JPH0460509A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH0460509A
JPH0460509A JP16976490A JP16976490A JPH0460509A JP H0460509 A JPH0460509 A JP H0460509A JP 16976490 A JP16976490 A JP 16976490A JP 16976490 A JP16976490 A JP 16976490A JP H0460509 A JPH0460509 A JP H0460509A
Authority
JP
Japan
Prior art keywords
lens
lens component
negative
positive
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16976490A
Other languages
Japanese (ja)
Inventor
Noriyuki Adachi
宣幸 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP16976490A priority Critical patent/JPH0460509A/en
Publication of JPH0460509A publication Critical patent/JPH0460509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To improve the optical performance of the zoom lens consisting of a five lens elements while shortening its overall length by composing the 1st lens element of one single lens with negative refracting power and one single lens with positive refracting power. CONSTITUTION:The 1st lens element consists of the negative meniscus lens which has its convex surface on the object side and biconvex single lens and the 2nd lens element consists of a negative meniscus lens which has its convex surface on the object side and a negative doublet composed of a biconcave lens and a positive lens. Further, the 3rd lens element is one biconvex lens which is fixed depending upon power variation, the 4th lens element is a doublet of at least a negative meniscus lens and a positive lens, and the 5th lens element is composed of at least a single lens having relatively weak refracting power. Consequently, aberration variation is reduced and the diameter of the lens is decreased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ズームレンズ、特にビデオカメラや電子スチ
ルカメラ等に好適なズームレンズに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a zoom lens, and particularly to a zoom lens suitable for video cameras, electronic still cameras, and the like.

(従来技術) 最近のビデオカメラはコンパクト、軽量化と合わせて高
画質化が要求され、それに応えて撮像素子も小型、高解
像度のものが注目されている。また、それに伴い、変倍
比6程度の、高性能でレンズ枚数が少なく、全長、前玉
共にコンパクトなズームレンズの実現が求められている
(Prior Art) Recent video cameras are required to be compact and lightweight, as well as to have high image quality.In response, compact and high-resolution image sensors are also attracting attention. In addition, along with this, there is a demand for a high-performance zoom lens with a variable power ratio of about 6, a small number of lenses, and a compact overall length and front lens.

従来、ズームレンズとして、特開昭62−24213号
公報や特開昭63−123009号公報に見られる様に
、物体側から順に正、負、正、正の各屈折力を有する4
レンズ成分から構成され、変倍中第1レンズ成分と、第
3レンズ成分とを固定し、第2レンズ成分を一方向に移
動させて変倍を行い、第4レンズ成分を前後に移動させ
て変倍に伴う焦点位置の変動の補正を行うものが知られ
ている。この方式のズームレンズは、変倍に伴う像面位
置補正のための第4レンズ成分の移動量が比較的大きく
、コンパクト性を追求しようとして全系を縮小してゆく
と、変倍に伴う収差の変動を十分に補正できなくなると
いう欠点があった。
Conventionally, as a zoom lens, as seen in Japanese Unexamined Patent Publications No. 62-24213 and No. 63-123009, four lenses have refractive powers of positive, negative, positive, and positive in order from the object side.
Consisting of lens components, the first lens component and the third lens component are fixed during zooming, the second lens component is moved in one direction to perform zooming, and the fourth lens component is moved back and forth. There are known devices that correct for fluctuations in focal position due to zooming. In this type of zoom lens, the amount of movement of the fourth lens component for correcting the image plane position during zooming is relatively large, and if the entire system is downsized in pursuit of compactness, aberrations due to zooming may occur. This method has the disadvantage that it is not possible to sufficiently compensate for fluctuations in .

その他に、特開平2−39011号公報に見られる様な
、レンズ構成枚数の削減を図った非球面ズームレンズが
知られているが、現状では非球面レンズを硝子で作製し
た場合には、レンズ枚数を削減できてもコスト高になる
という欠点を有している。また、移動群に非球面レンズ
を用いることは、偏心による性能劣化を考慮すると必ず
しも好ましいとは言えない。
In addition, an aspherical zoom lens with a reduced number of lenses is known, as seen in Japanese Patent Application Laid-Open No. 2-39011, but currently, when an aspherical lens is made of glass, the lens Even if the number of sheets can be reduced, the cost is high. Further, using an aspherical lens in the moving group is not necessarily preferable in consideration of performance deterioration due to eccentricity.

またズームレンズを小型化すると、焦点距離を短くする
必要があり、必然的にバックフォーカスも短くなる。ビ
デオカメラや電子スチルカメラ等においては、レンズ後
端から撮像面迄の間にはローパスフィルターや赤外カッ
トフィルターを挿入する間隔が必要で、バックフォーカ
スが短いのは不都合となる。
Furthermore, if a zoom lens is made smaller, it is necessary to shorten the focal length, which inevitably shortens the back focus. In video cameras, electronic still cameras, and the like, a short back focal length is inconvenient because it is necessary to insert a low-pass filter or an infrared cut filter between the rear end of the lens and the imaging surface.

(この発明が解決しようとする問題点)本発明は、構成
枚数が少なく、全長、前玉共にコンパクトでありながら
十分なバックフォーカスを持ち、変倍比6程度の、ビデ
オカメラ、電子スチルカメラに好適なズームレンズを提
供することにある。
(Problems to be Solved by the Invention) The present invention is suitable for video cameras and electronic still cameras that have a small number of constituent elements, are compact in overall length and front element, have sufficient back focus, and have a variable magnification ratio of about 6. An object of the present invention is to provide a suitable zoom lens.

(問題を解決するための手段) 上記目的を達成するために、本発明のズームレンズは、
物体側から順に、1枚の負の屈折力の単レンズと1枚の
正の屈折力の単レンズとで構成され、正の屈折力を持ち
変倍時には固定の第1レンズ成分、負の屈折力を持ち光
軸上を移動することにより変倍を行う第2レンズ成分、
正の屈折力を持ち変倍時には固定の第3レンズ成分、正
の屈折力を持ち上記第2レンズ成分の移動により変倍に
伴う焦点位置の移動を補正する第4レンズ成分、変倍時
には固定の正又は負の第5レンズ成分から構成されるこ
とを特徴とする。
(Means for solving the problem) In order to achieve the above object, the zoom lens of the present invention has the following features:
In order from the object side, it is composed of one single lens with negative refractive power and one single lens with positive refractive power.The first lens component has positive refractive power and is fixed during zooming, and the negative refractive a second lens component that has power and changes magnification by moving on the optical axis;
A third lens component that has positive refractive power and is fixed when changing the magnification; a fourth lens component that has positive refractive power and corrects the movement of the focal position due to changing the magnification by moving the second lens component; and a fourth lens component that is fixed when changing the magnification. It is characterized by being composed of a positive or negative fifth lens component.

第2レンズ成分は広角端から望遠端にかけて物体側から
像側に光軸上を移動する。また、第4レンズ成分に入射
する光束はほぼアフォーカルになっていることが望まし
い。
The second lens component moves on the optical axis from the object side to the image side from the wide-angle end to the telephoto end. Furthermore, it is desirable that the light beam incident on the fourth lens component be substantially afocal.

本発明におけるフォーカシングは、第1レンズ成分で行
っても良く、より好ましくは第4レンズ成分で行うこと
である。
Focusing in the present invention may be performed by the first lens component, and more preferably by the fourth lens component.

本発明は具体的には、第1レンズ成分は、物体側に凸面
を向けた負のメニスカスレンズと両凸単レンズとからな
り、第2レンズ成分は凸面を物体側に向けた負のメニス
カスレンズと1両凹レンズと正レンズとからなる負のダ
ブレットから構成され、第3レンズ成分は変倍によって
は固定である一枚の両凸レンズ、第4レンズ成分は少な
くとも負のメニスカスレンズと正レンズとのダブレット
であり、第5レンズ成分は少なくとも比較的弱い屈折力
の単レンズで構成する。また、第5レンズ成分は他のレ
ンズ成分とは異なり像面近傍に置かれているため、温湿
度等の環境変化による焦点位置変動が少ないので、プラ
スチックレンズで構成することも出来る。また、光学性
能を維持するため変倍時には固定の第3レンズ成分と、
最終レンズ成分にそれぞれが少なくとも一枚以上の非球
面があると好ましい。
Specifically, in the present invention, the first lens component is composed of a negative meniscus lens with a convex surface facing the object side and a biconvex single lens, and the second lens component is a negative meniscus lens with the convex surface facing the object side. and a negative doublet consisting of a biconcave lens and a positive lens, the third lens component is a biconvex lens that is fixed depending on the magnification, and the fourth lens component is composed of at least a negative meniscus lens and a positive lens. It is a doublet, and the fifth lens component is composed of at least a single lens having relatively weak refractive power. Further, unlike the other lens components, the fifth lens component is placed near the image plane, so there is little variation in the focal position due to environmental changes such as temperature and humidity, so it can also be configured with a plastic lens. In addition, in order to maintain optical performance, a fixed third lens component is used when changing the magnification.
Preferably, each final lens component has at least one aspherical surface.

(作用) 本発明のズームレンズでは、第1レンズ成分は物体側よ
り負のメニスカスレンズと両凸レンズの2枚で構成され
ており、レンズ間の空気間隔は主として中間焦点距離か
ら望遠端にわたる球面収差及びコマ収差の変動を抑える
効果がある。これによって、第1レンズ成分の軽量化、
低コスト化が望める。また非球面レンズを用いた場合に
は、レンズ枚数の削減、強いては全長の短縮化を図りつ
つ光学性能を向上させることが出来る。
(Function) In the zoom lens of the present invention, the first lens component is composed of two lenses, a negative meniscus lens and a biconvex lens from the object side, and the air gap between the lenses is mainly due to spherical aberration from the intermediate focal length to the telephoto end. It also has the effect of suppressing fluctuations in coma aberration. This reduces the weight of the first lens component,
Lower costs can be expected. Furthermore, when an aspherical lens is used, it is possible to improve optical performance while reducing the number of lenses and even shortening the overall length.

第2レンズ成分は、物体側から順に凸面を向けた負メニ
スカスレンズ、及び両凹レンズと正レンズからなる負の
ダブレットとから構成されているが、これによって主点
位置を物体側に寄せ、厚肉化による全系の大型化を抑え
つつ、変倍に伴う収差変動、特に歪曲収差や非点収差の
変動を少なくできる。また、屈折力を適当に選ぶことに
より、変倍の為の移動量を小さくし前玉径を小さくでき
る。
The second lens component is composed of a negative meniscus lens with its convex surface facing in order from the object side, and a negative doublet consisting of a biconcave lens and a positive lens. While suppressing the increase in size of the entire system due to zooming, it is possible to reduce fluctuations in aberrations, especially fluctuations in distortion and astigmatism, caused by zooming. Furthermore, by appropriately selecting the refracting power, the amount of movement for changing the magnification can be reduced and the diameter of the front lens can be reduced.

第3レンズ成分は、変倍によって固定の正の単レンズで
あり、正の屈折力を持たせることにより。
The third lens component is a fixed positive single lens that changes magnification and has positive refractive power.

第4レンズ成分の収差補正上の負担を軽減することが可
能となる。また、このレンズ系に少なくとも一面以上に
非球面を用いることが球面収差の補正上有利である。
It becomes possible to reduce the burden of aberration correction on the fourth lens component. Furthermore, it is advantageous to use an aspheric surface on at least one surface of this lens system in terms of correcting spherical aberration.

第4レンズ成分は、少なくとも負のメニスカスレンズと
正レンズからなるが、負レンズの像側の凹面は第2レン
ズ成分で発生する負の歪曲収差を補正する働き□がある
。また、第4レンズ成分でフォーカシングを行う場合に
は、偏心による光学性能の劣化への影響に考慮に入れる
と、少なくとも一組の正レンズと負レンズの貼り合わせ
レンズから成ることが好ましい。
The fourth lens component consists of at least a negative meniscus lens and a positive lens, and the concave surface on the image side of the negative lens has the function of correcting negative distortion generated in the second lens component. Further, when focusing is performed using the fourth lens component, it is preferable that the fourth lens component is composed of a bonded lens consisting of at least one set of a positive lens and a negative lens, taking into account the influence of decentering on optical performance deterioration.

第4レンズ成分に入射する光束を、第3レンズ成分によ
りほぼアフォーカルにすることにより、変倍に伴う該成
分の移動による収差変化を少なくできる。また、第4レ
ンズ成分を物体側に繰り出すことによってフォーカシン
グを行う場合には、該成分の移動による収差変化を少な
くできる。
By making the light beam incident on the fourth lens component almost afocal by the third lens component, changes in aberration due to movement of this component due to zooming can be reduced. Further, when focusing is performed by extending the fourth lens component toward the object side, changes in aberration due to movement of the fourth lens component can be reduced.

正の屈折力を有する第1、第4レンズ成分にそれぞれ一
枚の負レンズ、負の屈折力を有する第2レンズ成分に一
枚の正レンズが含まれているのは、全変倍域にわたり細
土色収差、倍率色収差を十分に補正するためである。正
の屈折力を有する第三レンズ成分に必ずしも負レンズを
含ませる必要がないのは、第4レンズ成分での色収差を
オーバーにすることで相殺することが出来るからであり
The first and fourth lens components with positive refractive power each include one negative lens, and the second lens component with negative refractive power includes one positive lens over the entire zoom range. This is to sufficiently correct chromatic aberration and chromatic aberration of magnification. The reason why it is not necessary to include a negative lens in the third lens component having positive refractive power is that the chromatic aberration in the fourth lens component can be canceled out by overextending it.

全系での色収差を実用上問題にならない程度までに補正
することが出来る。
Chromatic aberration in the entire system can be corrected to the extent that it does not pose a practical problem.

本発明の基本的な構成中、最も像側に変倍時に固定の第
5レンズ成分を置くのは、変倍比6程度の高変倍ズーム
レンズをコンパクトに構成する上で極めて効果的である
。本発明のズームレンズにおいては、絞りは第3レンズ
成分の前に置かれるが、全系をコンパクトに構成しよう
として絞りより後方を短くしてゆくと、射呂曜位置が結
像面に対して極端に近くなりがちである。結像面にCC
Dの様な固体撮像素子を置く場合、射出瞳位置が撮像面
に余り近いと、撮像面上の色フィルターやオンチップレ
ンズの影響で、周辺光束に対し色ずれが起ったり、みか
け開口率の変化による周辺光量の減少が起りやすい。し
かし、第5レンズ成分の屈折力を正とし、結像面の比較
的近傍に置くと射出瞳をより遠方に位置させることが可
能となり、上記の様な不具合を改善できる。
In the basic configuration of the present invention, placing the fifth lens component that is fixed at the time of zooming closest to the image side is extremely effective in constructing a compact high-power zoom lens with a zoom ratio of about 6. . In the zoom lens of the present invention, the diaphragm is placed in front of the third lens component, but if you try to make the entire system compact and shorten the area behind the diaphragm, the position of the diaphragm will change relative to the imaging plane. They tend to be extremely close. CC on the imaging plane
When installing a solid-state image sensor like D, if the exit pupil position is too close to the imaging surface, the color filter and on-chip lens on the imaging surface may cause color shift with respect to the peripheral light flux, or the apparent aperture ratio may change. The amount of peripheral light tends to decrease due to changes in the amount of light. However, if the refractive power of the fifth lens component is positive and it is placed relatively close to the imaging plane, the exit pupil can be positioned further away, and the above-mentioned problems can be improved.

また、第5レンズ成分の屈折力を負とした場合には、第
4レンズ成分と第5レンズ成分との合成系の望遠比を小
さく出来るので、第5レンズ成分を置かない場合に比べ
てレンズ系の全長を短くできる。さらに、ズーム系をコ
ンパクトにしようとすると、第2レンズ成分で発生する
負の歪曲収差が広角端で補正が困難となりがちであるが
、負の屈折力の第5レンズ成分を置くことでこのような
効果を一部打ち消すことが出来るため、従来に比べてズ
ーム系の全長や前玉径の小型化が図れる。
In addition, when the refractive power of the fifth lens component is negative, the telephoto ratio of the composite system of the fourth lens component and the fifth lens component can be made smaller, so the lens The total length of the system can be shortened. Furthermore, when trying to make a zoom system compact, negative distortion generated in the second lens component tends to be difficult to correct at the wide-angle end. Because this effect can be partially canceled out, the overall length of the zoom system and the diameter of the front lens can be made smaller than in the past.

本発明のズームレンズにおいて、変倍、フォーカシング
に伴う収差変動を少なくし、レンズ径の小型化を図るに
は、 ’1’4+第1レンズ成分中の正レンズの硝材のアツベ
数 シー :第2レンズ成分中の負レンズの硝材のアツベ数 f4 :第4レンズ成分の焦点距離 fo :レンズ全系の広角端の焦点距離fX :レンズ
全系の望遠端の焦点距離Fユニ広角端のFナンバー Z :変倍率 fl−3”望遠端での第2レンズ成分から第3レンズ成
分の合成焦点距離 n2−:第2レンズ成分中の負レンズの屈折率の平均値 シア第2レンズ成ズ成分中の負レンズのアツベ数の平均
値 ν2゜:第2レンズ成分中の正レンズのアツベ数n3+
第3レンズ成分中の正レンズの屈折率△、:物体側から
1番目の非球面の有効半径位置での変形量 とするとき、 f+/f1−.1<0.5         (1)0
.4<f、/f、<1.0          (2)
0.25<If21Fw/(FwZ)<0.5    
 (3)n、>1.6              (
4)v2−−v2゜):2o           (
5)1.7<n11−<3.0          (
6)v+〉45.  シー<35         (
7)0.001<F、VΣ△j/ fw<0.05  
   (8)を、満足するのが好ましい。但しΣ△1は
変型量の和である。
In the zoom lens of the present invention, in order to reduce aberration fluctuations due to zooming and focusing and to reduce the lens diameter, '1' 4 + Atsube's number of the glass material of the positive lens in the first lens component: 2 Abbe number f4 of the glass material of the negative lens in the lens component: Focal length fo of the fourth lens component: Focal length fX at the wide-angle end of the entire lens system: Focal length F at the telephoto end of the entire lens system F-number Z at the wide-angle end : Magnification ratio fl-3" Combined focal length from the second lens component to the third lens component at the telephoto end n2-: Average value of the refractive index of the negative lens in the second lens component Shea of the second lens component Average value of the Atsube number of the negative lens ν2°: Atsube number n3+ of the positive lens in the second lens component
Refractive index Δ of the positive lens in the third lens component: When the amount of deformation at the effective radius position of the first aspherical surface from the object side, f+/f1-. 1<0.5 (1)0
.. 4<f, /f,<1.0 (2)
0.25<If21Fw/(FwZ)<0.5
(3) n, >1.6 (
4) v2--v2゜):2o (
5) 1.7<n11-<3.0 (
6) v+〉45. C<35 (
7) 0.001<F, VΣ△j/fw<0.05
It is preferable to satisfy (8). However, ΣΔ1 is the sum of the amount of deformation.

条件式(1)は、望遠端の第1レンズ成分から第3レン
ズ成分の合成屈折力に関する。第4レンズ成分でフォー
カシングを行った場合、望遠端では、フォーカシング移
動量が大きくなるため、フォーカシングによる収差変動
が著しい。第1レンズ成分から第3レンズ成分の合成焦
点距離が条件の範囲内にあれば、第4レンズ成分に入射
する光束はほぼアフォーカルとすることができ、フォー
カシングによる球面収差の変動を小さくできる。
Conditional expression (1) relates to the combined refractive power of the first to third lens components at the telephoto end. When focusing is performed using the fourth lens component, the amount of focusing movement becomes large at the telephoto end, so aberration fluctuations due to focusing are significant. If the combined focal length of the first to third lens components is within the specified range, the light beam incident on the fourth lens component can be made almost afocal, and fluctuations in spherical aberration due to focusing can be reduced.

この範囲の上限を越えると球面収差は負の方向番コ大き
く変動するため好ましくない。
If the upper limit of this range is exceeded, the spherical aberration will vary greatly in the negative direction, which is not preferable.

条件式(2)は、第1レンズ成分と第4レンズ成分の焦
点距離に関し、条件式(1)で第4レンズ成分に入射す
る光束をほぼアフォーカルにしているので、全系を極端
に望遠化することなく全系のバックフォーカスを長く取
るためには、第4レンズ成分の焦点距離をやや長めにし
つつ、第1レンズ成分の焦点距離をやや短くするのが望
ましし1゜この条件の上限を越えると、バックフォーカ
ス番ま長くできるが、第一レンズ成分の屈折力カス大と
なり過ぎ、望遠端での収斂性の球面収差とコマ収差が悪
化する。下限を越えると十分なノ(ツクフォーカスを確
保できなくなり、あるいは屈折力カス大きくなるため広
角端での球面収差補正の不足を招くので好ましくない。
Conditional expression (2) concerns the focal lengths of the first and fourth lens components, and since conditional expression (1) makes the light beam incident on the fourth lens component almost afocal, the entire system becomes extremely telephoto. In order to obtain a long back focus for the entire system without causing distortion, it is desirable to make the focal length of the fourth lens component a little longer and the focal length of the first lens component a little shorter. If the upper limit is exceeded, the back focus distance can be lengthened, but the refractive power of the first lens component becomes too large, and convergent spherical aberration and coma aberration at the telephoto end worsen. If the lower limit is exceeded, sufficient focus cannot be ensured, or the refractive power becomes large, resulting in insufficient correction of spherical aberration at the wide-angle end, which is undesirable.

条件式(3)は、第2レンズ成分の屈折力の適正値に関
し、上限を越えて焦点距離の絶対値カス大きくなると収
差補正上は有利となるが、第1レンズ成分から第3レン
ズ成分までの長さが増大し、コンパクトなレンズ系を得
られな(1゜下限を越えると、前述のような簡素な構成
では、変倍に伴う収差変動、特に歪曲収差、コマ収差の
変動が補正不可能となり、広角端での負の歪曲収差が過
大となる。
Conditional expression (3) concerns the appropriate value of the refractive power of the second lens component, and if the absolute value of the focal length increases beyond the upper limit, it will be advantageous in terms of aberration correction, but from the first lens component to the third lens component. (If the lower limit of 1° is exceeded, aberration fluctuations due to zooming, especially distortion and coma aberration fluctuations, cannot be corrected with the simple configuration described above.) This results in excessive negative distortion at the wide-angle end.

条件式(4)は、第2レンズ成分を構成する負レンズの
屈折率に関し、この条件を外れると上述の構成のもとで
は広角端の負の歪曲収差が補正困難となる。
Conditional expression (4) relates to the refractive index of the negative lens constituting the second lens component, and if this condition is violated, it becomes difficult to correct negative distortion at the wide-angle end with the above-described configuration.

条件式(5)は第2レンズ成分を構成する負レンズと正
レンズのアツベ数の差に関し1条件を外れると変倍時の
色収差の変動、特に倍率色収差の変動が大きくなり広角
端では像高の大きい方向に、望遠側では像高の小さい方
向に短波長の結像点がシフトしすぎる傾向となる。
Conditional expression (5) concerns the difference in Abbe number between the negative lens and the positive lens that constitute the second lens component.If one condition is violated, the fluctuation of chromatic aberration during zooming, especially the fluctuation of lateral chromatic aberration, increases, and the image height at the wide-angle end increases. On the telephoto side, the short-wavelength imaging point tends to shift too much in the direction of larger image height.

条件式(6)は、第3レンズ成分を構成する正レンズの
屈折率に関し、条件を外れると全変倍域にわたって球面
収差の補正が困難となる。
Conditional expression (6) relates to the refractive index of the positive lens constituting the third lens component, and if the condition is exceeded, it becomes difficult to correct spherical aberration over the entire magnification range.

条件式(7)は、第1レンズ成分を構成するレンズのア
ツベ数に関し、変倍時には固定の第1レンズ成分を物体
側から順に負、正の二枚のレンズ構成とするため、この
条件式の上限、下限を越えると倍率収差がオーバー側に
発生し補正が困難となり好ましくない。より好ましくは
、正レンズ、負レンズの色収差を互いに打消し合わせる
ため、硝材間のアツベ数の差を %’、  V−>15 とすることが望ましい。
Conditional expression (7) relates to the Atsube number of the lenses constituting the first lens component, and when changing the magnification, the fixed first lens component is configured with two lenses, negative and positive, in order from the object side. If the upper and lower limits of are exceeded, magnification aberration will occur on the over side and correction will be difficult, which is undesirable. More preferably, in order to cancel out the chromatic aberrations of the positive lens and the negative lens, it is desirable that the difference in Abbe number between the glass materials be %', V->15.

固定レンズ成分の非球面のうち、少なくとも一面は、そ
の軸上曲率半径を曲率半径として持つ基準球面に関し、
基準球面が凸の面に対しては、屈折面の中心から周辺に
向かって凸を向けた方向に変型量を有する非球面であり
、基準球面が凹の面に対しては、屈折面の中心から周辺
に向かって凹を向けた方向に変型量を有する非球面であ
って、ズーム系をコンパクトに構成しようとする際、強
い負の屈折力を有する第2レンズ成分において発生する
負の歪曲収差を補正するうえで1条件式(8)を満足す
ることが効果的である。
At least one of the aspherical surfaces of the fixed lens component is related to a reference spherical surface having its on-axis radius of curvature as the radius of curvature,
For a surface with a convex reference spherical surface, it is an aspherical surface that has a deformation amount in the direction of convexity from the center of the refractive surface toward the periphery, and for a surface with a concave reference spherical surface, the center of the refractive surface Negative distortion occurs in the second lens component, which is an aspherical surface that is deformed in a direction concave toward the periphery and has a strong negative refractive power when trying to construct a compact zoom system. It is effective to satisfy the first conditional expression (8) in correcting.

(実施例) 以下1本発明のズームレンズの実施例を示す。(Example) An embodiment of a zoom lens according to the present invention will be shown below.

実施例においては、第5レンズ成分にプラスチックレン
ズが用いられており、これらのレンズには本印が付しで
ある。プラスチックレンズは一般に、温湿度などの環境
変化による屈折率の変化があるが、本発明の実施例では
、プラスチックレンズの屈折力を適当に選ぶことによっ
て、屈折率の変化に伴う焦点位置の変動を抑えている。
In the example, plastic lenses are used as the fifth lens component, and these lenses are marked with this mark. Plastic lenses generally have a change in refractive index due to environmental changes such as temperature and humidity, but in the embodiments of the present invention, by appropriately selecting the refractive power of the plastic lens, fluctuations in the focal position due to changes in refractive index can be suppressed. I'm suppressing it.

プラスチックレンズ材料としては、PC(ポリカーボネ
イト)およびPMMA (ポリメチルメタクリレート)
等がある。これらの材料は温度に対して非線形に屈折力
が変化する。以下に温度による屈折率変化のデータを示
す。
Plastic lens materials include PC (polycarbonate) and PMMA (polymethyl methacrylate).
etc. The refractive power of these materials changes nonlinearly with temperature. Data on changes in refractive index due to temperature are shown below.

PCPMMA 基準屈折率(20℃)  1.583  1.492屈
折率(50℃)  1.5788 1.4884実施例
中の非球面形状は、下記の式で表わされる。
PCPMMA Standard refractive index (20°C) 1.583 1.492 Refractive index (50°C) 1.5788 1.4884 The aspherical shape in the example is expressed by the following formula.

但し、式中の各記号は、下記のとおりである。However, each symbol in the formula is as follows.

C:非球面の近軸曲率 h:光軸からの高さ に:円錐定数 φ:非球面の頂点がら光軸方向に測った非球面の変形量
(球面による変位量も含む)なお、表中の各記号は、R
は各屈折面の曲率半径、Dは屈折面間隔、Nはレンズ材
料の屈折率、ν、は同しくアツベ数、fはレンズ全系の
焦点距離、2ωは画角、FはFナンバーを示す。
C: Paraxial curvature of the aspheric surface h: Height from the optical axis: Conic constant φ: Amount of deformation of the aspheric surface measured from the apex of the aspheric surface in the optical axis direction (including the amount of displacement due to the spherical surface). Each symbol is R
is the radius of curvature of each refractive surface, D is the interval between refractive surfaces, N is the refractive index of the lens material, ν is the Abbe number, f is the focal length of the entire lens system, 2ω is the angle of view, and F is the F number. .

以下に諸値を示す。Various values are shown below.

f+/f□〜。f+/f□~.

f4/f1 f 21 Fw/(FwZ) V、−ν2+ n、fT; FwΣ△4/fユ (実施例1) fニア、10〜40.54 2ω: 48.2’〜8.3a 実施例1 実施例2 −0.29  −0.17 2.84  2,64 0.351!   0.325 28.75  2g、90 2.25  2,27 0.02935 0.01288 F  : 2.00〜3.2O N。f4/f1 f 21 Fw/(FwZ) V, −ν2+ n, fT; FwΣ△4/fyu (Example 1) f near, 10-40.54 2ω: 48.2'~8.3a Example 1 Example 2 -0.29 -0.17 2.84 2,64 0.351!    0.325 28.75 2g, 90 2.25 2,27 0.02935 0.01288 F: 2.00~3.2O N.

5] 39.513 0.70 1.69680 55.5 fA        B 7.10   0.80   15.2016.72 
  8.17    7.8340.54  14.2
0    1.80f□(Na  1−4) =29.
543f、(Nn10−11)=27.766f 、 
(No1518) = 85.559非球面係数 第10面  K =−0,11250x 102A1=
−0,18342x 10−’ A2=−0,24323x 10−’ A3= 0.22978 x 10−”A4=−0,3
0553x 10−” K = 0.73337xlO A1=−0,14132X 10−” A2= 0.31909 X 10−’A3= 0.1
1989 X 10−’A4= 0.3]577X10
−13 f2(No  5−9) =−6,989f 4(Nn
 12−14) = 20.155第15面 8.70 4.34 2.28 P1= P2; P3= P4= P1= P2= P3= P4= 7.12 11.48 13.55 4.0 6.0 8、O IO00 (実施例2) NQ fニア、10〜40.99 2ω : 48.07’  〜8.18゜: 2.00
〜3.2O A 7.10   0.80 17.13   8.17 40.99  14.20 25.50 8.13 2.10 7.17 3.77 4.13 5.78 9.17 8.82 fよ(NQ  I〜4)=  27.241f3(No
lO〜11) =  28,263f s (Nn15
1g) =−84,803非球面係数 第10面 f2(嵩 5〜9)=−6,660 f、(Nα12〜14)= 18.732第15面 K  =−0,23522X 102 A1=−0,83191X 1O−5 A2=−0,51577x]0−’ A3=  0.19775X10−’ A4=−0.30690X10−” K  =−0,7078] X10−”A1=−0,1
2478X 10−’ A2=  0.17616X10−’ A3=  0.10606X10−” P1= P2= P3= P4= P1= P2= P3= 4.0 6.0 B、0 10、O 4,0 6,0 8,0 A4= 0.29472X10−”  P4=  10
.0(発明の効果) 本発明のズームレンズは、その実施例及び収差図でみる
ように、9枚程度の少ないレンズ枚数で、6倍程度の変
倍比を有しながら、コンパクトで、全変倍域にわたって
バランスの取れた収差補正がなされ、特にビデオカメラ
や電子スチルカメラ等に好適なズームレンズを実現した
ものである。
5] 39.513 0.70 1.69680 55.5 fA B 7.10 0.80 15.2016.72
8.17 7.8340.54 14.2
0 1.80f□(Na 1-4) =29.
543f, (Nn10-11)=27.766f,
(No. 1518) = 85.559 Aspheric coefficient 10th surface K = -0,11250x 102A1=
-0,18342x 10-' A2=-0,24323x 10-' A3= 0.22978 x 10-"A4=-0,3
0553x 10-" K = 0.73337xlO A1 = -0,14132X 10-" A2 = 0.31909 X 10-'A3 = 0.1
1989 X 10-'A4= 0.3]577X10
-13 f2(No 5-9) =-6,989f 4(Nn
12-14) = 20.155 15th side 8.70 4.34 2.28 P1= P2; P3= P4= P1= P2= P3= P4= 7.12 11.48 13.55 4.0 6. 0 8, O IO00 (Example 2) NQ f near, 10 ~ 40.99 2ω: 48.07' ~ 8.18°: 2.00
~3.2O A 7.10 0.80 17.13 8.17 40.99 14.20 25.50 8.13 2.10 7.17 3.77 4.13 5.78 9.17 8.82 f (NQ I~4) = 27.241f3 (No
lO~11) = 28,263f s (Nn15
1g) = -84,803 Aspheric coefficient 10th surface f2 (bulk 5 to 9) = -6,660 f, (Nα12 to 14) = 18.732 15th surface K = -0,23522X 102 A1 = -0 , 83191
2478 8,0 A4= 0.29472X10-” P4= 10
.. 0 (Effects of the Invention) As seen in the examples and aberration diagrams, the zoom lens of the present invention is compact, has a variable power ratio of about 6 times, has a small number of lenses of about 9, and is fully variable. This lens achieves well-balanced aberration correction over the magnification range, making it particularly suitable for video cameras, electronic still cameras, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明のズームレンズの第1実施例、
第2実施例の断面図、第3図、第4図はそれぞれ第1実
施例、第2実施例の収差曲線図である。 第 図
1 and 2 show a first embodiment of the zoom lens of the present invention,
The sectional view of the second embodiment, FIGS. 3 and 4 are aberration curve diagrams of the first embodiment and the second embodiment, respectively. Diagram

Claims (2)

【特許請求の範囲】[Claims] (1)物体側から順に、正の屈折力を持ち、変倍時には
固定の第1レンズ成分、負の屈折力を持ち、光軸上を移
動することにより変倍を行う第2レンズ成分、正の屈折
力を持ち、変倍時には固定の第3レンズ成分、正の屈折
力を持ち、上記第2レンズ成分の移動による変倍に伴う
焦点位置の移動を補正する第4レンズ成分、変倍時には
固定の第5レンズ成分から構成されるズームレンズにお
いて、前記第1レンズ成分が1枚の負の屈折力の単レン
ズと1枚の正の屈折力の単レンズとで構成されたことを
特徴とするズームレンズ。
(1) In order from the object side, the first lens component has positive refractive power and is fixed when changing magnification, the second lens component has negative refractive power and changes magnification by moving on the optical axis, and the positive A fourth lens component has a positive refractive power and corrects the movement of the focal point due to the movement of the second lens component, and when the magnification is changed, the fourth lens component has a positive refractive power and is fixed when changing the magnification. A zoom lens composed of a fixed fifth lens component, characterized in that the first lens component is composed of one single lens with negative refractive power and one single lens with positive refractive power. zoom lens.
(2)請求項(1)記載のズームレンズにおいて、第3
レンズ成分、第5レンズ成分に、それぞれ少なくとも1
面以上の非球面を持つことを特徴とするズームレンズ。
(2) In the zoom lens according to claim (1), the third
At least 1 in each of the lens component and the fifth lens component.
A zoom lens characterized by having an aspheric surface that is larger than a surface.
JP16976490A 1990-06-29 1990-06-29 Zoom lens Pending JPH0460509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16976490A JPH0460509A (en) 1990-06-29 1990-06-29 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16976490A JPH0460509A (en) 1990-06-29 1990-06-29 Zoom lens

Publications (1)

Publication Number Publication Date
JPH0460509A true JPH0460509A (en) 1992-02-26

Family

ID=15892424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16976490A Pending JPH0460509A (en) 1990-06-29 1990-06-29 Zoom lens

Country Status (1)

Country Link
JP (1) JPH0460509A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127083A (en) * 1991-11-02 1993-05-25 Copal Co Ltd Inner focusing zoom lens
JPH05273466A (en) * 1992-03-26 1993-10-22 Canon Inc Zoom lens of rear focusing system
JPH09159917A (en) * 1995-12-12 1997-06-20 Copal Co Ltd Rear focus type zoom lens
JPH09269452A (en) * 1996-03-29 1997-10-14 Canon Inc Rear focus system zoom lens
US5966245A (en) * 1995-08-30 1999-10-12 Olympus Optical Co., Ltd. Zoom lens system
JP2006220737A (en) * 2005-02-08 2006-08-24 Sony Corp Zoom lens and imaging apparatus
JP2007164218A (en) * 2007-02-26 2007-06-28 Ricoh Co Ltd Zoom lens and camera device
US7379249B2 (en) 2000-11-20 2008-05-27 Ricoh Company, Ltd. Downsize, high performance, and wide range magnification zoom lens and camera apparatus
JP2008145529A (en) * 2006-12-06 2008-06-26 Sony Corp Zoom lens and imaging apparatus
JP2014089289A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
WO2014196022A1 (en) * 2013-06-04 2014-12-11 Cbc株式会社 Zoom lens
CN105388600A (en) * 2014-08-28 2016-03-09 佳能株式会社 Zoom lens and image pickup apparatus including the same
US9453993B2 (en) 2012-10-30 2016-09-27 Nikon Corporation Variable magnification optical system, optical device, and production method for variable magnification optical system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127083A (en) * 1991-11-02 1993-05-25 Copal Co Ltd Inner focusing zoom lens
JPH05273466A (en) * 1992-03-26 1993-10-22 Canon Inc Zoom lens of rear focusing system
US5966245A (en) * 1995-08-30 1999-10-12 Olympus Optical Co., Ltd. Zoom lens system
JPH09159917A (en) * 1995-12-12 1997-06-20 Copal Co Ltd Rear focus type zoom lens
JPH09269452A (en) * 1996-03-29 1997-10-14 Canon Inc Rear focus system zoom lens
US7379249B2 (en) 2000-11-20 2008-05-27 Ricoh Company, Ltd. Downsize, high performance, and wide range magnification zoom lens and camera apparatus
US7679835B2 (en) 2000-11-20 2010-03-16 Ricoh Company, Ltd. Downsize, high performance, and wide range magnification zoom lens and camera apparatus
JP2006220737A (en) * 2005-02-08 2006-08-24 Sony Corp Zoom lens and imaging apparatus
JP2008145529A (en) * 2006-12-06 2008-06-26 Sony Corp Zoom lens and imaging apparatus
US7505212B2 (en) 2006-12-06 2009-03-17 Sony Corporation Zoom lens and image pick-up apparatus
JP2007164218A (en) * 2007-02-26 2007-06-28 Ricoh Co Ltd Zoom lens and camera device
JP4740171B2 (en) * 2007-02-26 2011-08-03 株式会社リコー Zoom lens and camera device
JP2014089289A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
US9453993B2 (en) 2012-10-30 2016-09-27 Nikon Corporation Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2014196022A1 (en) * 2013-06-04 2014-12-11 Cbc株式会社 Zoom lens
JPWO2014196022A1 (en) * 2013-06-04 2017-02-23 Cbc株式会社 Zoom lens
US9766436B2 (en) 2013-06-04 2017-09-19 Cbc Co., Ltd. Zoom lens having first through fifth lens groups and a specific focal distance ratio among the lens groups
CN105388600A (en) * 2014-08-28 2016-03-09 佳能株式会社 Zoom lens and image pickup apparatus including the same
JP2016048355A (en) * 2014-08-28 2016-04-07 キヤノン株式会社 Zoom lens and imaging apparatus including the same
US10120170B2 (en) 2014-08-28 2018-11-06 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same

Similar Documents

Publication Publication Date Title
US20240151952A1 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP5197242B2 (en) Zoom lens and imaging apparatus having the same
US8908283B2 (en) Optical system, imaging apparatus, and method for forming image by the optical system
JP5263589B2 (en) Zoom lens system, optical apparatus equipped with the zoom lens system, and zooming method using the zoom lens system
CN107621690B (en) Zoom optical system
US7492526B2 (en) High zoom ratio zoom lens, optical apparatus using the same, and method for varying focal length
JP2009139701A (en) Zoom lens and imaging device using the same
CN104508532B (en) Zoom lens, optical instrument, and method for manufacturing zoom lens
JP5774055B2 (en) Zoom lens and imaging apparatus having the same
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
JP4829629B2 (en) Zoom lens and imaging apparatus having the same
JP5403315B2 (en) Zoom lens system and optical apparatus provided with the zoom lens system
US8218242B2 (en) Zoom lens and optical apparatus equipped with this zoom lens
JP2008241904A (en) Zoom lens
JPH0460509A (en) Zoom lens
CN108369329B (en) Zoom lens and optical apparatus
JP2007093984A (en) Zoom lens
US7920341B2 (en) Optical system, imaging apparatus, and method for forming image by the optical system
JP2007310179A (en) Zoom lens
US8040615B2 (en) Zoom lens and optical apparatus equipped therewith
JP4951915B2 (en) Zoom lens
JP2016157076A (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP6880544B2 (en) Zoom lenses and optics
JP2750775B2 (en) Compact zoom lens
JP2910206B2 (en) Compact zoom lens