JP2008102398A - Variable power optical system and imaging apparatus using the same - Google Patents
Variable power optical system and imaging apparatus using the same Download PDFInfo
- Publication number
- JP2008102398A JP2008102398A JP2006286008A JP2006286008A JP2008102398A JP 2008102398 A JP2008102398 A JP 2008102398A JP 2006286008 A JP2006286008 A JP 2006286008A JP 2006286008 A JP2006286008 A JP 2006286008A JP 2008102398 A JP2008102398 A JP 2008102398A
- Authority
- JP
- Japan
- Prior art keywords
- lens group
- lens
- optical system
- refractive power
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Lenses (AREA)
- Studio Devices (AREA)
Abstract
Description
本発明は、変倍光学系及びそれを用いた撮像装置に関し、特に、前玉有効径の比較的小さい高変倍光学系及びそれを用いた撮像装置に関するものである。 The present invention relates to a variable magnification optical system and an imaging apparatus using the same, and more particularly to a high variable magnification optical system having a relatively small front lens effective diameter and an imaging apparatus using the same.
近年、デジタルスチルカメラのように電子撮像素子を用いた撮像装置が幅広く普及している。デジタルスチルカメラの発展と普及に伴い、高変倍で小型の光学系が求められている。 In recent years, imaging apparatuses using an electronic imaging element such as a digital still camera have been widely used. With the development and popularization of digital still cameras, high-magnification and compact optical systems are required.
高変倍の光学系においては、物体側から順に、正の第1レンズ群、負の第2レンズ群、正の第3レンズ群、正の第4レンズ群、負の第5レンズ群を有し、第3レンズ群近傍に開口絞りを持つ光学系が以前から多く提案されている。この構成の場合、変倍のほとんどを第2レンズ群が光軸上を移動することによって行っている。 In the high variable magnification optical system, in order from the object side, there are a positive first lens group, a negative second lens group, a positive third lens group, a positive fourth lens group, and a negative fifth lens group. Many optical systems having an aperture stop near the third lens group have been proposed. In the case of this configuration, most of the zooming is performed by the second lens group moving on the optical axis.
特許文献1に記載のものでは、正の第1レンズ群、負の第2レンズ群、正の第3レンズ群、正の第4レンズ群、負の第5レンズ群で構成され、開口絞りは、変倍時に移動する第2レンズ群と第3レンズ群の間で、変倍時に移動しない構成になっている。 In the one described in Patent Document 1, it is composed of a positive first lens group, a negative second lens group, a positive third lens group, a positive fourth lens group, and a negative fifth lens group. The second lens unit and the third lens unit that move during zooming do not move during zooming.
また、特許文献2に記載のものは、正の第1レンズ群、負の第2レンズ群、正の第3レンズ群、正の第4レンズ群、負の第5レンズ群で構成され、第1レンズ群、第3レンズ群、第5レンズ群群が変倍時固定されており、開口絞りは第3レンズ群と一体で構成されている。
In addition, the device described in
特許文献3に記載のものは、正の第1レンズ群、負の第2レンズ群、正の第3レンズ群、正の第4レンズ群、負の第5レンズ群、正の第6レンズ群で構成され、第1レンズ群、第4レンズ群、第6レンズ群が変倍時固定されている。開口絞りは第3レンズ群と一体となり、変倍時に移動している。
上記何れの特許文献においても、第2レンズ群の倍率変化が全体の倍率変化の大部分を占めて高変倍を達成しており、開口絞りは第2レンズ群よりも撮像面側に配置されている。 In any of the above patent documents, the magnification change of the second lens group accounts for most of the entire magnification change to achieve high zooming, and the aperture stop is disposed on the imaging surface side of the second lens group. ing.
第2レンズ群が倍率変化のほとんどを負担する場合、変倍比を高める場合には、第2レンズ群の移動量を大きくするか、第2レンズ群の屈折力を高める必要がある。 When the second lens group bears most of the magnification change, in order to increase the zoom ratio, it is necessary to increase the amount of movement of the second lens group or increase the refractive power of the second lens group.
ところが、第2レンズ群の移動量が大きくなると、鏡枠機構が複雑又は大型化し、屈折力を高めると変倍による収差変動が大きくなり、光学性能の確保が難しくなってくる。また、入射瞳位置が光学系の奥になってしまい、第1レンズ群の有効径が大きくなるため、高変倍化と小型の両立が難しく、有効径が大きくなるにつれて重量が増えることから、駆動機構自体の強度を高める必要があり、大型化、複雑化につながる。 However, as the amount of movement of the second lens group increases, the lens frame mechanism becomes complicated or large, and when the refractive power is increased, aberration fluctuations due to zooming increase, and it becomes difficult to ensure optical performance. In addition, since the entrance pupil position is in the back of the optical system and the effective diameter of the first lens group is increased, it is difficult to achieve both high zooming and small size, and the weight increases as the effective diameter increases. It is necessary to increase the strength of the drive mechanism itself, leading to an increase in size and complexity.
しかし、開口絞りよりも撮像面側で変倍の負担を大きくすると、射出瞳位置の変動が大きくなることから電子撮像素子では受光効率が悪化するため、開口絞りより後方での変倍負担を高めることは好ましくない。 However, increasing the magnification burden on the imaging surface side of the aperture stop increases the variation of the exit pupil position, so the light receiving efficiency of the electronic image sensor deteriorates. Therefore, the magnification burden behind the aperture stop is increased. That is not preferable.
本発明は従来技術のこのような状況に鑑みてなされたものであり、その目的は、前玉有効径の比較的小さい高変倍光学系及びそれを用いた撮像装置を提供することである。 The present invention has been made in view of such a situation in the prior art, and an object thereof is to provide a high-magnification optical system having a relatively small front lens effective diameter and an imaging apparatus using the same.
上記目的を達成する本発明の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有し変倍時に最も大きな変倍効果を有する第2レンズ群と、シャッタ及び開口絞りを有する変倍時に固定の正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有し、以下の条件式を満足することを特徴とするものである。 The variable magnification optical system of the present invention that achieves the above object, in order from the object side, includes a first lens group having a positive refractive power and a second lens having a negative refractive power and having the largest variable magnification effect at the time of zooming. A third lens group having a positive positive refractive power at the time of zooming, a fourth lens group having a positive refractive power, and a fifth lens group having a negative refractive power; And satisfying the following conditional expression.
−10<ft /f2 <−7 ・・・(1)
−1.8≦ft /ftg12≦−0.92 ・・・(2)
ただし、ft は望遠端での全系の焦点距離、
f2 は第2レンズ群の焦点距離、
ftg12は望遠端における第1レンズ群と第2レンズ群の合成焦点距離、
である。
−10 < ft / f 2 <−7 (1)
-1.8 ≦ f t / f tg12 ≦ -0.92 ··· (2)
Where f t is the focal length of the entire system at the telephoto end,
f 2 is the focal length of the second lens group
f tg12 is the combined focal length of the first lens group and the second lens group at the telephoto end,
It is.
以下、本発明において上記構成をとる理由と作用を説明する。 Hereinafter, the reason and effect | action which take the said structure in this invention are demonstrated.
以上の変倍光学系のように、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有し変倍時に最も大きな変倍効果を有する第2レンズ群と、シャッタ及び開口絞りを有する変倍時に固定の正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群、負の屈折力を有する第5レンズ群とを有する構成とすることで、前玉有効径の比較的小さい高変倍光学系を得ることができる。 As in the above variable magnification optical system, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power and having the largest variable power effect at the time of variable power, A third lens group having a positive refracting power at the time of zooming having a shutter and an aperture stop, a fourth lens group having a positive refracting power, and a fifth lens group having a negative refracting power. Thus, it is possible to obtain a high variable magnification optical system having a relatively small front lens effective diameter.
条件式(1)は、最も大きな変倍効果を有する第2レンズ群の焦点距離に関する条件式であり、その上限の−7を上回ると、第2レンズ群の移動量が大きくなるため、鏡枠が大きくなるか、又は複雑になり、下限の−10を下回ると、第2レンズ群の変倍負担が大きくなるため、第2レンズ群の偏心による望遠側での像面の倒れが大きくなる。 Conditional expression (1) is a conditional expression related to the focal length of the second lens group having the largest zooming effect. If the upper limit of −7 is exceeded, the amount of movement of the second lens group becomes large. Becomes larger or complicated and falls below the lower limit of −10, the zooming burden of the second lens group increases, and the tilt of the image plane on the telephoto side due to the eccentricity of the second lens group increases.
条件式(2)は、望遠端における第1レンズ群と第2レンズ群の合成焦点距離に関する条件式であり、その上限の−0.92を上回ると、第2レンズ群の変倍負担が大きく、望遠側の球面収差と広角側の軸外収差の両立が難しくなり、また、前玉径が大きく、重くなるなるため、変倍のための駆動機構の負担が大きくなる。また、下限の−1.8を下回ると、望遠側での全長が長くなり、小型化が難しくなる。 Conditional expression (2) is a conditional expression related to the combined focal length of the first lens group and the second lens group at the telephoto end, and if the upper limit of −0.92 is exceeded, the variable magnification burden of the second lens group is large. Since it becomes difficult to achieve both the spherical aberration on the telephoto side and the off-axis aberration on the wide angle side, and the front lens diameter is large and heavy, the burden on the drive mechanism for zooming increases. On the other hand, if the lower limit of −1.8 is not reached, the total length on the telephoto side becomes long, and it becomes difficult to reduce the size.
この場合に、正の屈折力を有する第3レンズ群の撮像面側に光軸を略直角に屈曲させる反射部材を有することが望ましい。 In this case, it is desirable to have a reflecting member that bends the optical axis at a substantially right angle on the imaging surface side of the third lens group having positive refractive power.
このように構成して、第3レンズ群の撮像面側で光軸を折り曲げることにより、鏡筒の繰り出し機構を簡略化することができ、また、沈胴して収納時の厚みを抑えることができる。 By configuring in this way, the optical axis is bent on the imaging surface side of the third lens group, so that the lens barrel feeding mechanism can be simplified, and the thickness when retracted can be suppressed. .
また、前記反射部材は表面反射ミラーからなることが望ましい。 Further, it is desirable that the reflecting member is a surface reflecting mirror.
すなわち、反射部材として表面反射ミラーを用いることで、重量を抑えて保持機構を簡素にすることが可能である。 That is, by using a surface reflecting mirror as the reflecting member, it is possible to reduce the weight and simplify the holding mechanism.
本発明は、以上の変倍光学系と、その変倍光学系の像側に配され、光学像を電気信号に変換する撮像素子とを備えた撮像装置を含むものである。 The present invention includes an imaging apparatus including the above-described variable-power optical system and an image sensor that is disposed on the image side of the variable-power optical system and converts an optical image into an electrical signal.
この場合に、前記変倍光学系と前記撮像素子との間にローパスフィルターを配置することが望ましい。 In this case, it is desirable to arrange a low-pass filter between the zoom optical system and the image sensor.
以上の本発明によると、前玉有効径の比較的小さい高変倍光学系とそれを用いた撮像装置を得ることができる。本発明の変倍光学系は、特に薄く小型に収納可能な屈曲変倍光学系に最適なものである。 According to the present invention described above, it is possible to obtain a high variable magnification optical system having a relatively small front lens effective diameter and an imaging device using the same. The variable power optical system of the present invention is particularly suitable for a bending variable power optical system that is thin and can be accommodated in a small size.
以下、本発明の変倍光学系の実施例1〜6について説明する。実施例1〜6の変倍光学系の光路を展開した無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)でのレンズ断面図をそれぞれ図1〜図6に示す。各図中、第1レンズ群はG1、第2レンズ群はG2、開口絞りはS、第3レンズ群はG3、第4レンズ群はG4、第5レンズ群はG5、第6レンズ群はG6、光学的ローパスフィルターはF、電子撮像素子であるCCDのカバーガラスはC、CCDの像面はIで示してある。なお、近赤外シャープカットコートについては、例えば光学的ローパスフィルターFに直接コートを施こしてもよく、また、別に赤外カット吸収フィルターを配置してもよく、あるいは、透明平板の入射面に近赤外シャープカットコートしたものを用いてもよい。 Examples 1 to 6 of the variable magnification optical system of the present invention will be described below. Lens cross-sectional views at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) at the time of focusing on an object point at infinity, where the optical path of the variable magnification optical system of Examples 1 to 6 is developed, are shown in FIGS. As shown in FIG. In each figure, the first lens group is G1, the second lens group is G2, the aperture stop is S, the third lens group is G3, the fourth lens group is G4, the fifth lens group is G5, and the sixth lens group is G6. An optical low-pass filter is indicated by F, a cover glass of a CCD which is an electronic image pickup element is indicated by C, and an image surface of the CCD is indicated by I. As for the near-infrared sharp cut coat, for example, the optical low-pass filter F may be directly coated, or an infrared cut absorption filter may be provided separately, or the transparent flat plate incident surface may be provided. A near infrared sharp cut coat may be used.
実施例1の屈曲変倍光学系は、図1に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4、負屈折力の第5レンズ群G5、正屈折力の第6レンズ群G6から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に移動し、第2レンズ群G2は像側に単調に移動する。開口絞りSと第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は第4レンズ群G4との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より若干物体側に位置する。第6レンズ群G6は第5レンズ群G5との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。 As shown in FIG. 1, the bending variable magnification optical system according to the first embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive refractive power. The third lens group G3, the fourth lens group G4 having a positive refractive power, the fifth lens group G5 having a negative refractive power, and the sixth lens group G6 having a positive refractive power, and changing from the wide-angle end to the telephoto end. When doubling, the first lens group G1 moves toward the object side, and the second lens group G2 moves monotonously toward the image side. The aperture stop S and the third lens group G3 are fixed, the fourth lens group G4 moves to the object side, and the fifth lens group G5 has a convex locus on the object side while increasing the distance from the fourth lens group G4. It is drawn and moved, and at the telephoto end, it is located slightly closer to the object side than the wide-angle end. The sixth lens group G6 moves along a locus convex toward the object side while increasing the distance from the fifth lens group G5, and is located closer to the image side than the wide-angle end position at the telephoto end.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズと、両凸正レンズとからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、両凸正レンズと、両凹負レンズと両凸正レンズの接合レンズとからなり、第5レンズ群G5は、両凸正レンズと両凹負レンズの接合レンズからなり、第6レンズ群G6は、両凸正レンズ1枚からなる。 In order from the object side, the first lens group G1 is composed of a negative meniscus lens having a convex surface facing the object side, a cemented lens of a biconvex positive lens, and a biconvex positive lens, and the second lens group G2 is a biconcave negative lens. And a cemented lens of a negative meniscus lens having a convex surface facing the image side and a positive meniscus lens having a convex surface facing the image side. The third lens group G3 includes one biconvex positive lens, and a fourth lens. The group G4 includes a biconvex positive lens, and a cemented lens of a biconcave negative lens and a biconvex positive lens. The fifth lens group G5 includes a cemented lens of a biconvex positive lens and a biconcave negative lens. The lens group G6 includes one biconvex positive lens.
非球面は、第1レンズ群G1の単レンズの両凸正レンズの両面、第2レンズ群G2の両凹負レンズの像側の面、第4レンズ群G4の単レンズの両凸正レンズの両面、第6レンズ群G6の両凸正レンズの像側の面の6面に用いている。 The aspherical surfaces are the double-convex positive lenses of the single lens of the first lens group G1, the image-side surfaces of the double-concave negative lens of the second lens group G2, and the double-convex positive lenses of the single lens of the fourth lens group G4. The double-sided lens is used for six surfaces on the image side of the biconvex positive lens of the sixth lens group G6.
そして、後記の数値データ中の第14面r14は反射面と第4レンズ群G4との干渉を防ぐために設計上設けた仮想面であり、何ら部材は存在しない。そして、第3レンズ群G3とこの仮想面r14の間に光軸を略直角(例えば、90°)に屈曲させる反射面が光軸に対して45°の角度で設けられ、その反射面は撮影時に第3レンズ群G3と一体で位置固定である。 The fourteenth surface r 14 in the numerical data given later is a virtual surface provided on designed to prevent interference between the reflecting surface and the fourth lens unit G4, not any member exists. A reflective surface that bends the optical axis at a substantially right angle (for example, 90 °) is provided between the third lens group G3 and the virtual surface r 14 at an angle of 45 ° with respect to the optical axis. The position is fixed integrally with the third lens group G3 during photographing.
実施例2の屈曲変倍光学系は、図2に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4、負屈折力の第5レンズ群G5、正屈折力の第6レンズ群G6から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に移動し、第2レンズ群G2は像側に単調に移動する。開口絞りSと第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は第4レンズ群G4との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より若干物体側に位置する。第6レンズ群G6は第5レンズ群G5との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。 As shown in FIG. 2, the bending variable power optical system of Example 2 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive refractive power. The third lens group G3, the fourth lens group G4 having a positive refractive power, the fifth lens group G5 having a negative refractive power, and the sixth lens group G6 having a positive refractive power, and changing from the wide-angle end to the telephoto end. When doubling, the first lens group G1 moves toward the object side, and the second lens group G2 moves monotonously toward the image side. The aperture stop S and the third lens group G3 are fixed, the fourth lens group G4 moves to the object side, and the fifth lens group G5 has a convex locus on the object side while increasing the distance from the fourth lens group G4. It is drawn and moved, and at the telephoto end, it is located slightly closer to the object side than the wide-angle end. The sixth lens group G6 moves along a locus convex toward the object side while increasing the distance from the fifth lens group G5, and is located closer to the image side than the wide-angle end position at the telephoto end.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズと、両凸正レンズとからなり、第2レンズ群G2は、両凹負レンズと、両凹負レンズと両凸正レンズの接合レンズとからなり、第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズ1枚からなり、第4レンズ群G4は、両凸正レンズと両凹負レンズの接合レンズと、両凸正レンズとからなり、第5レンズ群G5は、両凸正レンズと両凹負レンズの接合レンズからなり、第6レンズ群G6は、両凸正レンズ1枚からなる。 In order from the object side, the first lens group G1 is composed of a negative meniscus lens having a convex surface facing the object side, a cemented lens of a biconvex positive lens, and a biconvex positive lens, and the second lens group G2 is a biconcave negative lens. The third lens group G3 is composed of a single positive meniscus lens having a convex surface facing the image side, and the fourth lens group G4 is a biconvex lens. The fifth lens group G5 includes a cemented lens of a biconvex positive lens and a biconcave negative lens, and the sixth lens group G6 includes both a cemented lens of a positive lens and a biconcave negative lens, and a biconvex positive lens. Consists of a single convex positive lens.
非球面は、第1レンズ群G1の単レンズの両凸正レンズの両面、第2レンズ群G2の単レンズの両凹負レンズの像側の面、第4レンズ群G4の接合レンズの最も物体側の面、単レンズの両凸正レンズの像側の面、第6レンズ群G6の両凸正レンズの両面の7面に用いている。 The aspherical surfaces are the double-sided positive-convex lens of the single lens of the first lens group G1, the image-side surface of the double-concave negative lens of the single lens of the second lens group G2, and the most object of the cemented lens of the fourth lens group G4. This is used for the seven surfaces of the side surface, the image side surface of the biconvex positive lens of the single lens, and both surfaces of the biconvex positive lens of the sixth lens group G6.
そして、後記の数値データ中の第14面r14は反射面と第4レンズ群G4との干渉を防ぐために設計上設けた仮想面であり、何ら部材は存在しない。そして、第3レンズ群G3とこの仮想面r14の間に光軸を略直角(例えば、90°)に屈曲させる反射面が光軸に対して45°の角度で設けられ、その反射面は撮影時に第3レンズ群G3と一体で位置固定である。 The fourteenth surface r 14 in the numerical data given later is a virtual surface provided on designed to prevent interference between the reflecting surface and the fourth lens unit G4, not any member exists. A reflective surface that bends the optical axis at a substantially right angle (for example, 90 °) is provided between the third lens group G3 and the virtual surface r 14 at an angle of 45 ° with respect to the optical axis. The position is fixed integrally with the third lens group G3 during photographing.
実施例3の屈曲変倍光学系は、図3に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4、負屈折力の第5レンズ群G5、正屈折力の第6レンズ群G6から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。第2レンズ群G2は像側に単調に移動する。開口絞りSと第3レンズ群G3は固定であり、第4レンズ群G4は物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。第5レンズ群G5は第4レンズ群G4との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より若干像側に位置する。第6レンズ群G6は第5レンズ群G5との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。 As shown in FIG. 3, the bending variable magnification optical system of Example 3 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive refractive power. The third lens group G3, the fourth lens group G4 having a positive refractive power, the fifth lens group G5 having a negative refractive power, and the sixth lens group G6 having a positive refractive power, and changing from the wide-angle end to the telephoto end. When doubling, the first lens group G1 moves along a locus convex toward the image side, and is located closer to the object side at the telephoto end than at the wide-angle end. The second lens group G2 moves monotonously to the image side. The aperture stop S and the third lens group G3 are fixed, the fourth lens group G4 moves along a locus convex toward the object side, and is located closer to the object side at the telephoto end than at the wide-angle end. The fifth lens group G5 moves along a locus convex toward the object side while increasing the distance from the fourth lens group G4, and is located slightly closer to the image side than the wide-angle end position at the telephoto end. The sixth lens group G6 moves along a locus convex toward the object side while increasing the distance from the fifth lens group G5, and is located closer to the image side than the wide-angle end position at the telephoto end.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズと、物体側に凸面を向けた正メニスカスレンズとからなり、第2レンズ群G2は、両凹負レンズと、両凹負レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、両凸正レンズと、両凹負レンズと両凸正レンズの接合レンズとからなり、第5レンズ群G5は、両凸正レンズと両凹負レンズの接合レンズからなり、第6レンズ群G6は、両凸正レンズ1枚からなる。 In order from the object side, the first lens group G1 is composed of a negative meniscus lens having a convex surface facing the object side, a cemented lens of a biconvex positive lens, and a positive meniscus lens having a convex surface facing the object side. G2 includes a biconcave negative lens, and a cemented lens of a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side. The third lens group G3 includes one biconvex positive lens, and a fourth lens. The group G4 includes a biconvex positive lens, and a cemented lens of a biconcave negative lens and a biconvex positive lens. The fifth lens group G5 includes a cemented lens of a biconvex positive lens and a biconcave negative lens. The lens group G6 includes one biconvex positive lens.
非球面は、第1レンズ群G1の正メニスカスレンズの両面、第2レンズ群G2の単レンズの両凹負レンズの像側の面、第4レンズ群G4の単レンズの両凸正レンズの両面、第6レンズ群G6の両凸正レンズの両面の7面に用いている。 The aspheric surfaces are both surfaces of the positive meniscus lens of the first lens group G1, the image side surface of the biconcave negative lens of the single lens of the second lens group G2, and both surfaces of the biconvex positive lens of the single lens of the fourth lens group G4. And 7 surfaces on both sides of the biconvex positive lens of the sixth lens group G6.
そして、後記の数値データ中の第14面r14は反射面と第4レンズ群G4との干渉を防ぐために設計上設けた仮想面であり、何ら部材は存在しない。そして、第3レンズ群G3とこの仮想面r14の間に光軸を略直角(例えば、90°)に屈曲させる反射面が光軸に対して45°の角度で設けられ、その反射面は撮影時に第3レンズ群G3と一体で位置固定である。 The fourteenth surface r 14 in the numerical data given later is a virtual surface provided on designed to prevent interference between the reflecting surface and the fourth lens unit G4, not any member exists. A reflective surface that bends the optical axis at a substantially right angle (for example, 90 °) is provided between the third lens group G3 and the virtual surface r 14 at an angle of 45 ° with respect to the optical axis. The position is fixed integrally with the third lens group G3 during photographing.
実施例4の屈曲変倍光学系は、図4に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4、負屈折力の第5レンズ群G5、正屈折力の第6レンズ群G6から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。第2レンズ群G2は像側に単調に移動する。開口絞りSと第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は第4レンズ群G4との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。第6レンズ群G6は第5レンズ群G5との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。 As shown in FIG. 4, the bending variable magnification optical system of Example 4 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, a positive refractive power. The third lens group G3, the fourth lens group G4 having a positive refractive power, the fifth lens group G5 having a negative refractive power, and the sixth lens group G6 having a positive refractive power, and changing from the wide-angle end to the telephoto end. When doubling, the first lens group G1 moves along a locus convex toward the image side, and is located closer to the object side at the telephoto end than at the wide-angle end. The second lens group G2 moves monotonously to the image side. The aperture stop S and the third lens group G3 are fixed, the fourth lens group G4 moves to the object side, and the fifth lens group G5 has a convex locus on the object side while increasing the distance from the fourth lens group G4. It moves by drawing, and at the telephoto end, it is located closer to the object side than the wide-angle end. The sixth lens group G6 moves along a locus convex toward the object side while increasing the distance from the fifth lens group G5, and is located closer to the image side than the wide-angle end position at the telephoto end.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズと、両凸正レンズとからなり、第2レンズ群G2は、両凹負レンズと、両凹負レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、両凸正レンズと、両凹負レンズと両凸正レンズの接合レンズとからなり、第5レンズ群G5は、両凸正レンズと両凹負レンズの接合レンズからなり、第6レンズ群G6は、両凸正レンズ1枚からなる。 In order from the object side, the first lens group G1 is composed of a negative meniscus lens having a convex surface facing the object side, a cemented lens of a biconvex positive lens, and a biconvex positive lens, and the second lens group G2 is a biconcave negative lens. Lens, a biconcave negative lens, and a cemented lens of a positive meniscus lens having a convex surface facing the object side. The third lens group G3 is composed of one biconvex positive lens, and the fourth lens group G4 is biconvex. The fifth lens group G5 includes a cemented lens of a biconvex positive lens and a biconcave negative lens, and the sixth lens group G6 includes a cemented lens of a positive lens, a biconcave negative lens, and a biconvex positive lens. Consists of a single convex positive lens.
非球面は、第1レンズ群G1の両凸正レンズの両面、第2レンズ群G2の単レンズの両凹負レンズの像側の面、第4レンズ群G4の単レンズの両凸正レンズの両面、第6レンズ群G6の両凸正レンズの両面の7面に用いている。 The aspherical surfaces are the surfaces of the biconvex positive lens of the first lens group G1, the image side surface of the biconcave negative lens of the single lens of the second lens group G2, and the biconvex positive lens of the single lens of the fourth lens group G4. It is used on both sides of the double-sided and double-sided positive lens of the sixth lens group G6.
そして、後記の数値データ中の第14面r14は反射面と第4レンズ群G4との干渉を防ぐために設計上設けた仮想面であり、何ら部材は存在しない。そして、第3レンズ群G3とこの仮想面r14の間に光軸を略直角(例えば、90°)に屈曲させる反射面が光軸に対して45°の角度で設けられ、その反射面は撮影時に第3レンズ群G3と一体で位置固定である。 The fourteenth surface r 14 in the numerical data given later is a virtual surface provided on designed to prevent interference between the reflecting surface and the fourth lens unit G4, not any member exists. A reflective surface that bends the optical axis at a substantially right angle (for example, 90 °) is provided between the third lens group G3 and the virtual surface r 14 at an angle of 45 ° with respect to the optical axis. The position is fixed integrally with the third lens group G3 during photographing.
実施例5の屈曲変倍光学系は、図5に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4、負屈折力の第5レンズ群G5、正屈折力の第6レンズ群G6から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。第2レンズ群G2は像側に単調に移動する。開口絞りSと第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は第4レンズ群G4との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。第6レンズ群G6は第5レンズ群G5との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。 As shown in FIG. 5, the bending variable magnification optical system of Example 5 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive refractive power. The third lens group G3, the fourth lens group G4 having a positive refractive power, the fifth lens group G5 having a negative refractive power, and the sixth lens group G6 having a positive refractive power, and changing from the wide-angle end to the telephoto end. When doubling, the first lens group G1 moves along a locus convex toward the image side, and is located closer to the object side at the telephoto end than at the wide-angle end. The second lens group G2 moves monotonously to the image side. The aperture stop S and the third lens group G3 are fixed, the fourth lens group G4 moves to the object side, and the fifth lens group G5 has a convex locus on the object side while increasing the distance from the fourth lens group G4. It is drawn and moved, and at the telephoto end, it is positioned closer to the image side than at the wide-angle end. The sixth lens group G6 moves along a locus convex toward the object side while increasing the distance from the fifth lens group G5, and is located closer to the image side than the wide-angle end position at the telephoto end.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズと、両凸正レンズとからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第3レンズ群G3は、像側に凸面を向けた正メニスカスレンズ1枚からなり、第4レンズ群G4は、両凸正レンズと、両凹負レンズと物体側に凸面を向けた正メニスカスレンズの接合レンズとからなり、第5レンズ群G5は、両凸正レンズと両凹負レンズの接合レンズからなり、第6レンズ群G6は、両凸正レンズ1枚からなる。 In order from the object side, the first lens group G1 is composed of a negative meniscus lens having a convex surface facing the object side, a cemented lens of a biconvex positive lens, and a biconvex positive lens, and the second lens group G2 is a biconcave negative lens. The third lens group G3 is composed of a positive meniscus lens having a convex surface facing the image side, and a negative meniscus lens having a convex surface facing the image side and a positive meniscus lens having a convex surface facing the image side. The fourth lens group G4 includes a biconvex positive lens, a biconcave negative lens, and a cemented lens of a positive meniscus lens having a convex surface facing the object side. The fifth lens group G5 includes a biconvex positive lens. The sixth lens group G6 is composed of a single biconvex positive lens.
非球面は、第1レンズ群G1の両凸正レンズの両面、第2レンズ群G2の両凹負レンズの像側の面、第4レンズ群G4の両凸正レンズの両面、第6レンズ群G6の両凸正レンズの像側の面の6面に用いている。 The aspherical surfaces are both surfaces of the biconvex positive lens of the first lens group G1, the image side surface of the biconcave negative lens of the second lens group G2, both surfaces of the biconvex positive lens of the fourth lens group G4, and the sixth lens group. It is used for six surfaces on the image side of the G6 biconvex positive lens.
そして、後記の数値データ中の第14面r14は反射面と第4レンズ群G4との干渉を防ぐために設計上設けた仮想面であり、何ら部材は存在しない。そして、第3レンズ群G3とこの仮想面r14の間に光軸を略直角(例えば、90°)に屈曲させる反射面が光軸に対して45°の角度で設けられ、その反射面は撮影時に第3レンズ群G3と一体で位置固定である。 The fourteenth surface r 14 in the numerical data given later is a virtual surface provided on designed to prevent interference between the reflecting surface and the fourth lens unit G4, not any member exists. A reflective surface that bends the optical axis at a substantially right angle (for example, 90 °) is provided between the third lens group G3 and the virtual surface r 14 at an angle of 45 ° with respect to the optical axis. The position is fixed integrally with the third lens group G3 during photographing.
実施例6の屈曲変倍光学系は、図6に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4、負屈折力の第5レンズ群G5、正屈折力の第6レンズ群G6から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡を描いて移動し、望遠端では広角端の位置より物体側に位置する。第2レンズ群G2は像側に単調に移動する。開口絞りSと第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は第4レンズ群G4との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。第6レンズ群G6は第5レンズ群G5との間隔を広げながら物体側に凸の軌跡を描いて移動し、望遠端では広角端の位置より像側に位置する。 As shown in FIG. 6, the bending variable magnification optical system of Example 6 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive refractive power. The third lens group G3, the fourth lens group G4 having a positive refractive power, the fifth lens group G5 having a negative refractive power, and the sixth lens group G6 having a positive refractive power, and changing from the wide-angle end to the telephoto end. When doubling, the first lens group G1 moves along a locus convex toward the image side, and is located closer to the object side at the telephoto end than at the wide-angle end. The second lens group G2 moves monotonously to the image side. The aperture stop S and the third lens group G3 are fixed, the fourth lens group G4 moves to the object side, and the fifth lens group G5 has a convex locus on the object side while increasing the distance from the fourth lens group G4. It is drawn and moved, and at the telephoto end, it is positioned closer to the image side than at the wide-angle end. The sixth lens group G6 moves along a locus convex toward the object side while increasing the distance from the fifth lens group G5, and is located closer to the image side than the wide-angle end position at the telephoto end.
物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズと、両凸正レンズとからなり、第2レンズ群G2は、両凹負レンズと、両凹負レンズと両凸正レンズの接合レンズとからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、両凸正レンズと、両凹負レンズと両凸正レンズの接合レンズとからなり、第5レンズ群G5は、両凸正レンズと両凹負レンズの接合レンズからなり、第6レンズ群G6は、両凸正レンズ1枚からなる。 In order from the object side, the first lens group G1 is composed of a negative meniscus lens having a convex surface facing the object side, a cemented lens of a biconvex positive lens, and a biconvex positive lens, and the second lens group G2 is a biconcave negative lens. The third lens group G3 is composed of one biconvex positive lens, and the fourth lens group G4 is composed of a biconvex positive lens and a biconcave lens. The fifth lens group G5 is composed of a cemented lens of a biconvex positive lens and a biconcave negative lens, and the sixth lens group G6 is composed of one biconvex positive lens. Become.
非球面は、第1レンズ群G1の単レンズの両凸正レンズの両面、第2レンズ群G2の単レンズの両凹負レンズの像側の面、第4レンズ群G4の両凸正レンズの両面、第6レンズ群G6の両凸正レンズの両面の7面に用いている。 The aspheric surfaces are the surfaces of the biconvex positive lens of the single lens of the first lens group G1, the image side surface of the biconcave negative lens of the single lens of the second lens group G2, and the biconvex positive lens of the fourth lens group G4. It is used on both sides of the double-sided and double-sided positive lens of the sixth lens group G6.
そして、後記の数値データ中の第14面r14は反射面と第4レンズ群G4との干渉を防ぐために設計上設けた仮想面であり、何ら部材は存在しない。そして、第3レンズ群G3とこの仮想面r14の間に光軸を略直角(例えば、90°)に屈曲させる反射面が光軸に対して45°の角度で設けられ、その反射面は撮影時に第3レンズ群G3と一体で位置固定である。 The fourteenth surface r 14 in the numerical data given later is a virtual surface provided on designed to prevent interference between the reflecting surface and the fourth lens unit G4, not any member exists. A reflective surface that bends the optical axis at a substantially right angle (for example, 90 °) is provided between the third lens group G3 and the virtual surface r 14 at an angle of 45 ° with respect to the optical axis. The position is fixed integrally with the third lens group G3 during photographing.
以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FNOはFナンバー、2ωは画角、WEは広角端、STは中間状態、TEは望遠端、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 Hereinafter, numerical data of each embodiment described above, but the symbols are outside the above, f is the focal length, F NO is the F-number, 2 [omega is field angle, WE denotes a wide angle end, ST intermediate state, TE is The telephoto end, r 1 , r 2 ... Is the radius of curvature of each lens surface, d 1 , d 2 ... Are the distances between the lens surfaces, n d1 , n d2 are the refractive index of the d-line of each lens, ν d1 , ν d2 ... is the Abbe number of each lens. The aspherical shape is represented by the following formula, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.
x=(y2 /r)/[1+{1−(K+1)(y/r)2 }1/2 ]
+A4 y4 +A6 y6 +A8 y8 +A10y10
ただし、rは近軸曲率半径、Kは円錐係数、A4 、A6 、A8 、A10はそれぞれ4次、6次、8次、10次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10
Here, r is a paraxial radius of curvature, K is a conical coefficient, and A 4 , A 6 , A 8 , and A 10 are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively.
実施例1
r1 = 10000.000 d1 = 1.22 nd1 =1.84666 νd1 =23.78
r2 = 54.315 d2 = 2.28 nd2 =1.48749 νd2 =70.23
r3 = -168.262 d3 = 0.15
r4 = 17.458 (非球面) d4 = 3.92 nd3 =1.51633 νd3 =64.14
r5 = -80.401 (非球面) d5 = (可変)
r6 = -41.373 d6 = 0.85 nd4 =1.74320 νd4 =49.34
r7 = 5.913 (非球面) d7 = 2.74
r8 = -18.988 d8 = 0.63 nd5 =1.69680 νd5 =55.53
r9 = -2001.711 d9 = 1.44 nd6 =1.92286 νd6 =20.88
r10= -32.133 d10= (可変)
r11= ∞(絞り) d11= 0.98
r12= 119.255 d12= 1.27 nd7 =1.66680 νd7 =33.05
r13= -37.684 d13= 11.00
r14= ∞(仮想面) d14= (可変)
r15= 11.075 (非球面) d15= 4.48 nd8 =1.49700 νd8 =81.61
r16= -12.821 (非球面) d16= 0.15
r17= -48.898 d17= 0.75 nd9 =1.88300 νd9 =40.76
r18= 22.800 d18= 1.79 nd10=1.67270 νd10=32.10
r19= -1864.706 d19= (可変)
r20= 14.504 d20= 3.12 nd11=1.49700 νd11=81.61
r21= -24.900 d21= 0.70 nd12=1.90366 νd12=31.31
r22= 12.079 d22= (可変)
r23= 20.827 d23= 2.71 nd13=1.58313 νd13=59.46
r24= -21.022 (非球面) d24= (可変)
r25= ∞ d25= 0.85 nd14=1.54771 νd14=62.84
r26= ∞ d26= 0.50
r27= ∞ d27= 0.50 nd15=1.51633 νd15=64.14
r28= ∞ d28= 0.60
r29= ∞(像面)
非球面係数
第4面
K = 0.000
A4 = -1.76939×10-5
A6 = 1.02257×10-7
A8 = -4.28415×10-10
A10= -2.96963×10-11
第5面
K = 0.000
A4 = 3.87596×10-6
A6 = 3.06743×10-7
A8 = -5.34413×10-9
A10= 5.29943×10-12
第7面
K = 0.000
A4 = -6.92555×10-4
A6 = -3.29478×10-6
A8 = -2.53249×10-9
A10= -2.34006×10-8
第15面
K = 0.000
A4 = -1.30651×10-4
A6 = 1.26048×10-6
A8 = -2.17108×10-8
A10= -8.42116×10-13
第16面
K = 0.000
A4 = 1.23948×10-4
A6 = 1.55067×10-6
A8 = -1.91419×10-8
A10= 2.70402×10-12
第24面
K = 0.000
A4 = 1.03984×10-4
A6 = -5.60430×10-7
A8 = -1.90947×10-8
A10= 4.68567×10-10
ズームデータ(∞)
WE ST TE
f (mm) 5.93 18.63 58.25
FNO 3.33 3.78 5.18
2ω(°) 64.05 21.38 7.07
d5 0.52 10.75 17.93
d10 13.77 3.68 0.51
d14 8.65 1.17 0.99
d19 0.61 4.10 7.05
d22 3.80 5.21 11.91
d24 8.71 11.28 1.80 。
Example 1
r 1 = 10000.000 d 1 = 1.22 n d1 = 1.84666 ν d1 = 23.78
r 2 = 54.315 d 2 = 2.28 n d2 = 1.48749 ν d2 = 70.23
r 3 = -168.262 d 3 = 0.15
r 4 = 17.458 (aspherical surface) d 4 = 3.92 n d3 = 1.51633 ν d3 = 64.14
r 5 = -80.401 (aspherical surface) d 5 = (variable)
r 6 = -41.373 d 6 = 0.85 n d4 = 1.74320 ν d4 = 49.34
r 7 = 5.913 (aspherical surface) d 7 = 2.74
r 8 = -18.988 d 8 = 0.63 n d5 = 1.69680 ν d5 = 55.53
r 9 = -2001.711 d 9 = 1.44 n d6 = 1.92286 ν d6 = 20.88
r 10 = -32.133 d 10 = (variable)
r 11 = ∞ (aperture) d 11 = 0.98
r 12 = 119.255 d 12 = 1.27 n d7 = 1.66680 ν d7 = 33.05
r 13 = -37.684 d 13 = 11.00
r 14 = ∞ (virtual surface) d 14 = (variable)
r 15 = 11.075 (aspherical surface) d 15 = 4.48 n d8 = 1.49700 ν d8 = 81.61
r 16 = -12.821 (aspherical surface) d 16 = 0.15
r 17 = -48.898 d 17 = 0.75 n d9 = 1.88300 ν d9 = 40.76
r 18 = 22.800 d 18 = 1.79 n d10 = 1.67270 ν d10 = 32.10
r 19 = -1864.706 d 19 = (variable)
r 20 = 14.504 d 20 = 3.12 n d11 = 1.49700 ν d11 = 81.61
r 21 = -24.900 d 21 = 0.70 n d12 = 1.90366 ν d12 = 31.31
r 22 = 12.079 d 22 = (variable)
r 23 = 20.827 d 23 = 2.71 n d13 = 1.58313 ν d13 = 59.46
r 24 = -21.022 (aspherical surface) d 24 = (variable)
r 25 = ∞ d 25 = 0.85 n d14 = 1.54771 ν d14 = 62.84
r 26 = ∞ d 26 = 0.50
r 27 = ∞ d 27 = 0.50 n d15 = 1.51633 ν d15 = 64.14
r 28 = ∞ d 28 = 0.60
r 29 = ∞ (image plane)
Aspheric coefficient 4th surface K = 0.000
A 4 = -1.76939 × 10 -5
A 6 = 1.02257 × 10 -7
A 8 = -4.28415 × 10 -10
A 10 = -2.96963 × 10 -11
Fifth side K = 0.000
A 4 = 3.87596 × 10 -6
A 6 = 3.06743 × 10 -7
A 8 = -5.34413 × 10 -9
A 10 = 5.29943 × 10 -12
Surface 7 K = 0.000
A 4 = -6.92555 × 10 -4
A 6 = -3.29478 × 10 -6
A 8 = -2.53249 × 10 -9
A 10 = -2.34006 × 10 -8
15th face K = 0.000
A 4 = -1.30651 × 10 -4
A 6 = 1.26048 × 10 -6
A 8 = -2.17108 × 10 -8
A 10 = -8.42116 × 10 -13
16th surface K = 0.000
A 4 = 1.23948 × 10 -4
A 6 = 1.55067 × 10 -6
A 8 = -1.91419 × 10 -8
A 10 = 2.70402 × 10 -12
24th face K = 0.000
A 4 = 1.03984 × 10 -4
A 6 = -5.60430 × 10 -7
A 8 = -1.90947 × 10 -8
A 10 = 4.68567 × 10 -10
Zoom data (∞)
WE ST TE
f (mm) 5.93 18.63 58.25
F NO 3.33 3.78 5.18
2ω (°) 64.05 21.38 7.07
d 5 0.52 10.75 17.93
d 10 13.77 3.68 0.51
d 14 8.65 1.17 0.99
d 19 0.61 4.10 7.05
d 22 3.80 5.21 11.91
d 24 8.71 11.28 1.80.
実施例2
r1 = 653.204 d1 = 1.26 nd1 =1.84666 νd1 =23.78
r2 = 43.561 d2 = 3.37 nd2 =1.48749 νd2 =70.23
r3 = -210.296 d3 = 0.15
r4 = 18.151 (非球面) d4 = 4.62 nd3 =1.62299 νd3 =58.12
r5 = -145.174 (非球面) d5 = (可変)
r6 = -92.644 d6 = 0.90 nd4 =1.80610 νd4 =40.92
r7 = 5.852 (非球面) d7 = 2.86
r8 = -24.154 d8 = 0.60 nd5 =1.88300 νd5 =40.76
r9 = 16.994 d9 = 1.95 nd6 =1.92286 νd6 =20.88
r10= -712.410 d10= (可変)
r11= ∞(絞り) d11= 1.00
r12= -601.720 d12= 1.19 nd7 =1.80518 νd7 =25.42
r13= -33.661 d13= 10.30
r14= ∞(仮想面) d14= (可変)
r15= 13.760 (非球面) d15= 7.78 nd8 =1.61881 νd8 =63.85
r16= -12.950 d16= 0.70 nd9 =1.90366 νd9 =31.31
r17= 86.120 d17= 0.15
r18= 16.484 d18= 2.85 nd10=1.58423 νd10=30.49
r19= -28.611 (非球面) d19= (可変)
r20= 19.360 d20= 2.96 nd11=1.48749 νd11=70.44
r21= -21.122 d21= 0.73 nd12=2.00069 νd12=25.46
r22= 18.596 d22= (可変)
r23= 27.717 (非球面) d23= 2.87 nd13=1.52542 νd13=55.78
r24= -14.958 (非球面) d24= (可変)
r25= ∞ d25= 0.85 nd14=1.54771 νd14=62.84
r26= ∞ d26= 0.50
r27= ∞ d27= 0.50 nd15=1.51633 νd15=64.14
r28= ∞ d28= 0.60
r29= ∞(像面)
非球面係数
第4面
K = 0.000
A4 = 5.07069×10-7
A6 = -1.07496×10-7
A8 = -2.84760×10-10
A10= 1.57752×10-12
第5面
K = 0.000
A4 = 2.50503×10-5
A6 = -2.66972×10-7
A8 = 1.18662×10-9
A10= -1.69886×10-12
第7面
K = 0.000
A4 = -4.89796×10-4
A6 = -5.38468×10-6
A8 = -2.51002×10-9
A10= -1.67791×10-8
第15面
K = 0.000
A4 = 3.28920×10-5
A6 = 1.13870×10-6
A8 = -1.30908×10-8
A10= 1.67483×10-10
第19面
K = 0.000
A4 = 1.74075×10-4
A6 = 2.01408×10-6
A8 = -3.08884×10-8
A10= 4.92822×10-10
第23面
K = 0.000
A4 = -4.08561×10-4
A6 = 1.38541×10-6
A8 = -1.40860×10-7
A10= -3.27813×10-10
第24面
K = 0.000
A4 = -2.49782×10-4
A6 = 8.61175×10-7
A8 = -1.05973×10-7
A10= -2.81721×10-11
ズームデータ(∞)
WE ST TE
f (mm) 4.75 14.68 46.38
FNO 3.46 3.99 4.99
2ω(°) 79.46 27.08 8.95
d5 0.51 9.56 16.39
d10 13.48 4.67 0.98
d14 9.18 1.25 0.95
d19 1.39 5.16 9.55
d22 4.63 6.67 9.63
d24 6.17 8.29 1.25 。
Example 2
r 1 = 653.204 d 1 = 1.26 n d1 = 1.84666 ν d1 = 23.78
r 2 = 43.561 d 2 = 3.37 n d2 = 1.48749 ν d2 = 70.23
r 3 = -210.296 d 3 = 0.15
r 4 = 18.151 (aspherical surface) d 4 = 4.62 n d3 = 1.62299 ν d3 = 58.12
r 5 = -145.174 (aspherical surface) d 5 = (variable)
r 6 = -92.644 d 6 = 0.90 n d4 = 1.80610 ν d4 = 40.92
r 7 = 5.852 (aspherical surface) d 7 = 2.86
r 8 = -24.154 d 8 = 0.60 n d5 = 1.88300 ν d5 = 40.76
r 9 = 16.994 d 9 = 1.95 n d6 = 1.92286 ν d6 = 20.88
r 10 = -712.410 d 10 = (variable)
r 11 = ∞ (aperture) d 11 = 1.00
r 12 = -601.720 d 12 = 1.19 n d7 = 1.80518 ν d7 = 25.42
r 13 = -33.661 d 13 = 10.30
r 14 = ∞ (virtual surface) d 14 = (variable)
r 15 = 13.760 (aspherical surface) d 15 = 7.78 n d8 = 1.61881 ν d8 = 63.85
r 16 = -12.950 d 16 = 0.70 n d9 = 1.90366 ν d9 = 31.31
r 17 = 86.120 d 17 = 0.15
r 18 = 16.484 d 18 = 2.85 n d10 = 1.58423 ν d10 = 30.49
r 19 = -28.611 (aspherical surface) d 19 = (variable)
r 20 = 19.360 d 20 = 2.96 n d11 = 1.48749 ν d11 = 70.44
r 21 = -21.122 d 21 = 0.73 n d12 = 2.00069 ν d12 = 25.46
r 22 = 18.596 d 22 = (variable)
r 23 = 27.717 (aspherical surface) d 23 = 2.87 n d13 = 1.52542 ν d13 = 55.78
r 24 = -14.958 (aspherical surface) d 24 = (variable)
r 25 = ∞ d 25 = 0.85 n d14 = 1.54771 ν d14 = 62.84
r 26 = ∞ d 26 = 0.50
r 27 = ∞ d 27 = 0.50 n d15 = 1.51633 ν d15 = 64.14
r 28 = ∞ d 28 = 0.60
r 29 = ∞ (image plane)
Aspheric coefficient 4th surface K = 0.000
A 4 = 5.07069 × 10 -7
A 6 = -1.07496 × 10 -7
A 8 = -2.84760 × 10 -10
A 10 = 1.57752 × 10 -12
Fifth side K = 0.000
A 4 = 2.50503 × 10 -5
A 6 = -2.66972 × 10 -7
A 8 = 1.18662 × 10 -9
A 10 = -1.69886 × 10 -12
Surface 7 K = 0.000
A 4 = -4.89796 × 10 -4
A 6 = -5.38468 × 10 -6
A 8 = -2.51002 × 10 -9
A 10 = -1.67791 × 10 -8
15th face K = 0.000
A 4 = 3.28920 × 10 -5
A 6 = 1.13870 × 10 -6
A 8 = -1.30908 × 10 -8
A 10 = 1.67483 × 10 -10
19th face K = 0.000
A 4 = 1.74075 × 10 -4
A 6 = 2.01408 × 10 -6
A 8 = -3.08884 × 10 -8
A 10 = 4.92822 × 10 -10
Surface 23 K = 0.000
A 4 = -4.08561 × 10 -4
A 6 = 1.38541 × 10 -6
A 8 = -1.40860 × 10 -7
A 10 = -3.27813 × 10 -10
24th face K = 0.000
A 4 = -2.49782 × 10 -4
A 6 = 8.61175 × 10 -7
A 8 = -1.05973 × 10 -7
A 10 = -2.81721 × 10 -11
Zoom data (∞)
WE ST TE
f (mm) 4.75 14.68 46.38
F NO 3.46 3.99 4.99
2ω (°) 79.46 27.08 8.95
d 5 0.51 9.56 16.39
d 10 13.48 4.67 0.98
d 14 9.18 1.25 0.95
d 19 1.39 5.16 9.55
d 22 4.63 6.67 9.63
d 24 6.17 8.29 1.25.
実施例3
r1 = 633.665 d1 = 1.22 nd1 =1.84666 νd1 =23.78
r2 = 50.330 d2 = 2.80 nd2 =1.48749 νd2 =70.23
r3 = -80.739 d3 = 0.15
r4 = 19.524 (非球面) d4 = 3.17 nd3 =1.58913 νd3 =61.28
r5 = 14313.525 (非球面) d5 = (可変)
r6 = -229.738 d6 = 0.84 nd4 =1.74320 νd4 =49.34
r7 = 7.215 (非球面) d7 = 2.69
r8 = -16.087 d8 = 0.78 nd5 =1.72916 νd5 =54.68
r9 = 23.566 d9 = 1.56 nd6 =1.92286 νd6 =20.88
r10= 365.979 d10= (可変)
r11= ∞(絞り) d11= 1.00
r12= 98.169 d12= 1.22 nd7 =1.83481 νd7 =42.71
r13= -58.012 d13= 10.30
r14= ∞(仮想面) d14= (可変)
r15= 10.954 (非球面) d15= 4.87 nd8 =1.49700 νd8 =81.61
r16= -10.658 (非球面) d16= 0.15
r17= -24.588 d17= 0.75 nd9 =1.88300 νd9 =40.76
r18= 31.642 d18= 1.97 nd10=1.67270 νd10=32.10
r19= -45.379 d19= (可変)
r20= 29.701 d20= 3.06 nd11=1.49700 νd11=81.61
r21= -14.406 d21= 0.70 nd12=1.90366 νd12=31.31
r22= 20.241 d22= (可変)
r23= 88.742 (非球面) d23= 2.54 nd13=1.58313 νd13=59.46
r24= -13.428 (非球面) d24= (可変)
r25= ∞ d25= 0.85 nd14=1.54771 νd14=62.84
r26= ∞ d26= 0.50
r27= ∞ d27= 0.50 nd15=1.51633 νd15=64.14
r28= ∞ d28= 0.60
r29= ∞(像面)
非球面係数
第4面
K = 0.000
A4 = -3.72162×10-6
A6 = -8.21416×10-8
A8 = -7.59290×10-10
A10= -3.86636×10-12
第5面
K = 0.000
A4 = 6.32385×10-6
A6 = -1.23106×10-7
A8 = -7.39925×10-10
A10= 9.42069×10-13
第7面
K = 0.000
A4 = -1.94793×10-4
A6 = 2.03756×10-6
A8 = -4.21904×10-8
A10= -2.05749×10-9
第15面
K = 0.148
A4 = -1.53405×10-4
A6 = 1.14566×10-6
A8 = -2.68332×10-8
A10= -6.55570×10-10
第16面
K = 0.000
A4 = 1.88758×10-4
A6 = 2.90402×10-6
A8 = -8.02417×10-8
A10= 2.85326×10-10
第23面
K = 0.000
A4 = -2.31264×10-4
A6 = 8.09133×10-6
A8 = -4.77171×10-7
A10= 1.29270×10-8
第24面
K = 0.000
A4 = -1.02238×10-4
A6 = 4.65634×10-6
A8 = -3.32015×10-7
A10= 9.70259×10-9
ズームデータ(∞)
WE ST TE
f (mm) 5.92 17.67 57.19
FNO 3.50 3.95 5.14
2ω(°) 67.35 22.80 7.28
d5 0.56 10.49 18.34
d10 15.49 5.33 1.03
d14 8.02 0.83 0.94
d19 1.40 4.31 8.92
d22 3.94 4.89 10.61
d24 8.80 12.12 1.69 。
Example 3
r 1 = 633.665 d 1 = 1.22 n d1 = 1.84666 ν d1 = 23.78
r 2 = 50.330 d 2 = 2.80 n d2 = 1.48749 ν d2 = 70.23
r 3 = -80.739 d 3 = 0.15
r 4 = 19.524 (aspherical surface) d 4 = 3.17 n d3 = 1.58913 ν d3 = 61.28
r 5 = 14313.525 (aspherical surface) d 5 = (variable)
r 6 = -229.738 d 6 = 0.84 n d4 = 1.74320 ν d4 = 49.34
r 7 = 7.215 (aspherical surface) d 7 = 2.69
r 8 = -16.087 d 8 = 0.78 n d5 = 1.72916 ν d5 = 54.68
r 9 = 23.566 d 9 = 1.56 n d6 = 1.92286 ν d6 = 20.88
r 10 = 365.979 d 10 = (variable)
r 11 = ∞ (aperture) d 11 = 1.00
r 12 = 98.169 d 12 = 1.22 n d7 = 1.83481 ν d7 = 42.71
r 13 = -58.012 d 13 = 10.30
r 14 = ∞ (virtual surface) d 14 = (variable)
r 15 = 10.954 (aspherical surface) d 15 = 4.87 n d8 = 1.49700 ν d8 = 81.61
r 16 = -10.658 (aspherical surface) d 16 = 0.15
r 17 = -24.588 d 17 = 0.75 n d9 = 1.88300 ν d9 = 40.76
r 18 = 31.642 d 18 = 1.97 n d10 = 1.67270 ν d10 = 32.10
r 19 = -45.379 d 19 = (variable)
r 20 = 29.701 d 20 = 3.06 n d11 = 1.49700 ν d11 = 81.61
r 21 = -14.406 d 21 = 0.70 n d12 = 1.90366 ν d12 = 31.31
r 22 = 20.241 d 22 = (variable)
r 23 = 88.742 (aspherical surface) d 23 = 2.54 n d13 = 1.58313 ν d13 = 59.46
r 24 = -13.428 (aspherical surface) d 24 = (variable)
r 25 = ∞ d 25 = 0.85 n d14 = 1.54771 ν d14 = 62.84
r 26 = ∞ d 26 = 0.50
r 27 = ∞ d 27 = 0.50 n d15 = 1.51633 ν d15 = 64.14
r 28 = ∞ d 28 = 0.60
r 29 = ∞ (image plane)
Aspheric coefficient 4th surface K = 0.000
A 4 = -3.72162 × 10 -6
A 6 = -8.21416 × 10 -8
A 8 = -7.59290 × 10 -10
A 10 = -3.86636 × 10 -12
Fifth side K = 0.000
A 4 = 6.32385 × 10 -6
A 6 = -1.23106 × 10 -7
A 8 = -7.39925 × 10 -10
A 10 = 9.42069 × 10 -13
Surface 7 K = 0.000
A 4 = -1.94793 × 10 -4
A 6 = 2.03756 × 10 -6
A 8 = -4.21904 × 10 -8
A 10 = -2.05749 × 10 -9
15th face K = 0.148
A 4 = -1.53405 × 10 -4
A 6 = 1.14566 × 10 -6
A 8 = -2.68332 × 10 -8
A 10 = -6.55570 × 10 -10
16th surface K = 0.000
A 4 = 1.88758 × 10 -4
A 6 = 2.90402 × 10 -6
A 8 = -8.02417 × 10 -8
A 10 = 2.85326 × 10 -10
Surface 23 K = 0.000
A 4 = -2.31264 × 10 -4
A 6 = 8.09133 × 10 -6
A 8 = -4.77171 × 10 -7
A 10 = 1.29270 × 10 -8
24th face K = 0.000
A 4 = -1.02238 × 10 -4
A 6 = 4.65634 × 10 -6
A 8 = -3.32015 × 10 -7
A 10 = 9.70259 × 10 -9
Zoom data (∞)
WE ST TE
f (mm) 5.92 17.67 57.19
F NO 3.50 3.95 5.14
2ω (°) 67.35 22.80 7.28
d 5 0.56 10.49 18.34
d 10 15.49 5.33 1.03
d 14 8.02 0.83 0.94
d 19 1.40 4.31 8.92
d 22 3.94 4.89 10.61
d 24 8.80 12.12 1.69.
実施例4
r1 = 673.793 d1 = 1.30 nd1 =1.84666 νd1 =23.78
r2 = 52.632 d2 = 2.77 nd2 =1.48749 νd2 =70.23
r3 = -106.741 d3 = 0.15
r4 = 20.563 (非球面) d4 = 3.26 nd3 =1.58913 νd3 =61.28
r5 = -393.064 (非球面) d5 = (可変)
r6 = -165.505 d6 = 0.90 nd4 =1.74320 νd4 =49.34
r7 = 7.887 (非球面) d7 = 2.98
r8 = -19.686 d8 = 0.83 nd5 =1.77250 νd5 =49.60
r9 = 19.904 d9 = 1.71 nd6 =1.92286 νd6 =20.88
r10= 212.774 d10= (可変)
r11= ∞(絞り) d11= 1.00
r12= 142.798 d12= 1.33 nd7 =1.60311 νd7 =60.64
r13= -30.008 d13= 11.00
r14= ∞(仮想面) d14= (可変)
r15= 13.668 (非球面) d15= 4.51 nd8 =1.49700 νd8 =81.61
r16= -14.634 (非球面) d16= 0.15
r17= -68.494 d17= 0.85 nd9 =1.83481 νd9 =42.71
r18= 33.935 d18= 1.70 nd10=1.67270 νd10=32.10
r19= -201.057 d19= (可変)
r20= 27.102 d20= 3.57 nd11=1.49700 νd11=81.61
r21= -13.854 d21= 0.78 nd12=1.90366 νd12=31.31
r22= 25.010 d22= (可変)
r23= 154.360 (非球面) d23= 2.67 nd13=1.58913 νd13=61.28
r24= -13.456 (非球面) d24= (可変)
r25= ∞ d25= 0.85 nd14=1.54771 νd14=62.84
r26= ∞ d26= 0.50
r27= ∞ d27= 0.50 nd15=1.51633 νd15=64.14
r28= ∞ d28= 0.60
r29= ∞(像面)
非球面係数
第4面
K = 0.000
A4 = 1.31074×10-6
A6 = -7.65863×10-8
A8 = -2.61029×10-10
A10= 1.36136×10-12
第5面
K = 0.000
A4 = 1.31905×10-5
A6 = -1.45275×10-7
A8 = 4.13701×10-10
A10= -9.48730×10-14
第7面
K = 0.000
A4 = -1.79208×10-4
A6 = 4.85330×10-6
A8 = -2.03327×10-7
A10= 2.13211×10-9
第15面
K = -0.054
A4 = -1.06426×10-4
A6 = 1.35813×10-6
A8 = -2.53397×10-8
A10= -2.47379×10-10
第16面
K = 0.000
A4 = 4.18820×10-5
A6 = 1.96264×10-6
A8 = -4.33068×10-8
A10= 0
第23面
K = 0.000
A4 = -1.83225×10-4
A6 = 7.52358×10-6
A8 = -1.22202×10-7
A10= 3.29718×10-9
第24面
K = 0.000
A4 = -5.69683×10-5
A6 = 5.02624×10-6
A8 = -8.57219×10-8
A10= 3.13423×10-9
ズームデータ(∞)
WE ST TE
f (mm) 6.32 18.30 60.99
FNO 3.56 3.99 5.50
2ω(°) 67.21 23.37 7.33
d5 0.59 10.85 19.15
d10 15.45 5.17 1.10
d14 9.32 1.43 1.00
d19 1.39 4.54 8.82
d22 3.84 5.62 12.13
d24 9.25 12.22 1.85 。
Example 4
r 1 = 673.793 d 1 = 1.30 n d1 = 1.84666 ν d1 = 23.78
r 2 = 52.632 d 2 = 2.77 n d2 = 1.48749 ν d2 = 70.23
r 3 = -106.741 d 3 = 0.15
r 4 = 20.563 (aspherical surface) d 4 = 3.26 n d3 = 1.58913 ν d3 = 61.28
r 5 = -393.064 (aspherical surface) d 5 = (variable)
r 6 = -165.505 d 6 = 0.90 n d4 = 1.74320 ν d4 = 49.34
r 7 = 7.887 (aspherical surface) d 7 = 2.98
r 8 = -19.686 d 8 = 0.83 n d5 = 1.77250 ν d5 = 49.60
r 9 = 19.904 d 9 = 1.71 n d6 = 1.92286 ν d6 = 20.88
r 10 = 212.774 d 10 = (variable)
r 11 = ∞ (aperture) d 11 = 1.00
r 12 = 142.798 d 12 = 1.33 n d7 = 1.60311 ν d7 = 60.64
r 13 = -30.008 d 13 = 11.00
r 14 = ∞ (virtual surface) d 14 = (variable)
r 15 = 13.668 (aspherical surface) d 15 = 4.51 n d8 = 1.49700 ν d8 = 81.61
r 16 = -14.634 (aspherical surface) d 16 = 0.15
r 17 = -68.494 d 17 = 0.85 n d9 = 1.83481 ν d9 = 42.71
r 18 = 33.935 d 18 = 1.70 n d10 = 1.67270 ν d10 = 32.10
r 19 = -201.057 d 19 = (variable)
r 20 = 27.102 d 20 = 3.57 n d11 = 1.49700 ν d11 = 81.61
r 21 = -13.854 d 21 = 0.78 n d12 = 1.90366 ν d12 = 31.31
r 22 = 25.010 d 22 = (variable)
r 23 = 154.360 (aspherical surface) d 23 = 2.67 n d13 = 1.58913 ν d13 = 61.28
r 24 = -13.456 (aspherical surface) d 24 = (variable)
r 25 = ∞ d 25 = 0.85 n d14 = 1.54771 ν d14 = 62.84
r 26 = ∞ d 26 = 0.50
r 27 = ∞ d 27 = 0.50 n d15 = 1.51633 ν d15 = 64.14
r 28 = ∞ d 28 = 0.60
r 29 = ∞ (image plane)
Aspheric coefficient 4th surface K = 0.000
A 4 = 1.31074 × 10 -6
A 6 = -7.65863 × 10 -8
A 8 = -2.61029 × 10 -10
A 10 = 1.36136 × 10 -12
Fifth side K = 0.000
A 4 = 1.31905 × 10 -5
A 6 = -1.45275 × 10 -7
A 8 = 4.13701 × 10 -10
A 10 = -9.48730 × 10 -14
Surface 7 K = 0.000
A 4 = -1.79208 × 10 -4
A 6 = 4.85330 × 10 -6
A 8 = -2.03327 × 10 -7
A 10 = 2.13211 × 10 -9
15th surface K = -0.054
A 4 = -1.06426 × 10 -4
A 6 = 1.35813 × 10 -6
A 8 = -2.53397 × 10 -8
A 10 = -2.47379 × 10 -10
16th surface K = 0.000
A 4 = 4.18820 × 10 -5
A 6 = 1.96264 × 10 -6
A 8 = -4.33068 × 10 -8
A 10 = 0
Surface 23 K = 0.000
A 4 = -1.83225 × 10 -4
A 6 = 7.52358 × 10 -6
A 8 = -1.22202 × 10 -7
A 10 = 3.29718 × 10 -9
24th face K = 0.000
A 4 = -5.69683 × 10 -5
A 6 = 5.02624 × 10 -6
A 8 = -8.57219 × 10 -8
A 10 = 3.13423 × 10 -9
Zoom data (∞)
WE ST TE
f (mm) 6.32 18.30 60.99
F NO 3.56 3.99 5.50
2ω (°) 67.21 23.37 7.33
d 5 0.59 10.85 19.15
d 10 15.45 5.17 1.10
d 14 9.32 1.43 1.00
d 19 1.39 4.54 8.82
d 22 3.84 5.62 12.13
d 24 9.25 12.22 1.85.
実施例5
r1 = 633.665 d1 = 1.22 nd1 =1.84666 νd1 =23.78
r2 = 50.904 d2 = 2.71 nd2 =1.48749 νd2 =70.23
r3 = -97.884 d3 = 0.15
r4 = 20.036 (非球面) d4 = 3.27 nd3 =1.58913 νd3 =61.28
r5 = -424.570 (非球面) d5 = (可変)
r6 = -154.607 d6 = 0.85 nd4 =1.74320 νd4 =49.34
r7 = 7.037 (非球面) d7 = 3.13
r8 = -13.249 d8 = 0.65 nd5 =1.72916 νd5 =54.68
r9 = -400.246 d9 = 1.44 nd6 =1.92286 νd6 =20.88
r10= -31.893 d10= (可変)
r11= ∞(絞り) d11= 0.99
r12= -2601.620 d12= 1.14 nd7 =1.90366 νd7 =31.31
r13= -48.956 d13= 11.00
r14= ∞(仮想面) d14= (可変)
r15= 11.696 (非球面) d15= 4.30 nd8 =1.49700 νd8 =81.61
r16= -13.542 (非球面) d16= 0.15
r17= -186.492 d17= 0.75 nd9 =1.88300 νd9 =40.76
r18= 18.191 d18= 1.76 nd10=1.67270 νd10=32.10
r19= 88.947 d19= (可変)
r20= 13.139 d20= 3.44 nd11=1.49700 νd11=81.61
r21= -22.439 d21= 0.70 nd12=1.90366 νd12=31.31
r22= 12.447 d22= (可変)
r23= 37.219 d23= 2.40 nd13=1.58913 νd13=61.28
r24= -15.857 (非球面) d24= (可変)
r25= ∞ d25= 0.85 nd14=1.54771 νd14=62.84
r26= ∞ d26= 0.50
r27= ∞ d27= 0.50 nd15=1.51633 νd15=64.14
r28= ∞ d28= 0.60
r29= ∞(像面)
非球面係数
第4面
K = 0.000
A4 = -5.42983×10-6
A6 = 1.38492×10-8
A8 = -1.14651×10-10
A10= -1.84230×10-11
第5面
K = 0.000
A4 = 4.72650×10-6
A6 = 8.65089×10-8
A8 = -2.41488×10-9
A10= -1.57422×10-12
第7面
K = 0.000
A4 = -2.92122×10-4
A6 = 4.31976×10-6
A8 = -2.28965×10-7
A10= 3.36891×10-10
第15面
K = 0.597
A4 = -1.90173×10-4
A6 = 1.68973×10-6
A8 = -4.82919×10-8
A10= -2.13859×10-11
第16面
K = 0.000
A4 = 9.02659×10-5
A6 = 2.98286×10-6
A8 = -7.15741×10-8
A10= 4.04396×10-10
第24面
K = 0.000
A4 = 1.14189×10-4
A6 = -4.67268×10-6
A8 = 1.49193×10-7
A10= -1.97043×10-9
ズームデータ(∞)
WE ST TE
f (mm) 5.93 17.72 57.17
FNO 3.29 3.74 5.12
2ω(°) 66.47 22.63 7.27
d5 0.53 10.81 18.72
d10 15.11 4.51 0.49
d14 8.16 1.50 1.00
d19 0.71 4.07 8.96
d22 4.36 4.96 10.54
d24 8.85 11.58 1.57 。
Example 5
r 1 = 633.665 d 1 = 1.22 n d1 = 1.84666 ν d1 = 23.78
r 2 = 50.904 d 2 = 2.71 n d2 = 1.48749 ν d2 = 70.23
r 3 = -97.884 d 3 = 0.15
r 4 = 20.036 (aspherical surface) d 4 = 3.27 n d3 = 1.58913 ν d3 = 61.28
r 5 = -424.570 (aspherical surface) d 5 = (variable)
r 6 = -154.607 d 6 = 0.85 n d4 = 1.74320 ν d4 = 49.34
r 7 = 7.037 (aspherical surface) d 7 = 3.13
r 8 = -13.249 d 8 = 0.65 n d5 = 1.72916 ν d5 = 54.68
r 9 = -400.246 d 9 = 1.44 n d6 = 1.92286 ν d6 = 20.88
r 10 = -31.893 d 10 = (variable)
r 11 = ∞ (aperture) d 11 = 0.99
r 12 = -2601.620 d 12 = 1.14 n d7 = 1.90366 ν d7 = 31.31
r 13 = -48.956 d 13 = 11.00
r 14 = ∞ (virtual surface) d 14 = (variable)
r 15 = 11.696 (aspherical surface) d 15 = 4.30 n d8 = 1.49700 ν d8 = 81.61
r 16 = -13.542 (aspherical surface) d 16 = 0.15
r 17 = -186.492 d 17 = 0.75 n d9 = 1.88300 ν d9 = 40.76
r 18 = 18.191 d 18 = 1.76 n d10 = 1.67270 ν d10 = 32.10
r 19 = 88.947 d 19 = (variable)
r 20 = 13.139 d 20 = 3.44 n d11 = 1.49700 ν d11 = 81.61
r 21 = -22.439 d 21 = 0.70 n d12 = 1.90366 ν d12 = 31.31
r 22 = 12.447 d 22 = (variable)
r 23 = 37.219 d 23 = 2.40 n d13 = 1.58913 ν d13 = 61.28
r 24 = -15.857 (aspherical surface) d 24 = (variable)
r 25 = ∞ d 25 = 0.85 n d14 = 1.54771 ν d14 = 62.84
r 26 = ∞ d 26 = 0.50
r 27 = ∞ d 27 = 0.50 n d15 = 1.51633 ν d15 = 64.14
r 28 = ∞ d 28 = 0.60
r 29 = ∞ (image plane)
Aspheric coefficient 4th surface K = 0.000
A 4 = -5.42983 × 10 -6
A 6 = 1.38492 × 10 -8
A 8 = -1.14651 × 10 -10
A 10 = -1.84230 × 10 -11
Fifth side K = 0.000
A 4 = 4.72650 × 10 -6
A 6 = 8.65089 × 10 -8
A 8 = -2.41488 × 10 -9
A 10 = -1.57422 × 10 -12
Surface 7 K = 0.000
A 4 = -2.92122 × 10 -4
A 6 = 4.31976 × 10 -6
A 8 = -2.28965 × 10 -7
A 10 = 3.36891 × 10 -10
Surface 15 K = 0.597
A 4 = -1.90173 × 10 -4
A 6 = 1.68973 × 10 -6
A 8 = -4.82919 × 10 -8
A 10 = -2.13859 × 10 -11
16th surface K = 0.000
A 4 = 9.02659 × 10 -5
A 6 = 2.98286 × 10 -6
A 8 = -7.15741 × 10 -8
A 10 = 4.04396 × 10 -10
24th face K = 0.000
A 4 = 1.14189 × 10 -4
A 6 = -4.67268 × 10 -6
A 8 = 1.49193 × 10 -7
A 10 = -1.97043 × 10 -9
Zoom data (∞)
WE ST TE
f (mm) 5.93 17.72 57.17
F NO 3.29 3.74 5.12
2ω (°) 66.47 22.63 7.27
d 5 0.53 10.81 18.72
d 10 15.11 4.51 0.49
d 14 8.16 1.50 1.00
d 19 0.71 4.07 8.96
d 22 4.36 4.96 10.54
d 24 8.85 11.58 1.57.
実施例6
r1 = 653.204 d1 = 1.22 nd1 =1.84666 νd1 =23.78
r2 = 45.090 d2 = 2.75 nd2 =1.48749 νd2 =70.23
r3 = -1318.530 d3 = 0.15
r4 = 17.489 (非球面) d4 = 3.89 nd3 =1.58913 νd3 =61.28
r5 = -89.343 (非球面) d5 = (可変)
r6 = -69.566 d6 = 0.85 nd4 =1.74320 νd4 =49.34
r7 = 5.831 (非球面) d7 = 3.24
r8 = -17.167 d8 = 0.65 nd5 =1.72916 νd5 =54.68
r9 = 36.171 d9 = 1.67 nd6 =1.92286 νd6 =20.88
r10= -70.564 d10= (可変)
r11= ∞(絞り) d11= 0.99
r12= 270.431 d12= 1.22 nd7 =1.80610 νd7 =40.92
r13= -40.685 d13= 10.30
r14= ∞(仮想面) d14= (可変)
r15= 10.699 (非球面) d15= 5.20 nd8 =1.49700 νd8 =81.61
r16= -9.876 (非球面) d16= 0.30
r17= -17.644 d17= 0.75 nd9 =1.88300 νd9 =40.76
r18= 43.893 d18= 1.92 nd10=1.67270 νd10=32.10
r19= -34.846 d19= (可変)
r20= 24.139 d20= 3.18 nd11=1.49700 νd11=81.61
r21= -14.346 d21= 0.70 nd12=1.90366 νd12=31.31
r22= 20.703 d22= (可変)
r23= 78.738 (非球面) d23= 2.44 nd13=1.58313 νd13=59.46
r24= -13.952 (非球面) d24= (可変)
r25= ∞ d25= 0.85 nd14=1.54771 νd14=62.84
r26= ∞ d26= 0.50
r27= ∞ d27= 0.50 nd15=1.51633 νd15=64.14
r28= ∞ d28= 0.60
r29= ∞(像面)
非球面係数
第4面
K = 0.000
A4 = -1.16015×10-5
A6 = -4.58545×10-8
A8 = -3.84761×10-10
A10= -3.35581×10-12
第5面
K = 0.000
A4 = 1.33373×10-5
A6 = -4.99311×10-8
A8 = -5.87507×10-10
A10= 1.02292×10-12
第7面
K = 0.000
A4 = -5.20765×10-4
A6 = -2.71776×10-6
A8 = -1.24289×10-7
A10= -1.36863×10-8
第15面
K = -0.134
A4 = -1.02927×10-4
A6 = 1.88604×10-6
A8 = -3.12601×10-8
A10= -5.20707×10-10
第16面
K = 0.000
A4 = 2.18544×10-4
A6 = 4.30526×10-6
A8 = -1.07154×10-7
A10= 6.47450×10-10
第23面
K = 0.000
A4 = -4.32618×10-4
A6 = 2.38110×10-5
A8 = -1.34005×10-6
A10= 2.83017×10-8
第24面
K = 0.000
A4 = -2.89557×10-4
A6 = 1.99791×10-5
A8 = -1.10217×10-6
A10= 2.24820×10-8
ズームデータ(∞)
WE ST TE
f (mm) 5.45 16.62 52.65
FNO 3.45 3.90 4.99
2ω(°) 71.40 24.07 7.92
d5 0.51 9.94 16.76
d10 14.78 5.07 1.03
d14 8.04 1.00 0.94
d19 1.38 4.23 8.75
d22 3.93 4.95 9.98
d24 8.25 11.41 1.93 。
Example 6
r 1 = 653.204 d 1 = 1.22 n d1 = 1.84666 ν d1 = 23.78
r 2 = 45.090 d 2 = 2.75 n d2 = 1.48749 ν d2 = 70.23
r 3 = -1318.530 d 3 = 0.15
r 4 = 17.489 (aspherical surface) d 4 = 3.89 n d3 = 1.58913 ν d3 = 61.28
r 5 = -89.343 (aspherical surface) d 5 = (variable)
r 6 = -69.566 d 6 = 0.85 n d4 = 1.74320 ν d4 = 49.34
r 7 = 5.831 (aspherical surface) d 7 = 3.24
r 8 = -17.167 d 8 = 0.65 n d5 = 1.72916 ν d5 = 54.68
r 9 = 36.171 d 9 = 1.67 n d6 = 1.92286 ν d6 = 20.88
r 10 = -70.564 d 10 = (variable)
r 11 = ∞ (aperture) d 11 = 0.99
r 12 = 270.431 d 12 = 1.22 n d7 = 1.80610 ν d7 = 40.92
r 13 = -40.685 d 13 = 10.30
r 14 = ∞ (virtual surface) d 14 = (variable)
r 15 = 10.699 (aspherical surface) d 15 = 5.20 n d8 = 1.49700 ν d8 = 81.61
r 16 = -9.876 (aspherical surface) d 16 = 0.30
r 17 = -17.644 d 17 = 0.75 n d9 = 1.88300 ν d9 = 40.76
r 18 = 43.893 d 18 = 1.92 n d10 = 1.67270 ν d10 = 32.10
r 19 = -34.846 d 19 = (variable)
r 20 = 24.139 d 20 = 3.18 n d11 = 1.49700 ν d11 = 81.61
r 21 = -14.346 d 21 = 0.70 n d12 = 1.90366 ν d12 = 31.31
r 22 = 20.703 d 22 = (variable)
r 23 = 78.738 (aspherical surface) d 23 = 2.44 n d13 = 1.58313 ν d13 = 59.46
r 24 = -13.952 (aspherical surface) d 24 = (variable)
r 25 = ∞ d 25 = 0.85 n d14 = 1.54771 ν d14 = 62.84
r 26 = ∞ d 26 = 0.50
r 27 = ∞ d 27 = 0.50 n d15 = 1.51633 ν d15 = 64.14
r 28 = ∞ d 28 = 0.60
r 29 = ∞ (image plane)
Aspheric coefficient 4th surface K = 0.000
A 4 = -1.16015 × 10 -5
A 6 = -4.58545 × 10 -8
A 8 = -3.84761 × 10 -10
A 10 = -3.35581 × 10 -12
Fifth side K = 0.000
A 4 = 1.33373 × 10 -5
A 6 = -4.99311 × 10 -8
A 8 = -5.87507 × 10 -10
A 10 = 1.02292 × 10 -12
Surface 7 K = 0.000
A 4 = -5.20765 × 10 -4
A 6 = -2.71776 × 10 -6
A 8 = -1.24289 × 10 -7
A 10 = -1.36863 × 10 -8
Surface 15 K = -0.134
A 4 = -1.02927 × 10 -4
A 6 = 1.88604 × 10 -6
A 8 = -3.12601 × 10 -8
A 10 = -5.20707 × 10 -10
16th surface K = 0.000
A 4 = 2.18544 × 10 -4
A 6 = 4.30526 × 10 -6
A 8 = -1.07154 × 10 -7
A 10 = 6.47450 × 10 -10
Surface 23 K = 0.000
A 4 = -4.32618 × 10 -4
A 6 = 2.38110 × 10 -5
A 8 = -1.34005 × 10 -6
A 10 = 2.83017 × 10 -8
24th face K = 0.000
A 4 = -2.89557 × 10 -4
A 6 = 1.99791 × 10 -5
A 8 = -1.10217 × 10 -6
A 10 = 2.24820 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 5.45 16.62 52.65
F NO 3.45 3.90 4.99
2ω (°) 71.40 24.07 7.92
d 5 0.51 9.94 16.76
d 10 14.78 5.07 1.03
d 14 8.04 1.00 0.94
d 19 1.38 4.23 8.75
d 22 3.93 4.95 9.98
d 24 8.25 11.41 1.93.
以上の実施例1〜6の無限遠物点合焦時の収差図をそれぞれ図7〜図12に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す。各図中、“ω”は半画角を示す。 Aberration diagrams at the time of focusing on an object point at infinity in Examples 1 to 6 are shown in FIGS. In these aberration diagrams, (a) is the wide angle end, (b) is the intermediate state, (c) is the spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) at the telephoto end. ). In each figure, “ω” indicates a half angle of view.
上記実施例1〜6の条件式(1)〜(2)の値は次の通りである。 The values of conditional expressions (1) to (2) in Examples 1 to 6 are as follows.
実施例1 実施例2 実施例3 実施例4 実施例5 実施例6
(1)ft /f2 -8.72 -8.97 -9.00 -8.90 -8.03 -8.96
(2)ft /ftg12 -1.19 -1.42 -1.39 -1.34 -1.15 -1.32
。
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
(1) f t / f 2 -8.72 -8.97 -9.00 -8.90 -8.03 -8.96
(2) f t / f tg12 -1.19 -1.42 -1.39 -1.34 -1.15 -1.32
.
図13に、上記実施例3の変倍光学系において、第3レンズ群G3と第4レンズ群G4の間に光軸を略直角(例えば、90°)に屈曲させる表面反射ミラーRを光軸に対して45°の角度で配置した場合の広角端(a)と望遠端(c)での断面図を示す。他の実施例の変倍光学系においても同様である。 In FIG. 13, in the variable magnification optical system of Example 3, the surface reflection mirror R that bends the optical axis at a substantially right angle (for example, 90 °) between the third lens group G3 and the fourth lens group G4. Sectional drawing in the wide-angle end (a) and telephoto end (c) at the time of arrange | positioning at an angle of 45 degrees with respect to is shown. The same applies to the variable magnification optical systems of the other embodiments.
次に、以上のような表面反射ミラーRを配置する本発明の変倍光学系の収納のための機械的構成の1例を図14に示す。図14(a)は光学系の撮影時の断面図であり、図14(b)はその収納時の断面図である。 Next, FIG. 14 shows an example of a mechanical configuration for housing the variable magnification optical system of the present invention in which the surface reflection mirror R as described above is arranged. FIG. 14A is a cross-sectional view when the optical system is photographed, and FIG. 14B is a cross-sectional view when the optical system is housed.
光軸を中心に外側から内側へ、第1レンズ枠11、第1カム枠14、第2レンズ枠12、第2カム枠15、第3レンズ枠13が同心に嵌合状態にある。第1レンズ群G1、第2レンズ群G2、及び、第3レンズ群G3がそれぞれ第1レンズ枠11、第2レンズ枠12、第3レンズ枠13に保持されている。開口絞りSは第3レンズ枠13に保持されている。そして、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3それぞれは光軸方向への移動を案内するキーを備えている。
The
第1カム枠14、第2カム枠15は、それぞれ下端外周面の一部が外枠16の内周面の一部と嵌合状態にあり、それぞれの下端外周面に配置されたカムピンと外枠16の内周面に設けられたカム溝とが係合している。
Each of the
また、外枠16の上面に抜け止め片32が紫外線硬化型等の接着剤で接着されている。そして、第1レンズ枠11の下部に突起31が設けられている。
Further, a retaining
第1レンズ枠11は第1カム枠14の光軸方向移動に追従して光軸方向に移動するようい構成されている。
The
また、第1カム枠14の内周面に設けられたカム溝と第2レンズ枠12の外周面に配置されたカムピンとが係合している。
Further, a cam groove provided on the inner peripheral surface of the
また、第2カム枠15の内周面に設けられたカム溝と第3レンズ枠13の外周面に配置されたカムピンとが係合している。
The cam groove provided on the inner peripheral surface of the
そのため、第1カム枠14の回転に伴って第1レンズ枠11と第2レンズ枠12が所定軌跡で光軸方向に移動され、第2カム枠15の回転に伴って第3レンズ枠13が光軸方向の所定位置に移動される。そして、図14(a)に示された状態を保持するために、第1カム枠14と外枠16から第1レンズ枠11が飛び出さないように第1レンズ枠11の突起31は外枠16の抜け止め片32に当接して移動が規制されるように構成されている。
Therefore, the
第1カム枠14と第2カム枠15は図示されていないモータと連結されている。
The
この第3レンズ枠13の直下には外枠16に設けられた捩じりばねと支持軸からなり、回動支点軸Pを持つ回動レバー17が配置されており、この回動レバー17に反射ミラーRが接合されている。
A
そして、物体側から入射する光軸は、第3レンズ群G3の撮像素子側にある反射ミラーRによって約90゜折り曲げられて、第4レンズ群G4に入射する。外枠16の側面には第4レンズ群G4の光軸に対して垂直に開口部が設けられている。さらに、第4レンズ群G4と撮像素子Dとの間には、単独で光軸方向に移動する第5レンズ群G5、第6レンズ群G6が配置されている。
The optical axis incident from the object side is bent by about 90 ° by the reflecting mirror R on the image sensor side of the third lens group G3, and enters the fourth lens group G4. On the side surface of the
上記モータの回転軸の回転がねじを介して係合部に伝わり、第1レンズ枠11、第2レンズ枠12及び第3レンズ枠13がキー軸に沿って移動する。なお、第1レンズ枠11及び第2レンズ枠12がキー軸に沿って移動するための駆動用のモータと、第3レンズ枠13がキー軸に沿って所定位置に移動するための駆動用のモータとは、別々に設けることもできる。
The rotation of the rotation shaft of the motor is transmitted to the engaging portion via a screw, and the
このとき、収納時から撮影時や撮影時から収納時において、第4レンズ群G4、第5レンズ群G5及び第6レンズ群G6は外枠16の開口部から撮像素子D側に移動した状態において、第1カム枠14及び第2カム枠15が下降するようになっている。また、撮影時の状態において、第4レンズ群G4、第5レンズ群G5及び第6レンズ群G6は開口部よりも撮像素子D側に配置するようにしてもよい。さらに、第2カム枠15の内側の一部が回動レバー17に当接し、さらに第2カム枠15が下降し、回動レバー17の回動支点軸Pに付勢力が加わった状態でモータは停止する。
At this time, the fourth lens group G4, the fifth lens group G5, and the sixth lens group G6 are moved from the opening of the
以上が撮影時から収納時におけるズームレンズ(変倍光学系)の動作である。また、収納時から撮影時においては、モータの駆動軸を逆回転させて、第1カム枠14と第2カム枠15の移動が開始され、第1レンズ枠11、第2レンズ枠12及び第3レンズ枠13を収納状態から撮影状態に移動させる。外枠16の開口部の上面より上昇した状態に同期して、第4レンズ群G4、第5レンズ群G5及び第6レンズ群G6が撮影時の所定の位置に移動する。第1レンズ群G1、第2レンズ群G2及び第3レンズ群G3が撮影時の所望位置で停止すると、撮影時の状態となる。この構成と類似の技術は特許文献4の図1に記載されている。
The above is the operation of the zoom lens (variable magnification optical system) from photographing to storage. In addition, from the time of storage to the time of shooting, the motor drive shaft is reversely rotated to start the movement of the
次に、第4レンズ群G4と第4レンズ枠18、第5レンズ群G4と第5レンズ枠19、及び、第6レンズ群G6と第6レンズ枠20との関係について説明をする。
Next, the relationship between the fourth lens group G4 and the
第4レンズ枠18は、ガイドシャフト21の一方が挿通支持する挿通孔とモータM1の回転軸であるネジ軸22に支持されている。これにより、モータM1が回転すると第4レンズ枠18が光軸に沿う方向に移動するようになっている。
The
第5レンズ枠19、第6レンズ枠20は、ガイドシャフト21の一方が挿通支持する挿通孔とそれぞれモータM2、M3の回転軸であるネジ軸23、24に支持されている。これにより、それぞれモータM2、M3が回転すると、第5レンズ枠19、第6レンズ枠20が光軸に沿う方向に移動するようになっている。
The
次に、撮影時の状態から収納状態への動作を説明する。第4レンズ群G4を支持する第4レンズ枠18と、第5レンズ群G5を支持する第5レンズ枠19と、第6レンズ群G6を支持する第6レンズ枠20が撮像素子D側に移動した後に停止する。このとき、移動開始時は、第4レンズ枠18が外枠16から左側に移動した後に、第1レンズ枠11、第1カム枠14等が下降し、これらの枠と衝突しないようにする。
Next, the operation from the shooting state to the storage state will be described. The
G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群
G4…第4レンズ群
G5…第5レンズ群
G6…第6レンズ群
S…開口絞り
F…光学的ローパスフィルター
C…CCDのカバーガラス
I…CCDの像面
R…反射ミラー
P…回動支点軸
D…撮像素子
M1、M2、M3…モータ
11…第1レンズ枠
12…第2レンズ枠
13…第3レンズ枠
14…第1カム枠
15…第2カム枠
16…外枠
17…回動レバー
18…第4レンズ枠
19…第5レンズ枠
20…第6レンズ枠
21…ガイドシャフト
22、23、24…ネジ軸
31…突起
32…抜け止め片
G1 ... 1st lens group G2 ... 2nd lens group G3 ... 3rd lens group G4 ... 4th lens group G5 ... 5th lens group G6 ... 6th lens group S ... Aperture stop F ... Optical low pass filter C ... CCD Cover glass I ... CCD image plane R ... Reflection mirror P ... Rotating fulcrum axis D ... Imaging element M1, M2, M3 ...
Claims (5)
−10<ft /f2 <−7 ・・・(1)
−1.8≦ft /ftg12≦−0.92 ・・・(2)
ただし、ft は望遠端での全系の焦点距離、
f2 は第2レンズ群の焦点距離、
ftg12は望遠端における第1レンズ群と第2レンズ群の合成焦点距離、
である。 In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power and the largest zooming effect at the time of zooming, and fixed at the time of zooming having a shutter and an aperture stop. A third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a fifth lens group having a negative refractive power, and satisfying the following conditional expression: Variable magnification optical system.
−10 < ft / f 2 <−7 (1)
-1.8 ≦ f t / f tg12 ≦ -0.92 ··· (2)
Where f t is the focal length of the entire system at the telephoto end,
f 2 is the focal length of the second lens group
f tg12 is the combined focal length of the first lens group and the second lens group at the telephoto end,
It is.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006286008A JP2008102398A (en) | 2006-10-20 | 2006-10-20 | Variable power optical system and imaging apparatus using the same |
US11/974,155 US7630142B2 (en) | 2006-10-20 | 2007-10-10 | Bent type zoom optical system and imaging system using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006286008A JP2008102398A (en) | 2006-10-20 | 2006-10-20 | Variable power optical system and imaging apparatus using the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012057402A Division JP2012150499A (en) | 2012-03-14 | 2012-03-14 | Variable power optical system and imaging apparatus using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008102398A true JP2008102398A (en) | 2008-05-01 |
Family
ID=39436750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006286008A Pending JP2008102398A (en) | 2006-10-20 | 2006-10-20 | Variable power optical system and imaging apparatus using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008102398A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011090190A (en) * | 2009-10-23 | 2011-05-06 | Canon Inc | Zoom lens and imaging apparatus including the same |
JP2014048312A (en) * | 2012-08-29 | 2014-03-17 | Canon Inc | Image capturing device |
US8908285B2 (en) | 2012-09-04 | 2014-12-09 | Canon Kabushiki Kaisha | Zoom lens and image-pickup apparatus including the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04301612A (en) * | 1991-03-29 | 1992-10-26 | Canon Inc | Rear focus type zoom lens |
JPH05273466A (en) * | 1992-03-26 | 1993-10-22 | Canon Inc | Zoom lens of rear focusing system |
JPH06175024A (en) * | 1992-12-02 | 1994-06-24 | Canon Inc | Rear-focusing type zoom lens |
JPH09159917A (en) * | 1995-12-12 | 1997-06-20 | Copal Co Ltd | Rear focus type zoom lens |
JP2000284173A (en) * | 1999-04-01 | 2000-10-13 | Canon Inc | Rear focus type zoom lens |
JP2004170707A (en) * | 2002-11-20 | 2004-06-17 | Minolta Co Ltd | Imaging lens device and digital camera equipped with imaging lens device |
JP2006209100A (en) * | 2004-12-28 | 2006-08-10 | Konica Minolta Opto Inc | Zoom lens and imaging apparatus |
-
2006
- 2006-10-20 JP JP2006286008A patent/JP2008102398A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04301612A (en) * | 1991-03-29 | 1992-10-26 | Canon Inc | Rear focus type zoom lens |
JPH05273466A (en) * | 1992-03-26 | 1993-10-22 | Canon Inc | Zoom lens of rear focusing system |
JPH06175024A (en) * | 1992-12-02 | 1994-06-24 | Canon Inc | Rear-focusing type zoom lens |
JPH09159917A (en) * | 1995-12-12 | 1997-06-20 | Copal Co Ltd | Rear focus type zoom lens |
JP2000284173A (en) * | 1999-04-01 | 2000-10-13 | Canon Inc | Rear focus type zoom lens |
JP2004170707A (en) * | 2002-11-20 | 2004-06-17 | Minolta Co Ltd | Imaging lens device and digital camera equipped with imaging lens device |
JP2006209100A (en) * | 2004-12-28 | 2006-08-10 | Konica Minolta Opto Inc | Zoom lens and imaging apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011090190A (en) * | 2009-10-23 | 2011-05-06 | Canon Inc | Zoom lens and imaging apparatus including the same |
JP2014048312A (en) * | 2012-08-29 | 2014-03-17 | Canon Inc | Image capturing device |
US8908285B2 (en) | 2012-09-04 | 2014-12-09 | Canon Kabushiki Kaisha | Zoom lens and image-pickup apparatus including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3253405B2 (en) | Two-group zoom lens | |
JP4632724B2 (en) | Zoom lens | |
JP6021534B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2007248952A (en) | Bending variable power optical system | |
JP2006323212A (en) | Lens unit and imaging apparatus having the same | |
JP2006098686A (en) | Zoom lens and electronic imaging apparatus using the same | |
JPH09184982A (en) | Zoom lens | |
JP4845458B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2008083125A (en) | Zoom lens and imaging apparatus using the same | |
JP4931136B2 (en) | Zoom lens | |
JPH09179026A (en) | Variable power optical system | |
JP4766929B2 (en) | Image pickup apparatus having an optical path folding zoom lens | |
JP2007279541A (en) | Bending variable power optical system | |
JP5006514B2 (en) | Zoom lens and imaging apparatus having the same | |
JP7491416B2 (en) | Variable magnification optical system and optical equipment | |
JPH11109241A (en) | Zoom lens system | |
JPH07306362A (en) | Zoom lens | |
JP2007156078A (en) | Zoom lens system | |
JP2006308649A (en) | Imaging apparatus | |
JP5273172B2 (en) | Zoom lens, optical device, and zoom lens manufacturing method | |
JP4617128B2 (en) | Zoom lens and imaging apparatus having the same | |
JPH04223419A (en) | Small-sized 3-group zoom lens | |
JP5026766B2 (en) | Bending variable magnification optical system and imaging apparatus using the same | |
JP2006098685A (en) | Zoom lens and electronic imaging apparatus using the same | |
JP3432050B2 (en) | High zoom 3 group zoom lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120613 |