JP3593400B2 - Rear focus zoom lens - Google Patents

Rear focus zoom lens Download PDF

Info

Publication number
JP3593400B2
JP3593400B2 JP32337395A JP32337395A JP3593400B2 JP 3593400 B2 JP3593400 B2 JP 3593400B2 JP 32337395 A JP32337395 A JP 32337395A JP 32337395 A JP32337395 A JP 32337395A JP 3593400 B2 JP3593400 B2 JP 3593400B2
Authority
JP
Japan
Prior art keywords
lens
lens group
object side
condition
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32337395A
Other languages
Japanese (ja)
Other versions
JPH09159917A (en
Inventor
穂高 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP32337395A priority Critical patent/JP3593400B2/en
Publication of JPH09159917A publication Critical patent/JPH09159917A/en
Application granted granted Critical
Publication of JP3593400B2 publication Critical patent/JP3593400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は特にスチルカメラやビデオカメラ等に好適な,変倍比が約10に及びしかも望遠端でもF3以内の口径比を持ちながり,レンズ系全体の小型化を図ったリアフォーカス式ズームレンズに関する。
【0002】
【従来の技術】
従来よりスチルカメラや,ビデオカメラ等のズームレンズにおいて用いられている比較的高変倍比でしかも大口径比のズームレンズとして4群ズームレンズが知られている。この4群ズームレンズは物体側より順に焦点合わせに用いる第1レンズ群と,変倍に用いる第2レンズ群と,変倍に伴う像面変動を一定位置に保つように補正する第3レンズ群と,全系の焦点距離や収差補正のバランスを取る為の第4レンズ群から成り立っている。この様な4群ズームレンズでは変倍のために第2レンズ群と第3レンズ群を移動させ,焦点合わせに第1レンズ群を移動させている為,合計3つのレンズ群を移動させなければならず,比較的レンズ鏡筒の機構が複雑になる傾向があった。また,近距離物体に焦点合わせを行う際,第1レンズ群を物体側に繰り出して行うため,軸外光東を十分確保しようとすると前玉レンズ径が増大する傾向があった。又,大径化した前玉を移動させるための大きな駆動力を要し,オートフォーカスに際しての合焦時間も長くなるという問題もあった。これらの問題を防止するため,第1レンズ群以外のレンズ群を移動させてフォーカスを行う,いわゆるリアフォーカス式を採用したズームレンズが種々提案されている。一般にリアフォーカス式ズームレンズは,前玉の繰り出しを伴わないため,光量確保のために前玉径を大型化する必要がなく,又,比較的小型軽量のレンズ群を移動させて焦点合わせを行っているため,フォーカスを行う際の駆動力が小さくて済み,迅速な焦点合わせが出来る。更に,リアフォーカス式ズームレンズでは,第1レンズ群を移動させて焦点合わせを行うズームレンズに比べて第1レンズ群の有効径が小さくなり,レンズ系全体の小型化が図りやすくなり,さらに近接撮影が容易になる等の優れた特長がある。
【0003】
【発明が解決しようとする課題】
しかしながらリアフォーカス式ズームレンズでは,フォーカスの際における収差変動が大きくなり,無限物体距離から近距離物体距離に至るまで全般にわたりレンズ系全体の小型化を図りつつ,諸収差の良好に補正された高い光学性能を得ることが大変困難であった。
【0004】
【課題を解決するための手段】
本発明は,この様な問題点を解決するためになされたものであり,リアフォーカス式ズームレンズを前提として,非球面を有するレンズを適切に配置する事により,リアフォーカス式を採用したにもかかわらず,変倍比10で,かつ大口径比を持ったズームレンズでありながら,レンズ系全体の小型化を図り,広角端から望遠端まで全物体距離で諸収差を良好に補正された高い光学性能を有するリアフォーカス式ズームレンズを得ることを目的とする。
【0005】
上記目的を達成するため、本発明は物体側より順に、全体として正の屈折力を持つ第1レンズ群と、全体として負の屈折力を有する第2レンズ群と、全体として正の屈折力を有する第3レンズ群と、全体として正の屈折力を有する第4レンズ群と、全体として負の屈折力を有する第5レンズ群よりなり、上記第1レンズ群、第3レンズ群、第5レンズ群を固定させ、上記第2レンズ群を光軸に沿って物体側から像面側へ移動させることにより広角側から望遠側への変倍を行い、変倍に伴う像面変動を上記第4レンズ群の光軸方向への移動により補正すると共に、第4レンズ群を物体の移動によって変動する像面を一定位置に保つように光軸に沿って移動させて焦点調節を行う光学系において、上記第3レンズ群は、両凸レンズと物体側に凹面を向けた負のメニスカスレンズとの貼り合わせレンズを有し、物体側の凸面に少なくとも一面の非球面形状を有し、上記第4レンズ群は、両凸レンズと物体側に凹面を向けた負のメニスカスレンズとの貼り合わせレンズを有し、物体側の凸面に少なくとも一面の非球面形状を有し、上記第5レンズ群は、像面側の凸面に少なくとも一面の非球面形状を有していて、以下の条件式を満足するリアフォーカス式ズームレンズ、としたことにより達成される。
(条件1)νw−νx>20
(条件2)νy−νz>20
(条件3)0.7<|f5/f4|<1.7
(条件4)0.7<|f2/fw|<1.1
(条件5)
但し、νwは第3レンズ群の両凸レンズのアッベ数、
νxは第3レンズ群の物体側に凹面を向けた負のメニスカスレンズのアッベ数、
νyは第4レンズ群の両凸レンズのアッベ数、
νzは第4レンズ群の物体側に凹面を向けた負のメニスカスレンズのアッベ数、
fwは広角端におけるレンズ系全系の合成焦点距離、
f2は第2レンズ群の合成焦点距離、
f4は第4レンズ群の合成焦点距離、
f5は第5レンズ群の合成焦点距離。
【0006】
望ましくは,本発明のリアフォーカス式ズームレンズは,上記を前提として,前記第3レンズ群Cと前記第4レンズ群Dは,それぞれ両凸レンズと物体側に強い凹面を向けた負のメニスカスレンズとの張り合わせレンズを有し,第3レンズ群Cの両凸レンズのアッべ数をνw,第3レンズ群Cの物体側に強い凹面を向けた負のメニスカスレンズのアッべ数をνx,第4レンズ群Dの両凸レンズのアッべ数をνy,第4レンズ群Dの物体側に強い凹面を向けた負のメニスカスレンズのアッべ数をνzとするとき,条件1及び条件2に規定する条件を満足する。
【0007】
(条件1)νw−νx>20
【0008】
(条件2)νy−νz>20
【0009】
更に望ましくは,本発明のリアフォーカス式ズームレンズは,上記を前提として,広角端におけるレンズ系全系の合成焦点距離をfw,第2レンズ群Bの合成焦点距離をf2,第4レンズ群Dの合成焦点距離をf4,第5レンズ群Eの合成焦点距離をf5とするとき,条件3及び条件4に規定する条件を満足する。
【0010】
(条件3)0.7<|f5/f4|<1.7
【0011】
(条件4)0.7<|f2/fwl<1.1
【0012】
【作用】
本発明は,図1の光軸断面図に示すように,物体側より順に,全体として正の屈折力を持つ第1レンズ群Aと,全体として負の屈折力を有する第2レンズ群Bと,全体として正の屈折力を有する第3レンズ群Cと,全体として正の屈折力を有する第4レンズ群Dと,全体として負の屈折力を有する第5レンズ群Eよりなり,上記第1レンズ群A,第3レンズ群C,第5レンズ群Eは固定されている。従って,変倍動作や合焦動作によってレンズ系全体としての全長が変化することはなく,又,可動レンズも第2レンズ群Bと第4レンズ群Dとに限定されるので,駆動機構を簡素化することが可能となる。
【0013】
変倍に際しては,固定レンズである第1レンズ群Aと第3レンズ群Cとの間に形成された空間において第2レンズ群Bを光軸に沿って物体側から像面側へ移動させることにより広角側から望遠側への変倍がなされ,又,この変倍に伴う像面変動の補正のために固定レンズである第3レンズ群Cと第5レンズ群Eとの間に形成された空間において第4レンズ群Dを物体側に凸状の軌跡を有する様に移動させる。又,合焦動作に際しては,固定レンズである第3レンズ群Cと第5レンズ群Eとの間に形成された空間において第4レンズD群を物体側に移動させることによって近距離側への焦点調整を行う。この様に,固定レンズである第1レンズ群Aと第3レンズ群Cとの間に形成された固定空間,及び第3レンズ群Cと第5レンズ群Eとの間に形成された固定空間で可動レンズである第2レンズ群B及び第4レンズ群Dを移動させる様になされているので,可動レンズ群の限定や固定空間の有効利用がなされ,駆動機構の簡素化やレンズ系全体の小型化が達成される。
【0014】
第3レンズ群C,第4レンズ群Dの物体側の凸面に配置された少なくとも1面の非球面形状及び第5レンズ群Eの像面側の凸面に配置された少なくとも1面の非球面形状は,変倍ならびに合焦動作の際における収差変動を少なくし,諸収差を良好に補正するためのものである。
【0015】
これらの非球面中,第3レンズ群Cの物体側の凸面に配置される非球面は主に広角側での球面収差やコマ収差を良好に補正するのに有効である。又,第4レンズ群Dの物体側の凸面に配置される非球面は,主に球面収差や非点収差を良好に補正するのに有効である。更に,第5レンズ群Eの像面側の凸面に配置される非球面は,主に非点収差やコマ収差を良好に補正するのに有効である。
【0016】
さらに諸収差を良好に補正するために上述の条件1乃至条件4に規定する条件を満足する事が好ましい。条件1に規定する条件は第3レンズ群Cの張り合わせレンズのアッべ数を適切に設定するものである。条件1に規定する条件が満足されないと,変倍および合焦動作の際の色収差の変動を良好に補正するのが困難になる。
【0017】
条件2に規定する条件は第4レンズ群の張り合わせレンズのアッべ数を適切に設定するものである。条件2に規定する条件が満足されないと,変倍および合焦動作の際の色収差の変動を良好に補正するのが難しくなってくる。
【0018】
条件3に規定する条件は第4レンズ群Dと,第5レンズ群Eの焦点距離に関するものであり,変倍および合焦動作の際における第4レンズ群Dの移動量を抑制してレンズ系全体の小型化を図る一方で,良好な光学性能を維持するためのものである。条件3の上限値を越えると,変倍および合焦動作の際における第4レンズ群Dの移動量が大きくなり,収差変動が大きくなると共にレンズ系全体の小型化が望めなくなる。条件3の下限値を越えると変倍および合焦動作の際における第4レンズ群Dの移動量は小さくなるが,非点収差およびコマ収差の補正が困難となる。
【0019】
条件4に規定する条件は第2レンズ群Bの焦点距離に関するものであり,変倍の際の収差変動を抑えつつ,レンズ系全体の小型化を図るためのものである。条件4の上限値を越えると,一定の変倍比を確保する為に第2レンズ群Bの移動量が大きくなり,レンズ系全体の小型化が望めなくなる。条件4の下限値を越えると,負のべッツバール和が増大し,像面湾曲が大きくなる。またコマ収差の補正も困難となる。
【0020】
【実施例】
次に,具体的な数値実施例を表1及び表2に示すとともに,各々の実施例の光軸断面を図1乃至図3及び図7乃至図9に示し,又,各々の実施例の収差線図を図4乃至図6及び図10乃至図12に示す。尚,図1及び図7は各々の実施例の広角端での光軸断面を,図2及び図8は各々実施例の中間焦点距離での光軸断面を,図3及び図9は各々の実施例の望遠端での光軸断面図を示す,図4及び図10は各々の実施例の広角端での収差線図を,図5及び図11は各々の実施例の中間焦点距離での収差線図を,図6及び図12は各々の実施例の望遠端での収差線図を示している。又,各々の光軸断面図において,A乃至Eは各々第1レンズ群から第5レンズ群を示すとともに,FはCCDにおけるカバーガラスや赤外カットフィルター等のガラス材を表す。
【0021】
【表1】

Figure 0003593400
【0022】
【表2】
Figure 0003593400
【0023】
各々の実施例において,riは物体側からi番目の面の曲率半径を,diは物体からi番目のレンズ肉厚或いは空気間隔を,niは物体からi番目のレンズのd線に対する屈折率を,νiは物体からi番目のレンズのd線に対するアッベ数を各々示している。又,表1に示す実施例ではr12面,r14面,r17面,r21面が非球面に形成され,表2に示す実施例ではr12面,r15面,r17面,r19面が非球面に形成され,その非球面形状は数1によって規定されている。
【0024】
【数1】
Figure 0003593400
【0025】
尚,数1において,Zは光軸から高さがyの非球面上の点の非球面頂点の接平面からの距離を,yは光軸からの高さを,Cは非球面頂点の曲率(=1/r)を,εは円錐定数を,D,E,F及びGは非球面係数を表し,ε,D,E,F及びGの具体的な数値は各々表1及び表2に示されている。又,各々の収差線図における非点収差は,図面の煩雑化を避けるためにサジタル方向DSとメリジオナル方向とを各々区分して示している。
【0026】
【発明の効果】
以上説明した実施例や収差線図に見られる様に,本発明は,リアフォーカス式を採用しつつ,約10倍の広域な変倍比と望遠端でもF3以内の口径を有する高変倍比,大口径のズームレンズでありながら,レンズ系全体の小型化を図りつつ,広角端から望遠端まで全物体距離にわたって諸収差が良好に補正された高い光学性能を有するリアフォーカス式ズームレンズを得ることが出来た。
【図面の簡単な説明】
【図1】本発明の第1実施例に係るズームレンズの広角端での光軸断面図。
【図2】本発明の第1実施例に係るズームレンズの中間焦点距離での光軸断面図。
【図3】本発明の第1実施例に係るズームレンズの望遠端での光軸断面図。
【図4】本発明の第1実施例に係るズームレンズの広角端での収差線図。
【図5】本発明の第1実施例に係るズームレンズの中間焦点距離での収差線図。
【図6】本発明の第1実施例に係るズームレンズの望遠端での収差線図。
【図7】本発明の第2実施例に係るズームレンズの広角端での光軸断面図。
【図8】本発明の第2実施例に係るズームレンズの中間焦点距離での光軸断面図。
【図9】本発明の第2実施例に係るズームレンズの望遠端での光軸断面図。
【図10】本発明の第2実施例に係るズームレンズの広角端での収差線図。
【図11】本発明の第2実施例に係るズームレンズの中間焦点距離での収差線図。
【図12】本発明の第2実施例に係るズームレンズの望遠端での収差線図。
【符号の説明】
A 第1レンズ群
B 第2レンズ群
C 第3レンズ群
D 第4レンズ群
E 第5レンズ群[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is particularly suitable for a still camera or a video camera, etc., and has a zoom ratio of about 10 and at the telephoto end has an aperture ratio of F3 or less, and is a rear-focusing type zoom lens with a reduced overall lens system. About.
[0002]
[Prior art]
Conventionally, a four-group zoom lens is known as a zoom lens having a relatively high zoom ratio and a large aperture ratio, which has been used in a zoom lens such as a still camera or a video camera. The four-unit zoom lens includes, in order from the object side, a first lens unit used for focusing, a second lens unit used for zooming, and a third lens unit for correcting an image plane variation caused by zooming to be kept at a fixed position. And a fourth lens group for balancing the focal length and aberration correction of the entire system. In such a four-unit zoom lens, the second lens unit and the third lens unit are moved for zooming, and the first lens unit is moved for focusing. Therefore, a total of three lens units must be moved. However, the mechanism of the lens barrel tends to be relatively complicated. In addition, when focusing on a short-distance object, the first lens group is extended toward the object side, so that if the off-axis light east is sufficiently secured, the diameter of the front lens tends to increase. In addition, there is a problem that a large driving force is required to move the large-diameter front lens, and the focusing time for autofocusing is also long. In order to prevent these problems, various zoom lenses adopting a so-called rear focus system in which focusing is performed by moving a lens group other than the first lens group have been proposed. In general, a rear-focusing zoom lens does not involve the extension of the front lens, so there is no need to increase the diameter of the front lens to secure the amount of light, and the focusing is performed by moving a relatively small and light lens group. As a result, a small driving force is required for focusing, and quick focusing can be performed. Further, in the rear-focusing type zoom lens, the effective diameter of the first lens group is smaller than that of a zoom lens that performs focusing by moving the first lens group. It has excellent features such as easy shooting.
[0003]
[Problems to be solved by the invention]
However, in the rear-focusing zoom lens, aberration fluctuation during focusing becomes large, and the entire lens system is reduced in size from infinite object distance to short-distance object distance, and various aberrations are well corrected and high. It was very difficult to obtain optical performance.
[0004]
[Means for Solving the Problems]
The present invention has been made in order to solve such a problem. Assuming that a rear-focusing type zoom lens is used, a rear-focusing type is adopted by appropriately disposing a lens having an aspherical surface. Regardless, despite being a zoom lens with a zoom ratio of 10 and a large aperture ratio, the overall size of the lens system has been reduced, and various aberrations have been successfully corrected at all object distances from the wide-angle end to the telephoto end. It is an object of the present invention to obtain a rear focus type zoom lens having optical performance.
[0005]
In order to achieve the above object, the present invention provides, in order from the object side, a first lens group having a positive refractive power as a whole, a second lens group having a negative refractive power as a whole, and a positive refractive power as a whole. A third lens group, a fourth lens group having a positive refractive power as a whole, and a fifth lens group having a negative refractive power as a whole. The first lens group, the third lens group, and the fifth lens The lens group is fixed, and the second lens group is moved from the object side to the image plane side along the optical axis to perform zooming from the wide-angle side to the telephoto side. In an optical system for correcting focus by moving the lens group in the direction of the optical axis and moving the fourth lens group along the optical axis so as to keep the image plane that fluctuates due to the movement of the object at a fixed position, focus adjustment is performed. The third lens group has a biconvex lens and a concave surface on the object side. A negative meniscus lens having a negative meniscus lens having at least one aspherical surface on the object-side convex surface, and a bi-convex lens and a concave surface facing the object side. A lens bonded to the lens, the object-side convex surface has at least one aspherical shape, and the fifth lens group has at least one image-side aspherical shape on the image-side convex surface, This is achieved by a rear focus zoom lens satisfying the following conditional expressions.
(Condition 1) νw−νx> 20
(Condition 2) νy−νz> 20
(Condition 3) 0.7 <| f5 / f4 | <1.7
(Condition 4) 0.7 <| f2 / fw | <1.1
(Condition 5)
Where νw is the Abbe number of the biconvex lens of the third lens group,
νx is the Abbe number of a negative meniscus lens having a concave surface facing the object side of the third lens group,
νy is the Abbe number of the biconvex lens of the fourth lens group,
νz is the Abbe number of a negative meniscus lens having a concave surface facing the object side of the fourth lens group,
fw is the combined focal length of the entire lens system at the wide-angle end,
f2 is the composite focal length of the second lens group,
f4 is the composite focal length of the fourth lens group,
f5 is the composite focal length of the fifth lens group.
[0006]
Preferably, in the rear focus type zoom lens according to the present invention, on the premise of the above, the third lens group C and the fourth lens group D each include a biconvex lens and a negative meniscus lens having a strong concave surface facing the object side. The Abbe number of the biconvex lens of the third lens group C is νw, the Abbe number of the negative meniscus lens having a strong concave surface facing the object side of the third lens group C is νx, and the fourth lens When the Abbe number of the biconvex lens of the group D is νy, and the Abbe number of the negative meniscus lens of the fourth lens group D having a strong concave surface on the object side is νz, the conditions defined in the conditions 1 and 2 are as follows. To be satisfied.
[0007]
(Condition 1) νw−νx> 20
[0008]
(Condition 2) νy−νz> 20
[0009]
More preferably, the rear-focusing zoom lens of the present invention is based on the premise that the combined focal length of the entire lens system at the wide-angle end is fw, the combined focal length of the second lens group B is f2, and the fourth lens group D is When the combined focal length of the fifth lens group E is f4 and the combined focal length of the fifth lens unit E is f5, the conditions specified in the conditions 3 and 4 are satisfied.
[0010]
(Condition 3) 0.7 <| f5 / f4 | <1.7
[0011]
(Condition 4) 0.7 <| f2 / fwl <1.1
[0012]
[Action]
As shown in the optical axis sectional view of FIG. 1, the present invention includes, in order from the object side, a first lens group A having a positive refractive power as a whole, and a second lens group B having a negative refractive power as a whole. A third lens group C having an overall positive refractive power, a fourth lens group D having an overall positive refractive power, and a fifth lens group E having an overall negative refractive power. The lens unit A, the third lens unit C, and the fifth lens unit E are fixed. Accordingly, the overall length of the entire lens system does not change due to the zooming operation and the focusing operation, and the movable lens is limited to the second lens group B and the fourth lens group D, so that the driving mechanism is simplified. Can be realized.
[0013]
Upon zooming, the second lens group B is moved from the object side to the image plane side along the optical axis in a space formed between the first lens group A and the third lens group C, which are fixed lenses. The zooming is performed from the wide-angle side to the telephoto side, and is formed between the third lens group C and the fifth lens group E, which are fixed lenses, in order to correct the image plane fluctuation accompanying the zooming. In the space, the fourth lens unit D is moved so as to have a locus convex toward the object side. In the focusing operation, the fourth lens group D is moved toward the object side in the space formed between the third lens group C and the fifth lens group E, which are fixed lenses, so as to move to the short distance side. Perform focus adjustment. As described above, the fixed space formed between the first lens group A and the third lens group C, which are fixed lenses, and the fixed space formed between the third lens group C and the fifth lens group E The second lens group B and the fourth lens group D, which are movable lenses, are moved, so that the movable lens groups are limited and the fixed space is effectively used, so that the drive mechanism is simplified and the entire lens system is simplified. Miniaturization is achieved.
[0014]
At least one aspherical surface disposed on the object-side convex surface of the third lens unit C and the fourth lens unit D and at least one aspherical surface disposed on the image-side convex surface of the fifth lens unit E Is to reduce aberration fluctuations at the time of zooming and focusing operation, and to satisfactorily correct various aberrations.
[0015]
Among these aspheric surfaces, the aspheric surface disposed on the object-side convex surface of the third lens unit C is effective in favorably correcting spherical aberration and coma mainly on the wide-angle side. The aspherical surface arranged on the object-side convex surface of the fourth lens unit D is effective in favorably correcting mainly spherical aberration and astigmatism. Further, the aspherical surface arranged on the convex surface on the image plane side of the fifth lens unit E is effective mainly in favorably correcting astigmatism and coma.
[0016]
Further, in order to favorably correct various aberrations, it is preferable to satisfy the conditions defined in the above conditions 1 to 4. The condition specified in Condition 1 is to appropriately set the Abbe number of the cemented lens of the third lens unit C. If the condition specified in Condition 1 is not satisfied, it becomes difficult to satisfactorily correct the fluctuation of chromatic aberration during zooming and focusing operation.
[0017]
The condition defined in Condition 2 is to appropriately set the Abbe number of the cemented lens in the fourth lens group. If the condition specified in Condition 2 is not satisfied, it becomes difficult to satisfactorily correct the fluctuation of chromatic aberration during zooming and focusing operation.
[0018]
The condition defined in Condition 3 relates to the focal length of the fourth lens unit D and the fifth lens unit E, and suppresses the amount of movement of the fourth lens unit D during zooming and focusing operations to reduce the lens system. This is to maintain good optical performance while reducing the overall size. If the upper limit of Condition 3 is exceeded, the amount of movement of the fourth lens unit D during zooming and focusing operations will increase, and aberration fluctuation will increase, and miniaturization of the entire lens system cannot be expected. If the lower limit of Condition 3 is exceeded, the amount of movement of the fourth lens unit D during zooming and focusing operations will be small, but it will be difficult to correct astigmatism and coma.
[0019]
The condition defined in Condition 4 relates to the focal length of the second lens unit B, and is intended to reduce the variation in aberrations during zooming and to reduce the size of the entire lens system. When the value exceeds the upper limit of the condition 4, the moving amount of the second lens unit B becomes large in order to secure a constant zoom ratio, and it is impossible to reduce the size of the entire lens system. When the value exceeds the lower limit of the condition 4, the negative Betzval sum increases, and the field curvature increases. In addition, it becomes difficult to correct coma.
[0020]
【Example】
Next, specific numerical examples are shown in Tables 1 and 2, the optical axis cross sections of the respective examples are shown in FIGS. 1 to 3 and FIGS. 7 to 9, and the aberrations of the respective examples are shown. Diagrams are shown in FIGS. 4 to 6 and FIGS. 10 to 12. 1 and 7 show the optical axis cross sections at the wide-angle end of each embodiment, FIGS. 2 and 8 show the optical axis cross sections at the intermediate focal length of each embodiment, and FIGS. 3 and 9 show the respective optical axis cross sections. 4 and 10 are aberration diagrams at the wide-angle end of each embodiment, and FIGS. 5 and 11 are graphs showing the optical axis cross sections at the telephoto end of the embodiments. FIGS. 6 and 12 show aberration diagrams at the telephoto end of each embodiment. In each optical axis sectional view, A to E respectively denote a first lens group to a fifth lens group, and F denotes a glass material such as a cover glass or an infrared cut filter in a CCD.
[0021]
[Table 1]
Figure 0003593400
[0022]
[Table 2]
Figure 0003593400
[0023]
In each embodiment, ri is the radius of curvature of the i-th surface from the object side, di is the i-th lens thickness or air gap from the object, and ni is the refractive index of the i-th lens from the object with respect to the d-line. , Νi denote Abbe numbers of the i-th lens from the object with respect to the d-line, respectively. In the embodiment shown in Table 1, the r12, r14, r17, and r21 surfaces are formed as aspherical surfaces, and in the embodiment shown in Table 2, the r12, r15, r17, and r19 surfaces are formed as aspherical surfaces. The aspherical shape is defined by Equation 1.
[0024]
(Equation 1)
Figure 0003593400
[0025]
In Equation 1, Z is the distance from the optical axis to a point on the aspheric surface having a height of y from the tangent plane of the aspherical vertex, y is the height from the optical axis, and C is the curvature of the aspherical vertex. (= 1 / r), ε represents a conical constant, D, E, F, and G represent aspheric coefficients. Specific numerical values of ε, D, E, F, and G are shown in Tables 1 and 2, respectively. It is shown. In addition, astigmatism in each aberration diagram shows the sagittal direction DS and the meridional direction separately in order to avoid complication of the drawings.
[0026]
【The invention's effect】
As can be seen from the above-described embodiments and aberration diagrams, the present invention employs a rear-focusing type, and has a wide zoom ratio of about 10 times and a high zoom ratio having an aperture within F3 even at the telephoto end. Despite being a large-aperture zoom lens, a rear-focusing zoom lens with high optical performance has been successfully corrected for various aberrations over the entire object distance from the wide-angle end to the telephoto end while miniaturizing the entire lens system. I was able to do it.
[Brief description of the drawings]
FIG. 1 is a sectional view of an optical axis at a wide-angle end of a zoom lens according to a first embodiment of the present invention.
FIG. 2 is an optical axis cross-sectional view at an intermediate focal length of the zoom lens according to Example 1 of the present invention.
FIG. 3 is an optical axis sectional view at a telephoto end of a zoom lens according to a first example of the present invention.
FIG. 4 is an aberration diagram at a wide-angle end of the zoom lens according to Example 1 of the present invention.
FIG. 5 is an aberration diagram at an intermediate focal length of the zoom lens according to Example 1 of the present invention.
FIG. 6 is an aberration diagram at a telephoto end of a zoom lens according to a first example of the present invention.
FIG. 7 is an optical axis cross-sectional view at a wide angle end of a zoom lens according to Example 2 of the present invention.
FIG. 8 is an optical axis cross-sectional view at an intermediate focal length of a zoom lens according to Example 2 of the present invention.
FIG. 9 is an optical axis sectional view at a telephoto end of a zoom lens according to Example 2 of the present invention.
FIG. 10 is an aberration diagram at a wide-angle end of a zoom lens according to Example 2 of the present invention.
FIG. 11 is an aberration diagram at an intermediate focal length of the zoom lens according to Example 2 of the present invention.
FIG. 12 is an aberration diagram at a telephoto end of a zoom lens according to Example 2 of the present invention.
[Explanation of symbols]
A first lens group B second lens group C third lens group D fourth lens group E fifth lens group

Claims (1)

物体側より順に、全体として正の屈折力を持つ第1レンズ群と、全体として負の屈折力を有する第2レンズ群と、全体として正の屈折力を有する第3レンズ群と、全体として正の屈折力を有する第4レンズ群と、全体として負の屈折力を有する第5レンズ群よりなり、上記第1レンズ群、第3レンズ群、第5レンズ群を固定させ、上記第2レンズ群を光軸に沿って物体側から像面側へ移動させることにより広角側から望遠側への変倍を行い、変倍に伴う像面変動を上記第4レンズ群の光軸方向への移動により補正すると共に、第4レンズ群を物体の移動によって変動する像面を一定位置に保つように光軸に沿って移動させて焦点調節を行う光学系において、
上記第3レンズ群は、両凸レンズと物体側に凹面を向けた負のメニスカスレンズとの貼り合わせレンズを有し、物体側の凸面に少なくとも一面の非球面形状を有し、
上記第4レンズ群は、両凸レンズと物体側に凹面を向けた負のメニスカスレンズとの貼り合わせレンズを有し、物体側の凸面に少なくとも一面の非球面形状を有し、
上記第5レンズ群は、像面側の凸面に少なくとも一面の非球面形状を有していて、以下の条件式を満足するリアフォーカス式ズームレンズ。
(条件1)νw−νx>20
(条件2)νy−νz>20
(条件3)0.7<|f5/f4|<1.7
(条件4)0.7<|f2/fw|<1.1
(条件5)
但し、νwは第3レンズ群の両凸レンズのアッベ数、
νxは第3レンズ群の物体側に凹面を向けた負のメニスカスレンズのアッベ数、
νyは第4レンズ群の両凸レンズのアッベ数、
νzは第4レンズ群の物体側に凹面を向けた負のメニスカスレンズのアッベ数、
fwは広角端におけるレンズ系全系の合成焦点距離、
f2は第2レンズ群の合成焦点距離、
f4は第4レンズ群の合成焦点距離、
f5は第5レンズ群の合成焦点距離。
In order from the object side, a first lens group having an overall positive refractive power, a second lens group having an overall negative refractive power, a third lens group having an overall positive refractive power, and an overall positive A fourth lens group having a negative refractive power, and a fifth lens group having a negative refractive power as a whole. The first lens group, the third lens group, and the fifth lens group are fixed, and the second lens group is formed. Is moved from the object side to the image plane side along the optical axis to change the magnification from the wide-angle side to the telephoto side, and the image plane fluctuation accompanying the magnification is changed by moving the fourth lens group in the optical axis direction. In the optical system for performing the focus adjustment by correcting and moving the fourth lens group along the optical axis so as to keep the image plane fluctuated by the movement of the object at a constant position,
The third lens group has a cemented lens of a biconvex lens and a negative meniscus lens having a concave surface facing the object side, and has at least one aspherical surface on the object side convex surface;
The fourth lens group has a cemented lens of a biconvex lens and a negative meniscus lens having a concave surface facing the object side, and has at least one aspherical surface on the object side convex surface;
The fifth lens group is a rear-focusing zoom lens that has at least one aspherical surface on the convex surface on the image surface side and satisfies the following conditional expression.
(Condition 1) νw−νx> 20
(Condition 2) νy−νz> 20
(Condition 3) 0.7 <| f5 / f4 | <1.7
(Condition 4) 0.7 <| f2 / fw | <1.1
(Condition 5)
Where νw is the Abbe number of the biconvex lens of the third lens group,
νx is the Abbe number of a negative meniscus lens having a concave surface facing the object side of the third lens group,
νy is the Abbe number of the biconvex lens of the fourth lens group,
νz is the Abbe number of a negative meniscus lens having a concave surface facing the object side of the fourth lens group,
fw is the combined focal length of the entire lens system at the wide-angle end,
f2 is the composite focal length of the second lens group,
f4 is the composite focal length of the fourth lens group,
f5 is the composite focal length of the fifth lens group.
JP32337395A 1995-12-12 1995-12-12 Rear focus zoom lens Expired - Fee Related JP3593400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32337395A JP3593400B2 (en) 1995-12-12 1995-12-12 Rear focus zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32337395A JP3593400B2 (en) 1995-12-12 1995-12-12 Rear focus zoom lens

Publications (2)

Publication Number Publication Date
JPH09159917A JPH09159917A (en) 1997-06-20
JP3593400B2 true JP3593400B2 (en) 2004-11-24

Family

ID=18154041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32337395A Expired - Fee Related JP3593400B2 (en) 1995-12-12 1995-12-12 Rear focus zoom lens

Country Status (1)

Country Link
JP (1) JP3593400B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269452A (en) * 1996-03-29 1997-10-14 Canon Inc Rear focus system zoom lens
JP4579568B2 (en) 2004-04-01 2010-11-10 キヤノン株式会社 Zoom lens and shooting system
JP2008102398A (en) * 2006-10-20 2008-05-01 Olympus Imaging Corp Variable power optical system and imaging apparatus using the same
JP4822074B2 (en) * 2007-10-01 2011-11-24 株式会社ニコン Zoom lens and optical apparatus provided with the zoom lens
JP6090650B2 (en) * 2012-11-19 2017-03-08 株式会社リコー Imaging lens, imaging device, and information device
CN104965297B (en) * 2015-06-25 2017-05-24 福建省光学技术研究所 Rear group adjusting video shooting high-definition zoom lens and rear group adjusting method for lens
JP7217935B2 (en) * 2018-12-25 2023-02-06 株式会社シグマ Variable magnification imaging optical system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2750775B2 (en) * 1990-05-07 1998-05-13 コニカ株式会社 Compact zoom lens
JP2543780B2 (en) * 1990-07-23 1996-10-16 コニカ株式会社 Zoom lenses
JPH0460509A (en) * 1990-06-29 1992-02-26 Konica Corp Zoom lens
JPH0688940A (en) * 1991-01-18 1994-03-29 Konica Corp Compact zoom lens
JP2832092B2 (en) * 1991-03-29 1998-12-02 キヤノン株式会社 Rear focus zoom lens
JP3015192B2 (en) * 1992-03-26 2000-03-06 キヤノン株式会社 Rear focus zoom lens
JPH0627376A (en) * 1992-07-08 1994-02-04 Canon Inc Zoom lens of rear focusing type
JPH05188295A (en) * 1992-01-14 1993-07-30 Canon Inc Rear focus type zoom lens
JP3196283B2 (en) * 1992-02-13 2001-08-06 ミノルタ株式会社 Zoom lens device
JPH06175024A (en) * 1992-12-02 1994-06-24 Canon Inc Rear-focusing type zoom lens
JPH06331891A (en) * 1993-05-20 1994-12-02 Canon Inc Image pickup device using solid-state image pickup element
JPH08129202A (en) * 1994-10-31 1996-05-21 Canon Inc Variable power finder optical system
JP3513265B2 (en) * 1995-05-30 2004-03-31 キヤノン株式会社 Small zoom lens
JPH0968653A (en) * 1995-08-30 1997-03-11 Olympus Optical Co Ltd Zoom lens

Also Published As

Publication number Publication date
JPH09159917A (en) 1997-06-20

Similar Documents

Publication Publication Date Title
JP3587272B2 (en) Zoom lens
JP2984469B2 (en) Rear focus zoom lens
JP3478637B2 (en) Small zoom lens
JPH05173071A (en) Wide angle zoom lens
JP2876823B2 (en) Rear focus zoom lens
JP3119403B2 (en) Small variable power lens
JPH08201695A (en) Rear focus type zoom lens
JPH11271614A (en) Variable focus distance lens system
JP2862272B2 (en) Wide-angle zoom lens
JP3593400B2 (en) Rear focus zoom lens
JPH116958A (en) Zoom lens
JPH05313066A (en) Zoom lens
JP3219574B2 (en) Zoom lens
JP4360088B2 (en) Zoom lens
JPH0560971A (en) Rear focus zoom lens
JP4072276B2 (en) Zoom lens
JPH0727979A (en) Zoom lens
JP2819727B2 (en) Inner focus zoom lens
JPH08179214A (en) Zoom lens
JP2984501B2 (en) Zoom lens
JP4379957B2 (en) Rear focus zoom lens and optical apparatus using the same
JPH04301612A (en) Rear focus type zoom lens
JPH07253539A (en) Zoom lens
JPH0792390A (en) Zoom lens
JPH0735979A (en) Zoom lens

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees