R = inf of Example 9.

【図43】実施例9の撮影距離R=infにおける望遠
端での諸収差図。
FIG. 43 is a diagram of various types of aberration at the telephoto end at the shooting distance R = inf of Example 9.

【図44】実施例9の撮影距離R=500における広角
端での諸収差図。
44 is an aberration diagram at the wide-angle end at a shooting distance R = 500 according to Example 9. FIG.

【図45】実施例9の撮影距離R=500における望遠
端での諸収差図。
FIG. 45 is a diagram of various types of aberration at the telephoto end at the shooting distance R = 500 according to the ninth example.

【符合の説明】[Description of sign]

G1 ・・・ 第1レンズ群 G2 ・・・ 第2レンズ群 G3 ・・・ 第3レンズ群 G4 ・・・ 第4レンズ群 S ・・・ 絞り G1 ・ ・ ・ First lens group G2 ・ ・ ・ Second lens group G3 ・ ・ ・ Third lens group G4 ・ ・ ・ Fourth lens group S ・ ・ ・ Aperture

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、負の屈折力を有する第
1レンズ群と、正の屈折力を有する第2レンズ群と、正
の屈折力を有する第3レンズ群を有し、広角端から望遠
端へのズーミングに際して、前記第1レンズ群と前記第
2レンズ群との間隔が縮小し、前記第2レンズ群と前記
第3レンズ群との間隔が変化し、以下の条件を満足する
ことを特徴とするズームレンズ。 1 < |f1|/fw < 1.5 (f1<0) 0.5 < f2/f3 < 2 0.8 < x2/x3 < 1.2 但し、fw:広角端における全系の焦点距離、 f1:前記第1レンズ群の焦点距離、 f2:前記第2レンズ群の焦点距離、 f3:前記第3レンズ群の焦点距離、 x2:像面に対する前記第2レンズ群の広角端から望遠
端へのズーミング移動量、 x3:像面に対する前記第3レンズ群の広角端から望遠
端へのズーミング移動量である。
1. A wide-angle end having a first lens group having a negative refracting power, a second lens group having a positive refracting power, and a third lens group having a positive refracting power in order from the object side. During zooming from the zoom lens to the telephoto end, the distance between the first lens group and the second lens group is reduced, and the distance between the second lens group and the third lens group is changed to satisfy the following conditions. This is a zoom lens. 1 <| f1 | / fw <1.5 (f1 <0) 0.5 <f2 / f3 <2 0.8 <x2 / x3 <1.2 where fw is the focal length of the entire system at the wide-angle end, f1 : F2: focal length of the second lens group, f3: focal length of the third lens group, x2: from wide-angle end to telephoto end of the second lens group with respect to image plane Zooming movement amount, x3: Zooming movement amount from the wide-angle end to the telephoto end of the third lens group with respect to the image plane.
【請求項2】 前記第2レンズ群を像面方向に移動させ
て遠距離物体から近距離物体へのフォーカシングを行う
ことを特徴とする請求項1に記載のズームレンズ。
2. The zoom lens according to claim 1, wherein the second lens group is moved in the image plane direction to perform focusing from a long-distance object to a short-distance object.
【請求項3】 ズーミングの際に、前記第1レンズ群が
静止していることを特徴とする請求項1に記載のズーム
レンズ。
3. The zoom lens according to claim 1, wherein the first lens group is stationary during zooming.
【請求項4】 さらに以下の条件を満足する請求項1に
記載のズームレンズ。 f2/(|f1|+e1t) > 0.8 (f1<0) f2/(|f1|+e1w) < 1.2 但し、f1:前記第1レンズ群の焦点距離、 f2:前記第2レンズ群の焦点距離、 e1w:広角端における前記第1レンズ群の像側主点か
ら前記第2レンズ群の物側主点までの距離、 e1t:望遠端における前記第1レンズ群の像側主点か
ら前記第2レンズ群の物側主点までの距離である。
4. The zoom lens according to claim 1, further satisfying the following condition. f2 / (| f1 | + e1t)> 0.8 (f1 <0) f2 / (| f1 | + e1w) <1.2 where f1: focal length of the first lens group, f2: of the second lens group Focal length, e1w: distance from the image-side principal point of the first lens group at the wide-angle end to the object-side principal point of the second lens group, e1t: from the image-side principal point of the first lens group at the telephoto end It is the distance to the object side principal point of the second lens group.
【請求項5】 さらに以下の条件を満足する請求項1に
記載のズームレンズ。 |β2t|>2 |β2w|>2 但し、β2t:望遠端における前記第2レンズ群の結像
倍率、 β2w:広角端における前記第2レンズ群の結像倍率で
ある。
5. The zoom lens according to claim 1, further satisfying the following condition. | Β2t |> 2 | β2w |> 2 where β2t is the imaging magnification of the second lens group at the telephoto end, and β2w is the imaging magnification of the second lens group at the wide-angle end.
【請求項6】 さらに以下の条件を満足する請求項5に
記載のズームレンズ。 β2t>2 β2w<−2 但し、β2t:望遠端における前記第2レンズ群の結像
倍率、 β2w:広角端における前記第2レンズ群の結像倍率で
ある。
6. The zoom lens according to claim 5, further satisfying the following condition. β2t> 2 β2w <-2 where β2t is the imaging magnification of the second lens group at the telephoto end, and β2w is the imaging magnification of the second lens group at the wide-angle end.
【請求項7】 さらに以下の条件を満足する請求項1に
記載のズームレンズ。 f3/e3w > 0.8 f3/e3t < 1.2 但し、e3w:広角端における前記第3レンズ群の像側
主点位置から像面までの距離、 e3t:望遠端における前記第3レンズ群の像側主点位
置から像面までの距離、 f3:前記第3レンズ群の焦点距離である。
7. The zoom lens according to claim 1, further satisfying the following conditions. f3 / e3w> 0.8 f3 / e3t <1.2, where e3w: distance from the image-side principal point position of the third lens group at the wide-angle end to the image plane, e3t: of the third lens group at the telephoto end Distance from the image side principal point position to the image plane, f3: Focal length of the third lens group.
【請求項8】 前記第1レンズ群が物体側から順に、物
体側に凸面を向けた負メニスカスレンズ、負レンズ、正
レンズから構成されることを特徴とする請求項1に記載
のズームレンズ。
8. The zoom lens according to claim 1, wherein the first lens group comprises, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a negative lens, and a positive lens.
【請求項9】 前記第1レンズ群が物体側から順に、正
レンズ、物体側に凸面を向けた負メニスカスレンズ、負
レンズ、正レンズから構成されることを特徴とする請求
項1に記載のズームレンズ。
9. The first lens group comprises, in order from the object side, a positive lens, a negative meniscus lens having a convex surface facing the object side, a negative lens, and a positive lens. Zoom lens.
【請求項10】 前記第2レンズ群が貼り合わせ正レン
ズと物体側に凸面を向けた負メニスカスレンズから構成
されることを特徴とする請求項1に記載のズームレン
ズ。
10. The zoom lens according to claim 1, wherein the second lens group includes a cemented positive lens and a negative meniscus lens having a convex surface directed toward the object side.
【請求項11】 前記第2レンズ群が貼り合わせ正レン
ズから構成されることを特徴とする請求項1に記載のズ
ームレンズ。
11. The zoom lens according to claim 1, wherein the second lens group includes a cemented positive lens.
【請求項12】 前記第2レンズ群が正レンズと負レン
ズから構成されることを特徴とする請求項1に記載のズ
ームレンズ。
12. The zoom lens according to claim 1, wherein the second lens group includes a positive lens and a negative lens.
【請求項13】 前記第2レンズ群が正の単レンズから
構成されることを特徴とする請求項1に記載のズームレ
ンズ。
13. The zoom lens according to claim 1, wherein the second lens group includes a positive single lens.
【請求項14】 前記第3レンズ群が物体側から順に正
レンズと、負レンズと、正レンズの構成を有することを
特徴とする請求項1に記載のズームレンズ。
14. The zoom lens according to claim 1, wherein the third lens group has a configuration of a positive lens, a negative lens, and a positive lens in order from the object side.
【請求項15】 前記第2レンズ群と前記第3レンズ群
との間に絞りを有することを特徴とする請求項1に記載
のズームレンズ。
15. The zoom lens according to claim 1, further comprising a diaphragm between the second lens group and the third lens group.
【請求項16】 広角端から望遠端へのズーミングに際
して、前記第2レンズ群と前記第3レンズ群の間隔は、
広角端近傍では拡大し、望遠端近傍では縮小することを
特徴とする請求項1に記載のズームレンズ。
16. When zooming from the wide-angle end to the telephoto end, the distance between the second lens group and the third lens group is
The zoom lens according to claim 1, wherein the zoom lens expands near the wide-angle end and contracts near the telephoto end.
【請求項17】 前記第3レンズ群の像側に負の屈折力
を有する第4レンズ群を有することを特徴とする請求項
1に記載のズームレンズ。
17. The zoom lens according to claim 1, further comprising a fourth lens unit having a negative refractive power on the image side of the third lens unit.
【請求項18】 前記第3レンズ群の像側に正の屈折力
を有する第4レンズ群を有することを特徴とする請求項
1に記載のズームレンズ。
18. The zoom lens according to claim 1, further comprising a fourth lens group having a positive refractive power on the image side of the third lens group.
【請求項19】 物体側から順に、物体側に凸面を向け
た負メニスカスレンズと、負レンズと、正レンズで構成
され、全体として負の屈折力を有する第1レンズ群と、
正の屈折力を有する第2レンズ群と、正の屈折力を有す
る第3レンズ群を有し、広角端から望遠端へのズーミン
グに際して、前記第1レンズ群と前記第2レンズ群との
間隔が縮小し、前記第2レンズ群と前記第3レンズ群と
の間隔が変化し、以下の条件を満足することを特徴とす
るズームレンズ。 1 < |f1|/fw < 1.5 (f1<0) 0.5 < f2/f3 < 2 但し、fw:広角端における全系の焦点距離、 f1:前記第1レンズ群の焦点距離、 f2:前記第2レンズ群の焦点距離、 f3:前記第3レンズ群の焦点距離である。
19. A first lens group having, in order from the object side, a negative meniscus lens having a convex surface directed toward the object side, a negative lens, and a positive lens, and having a negative refracting power as a whole.
A second lens group having a positive refracting power and a third lens group having a positive refracting power are provided, and an interval between the first lens group and the second lens group during zooming from the wide-angle end to the telephoto end. Is reduced, the distance between the second lens group and the third lens group is changed, and the following condition is satisfied. 1 <| f1 | / fw <1.5 (f1 <0) 0.5 <f2 / f3 <2 where fw: focal length of the entire system at the wide-angle end, f1: focal length of the first lens group, f2 : F3: focal length of the second lens group f3: focal length of the third lens group
【請求項20】 前記第2レンズ群を像面方向に移動さ
せて遠距離物体から近距離物体へのフォーカシングを行
うことを特徴とする請求項19に記載のズームレンズ。
20. The zoom lens according to claim 19, wherein the second lens group is moved in the image plane direction to perform focusing from a long-distance object to a short-distance object.
【請求項21】 ズーミングの際に、前記第1レンズ群
が静止していることを特徴とする請求項19に記載のズ
ームレンズ。
21. The zoom lens according to claim 19, wherein the first lens group is stationary during zooming.
JP04834195A 1995-03-08 1995-03-08 Zoom lens Expired - Lifetime JP3590807B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04834195A JP3590807B2 (en) 1995-03-08 1995-03-08 Zoom lens
US08/613,254 US5668668A (en) 1995-03-08 1996-03-08 Zoom lens with five lens groups
US08/736,674 US5798871A (en) 1995-03-08 1996-10-25 Zoom lens
US08/736,673 US5721642A (en) 1995-03-08 1996-10-25 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04834195A JP3590807B2 (en) 1995-03-08 1995-03-08 Zoom lens

Publications (2)

Publication Number Publication Date
JPH08248312A true JPH08248312A (en) 1996-09-27
JP3590807B2 JP3590807B2 (en) 2004-11-17

Family

ID=12800703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04834195A Expired - Lifetime JP3590807B2 (en) 1995-03-08 1995-03-08 Zoom lens

Country Status (1)

Country Link
JP (1) JP3590807B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090624A (en) * 2000-07-10 2002-03-27 Olympus Optical Co Ltd Electronic imaging device
JP2002277740A (en) * 2001-03-19 2002-09-25 Asahi Optical Co Ltd Zoom lens system
US6853497B2 (en) 2002-08-22 2005-02-08 Pentax Corporation Wide-angle zoom lens system
US7227701B2 (en) 1999-08-31 2007-06-05 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
JP2007206331A (en) * 2006-02-01 2007-08-16 Canon Inc Zoom lens and image projector with the same
WO2007122944A1 (en) * 2006-04-20 2007-11-01 Sharp Kabushiki Kaisha Zoom lens, digital camera and mobile information terminal device
CN100451721C (en) * 2006-03-01 2009-01-14 索尼株式会社 Zoom lens and image pickup apparatus
JP2010176016A (en) * 2009-01-30 2010-08-12 Nikon Corp Wide-angle lens, imaging apparatus, and method for manufacturing the wide-angle lens
JP2010204647A (en) * 2009-02-03 2010-09-16 Hoya Corp Wide-angle zoom lens system
JP2011102865A (en) * 2009-11-10 2011-05-26 Nikon Corp Wide angle lens, image pickup device, and method for manufacturing the wide angle lens
JP2011197636A (en) * 2010-02-26 2011-10-06 Hoya Corp Zoom lens system
KR101086414B1 (en) * 2005-05-20 2011-11-25 삼성전자주식회사 Automatic Focusing Method of Digital Image Processing Device with Dual Focusing
JP2012189840A (en) * 2011-03-11 2012-10-04 Hoya Corp Zoom lens system
US8446520B2 (en) 2008-07-02 2013-05-21 Panasonic Corporation Zoom lens system, imaging device and camera
US8456767B2 (en) 2009-12-11 2013-06-04 Olympus Medical Systems Corp. Objective optical system
US8537268B2 (en) 2008-07-02 2013-09-17 Panasonic Corporation Zoom lens system, imaging device and camera
WO2014007298A1 (en) * 2012-07-03 2014-01-09 株式会社タムロン Zoom lens
US8699143B2 (en) 2009-11-10 2014-04-15 Nikon Corporation Wide-angle lens, imaging apparatus, and method for manufacturing wide-angle lens
JP2019207291A (en) * 2018-05-28 2019-12-05 キヤノン株式会社 Zoom lens and image capturing device
JP2020134806A (en) * 2019-02-22 2020-08-31 株式会社ニコン Zoom optical system, optical device, and method of manufacturing zoom optical system
JPWO2021117563A1 (en) * 2019-12-10 2021-06-17
JP2022016016A (en) * 2020-07-10 2022-01-21 富士フイルム株式会社 Image capturing lens and image capturing device
CN114137710A (en) * 2021-12-06 2022-03-04 辽宁中蓝光电科技有限公司 Optical zoom lens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5185037B2 (en) 2008-09-19 2013-04-17 富士フイルム株式会社 Zoom lens and imaging device

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726816A (en) * 1980-07-24 1982-02-13 Minolta Camera Co Ltd Wide angle zoom lens system consisting of three components
JPS58160912A (en) * 1982-03-19 1983-09-24 Canon Inc Zoom lens
JPS5931922A (en) * 1982-08-17 1984-02-21 Canon Inc Focusing method of zoom lens
JPS6031110A (en) * 1983-07-29 1985-02-16 Canon Inc Zoom lens
JPS61170716A (en) * 1985-01-24 1986-08-01 Asahi Optical Co Ltd Wide-angle zoom lens
JPS61221719A (en) * 1985-03-27 1986-10-02 Ricoh Co Ltd Small-sized zoom lens
JPS6317423A (en) * 1986-07-09 1988-01-25 Canon Inc Zoom lens
JPS63292106A (en) * 1987-05-26 1988-11-29 Olympus Optical Co Ltd Variable power lens
JPH01131510A (en) * 1987-08-12 1989-05-24 Olympus Optical Co Ltd Variable power finder
JPH01191820A (en) * 1988-01-28 1989-08-01 Olympus Optical Co Ltd Variable power lens
JPH0272316A (en) * 1988-09-07 1990-03-12 Konica Corp Compact zoom lens
JPH02136812A (en) * 1988-11-18 1990-05-25 Canon Inc Rear focusing type zoom lens
JPH0358042A (en) * 1989-07-26 1991-03-13 Olympus Optical Co Ltd Real image type variable power finder
JPH03139607A (en) * 1989-10-26 1991-06-13 Olympus Optical Co Ltd Power varying lens
JPH03140911A (en) * 1989-10-27 1991-06-14 Olympus Optical Co Ltd Variable power lens
JPH03158817A (en) * 1989-11-17 1991-07-08 Olympus Optical Co Ltd Variable power lens
JPH03240015A (en) * 1990-02-17 1991-10-25 Canon Inc Zoom lens
JPH03240011A (en) * 1990-02-19 1991-10-25 Konica Corp Zoom lens
JPH04230719A (en) * 1990-02-22 1992-08-19 Asahi Optical Co Ltd Zoom finder
JPH04367813A (en) * 1991-06-14 1992-12-21 Canon Inc Real-image type variable power finder optical system
JPH05100165A (en) * 1991-10-09 1993-04-23 Ricoh Co Ltd Compact zoom lens
JPH06175026A (en) * 1992-12-04 1994-06-24 Nikon Corp Zoom lens including wide angle range
JPH06214156A (en) * 1993-01-14 1994-08-05 Nikon Corp Zoom lens including wide angle range
JPH0763992A (en) * 1993-08-26 1995-03-10 Canon Inc Zoom lens and image pickup device using the same
JPH0772391A (en) * 1993-09-03 1995-03-17 Canon Inc Zoom lens
JPH07146441A (en) * 1993-11-25 1995-06-06 Canon Inc Zoom lens
JPH0862499A (en) * 1994-08-25 1996-03-08 Canon Inc Zoom lens
JPH10513270A (en) * 1994-12-19 1998-12-15 ベンオプコン・インク Variable magnification lens for micro image formation

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726816A (en) * 1980-07-24 1982-02-13 Minolta Camera Co Ltd Wide angle zoom lens system consisting of three components
JPS58160912A (en) * 1982-03-19 1983-09-24 Canon Inc Zoom lens
JPS5931922A (en) * 1982-08-17 1984-02-21 Canon Inc Focusing method of zoom lens
JPS6031110A (en) * 1983-07-29 1985-02-16 Canon Inc Zoom lens
JPS61170716A (en) * 1985-01-24 1986-08-01 Asahi Optical Co Ltd Wide-angle zoom lens
JPS61221719A (en) * 1985-03-27 1986-10-02 Ricoh Co Ltd Small-sized zoom lens
JPS6317423A (en) * 1986-07-09 1988-01-25 Canon Inc Zoom lens
JPS63292106A (en) * 1987-05-26 1988-11-29 Olympus Optical Co Ltd Variable power lens
JPH01131510A (en) * 1987-08-12 1989-05-24 Olympus Optical Co Ltd Variable power finder
JPH01191820A (en) * 1988-01-28 1989-08-01 Olympus Optical Co Ltd Variable power lens
JPH0272316A (en) * 1988-09-07 1990-03-12 Konica Corp Compact zoom lens
JPH02136812A (en) * 1988-11-18 1990-05-25 Canon Inc Rear focusing type zoom lens
JPH0358042A (en) * 1989-07-26 1991-03-13 Olympus Optical Co Ltd Real image type variable power finder
JPH03139607A (en) * 1989-10-26 1991-06-13 Olympus Optical Co Ltd Power varying lens
JPH03140911A (en) * 1989-10-27 1991-06-14 Olympus Optical Co Ltd Variable power lens
JPH03158817A (en) * 1989-11-17 1991-07-08 Olympus Optical Co Ltd Variable power lens
JPH03240015A (en) * 1990-02-17 1991-10-25 Canon Inc Zoom lens
JPH03240011A (en) * 1990-02-19 1991-10-25 Konica Corp Zoom lens
JPH04230719A (en) * 1990-02-22 1992-08-19 Asahi Optical Co Ltd Zoom finder
JPH04367813A (en) * 1991-06-14 1992-12-21 Canon Inc Real-image type variable power finder optical system
JPH05100165A (en) * 1991-10-09 1993-04-23 Ricoh Co Ltd Compact zoom lens
JPH06175026A (en) * 1992-12-04 1994-06-24 Nikon Corp Zoom lens including wide angle range
JPH06214156A (en) * 1993-01-14 1994-08-05 Nikon Corp Zoom lens including wide angle range
JPH0763992A (en) * 1993-08-26 1995-03-10 Canon Inc Zoom lens and image pickup device using the same
JPH0772391A (en) * 1993-09-03 1995-03-17 Canon Inc Zoom lens
JPH07146441A (en) * 1993-11-25 1995-06-06 Canon Inc Zoom lens
JPH0862499A (en) * 1994-08-25 1996-03-08 Canon Inc Zoom lens
JPH10513270A (en) * 1994-12-19 1998-12-15 ベンオプコン・インク Variable magnification lens for micro image formation

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796106B1 (en) * 1999-08-31 2008-01-21 캐논 가부시끼가이샤 Zoom lens and optical device having same
US7227701B2 (en) 1999-08-31 2007-06-05 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
JP2002090624A (en) * 2000-07-10 2002-03-27 Olympus Optical Co Ltd Electronic imaging device
JP4540261B2 (en) * 2000-07-10 2010-09-08 オリンパス株式会社 Electronic imaging device
JP2002277740A (en) * 2001-03-19 2002-09-25 Asahi Optical Co Ltd Zoom lens system
US6853497B2 (en) 2002-08-22 2005-02-08 Pentax Corporation Wide-angle zoom lens system
KR101086414B1 (en) * 2005-05-20 2011-11-25 삼성전자주식회사 Automatic Focusing Method of Digital Image Processing Device with Dual Focusing
JP2007206331A (en) * 2006-02-01 2007-08-16 Canon Inc Zoom lens and image projector with the same
CN100451721C (en) * 2006-03-01 2009-01-14 索尼株式会社 Zoom lens and image pickup apparatus
EP2048530A4 (en) * 2006-04-20 2011-06-08 Sharp Kk Zoom lens, digital camera and mobile information terminal device
WO2007122944A1 (en) * 2006-04-20 2007-11-01 Sharp Kabushiki Kaisha Zoom lens, digital camera and mobile information terminal device
EP2048530A1 (en) * 2006-04-20 2009-04-15 Sharp Kabushiki Kaisha Zoom lens, digital camera and mobile information terminal device
US8446520B2 (en) 2008-07-02 2013-05-21 Panasonic Corporation Zoom lens system, imaging device and camera
US8537268B2 (en) 2008-07-02 2013-09-17 Panasonic Corporation Zoom lens system, imaging device and camera
JP2010176016A (en) * 2009-01-30 2010-08-12 Nikon Corp Wide-angle lens, imaging apparatus, and method for manufacturing the wide-angle lens
JP2010204647A (en) * 2009-02-03 2010-09-16 Hoya Corp Wide-angle zoom lens system
US8223437B2 (en) 2009-02-03 2012-07-17 Pentax Ricoh Imaging Company, Ltd. Wide-angle zoom lens system
JP2011102865A (en) * 2009-11-10 2011-05-26 Nikon Corp Wide angle lens, image pickup device, and method for manufacturing the wide angle lens
US8699143B2 (en) 2009-11-10 2014-04-15 Nikon Corporation Wide-angle lens, imaging apparatus, and method for manufacturing wide-angle lens
US9164260B2 (en) 2009-11-10 2015-10-20 Nikon Corporation Wide-angle lens, imaging apparatus, and method for manufacturing wide-angle lens
US8456767B2 (en) 2009-12-11 2013-06-04 Olympus Medical Systems Corp. Objective optical system
JP2011197636A (en) * 2010-02-26 2011-10-06 Hoya Corp Zoom lens system
JP2012189840A (en) * 2011-03-11 2012-10-04 Hoya Corp Zoom lens system
WO2014007298A1 (en) * 2012-07-03 2014-01-09 株式会社タムロン Zoom lens
JP2019207291A (en) * 2018-05-28 2019-12-05 キヤノン株式会社 Zoom lens and image capturing device
JP2020134806A (en) * 2019-02-22 2020-08-31 株式会社ニコン Zoom optical system, optical device, and method of manufacturing zoom optical system
JPWO2021117563A1 (en) * 2019-12-10 2021-06-17
JP2022016016A (en) * 2020-07-10 2022-01-21 富士フイルム株式会社 Image capturing lens and image capturing device
US12066597B2 (en) 2020-07-10 2024-08-20 Fujifilm Corporation Imaging lens and imaging apparatus
CN114137710A (en) * 2021-12-06 2022-03-04 辽宁中蓝光电科技有限公司 Optical zoom lens
CN114137710B (en) * 2021-12-06 2024-10-25 辽宁中蓝光电科技有限公司 Optical zoom lens

Also Published As

Publication number Publication date
JP3590807B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
JP3590807B2 (en) Zoom lens
JP3587272B2 (en) Zoom lens
JP4317928B2 (en) Zoom lens
JP3304518B2 (en) Zoom lens
JPH06337354A (en) Zoom lens
JPH08304704A (en) Zoom lens
JP3066915B2 (en) Zoom lens
JP3119403B2 (en) Small variable power lens
JPH11258506A (en) Zoom lens
JPH0843737A (en) Zoom lens
US5659426A (en) Zoom lens
JPH07287168A (en) Zoom lens with high power variation rate
JPH1164732A (en) Zoom lens
JPH08129134A (en) Zoom lens
JPH1048521A (en) Zoom lens
JPH1020194A (en) Zoom lens
JPH0772390A (en) Small-sized zoon lens
JP4972900B2 (en) Zoom lens
WO2022137820A1 (en) Variable-magnification optical system, optical instrument, and method for manufacturing variable-magnification optical system
JP3593400B2 (en) Rear focus zoom lens
JPH08211290A (en) High variable power rate zoom lens
JP2984501B2 (en) Zoom lens
JPH0735979A (en) Zoom lens
JPH07253539A (en) Zoom lens
JPH0792390A (en) Zoom lens

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term