JPH03139607A - Power varying lens - Google Patents

Power varying lens

Info

Publication number
JPH03139607A
JPH03139607A JP27717389A JP27717389A JPH03139607A JP H03139607 A JPH03139607 A JP H03139607A JP 27717389 A JP27717389 A JP 27717389A JP 27717389 A JP27717389 A JP 27717389A JP H03139607 A JPH03139607 A JP H03139607A
Authority
JP
Japan
Prior art keywords
lens
lens group
power
group
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27717389A
Other languages
Japanese (ja)
Inventor
Norihiko Aoki
青木 法彦
Hirobumi Tsuchida
博文 槌田
Hiroshi Matsuzaki
弘 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP27717389A priority Critical patent/JPH03139607A/en
Priority to US07/603,327 priority patent/US5157550A/en
Publication of JPH03139607A publication Critical patent/JPH03139607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain a wide field angle at the wide-angle end and to increase the power variation ratio by providing a distributed index lens which has a refractive index distribution at right angles to the optical axis of at least one lens in a lens system. CONSTITUTION:The power varying lens consists of a 1st lens group which has negative refracting power, a 2nd lens group which has positive refracting power, a 3rd lens group, a 4th lens group, and a stop which is arranged closer to the image side than the 3rd lens group in order from the object side, and varies in power by varying the intervals of the respective lens groups, and the distributed index lens which has the refractive index distribution at right angles to the optical axis is provided in the lens system. The radial type distributed index lens has power in its medium and the radius of curvature can be made larger or smaller than that of a homogeneous lens with the same power, which is utilized to facilitate the compensation of various aberrations more. Consequently, the power varying lens for a camera which has the large power variation rate and the wide field angle at the wide-angle end is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、カメラ特にビデオカメラ用の変倍レンズに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a variable magnification lens for cameras, particularly video cameras.

[従来の技術] 現在、民生用ビデオカメラのレンズとして、ズム比が6
〜10で口径比がF/1.2〜F72.0のズムレンズ
が主流である。それは、上記のスペックが設計上および
ニーズ上で非常に効率の良い位置付けにあるからである
[Prior art] Currently, lenses for consumer video cameras have a zoom ratio of 6.
-10 and an aperture ratio of F/1.2 to F72.0 are mainstream. This is because the above specifications are extremely efficient in terms of design and needs.

上記のようなズームレンズは、−Mに4群ズームと呼ば
れるものが多く、例えば特開昭58102208号公報
、特開昭58−153913号公報等に示されているも
のがある。
Many of the above-mentioned zoom lenses are called -M four-group zoom lenses, such as those shown in Japanese Patent Laid-Open Nos. 58102208 and 153913/1980.

これらズームレンズは、一般に物体側より順に正の屈折
力を持ち変倍の際は固定でありフォーカシング機能を有
する第1レンズ群と、負の屈折力を持ち可動であって変
倍機能を有する第2レンズ群と、変倍に伴う像面の移動
を補正するために移動する第3レンズ群と、絞りと、正
の屈折力を持ち常時固定で結像作用を有する第4レンズ
群とから構成されている。
These zoom lenses generally consist of, in order from the object side, a first lens group that has positive refractive power and is fixed during zooming and has a focusing function, and a second lens group that has negative refractive power and is movable and has a zooming function. Consisting of two lens groups, a third lens group that moves to compensate for movement of the image plane due to zooming, an aperture, and a fourth lens group that has positive refractive power and is always fixed and has an imaging function. has been done.

このタイプの4群ズームレンズは、高変倍化と大口径化
を達成するのには適している。しかし第1レンズ群が正
のパワーを有しているために広画角化には不向きであっ
てワイド端での画角は、50″程度が限度である。現在
市販されている4群ズームレンズを用いると、屋内の撮
影では、画角が小さ(て満足出来る撮像の撮影が出来ず
、ユザーのニーズとしては画角のより広いズームレンズ
が望まれている。
This type of four-group zoom lens is suitable for achieving high variable power and large aperture. However, since the first lens group has positive power, it is not suitable for widening the angle of view, and the angle of view at the wide end is limited to about 50".Currently available 4-group zooms When using a lens, the angle of view is small when photographing indoors, making it impossible to take a satisfactory image, and users desire a zoom lens with a wider angle of view.

一方画角の広いズームレンズとして2群ズームがある。On the other hand, there is a two-group zoom lens that has a wide angle of view.

それは物体側より順に負の屈折力を持つ第1レンズ群と
、正の屈折力を持つ第2レンズ群とよりなり、これらの
レンズ群の相対的間隔を変化させて変倍を行なうもので
ある。
It consists of a first lens group with negative refractive power and a second lens group with positive refractive power in order from the object side, and magnification is changed by changing the relative spacing between these lens groups. .

この2群ズームレンズは、負のレンズ群が先行するため
に広角化には適しているが高変倍化と大口径化には適し
ておらず、変倍比が2程度のものが一般的である。
This two-group zoom lens has a negative lens group in front, so it is suitable for wide angles, but it is not suitable for high zoom ratios and large apertures, and the zoom ratio is generally around 2. It is.

又この2群ズームレンズは、絞りが第2レンズ群中にあ
り、変倍の際に第2群とともに移動するのが一般的であ
る。このように絞りを移動させることは、鏡枠構成上コ
スト高になり好ましくない。
In addition, in this two-group zoom lens, the aperture is generally located in the second lens group, and moves together with the second group during zooming. Moving the diaphragm in this manner is undesirable because it increases the cost of the lens frame structure.

広画角化をめざしたビデオカメラ用ズームレンズとして
、特開昭63−292106号公報、特開平1−191
’820号公報に記載されたレンズ系が知られている。
As a zoom lens for a video camera aiming at a wide angle of view, Japanese Patent Laid-Open No. 63-292106 and Japanese Patent Laid-Open No. 1-191
A lens system described in '820 is known.

前者は、負、正、正の三つのレンズ群よりなるズームレ
ンズであるが、絞りが第2レンズ群と共に動くので、鏡
枠構成上コスト高になる。又変倍に伴てFナンバーが変
化するので好ましくない。
The former is a zoom lens consisting of three lens groups, negative, positive, and positive, but since the aperture moves together with the second lens group, the cost is high due to the construction of the lens frame. Furthermore, the F-number changes as the magnification changes, which is not preferable.

又後者のズームレンズは、負、正、正の3群構成であり
、各レンズ群が可動であり、絞りが第2レンズ群と第3
レンズ群の間に固定されているが、変倍比が2〜3で小
さく、十分満足し得るものではない。
The latter zoom lens has a negative, positive, and positive three-group configuration, and each lens group is movable, and the aperture is divided between the second lens group and the third lens group.
Although it is fixed between the lens groups, the variable power ratio is small at 2 to 3, which is not fully satisfactory.

又負、正、正の3群構成のズームレンズとして、特開昭
64−40913号公報に記載されているものがある。
Furthermore, there is a zoom lens having a negative, positive, and positive three-group structure, which is described in Japanese Patent Laid-Open No. 40913/1983.

このレンズ系もズーム比が3倍弱であって、十分満足出
来るものではなく又ワイド端での画角が最大でも45°
程度であって、広画角とは言えない。
This lens system also has a zoom ratio of just under 3x, which is not fully satisfactory, and the maximum angle of view at the wide end is 45°.
It cannot be said that it has a wide angle of view.

[発明が解決しようとする課題] 以上のように従来のズームレンズは、変倍比が大であれ
ばワイド端での画角が狭く、ワイド端での画角が広けれ
ば変倍比が小であるという問題点を有していた。
[Problems to be solved by the invention] As described above, in conventional zoom lenses, if the zoom ratio is large, the angle of view at the wide end is narrow, and if the angle of view at the wide end is wide, the zoom ratio is small. It had the problem that.

本発明は、口径比がF/2.8程度、ワイド端の画角が
60°〜70°程度、変倍比が3〜5程度のスペックを
同時に満足するカメラ用変倍レンズを提供するものであ
る。
The present invention provides a variable magnification lens for cameras that simultaneously satisfies the specifications of an aperture ratio of approximately F/2.8, an angle of view at the wide end of approximately 60° to 70°, and a variable power ratio of approximately 3 to 5. It is.

[課題を解決するための手段] 本発明の変倍レンズは、物体側より順に負の屈折力を持
つ第1レンズ群と、夫々正の屈折力を持つ第2レンズ群
、第3レンズ群、第4レンズ群と、第3レンズ群よりも
像側に配置された絞りとよりなり、各レンズ群間の間隔
を変化させて変倍を行なうレンズ系で、レンズ系中に少
なくとも一枚の光軸と垂直な方向に屈折率分布を持つ屈
折率分布型レンズを有するものである。
[Means for Solving the Problems] The variable power lens of the present invention includes, in order from the object side, a first lens group having a negative refractive power, a second lens group, a third lens group each having a positive refractive power, A lens system consisting of a fourth lens group and an aperture located closer to the image side than the third lens group, and which performs magnification by changing the distance between each lens group, and at least one light beam in the lens system. This lens has a refractive index distribution type lens that has a refractive index distribution in a direction perpendicular to the axis.

上記の本発明の変倍レンズを用いる光軸と垂直な方向に
屈折率分布を持つ屈折率分布型レンズは、いわゆるラジ
アルタイプと呼ばれるもので、屈折率分布は、次の式で
表わされる。
A refractive index distribution type lens having a refractive index distribution in a direction perpendicular to the optical axis using the variable magnification lens of the present invention described above is a so-called radial type lens, and the refractive index distribution is expressed by the following equation.

N(hl = NO+ N+h”+ N2h’+ N3
h’+ ・・・ここでN。は光軸上の屈折率、hは光軸
から半径方向の距離、N (h)は光軸から半径りの所
での屈折率、N、、N2.N3.・・・は夫々2次、4
次、6次、・・・の定数である。
N(hl = NO+ N+h"+ N2h'+ N3
h'+...N here. is the refractive index on the optical axis, h is the distance in the radial direction from the optical axis, N (h) is the refractive index at a radial position from the optical axis, N, , N2. N3. ...are respectively secondary and 4
It is a constant of order, sixth order, etc.

ラジアルタイプの屈折率分布型レンズは、その媒質にパ
ワーを有しており、同じパワーの均質レンズに比べて面
の曲率半径を大きくしたり小さくしたりすることが可能
であるので、これを利用して諸収差の補正が一層容易に
なる。また各波長毎の屈折率分布を変化させることによ
りレンズ単体で色収差の補正が出来る。
A radial type gradient index lens has power in its medium, and it is possible to make the radius of curvature of the surface larger or smaller than a homogeneous lens with the same power, so this can be used. This makes it easier to correct various aberrations. Furthermore, by changing the refractive index distribution for each wavelength, chromatic aberration can be corrected with a single lens.

本発明の変倍レンズは、前記のようなレンズ構成のレン
ズ系に、上記ラジアルタイプの屈折率分布型レンズを少
なくとも1枚用いて、本発明の目的を達成し得るように
したものである。
The variable power lens of the present invention uses at least one radial type gradient index lens described above in a lens system having the above-described lens configuration, thereby achieving the object of the present invention.

本発明の変倍レンズは、前記のように負のレンズ群先行
の構成であるため、変倍は正の屈折力を有する第2レン
ズ群と第3レンズ群を移動させて行なう。そのため大き
な変倍比な得るためには、第2レンズ群と第3レンズ群
の移動量を大きくすればよいが、その場合レンズ系の全
長が大になる。また小さな移動量で大きな変倍比を得る
ためには、第2レンズ群と第3レンズ群のパワーを強く
すればよいが、これらレンズ群で発生する収差量が大に
なり、レンズ枚数を増やさないとならないので結果的に
は大きな変倍比を得ることが難しくなる。
Since the variable power lens of the present invention has a configuration in which the negative lens group precedes the lens as described above, variable power is performed by moving the second lens group and the third lens group having positive refractive power. Therefore, in order to obtain a large zoom ratio, it is sufficient to increase the amount of movement of the second lens group and the third lens group, but in this case, the total length of the lens system increases. In addition, in order to obtain a large zoom ratio with a small amount of movement, it is possible to increase the power of the second and third lens groups, but this increases the amount of aberration generated in these lens groups, making it necessary to increase the number of lenses. As a result, it becomes difficult to obtain a large zoom ratio.

前述のようにラジアルタイプの屈折率分布型レンズは、
その媒質にパワーを有しており、例えば正レンズに媒質
が正のパワーになるような屈折率分布を持たせれば、均
質レンズと同じ曲率半径でも全体のパワーを強くするこ
とが出来る。
As mentioned above, the radial type gradient index lens is
The medium has power, and for example, if a positive lens has a refractive index distribution such that the medium has positive power, the overall power can be increased even with the same radius of curvature as a homogeneous lens.

本発明においては、前記のレンズ構成で、レンズ系中に
屈折率分布型レンズを用いて目的にかなった変倍レンズ
を実現したものであるが、特に第2、第3のレンズ群中
にこれを用いることは望ましい。そして全長を適度に保
ったまま大きな変倍比を得るためには、第2レンズ群又
は第3レンズ群に次の条件(1)を満足するような屈折
率分布型レンズを少なくとも1枚用いることが望ましい
In the present invention, with the lens configuration described above, a variable magnification lens is realized by using a gradient index lens in the lens system, and in particular, this lens is used in the second and third lens groups. It is desirable to use In order to obtain a large zoom ratio while keeping the overall length at a suitable level, at least one gradient index lens that satisfies the following condition (1) should be used in the second or third lens group. is desirable.

fil  −1,0<NIPfw”<0ただしNIPは
第2レンズ群又は第3レンズ群のいずれかに少なくとも
1枚用いた屈折率分布型レンズのd線に対する2次の屈
折率分布係数、f、はワイド端における全系の焦点距離
である。
fil −1,0<NIPfw”<0 However, NIP is the second-order refractive index distribution coefficient for the d-line of the refractive index gradient lens used at least one in either the second lens group or the third lens group, f, is the focal length of the entire system at the wide end.

上記条件(1)の下限を越えると屈折率分布型レンズの
媒質の影響が大きくなりすぎて、特にテレ側の軸外収差
が悪化し好ましくない。また上限を越えると必要な正の
屈折力を得るためには面のパワーが強くなりすぎてその
面で発生する収差量が大きくなり大きな変倍比を保った
ままレンズ全系の収差を良好に補正することが出来なく
なる。
If the lower limit of the above condition (1) is exceeded, the influence of the medium of the gradient index lens becomes too large, which worsens off-axis aberrations, especially on the telephoto side, which is not preferable. In addition, if the upper limit is exceeded, the power of the surface becomes too strong to obtain the necessary positive refractive power, and the amount of aberration generated on that surface increases. It becomes impossible to correct it.

又本発明の変倍レンズは、像側に強い正のレンズ群を多
数配置しているために、ワイド端からテレ端にかけての
球面収差が補正不足になる。これは、特にマージナル光
線の屈折が大きい第4レンズ群の影響が大きい。そのた
め、第4レンズ群に屈折率分布型レンズを導入してその
媒質あるいは面に屈折率分布がついていることによる補
正項で正の球面収差を発生させて互いにキャンセルする
ようにすれば、ワイド端からテレ端までの球面収差を良
好に補正できる。そこで次の条件(2)を満足すること
が望ましい。
Further, since the variable power lens of the present invention has a large number of strong positive lens groups arranged on the image side, spherical aberration from the wide end to the telephoto end is insufficiently corrected. This is particularly affected by the fourth lens group, which has a large refraction of marginal rays. Therefore, if a gradient index lens is introduced into the fourth lens group and the correction term is generated by the medium or surface having a gradient index, positive spherical aberration will be generated and cancel each other out. Spherical aberration can be well corrected from to the telephoto end. Therefore, it is desirable to satisfy the following condition (2).

[21N1141  ・fw”<1.0ただしN + 
i41 は第4レンズ群中に少なくとも1枚用いた屈折
率分布型レンズのd線に対する2次の屈折率分布係数N
、の値である。
[21N1141 ・fw”<1.0 However, N +
i41 is the second-order refractive index distribution coefficient N for the d-line of at least one refractive index distribution type lens used in the fourth lens group.
, is the value of .

条件(2)の上限を越えると、ワイド端からテレ端にか
けて球面収差を良好に補正することが出来な(なる。
If the upper limit of condition (2) is exceeded, spherical aberration cannot be satisfactorily corrected from the wide end to the telephoto end.

更に本発明のレンズ系は、ワイド端での画角が60°以
上と広画角であるため、特にワイド側で発生する負の歪
曲収差が問題になる。それは主に強い負のパワーを持っ
た第1レンズ群の影響である。これを補正するためには
、第ルンズ群中の正のパワーを強くするか負レンズのパ
ワーを弱くすればよい。しかしこの場合第1レンズ群の
パワーが弱くなってしまい、必要とするワイド端での画
角を得ることが出来なくなる。そこで第1レンズ群に屈
折率分布型レンズを用いればワイド側での負の歪曲収差
を補正するのに効果的である。
Furthermore, since the lens system of the present invention has a wide angle of view of 60° or more at the wide end, negative distortion that occurs particularly at the wide end becomes a problem. This is mainly due to the influence of the first lens group, which has strong negative power. In order to correct this, it is sufficient to increase the positive power in the first lens group or to weaken the power of the negative lens. However, in this case, the power of the first lens group becomes weak, making it impossible to obtain the required angle of view at the wide end. Therefore, if a gradient index lens is used in the first lens group, it is effective to correct negative distortion on the wide side.

次に変倍レンズにおいては、レンズ系の全長。Next, for variable power lenses, the total length of the lens system.

絞りおよびFナンバーを固定することが望ましいが、収
差補正が極めてむずかしくなる。
Although it is desirable to fix the aperture and F number, it becomes extremely difficult to correct aberrations.

本発明においては、まず広画角化を達成するために従来
の負、正よりなる2群ズームレンズを基本とし、第1レ
ンズ群を負のパワー、第2レンズ群から第4レンズ群ま
での全体を正のパワーとした。
In order to achieve a wide angle of view, the present invention is based on a conventional two-group zoom lens consisting of a negative and a positive zoom lens, with the first lens group having negative power and the second to fourth lens groups. The whole was given positive power.

一般にズームレンズを操作する場合、変倍中もレンズ系
の全長が変化しない方が操作し易く、又Fナンバーの変
化しないレンズ系がユーザーのニズとしては高い。また
ビデオカメラ用のレンズ系の場合絞りは電気的に開閉す
るため、−Mに銀塩カメラの機械式の絞りよりも大きく
て重い。そのため変倍のために絞りが移動するのは、メ
カ的にもコスト的にも好ましくなく、変倍の際に絞りの
位置が常に固定されていることが望まれる。前記のよう
な4群構成のズームレンズにおいて上記の各要件を満足
させるためには、第1レンズ群と、絞りと、第4レンズ
群とが変倍に際して常時固定であることが望ましい。
In general, when operating a zoom lens, it is easier to operate it if the overall length of the lens system does not change even during zooming, and users have high needs for a lens system whose F number does not change. In addition, in the case of a lens system for a video camera, the aperture is opened and closed electrically, so it is larger and heavier than the mechanical aperture of a silver halide camera. Therefore, it is undesirable for the diaphragm to move to change the magnification, both from a mechanical and cost perspective, and it is desirable that the diaphragm position is always fixed when changing the magnification. In order to satisfy each of the above requirements in a zoom lens having a four-group structure as described above, it is desirable that the first lens group, the diaphragm, and the fourth lens group remain fixed at all times during zooming.

変倍レンズにおいて第ルンズ群を固定させるためには、
第37図に示すように、第2レンズ群から第4レンズ群
までの全体を、第ルンズ群にて形成された虚像を物点と
像点との距離を一定にしてリレーする系として構成すれ
ばよい。更に絞りと第4レンズ群を夫々固定したまま大
きな変倍比を得るためには、第2レンズ群と第3レンズ
群を変倍の際に移動させ、更に両レンズ群を強い正のパ
ワーにすることが必要である。
In order to fix the lens group in a variable power lens,
As shown in Fig. 37, the entire structure from the second lens group to the fourth lens group is configured as a system that relays the virtual image formed by the lens group while keeping the distance between the object point and the image point constant. Bye. Furthermore, in order to obtain a large zoom ratio while keeping the aperture and fourth lens group fixed, the second and third lens groups must be moved during zooming, and both lens groups should be given strong positive power. It is necessary to.

上記のような構成のレンズ系で、第2レンズ群から第4
レンズ群までの全体の結像倍率の絶対値は、ワイド側で
小さくテレ側で大きくなる。そのため第2レンズ群から
第4レンズ群までの全体の系の主点は、ワイド側からテ
レ側に行くにしたがって前方へ移動する。ところで第2
レンズ群から第4レンズ群までの中で絞りは第4レンズ
群付近に固定されている。そのためにテレ側では、第2
レンズ群から第4レンズ群までの全系の主点に対して絞
りが大きく後方に離れることになる。これ1 によってテレ側での入射瞳が遠くなり、テレ側の軸外光
線の光線高が高くなってその収差補正が難しくなる。更
にFナンバーを一定とするとワイド側に比ベテレ側の光
束が太くなるため軸外収差のみでなく軸上収差も補正し
にくくなる。
In the lens system configured as described above, from the second lens group to the fourth lens group,
The absolute value of the overall imaging magnification up to the lens group is small on the wide side and large on the telephoto side. Therefore, the principal point of the entire system from the second lens group to the fourth lens group moves forward from the wide-angle side to the telephoto side. By the way, the second
Among the lens groups to the fourth lens group, the aperture is fixed near the fourth lens group. Therefore, on the tele side, the second
The aperture diaphragm is far away from the principal point of the entire system from the lens group to the fourth lens group. As a result of this 1, the entrance pupil on the telephoto side becomes distant, and the ray height of off-axis rays on the telephoto side increases, making it difficult to correct the aberration. Furthermore, if the F number is kept constant, the light beam on the wide-angle side becomes thicker than that on the telephoto side, making it difficult to correct not only off-axis aberrations but also axial aberrations.

本発明のような構成の変倍レンズで、テレ側の入射瞳を
遠ざけることなく、言い換えればテレ側での収差を悪化
させることなく変倍比な大にするためには、第2レンズ
群と第3レンズ群のパワを強くするか変倍の際の移動量
を大にしなければならない。ところが変倍の際の移動量
を大きくするとそれだけテレ側の入射瞳が遠くなり、パ
ワーを強くすると収差の発生量が大になり、レンズ枚数
を増やさなければ補正出来ない。その結果、第2レンズ
群と第3レンズ群の厚みが増してテレ側での入射瞳が遠
くなって収差補正が困難になる。
In order to increase the variable power ratio of a variable power lens configured as in the present invention without moving the entrance pupil on the telephoto side away, or in other words, without worsening aberrations on the telephoto side, it is necessary to Either the power of the third lens group must be increased or the amount of movement during zooming must be increased. However, if the amount of movement during zooming is increased, the entrance pupil on the telephoto side will be farther away, and if the power is increased, the amount of aberration will increase, and this can only be corrected by increasing the number of lenses. As a result, the thicknesses of the second and third lens groups increase and the entrance pupil on the telephoto side becomes distant, making it difficult to correct aberrations.

以上、最も収差補正の困難である変倍中にレンズ系の全
長、絞り位置、Fナンバーが変化しない4群構成のズー
ムレンズについて述べた。しかしニーズによっては、変
倍中に全長や絞り位置やF2 ナンバー等を可変にする方が望ましいこともある。それ
は全長、絞り位置、Fナンバーを可変とする方がこれら
を固定する場合よりも自由度が増大した分、設計が容易
になり、これらを可変としても本発明の目的を達成し得
るものである。また、本発明のようなレンズ系の場合、
絞りは電気的に開閉するため電気回路等で大きくなり重
くなるのが一般的であるので、これを変倍中に移動させ
ることは、機械的にも負担となり又レンズ系が大型化す
る。したがって本発明のレンズ系においては、変倍中絞
り位置が固定であることが好ましい。
So far, we have described a four-group zoom lens in which the overall length of the lens system, aperture position, and F-number do not change during zooming, which is the most difficult aberration correction process. However, depending on your needs, it may be desirable to make the overall length, aperture position, F2 number, etc. variable during zooming. This is because the degree of freedom is greater when the overall length, aperture position, and F-number are made variable than when they are fixed, which makes the design easier, and the object of the present invention can be achieved even if these are made variable. . In addition, in the case of a lens system like the present invention,
Since the diaphragm is opened and closed electrically, it is generally large and heavy due to electrical circuits, so moving it during zooming is a mechanical burden and increases the size of the lens system. Therefore, in the lens system of the present invention, it is preferable that the aperture position is fixed during zooming.

変倍中レンズ系の全長やFナンバーが可変である場合も
含めて、絞りの位置を固定した時に諸収差を一層良好に
補正するためには次の条件(3)。
In order to better correct various aberrations when the aperture position is fixed, the following condition (3) is required, even when the overall length of the lens system and F-number are variable during zooming.

(4)を満足することが望ましい。It is desirable to satisfy (4).

(3)  −0,6<β<−0,2 +4)    O<fw/f4<0.5ただしβはワイ
ド端における第2レンズ群、第3レンズ群、第4レンズ
群の合成の結像倍率、f、はワイド端における全系の焦
点距離、f4は第4レンズ群の焦点距離である。
(3) -0,6<β<-0,2 +4) O<fw/f4<0.5, where β is the composite image formation of the second, third, and fourth lens groups at the wide end The magnification, f, is the focal length of the entire system at the wide end, and f4 is the focal length of the fourth lens group.

条件(3)の下限を越えるとテレ側における第2、第3
.第4レンズ群の合成の結像倍率が負の大きな値になり
、テレ側でこれらレンズ群全系の主点が物体側に寄る。
If the lower limit of condition (3) is exceeded, the second and third
.. The combined imaging magnification of the fourth lens group becomes a large negative value, and the principal point of the entire system of these lens groups moves toward the object side on the telephoto side.

そのために入射瞳が遠くなりすぎてテレ側での軸外収差
が悪化するので好ましくない。条件(3)の上限を越え
ると、それに伴い第ルンズ群の負のパワーが大になり、
第ルンズ群で発生する収差、特にワイド側での負の歪曲
収差が補正しきれなくなり好ましくない。
This makes the entrance pupil too far away, which worsens off-axis aberrations on the telephoto side, which is undesirable. When the upper limit of condition (3) is exceeded, the negative power of the Luns group increases accordingly,
This is not preferable because aberrations occurring in the lens group, especially negative distortion on the wide side, cannot be corrected completely.

条件(4)は、第4レンズ群のパワーを規定したもので
、その下限を越えるとテレ側において第2、第3レンズ
群のマージナル光線の光線高が高くなりすぎてテレ側で
の収差補正が難しくなるので好ましくない。条件(4)
の上限を越えると第4レンズ群のパワーが強くなりすぎ
て、そのレンズ群で発生する収差が大になりこれを補正
することが困難になる。
Condition (4) specifies the power of the fourth lens group; if the lower limit is exceeded, the ray height of the marginal rays of the second and third lens groups becomes too high on the telephoto side, making it difficult to correct aberrations on the telephoto side. This is not desirable because it makes it difficult. Condition (4)
If the upper limit of is exceeded, the power of the fourth lens group becomes too strong, and the aberration generated in that lens group increases, making it difficult to correct it.

又、条件(3)を満足するようにすると、第1しンズ群
の負のパワーが強くなり、第1レンズ群で発生する軸外
収差、特にワイド側での負の歪曲収差が大になる。これ
を防ぐためには、第1レンズ群のうち少なくとも1面を
光軸から離れるにしたがって、負の屈折力が減少するよ
うな非球面にすることが効果的である。この非球面は、
光軸との交点を原点とし、光軸方向にX軸を、光軸に垂
直な方向にy軸をとるとき次の式にて表わされるもので
ある。
Furthermore, if condition (3) is satisfied, the negative power of the first lens group becomes stronger, and the off-axis aberrations generated in the first lens group, especially the negative distortion on the wide side, become larger. . To prevent this, it is effective to make at least one surface of the first lens group an aspheric surface whose negative refractive power decreases as the distance from the optical axis increases. This aspheric surface is
When the origin is the intersection with the optical axis, the X axis is in the direction of the optical axis, and the y axis is in the direction perpendicular to the optical axis, it is expressed by the following equation.

ただしrは基準球面の曲率半径、Pは円錐定数、A2□
は非球面係数である。
However, r is the radius of curvature of the reference sphere, P is the conic constant, A2□
is the aspheric coefficient.

ここで用いる非球面は、次の条件(5)を満足すること
が望ましい。
It is desirable that the aspherical surface used here satisfies the following condition (5).

(5)   Σ1Δx l/h< 0.4  (y= 
yic)ただし八Xは非球面の基準球面からの変位量、
hは最大像高、yは光軸からの高さ、Y、:cはこの面
でのワイド端における最大画角の主光線高である。また
Σ1Δx1は、第1レンズ群に用いたすべて5 の非球面についてのΔXの絶対値の総和を意味している
(5) Σ1Δx l/h< 0.4 (y=
yic) However, 8X is the amount of displacement of the aspherical surface from the reference spherical surface,
h is the maximum image height, y is the height from the optical axis, and Y:c is the chief ray height at the maximum angle of view at the wide end on this plane. Further, Σ1Δx1 means the sum of the absolute values of ΔX for all five aspherical surfaces used in the first lens group.

この条件(5)の範囲を越えると歪曲収差が補正過剰に
なる上、コマ収差も増大するので好ましくない。
If the range of condition (5) is exceeded, distortion will be overcorrected and coma will also increase, which is not preferable.

又、本発明の変倍レンズにおいては、レンズ最終面と像
面との間に光学的ローパスフィルター等の光学部材を配
置する必要があるためにレンズ系のバックフォーカスを
十分とる必要がある。そのためには、レンズ系全系の後
側主点位置を出来るだけ像側にすることが望ましい。
Further, in the variable power lens of the present invention, it is necessary to arrange an optical member such as an optical low-pass filter between the final lens surface and the image plane, and therefore, it is necessary to provide a sufficient back focus of the lens system. For this purpose, it is desirable that the position of the rear principal point of the entire lens system be as close to the image side as possible.

本発明では、絞りのすぐ像側のレンズを物体側に凹面を
向けたメニスカスレンズにすることによって軸外収差、
への影響を小さくしたままレンズ系のバックフォーカス
を十分とることに成功している。尚ここで言うメニスカ
スレンズとは、レンズ1枚の場合はそのものな又接合レ
ンズの場合は接合レンズ全体がメニスカス形状であるも
のをさす。
In the present invention, by using a meniscus lens with a concave surface facing the object side as the lens immediately on the image side of the aperture, off-axis aberrations can be reduced.
We succeeded in obtaining sufficient back focus for the lens system while minimizing the effect on the lens. The term "meniscus lens" as used herein refers to a single lens, or a cemented lens in which the entire cemented lens has a meniscus shape.

このメニスカスレンズは、次の条件(6)を満足 6 することが望ましい。This meniscus lens satisfies the following condition (6) 6 It is desirable to do so.

f6)  0.1<r、/rb <2.0ただしr a
 + r bは夫々絞りのすぐ像側のレンズの最も物体
側の面および最も像側の面の曲率半径である。
f6) 0.1<r, /rb<2.0 but r a
+ r b is the radius of curvature of the most object-side surface and the most image-side surface of the lens immediately on the image side of the aperture, respectively.

条件(6)の下限を越えるとそのレンズの物体側の面で
近軸光線を跳ね上げることが出来なくなり、レンズ系の
後側主点位置が物体側に寄り十分なバックフォーカスを
得ることが出来なくなる。
If the lower limit of condition (6) is exceeded, paraxial rays will not be able to bounce up on the object side surface of the lens, and the rear principal point of the lens system will move toward the object side, making it impossible to obtain sufficient back focus. It disappears.

また上限を越えると絞りに対する対称性が崩れ軸外収差
が悪化するばかりか球面収差が補正不足になり好ましく
ない。
Moreover, if the upper limit is exceeded, the symmetry with respect to the aperture is broken and off-axis aberrations worsen, and spherical aberrations become insufficiently corrected, which is undesirable.

更に本発明の変倍レンズにおいては、レンズ系全体又は
第1レンズ群のみを繰り出してフォーカシング出来るの
は勿論であるが第4レンズ群の全体又は一部を繰り出す
ことによってもフォーカシングを行なうことも出来る。
Furthermore, in the variable power lens of the present invention, focusing can be performed not only by extending the entire lens system or only the first lens group, but also by extending the entire or part of the fourth lens group. .

一般に第1レンズ群を繰り出してフォカーカシングを行
なう場合、変倍してもフォーカシングのための繰り出し
量が変化しないという特徴がある。しかし繰り出すレン
ズが重いことや繰り出した時に光線がけられ易い欠点を
有している。
Generally, when focusing is performed by extending the first lens group, there is a feature that the amount of extension for focusing does not change even when the power is changed. However, it has the disadvantage that the lens that is fed out is heavy and that the light beam is easily cut off when it is fed out.

一方、第4レンズ群によりフォーカシングする場合は、
繰り出すレンズが軽くフォーカシングの際の負荷が小さ
いという特徴を有している。そのために第4レンズ群に
よるフォーカシングは、オドフォーカスにおける合焦速
度を早めるためには非常に有効である。
On the other hand, when focusing with the fourth lens group,
The lens is lightweight and the load during focusing is small. For this reason, focusing using the fourth lens group is very effective for increasing the focusing speed in odofocus.

[実施例] 次に本発明の変倍レンズの各実施例を示す。[Example] Next, examples of the variable power lens of the present invention will be shown.

実施例1 f=7〜28mm 、 F/2.8 。Example 1 f=7-28mm, F/2.8.

2 ω= 62.1’ 〜15.5’ 、最高像高4.
0nvr、 = 37.1060 d、 =1.1017   n+=1.69680  
 νI =56.49rz=11.4099  (非球
面) dz= 3.7939 r3=−21,8892 d、−1,1034n、= 1.69680   v2
= 56.49r、= −820,0071 d4=0.7349 r5= −3281,9987 d、= 1.8017   屈折率分布型レンズr6=
−50,2140 d6=DI(可変) rフ= 48.7137 dy” 2.1621   n4= ’1.72916
   v−= 54.68r8: −75,4351 d、=02(可変) rs+: 25.3157 d、=1.0000   n、=1.80518   
νs =25.43r、、 = 12.8889 dlo = 5.2047  na= 1.69680
  1)6= 56.49r11 =−57,1774 d++=Ds(可変) r12=(至)(絞り) dB =1.6094 r+a =−5,4284 dl−= 1.3157  n7= 1.72916 
  vt = 54−68r+4=−6,3605 9 d、4 =3.4949 r+s =13.6586  (非球面)dls  =
 0.8002  na= 1.78470    V
8 = 26.22r+a  =5.9188 d、6 =0.9758 r+y  =10.3.754 dl7= 3.5289  n、P= 1.7?250
  v、q、−= 49.66r+s  =−28,7
996 非球面係数 (第2面) P = 1.0000 、  A、=−0,42810
X 10−’A6=−0.19924x lロー’  
、   A、=−0,38654xlO−8(第15面
) P  = 1.0000  、   A4=  0.3
9447xlO−”A、=  0.55540xlO−
’  、   A、=  0.24268x 10−’
f    7    14   28 D、   26.678  8.031  0.504
13、  0.804  9.775  0.502D
、   0.800 10.477 27.276屈折
率分布型レンズ  O NONI            N2d線 1.80
518  −0.91875x10−5  0.101
40X10−5C線1.79610−0.98228x
10−50.11050xlO−5F m 1.827
76 −0.77051x 10−’  0.8017
3x 10−6β=−0,392、fw/f、=0.2
191 Ax  /h=0.0265  、ra/rb
=0.854実施例2 f = 7〜28mm 、 F/2−8 。
2 ω = 62.1' to 15.5', maximum image height 4.
0nvr, = 37.1060 d, = 1.1017 n+ = 1.69680
νI = 56.49rz = 11.4099 (aspherical surface) dz = 3.7939 r3 = -21,8892 d, -1,1034n, = 1.69680 v2
= 56.49r, = -820,0071 d4 = 0.7349 r5 = -3281,9987 d, = 1.8017 Gradient index lens r6 =
-50,2140 d6=DI (variable) rf=48.7137 dy" 2.1621 n4= '1.72916
v-=54.68r8: -75,4351 d,=02 (variable) rs+: 25.3157 d,=1.0000 n,=1.80518
νs = 25.43r,, = 12.8889 dlo = 5.2047 na = 1.69680
1) 6 = 56.49r11 = -57,1774 d++ = Ds (variable) r12 = (to) (aperture) dB = 1.6094 r+a = -5,4284 dl- = 1.3157 n7 = 1.72916
vt = 54-68r+4 = -6,3605 9 d, 4 = 3.4949 r+s = 13.6586 (Aspherical surface) dls =
0.8002 na= 1.78470V
8 = 26.22r+a = 5.9188 d, 6 = 0.9758 r+y = 10.3.754 dl7 = 3.5289 n, P = 1.7?250
v, q, -= 49.66r+s = -28,7
996 Aspheric coefficient (second surface) P = 1.0000, A, = -0,42810
X 10-'A6=-0.19924x llow'
, A, = -0,38654xlO-8 (15th surface) P = 1.0000, A4 = 0.3
9447xlO-”A, = 0.55540xlO-
' , A, = 0.24268x 10-'
f 7 14 28 D, 26.678 8.031 0.504
13, 0.804 9.775 0.502D
, 0.800 10.477 27.276 Gradient index lens O NONI N2d line 1.80
518 -0.91875x10-5 0.101
40X10-5C wire 1.79610-0.98228x
10-50.11050xlO-5F m 1.827
76 -0.77051x 10-' 0.8017
3x 10-6β=-0,392, fw/f,=0.2
191 Ax /h=0.0265, ra/rb
=0.854 Example 2 f = 7-28mm, F/2-8.

2 ω= 62.1” 〜15.5°、最高像高4.0
mmr+ = 37.1206 d、 =1.1O17n、 =1.69680   v
、 =56.49r2= 11.4530  (非球面
)d、= 3.7890 r、=−21,1381 d、= 1.1034 r4=−789,1964 d4=o、7384 r5=−3134,7036 n2= 1.69680 ν2 =56.49 ds= 1.8017 n3= 1.80518 ν3 =25.43 r6= −49,3024 d、=D、 (可変) ry” 48.7609 d?= 2.2958   屈折率分布型レンズra 
= −76、4592 da=D2(可変) ro=25.6297 d、 = 1.0000   jl、= 1.8051
8   v、 ” 25.43rl o = 12.7
260 d、、=5.2047 1.=1.69680   シ
ロ=56.49r、、 ”−53,9610 dz=Da(可変) rl□二〇〇(絞り) d、□= 1.6094 r+i =−5,4462 d、3 =1.3173   口、= 1.72916
     シフ =54.68r+* =−6,337
5 d、4=3.4934 r+s =14.0512  (非球面)dl5 =0
.8002   n、=1.78470     v、
  =26.22r+s = 5.8979 d、6 =0.9728 r、、  = 10.2265 d、、  =3.9445 r、、  =−29,0317 非球面係数 (第2面) P =1.ロロOO,A4= A、= −0,19965x 1O−6(第15面) P=1.0000.  A4= A、= 0.70555x 10−’ 7 D、   26.54L D、   0.804 D、   0.800 屈折率分布型レンズ N。
2 ω = 62.1” ~ 15.5°, maximum image height 4.0
mmr+ = 37.1206 d, = 1.1O17n, = 1.69680 v
, =56.49r2= 11.4530 (aspherical surface) d, = 3.7890 r, =-21,1381 d, = 1.1034 r4=-789,1964 d4=o, 7384 r5=-3134,7036 n2 = 1.69680 ν2 =56.49 ds= 1.8017 n3= 1.80518 ν3 =25.43 r6= -49,3024 d, =D, (variable) ry” 48.7609 d?= 2.2958 Refraction rate distribution type lens ra
= -76, 4592 da=D2 (variable) ro=25.6297 d, = 1.0000 jl, = 1.8051
8 v, ” 25.43 rl o = 12.7
260 d,,=5.2047 1. =1.69680 White=56.49r,, ”-53,9610 dz=Da (variable) rl□200 (aperture) d,□=1.6094 r+i =-5,4462 d,3 =1.3173 Mouth, = 1.72916
Schiff =54.68r+* =-6,337
5 d, 4=3.4934 r+s =14.0512 (aspherical surface) dl5 =0
.. 8002 n, = 1.78470 v,
=26.22r+s = 5.8979 d, 6 =0.9728 r,, = 10.2265 d,, =3.9445 r,, =-29,0317 Aspheric coefficient (second surface) P = 1. Rolo OO, A4= A, = -0,19965x 1O-6 (15th surface) P=1.0000. A4 = A, = 0.70555x 10-' 7 D, 26.54L D, 0.804 D, 0.800 Gradient index lens N.

d線1.72916 C線1.72510 F線1.73844 I O,88401X 10−’ 0.901]43x 10−’ −0,82469x 10−’  3 4 8.003 9.720 10.422 n・? = 1.77250 ν、9.=49.66 0.44582X 10−’ A6= −0,36764x 10−”0.39811
X 10−” A、=  0.63900x 10 8 0.504 0.502 27.139 2 0.62785x 10−6 0.66914x 10−6 0.53149x 1O−6 N+p−fw!= −0,433x 10−2β=−0
,396、fw/f4=0.216z1Δxl/h= 
0.0264  、ra/rb=0.859実施例3 f = 7〜21mm 、 F/2.8 。
d line 1.72916 C line 1.72510 F line 1.73844 I O, 88401 ? = 1.77250 ν, 9. =49.66 0.44582X 10-' A6= -0,36764x 10-"0.39811
X 10-” A, = 0.63900x 10 8 0.504 0.502 27.139 2 0.62785x 10-6 0.66914x 10-6 0.53149x 1O-6 N+p-fw!= -0,433x 10 -2β=-0
, 396, fw/f4=0.216z1Δxl/h=
0.0264, ra/rb=0.859 Example 3 f=7-21mm, F/2.8.

2ω=62.0°〜20.8°、最高像高4.0m+n
r+=−346.3168  (非球面)d+= 1.
1017  1.:1.69680   v+ = 5
6.49r2= 12.5159 da=3.7467 rs = −25,4402 d3=1.1034   n2=1.69680   
v2=56.49r4= 105.9417 d4= 0.7617 rs= 138.5318 d、=1.8017   n、=1.80518   
v−=25.43r、=−31,3951 d、=D、(可変) ry : 43.5604 d7=2.225I   n、=1.72916   
v4=54.684 r8” 186.1387 d8”D2(可変) r9=24.6967 d9= 1.0[100n5= 1.80518   
1/6  = 25.43r1o  =13.7953 d+o =5.2047   屈折率分布型レンズr、
、 =−38,8991 dll=D3(可変) f、2=QQ (絞り) d、2=1.6094 r+a  =−5,4704 d、、 =1.3256  n、=1.72916  
 vt =54.68rz  =−6,2248 d、4=3.5472 r、s  =−982,0483 d、5=0.8002  na =1.78470  
 va ”26.22r、6 = 10.8908 CIts =1.317.3 r、7 = 18.2530 d+t = 1.6961  n4. = 1.772
50  v、y、= 49.66r、、  =−13,
7688 非球面係数 P  = 1.000   、   A4=  0.5
4180x 10−’A、= −0,12424x 1
0−6.  A、= −0,14574x 1O−9f
    7    12   21 D、   22.384  4.307  0.536
D、   1.873 10.599  1.376D
、   0.300  9.652 22.646屈折
率分布型レンズ N、      N。
2ω=62.0°~20.8°, maximum image height 4.0m+n
r+=-346.3168 (Aspherical surface) d+=1.
1017 1. :1.69680 v+ = 5
6.49r2=12.5159 da=3.7467 rs=-25,4402 d3=1.1034 n2=1.69680
v2=56.49r4=105.9417 d4=0.7617 rs=138.5318 d,=1.8017 n,=1.80518
v-=25.43r, =-31,3951 d, =D, (variable) ry: 43.5604 d7=2.225I n, =1.72916
v4=54.684 r8” 186.1387 d8”D2 (variable) r9=24.6967 d9= 1.0 [100n5= 1.80518
1/6 = 25.43r1o = 13.7953 d+o = 5.2047 Gradient index lens r,
, = -38,8991 dll = D3 (variable) f, 2 = QQ (aperture) d, 2 = 1.6094 r + a = -5,4704 d,, = 1.3256 n, = 1.72916
vt = 54.68 rz = -6,2248 d, 4 = 3.5472 r, s = -982,0483 d, 5 = 0.8002 na = 1.78470
va ”26.22r, 6 = 10.8908 CIts = 1.317.3 r, 7 = 18.2530 d+t = 1.6961 n4. = 1.772
50 v,y,=49.66r,, =-13,
7688 Aspheric coefficient P = 1.000, A4 = 0.5
4180x 10-'A, = -0,12424x 1
0-6. A, = -0,14574x 1O-9f
7 12 21 D, 22.384 4.307 0.536
D, 1.873 10.599 1.376D
, 0.300 9.652 22.646 Gradient index lens N, N.

d@  1.69680  −0.48643X10−
’C線1.69303 −0.62004x 10−’
F線1.70537 −0.17467xlO−’N+
p−fw” = −0,238X 10−2β=−0,
382、f、/f4=0.262Σ1Δxl/h= 0
.0279 、 r、/rb= 0.8792 0.82443x 10−6 0.68251x 10−’ 0.11556X 10−5 実施例4 f = 6〜18mm 、 F/2.8 。
d@ 1.69680 -0.48643X10-
'C line 1.69303 -0.62004x 10-'
F line 1.70537 -0.17467xlO-'N+
p−fw” = −0,238X 10−2β=−0,
382, f, /f4=0.262Σ1Δxl/h=0
.. 0279, r, /rb=0.8792 0.82443x 10-6 0.68251x 10-' 0.11556X 10-5 Example 4 f = 6-18 mm, F/2.8.

2c、+ =70.5°〜23.9°、最高像高4.O
nv+r+=−89,8524 d、=1.1017     n  =r2=IO,7
856(非球面) d、=4.4483 r3= −4994,8129 d3= 1.1034 r4= 101.8038 n2=1.69680 1、.69680 ν、  、=56.49 ν2  =56.49 d、=1.0000 r5=−57,3067 d、= 1.8017 ra”−28,5793 da”D+(可変) ry=32.7861 d7= 2.2005 r8= 129.2445 d、==D、(可変) r9= 23.3425 d、= 1.0000 rr o = 13.0179 d+o =5.2047  n、、=1.6968Or
、、  =−60,6437 1,72916 n、= 1.80518 4 n5= 1.80518 7 シ3 =25.43 ν4 =54.68 ν5 =25.43 ν、  =56.49 d、、=D、(可変) r、2:OO(絞り) d、2 =1.6094 r、、 =−4,9043(非球面) dla  =1.0024   n7=1.72916
rz  =−6,9744 d、4 =2.3912 =54.68 rls  = 102.9088 d+5=2.4417   屈折率分布型レンズr+8
”−14,4377 非球面係数 (第2面) P=1.0000.  A、=−0,13802xlO
−”As” −〇、17580x 10−6 、   
Aa=−0,53772x  10−’(第13面) P=1.0000 、  A、= 0.89510xl
O−”A、=−0,19456xlO−’ 、  A、
= 0.26833xlO−’f    6    1
0   18 D、   20.993  6.188  1.256
D、   5.204 1(1,4360,5108 D、     0.7G3  10.337  25.
194屈折率分布型レンズ NoN、        N2 dll 1.77250 〜0.86409x10−3
0.10410426xlO−3C,76780−0,
95242xlO−”  0.10271xlO−3F
線178336 〜0.65799XIO−”  O,
10788XIO−3N+ 1411fw2= 0.3
11 X 10−’β=−0,353、fW/f4=0
.258Σ Δx  /h=0.0933  、  r
、/rb= 0.703実施例5 f = 6〜30mm 2ω=69.6゜ r+=30.7107 d、 =1.1017   n、” r、= 11.6112  (非球面)d、=4.59
99 rs = −27,9183 d、= 1.1034 、  F/2.8 n、= 1.69680 〜14.5゜ 最高像高4.0mw+ 1.69680 ν1 = 56.49 ν2 = 56.49 r4== 856.7966 d4= 0.7986 r−=−209,3451 d、= 1.8017    n、= 1.80518
    v、  = 25.43r6=−61,381
7 d、=口、(可変) r7= 40.0794 d、= 2.2005  屈折率分布型レンズ1ra”
 −688,2678 da=Dz(可変) r9=26.9091 d、= 1.0000   n5= 1.80518 
  v5= 25.43r + o = 14.704
7 d、o ”5.2047  n、=1.69680  
 v6=56.49r11 =−53,9850 d++=O3(可変) r12 =QO(絞り) d1□= 1.6094 rrz =−5,4990 d、、 =1.3105  n、=1.72916  
 v7=54.68rz =−6,4900 ct、4=2.7736 r、5= 12.9668  (非球面)d、5 =0
.8002  08= 1.78470     ν、
  =26.22r+a  =6.0277 dla  =1.1835 rIt  =10.5920 d、、 =2.4004   屈折率分布型レンズ2r
、8”−20,4772 非球面係数 (第2面) P = 1.0000 、  A、=−0,50209
x 10−’A6= −0,10094x 10−6.
  A、=−0,32970x 1O−8(第15面) P=1.0000 、  A、= 0.44808xl
O−3A6=−0,13769X10−’ 、  A、
= 0.76060xlO−’f    7    1
4   30 D、   33.888  7.011  0.504
D2    0.804   14.514    0
.502030.800 13.967 34.486
屈折率分布型レンズI 0NIN2 1 0.82721X 10−6 0.85521X 10−’ 0.76187x 1O−6 d線1.72916 −0.41256x 1O−3C
線1.72510  =0.41448x 1O−3F
線1.73844 −0.40809x 10−3屈折
率分布型レンズ2 NoN。
2c, + = 70.5° to 23.9°, maximum image height 4. O
nv+r+=-89,8524 d,=1.1017 n=r2=IO,7
856 (aspherical surface) d, = 4.4483 r3 = -4994,8129 d3 = 1.1034 r4 = 101.8038 n2 = 1.69680 1,. 69680 ν, , =56.49 ν2 =56.49 d, =1.0000 r5=-57,3067 d, = 1.8017 ra"-28,5793 da"D+ (variable) ry=32.7861 d7= 2.2005 r8= 129.2445 d, ==D, (variable) r9= 23.3425 d, = 1.0000 rr o = 13.0179 d+o =5.2047 n,, = 1.6968Or
,, =-60,6437 1,72916 n, = 1.80518 4 n5 = 1.80518 7 C3 =25.43 ν4 =54.68 ν5 =25.43 ν, =56.49 d,, =D , (variable) r, 2: OO (aperture) d, 2 = 1.6094 r,, = -4,9043 (aspherical surface) dla = 1.0024 n7 = 1.72916
rz = -6,9744 d, 4 = 2.3912 = 54.68 rls = 102.9088 d+5 = 2.4417 Gradient index lens r+8
”-14,4377 Aspherical coefficient (second surface) P=1.0000.A,=-0,13802xlO
-"As" -〇, 17580x 10-6,
Aa = -0,53772x 10-' (13th surface) P = 1.0000, A, = 0.89510xl
O-”A,=-0,19456xlO-', A,
= 0.26833xlO-'f 6 1
0 18 D, 20.993 6.188 1.256
D, 5.204 1 (1,4360,5108 D, 0.7G3 10.337 25.
194 gradient index lens NoN, N2 dll 1.77250 ~0.86409x10-3
0.10410426xlO-3C, 76780-0,
95242xlO-” 0.10271xlO-3F
Line 178336 ~ 0.65799XIO-” O,
10788XIO-3N+ 1411fw2= 0.3
11 X 10-'β=-0,353, fW/f4=0
.. 258ΣΔx/h=0.0933, r
, /rb = 0.703 Example 5 f = 6 to 30 mm 2ω = 69.6° r + = 30.7107 d, = 1.1017 n, ” r, = 11.6112 (Aspherical surface) d, = 4. 59
99 rs = -27,9183 d, = 1.1034, F/2.8 n, = 1.69680 ~ 14.5° Maximum image height 4.0 mw + 1.69680 ν1 = 56.49 ν2 = 56.49 r4 == 856.7966 d4= 0.7986 r-=-209,3451 d, = 1.8017 n, = 1.80518
v, = 25.43r6=-61,381
7 d, = mouth, (variable) r7 = 40.0794 d, = 2.2005 Gradient index lens 1ra”
-688,2678 da=Dz (variable) r9=26.9091 d,=1.0000 n5=1.80518
v5 = 25.43r + o = 14.704
7 d, o ”5.2047 n, = 1.69680
v6=56.49r11 =-53,9850 d++=O3 (variable) r12 =QO (aperture) d1□=1.6094 rrz =-5,4990 d,, =1.3105 n, =1.72916
v7 = 54.68rz = -6,4900 ct, 4 = 2.7736 r, 5 = 12.9668 (aspherical surface) d, 5 = 0
.. 8002 08= 1.78470 ν,
=26.22r+a =6.0277 dla =1.1835 rIt =10.5920 d,, =2.4004 Gradient index lens 2r
, 8"-20,4772 Aspheric coefficient (second surface) P = 1.0000, A, = -0,50209
x 10-'A6=-0,10094x 10-6.
A, = -0,32970x 1O-8 (15th surface) P = 1.0000, A, = 0.44808xl
O-3A6=-0,13769X10-', A,
= 0.76060xlO-'f 7 1
4 30 D, 33.888 7.011 0.504
D2 0.804 14.514 0
.. 502030.800 13.967 34.486
Gradient index lens I 0NIN2 1 0.82721X 10-6 0.85521X 10-' 0.76187x 1O-6 d-line 1.72916 -0.41256x 1O-3C
Line 1.72510 = 0.41448x 1O-3F
Line 1.73844 -0.40809x 10-3 gradient index lens 2 NoN.

d線1.77250 0.23466x 10−”C線
1.76780 0.22933x 1O−2F線1.
78336 0.24710x 1O−2N+p−fw
” =−0,149x to−’N+ 1411・f、
” =0.845 xlO−’β=−0,322、fw
/f、=0.212Σ1Δxl/h= 0.0846 
、 ra/rb= 0.8472 0.93255X 10−’ 0.90057x to−’ 0.10072X 10−3 実施例6 f = 7〜21mm 、 F/2.8 。
d line 1.77250 0.23466x 10-” C line 1.76780 0.22933x 1O-2F line 1.
78336 0.24710x 1O-2N+p-fw
” =-0,149x to-'N+ 1411・f,
” =0.845 xlO-'β=-0,322, fw
/f,=0.212Σ1Δxl/h=0.0846
, ra/rb = 0.8472 0.93255X 10-' 0.90057x to-' 0.10072X 10-3 Example 6 f = 7-21 mm, F/2.8.

2 ω= 61.96〜20.8°、最高像高4.0+
nw+rl = −207,8680 d、”1.0057     n、=1.89680 
  1/i  = 56.49r2= 12.1165 d2= 3.7256 ra = −37,5005(非球面)2 d3= 1.2666     n2= 1.6968
0r4= 57.4633 d、= 0.8022 r5= −128,8034 d、= 1.8318 r6=−23,7042 da=n+(可変) r、= 38.0670 d、= 2.2482 r、= 153.3615 d8=D2(可変) r、= 26.4604 d9=5.1940 r、、  =−37,5290 d、、 =D、 (可変) r11=cx:+(絞り) dll  =1.6094 r1□ =−5,5369 1,80518 屈折率分布型レンズ 3 n4= 1.72916 シ2 =56.49 ν、  =25.43 ν4 =54.68 d、2 = 1.3210  16= 1.72916
シ。 = 54.68 r、  ==−6,2037 d、3 =3.5094 rl 4 = 306.4568 d+4 =0.8002   n。
2 ω=61.96~20.8°, maximum image height 4.0+
nw+rl = −207,8680 d,”1.0057 n,=1.89680
1/i = 56.49r2 = 12.1165 d2 = 3.7256 ra = -37,5005 (aspherical surface) 2 d3 = 1.2666 n2 = 1.6968
0r4 = 57.4633 d, = 0.8022 r5 = -128,8034 d, = 1.8318 r6 = -23,7042 da = n + (variable) r, = 38.0670 d, = 2.2482 r, = 153.3615 d8 = D2 (variable) r, = 26.4604 d9 = 5.1940 r,, = -37,5290 d,, =D, (variable) r11 = cx: + (aperture) dll = 1.6094 r1□ = -5,5369 1,80518 Gradient index lens 3 n4 = 1.72916 Si2 = 56.49 ν, = 25.43 ν4 = 54.68 d, 2 = 1.3210 16 = 1.72916
Sh. = 54.68 r, ==-6,2037 d, 3 = 3.5094 rl 4 = 306.4568 d+4 = 0.8002 n.

rls  =11.1446 d、5 =1.301O r、e  =21.1474 d、、  =1.6961 r、、  =−15,1468 非球面係数 P=1.0000.  A4= A、= 0.36792x 10−6 7 DI   22.746 D23.359 D、   0.500 屈折率分布型レンズ N。rls = 11.1446 d, 5 = 1.301O r, e = 21.1474 d,, =1.6961 r,, =-15,1468 Aspheric coefficient P=1.0000. A4= A, = 0.36792x 10-6 7 DI 22.746 D23.359 D, 0.500 Gradient index lens N.

d線1.69680 C線1.69303 Fil! 1.70537 2 2.270 15.780 9.328 na” 1.7725O 1 0,36146x 10−’ 0.64370X 10−’ 0.29711X 10−’ 1.78470 シフ =26.22 ν8 =49.66 0.70278X 10−’ A、= −0,29020x to−81 0,589 1,453 19,608 2 0,17442X  to−5 0,15450x 10−5 0.22089x 10−’ N+p、fw”  =−0,177x IQ−2β=−
0,404、fw/f4=0.210Σ1Δx  /h
=0.0204 ’、ra/rb=0.893実施例7 f = 7〜21mm 、 F/2.8 。
D line 1.69680 C line 1.69303 Fil! 1.70537 2 2.270 15.780 9.328 na” 1.7725O 1 0,36146x 10-' 0.64370X 10-' 0.29711X 10-' 1.78470 Schiff =26.22 ν8 =49.66 0.70278X 10-' A, = -0,29020x to-81 0,589 1,453 19,608 2 0,17442X to-5 0,15450x 10-5 0.22089x 10-' N+p, fw" =- 0,177x IQ-2β=-
0,404, fw/f4=0.210Σ1Δx/h
=0.0204', ra/rb=0.893 Example 7 f=7-21mm, F/2.8.

2ω=62.2°〜21.0°、最高像高4.0mmr
、= 139.2704 (非球面)d、”4.400
[1n、”1.72825   v、 =28.46r
2=−20,7046 d2= 1.2049   n2= 1.72916 
  v2= 54.68ra ” 13.4437 d3=D+(可変) r4= 37.5049 d4” 3.8033   n−= 1.72916 
  v3= 54.68rs = −16,2306 d5=1.000On、=1.80518   v、 
=25.43r6= −124,0325 d6”D2(可変) rt = 29.3692 d、” 3.9000   ns= 1.69680 
  v5= 56.495 r8=−44,6011 d8=D3(可変) r9=oo(絞り) d9= 2.7053 rzo  =−5,1791 d、、  =0.8119 rz  =−7,1518 d++  =1.5738 「1□ ニー6.0203 非球面係数 P=1.0000.  A4= A、= 0.91628x 10−” 7 D、   35.226 D20.800 D、   0.530 屈折率分布型レンズ N。
2ω=62.2°~21.0°, maximum image height 4.0mmr
, = 139.2704 (aspherical surface) d, "4.400
[1n,”1.72825 v, =28.46r
2=-20,7046 d2= 1.2049 n2= 1.72916
v2= 54.68ra" 13.4437 d3=D+ (variable) r4= 37.5049 d4" 3.8033 n-= 1.72916
v3=54.68rs=-16,2306 d5=1.000On,=1.80518v,
=25.43r6= -124,0325 d6"D2 (variable) rt = 29.3692 d," 3.9000 ns = 1.69680
v5 = 56.495 r8 = -44,6011 d8 = D3 (variable) r9 = oo (aperture) d9 = 2.7053 rzo = -5,1791 d,, =0.8119 rz = -7,1518 d++ =1 .5738 "1□ Knee 6.0203 Aspheric coefficient P = 1.0000. A4 = A, = 0.91628x 10-" 7 D, 35.226 D20.800 D, 0.530 Gradient index lens N.

d線1.77250 C線1.76780 2 17.197 7.565 6.402 na= 1.80518 1 0.61681X 10−’ 0.61479x 10−2 6 υ6 =’25.43 屈折率分布型レンズ 0.13273X 10−’ A、=−0,13678x 10 1 7.844 0.811 15.928 2 −0.22401x 10−’ 0.22829X 10−’ F線1.78337 −0.62152xlO−”  
−[1,214[12xlO−’N+ 141  ’f
w”  = 0.302β=−0,337、f、/f、
=0.172Σ ^xl/h= 0.0360  、r
、/rb= 0.860実施例8 f = 6〜24mm 、 F/2.8 。
d line 1.77250 C line 1.76780 2 17.197 7.565 6.402 na= 1.80518 1 0.61681X 10-' 0.61479x 10-2 6 υ6 ='25.43 Gradient index lens 0.13273X 10-' A, = -0,13678x 10 1 7.844 0.811 15.928 2 -0.22401x 10-' 0.22829X 10-' F line 1.78337 -0.62152xlO-"
-[1,214[12xlO-'N+ 141'f
w”=0.302β=-0,337,f,/f,
=0.172Σ ^xl/h=0.0360, r
,/rb=0.860 Example 8 f=6-24mm, F/2.8.

2(,1=69.9°〜18.2°、最高像高4.0m
mr+ = −150,2428 d1= 1.2000  11.= 1.72916 
  v1= 54.68r2= 12.9449  (
非球面)d2= 2.5028 r3 = 38.8737 d3= 5.4361   n2= 1.80518 
  v2= 25.43r4= −20,1239 d4= 1.0416   na= 1.77250 
  V3= 49.66r、= 70.3603 d5=D、(可変) r、= 57.5209 da= 7.2517   n4= 1.72916 
  v4” 54.68rt”−14,2287 d、=1.0000    n5= 1.80518 
   v5 = 25.43i’8=−64,6672 d8=0.(可変〕 r9= 42.2352 d、=5.0191    na=1.72916  
  V6 =54.68r+o  =−29,1522 dlo  ”0.9025   n7= 1.8051
8   1/7  = 25.43r++  =−46
,6193 d++=Da(可変) r、2=(資)(絞り) d、2=04(可変) rza  =−4,3521 d+a =3.0076   屈折率分布型レンズrz
 =−5,7088 非球面係数 P=1.0000.   A、=−0,60947X 
10−’Aa=−0.14192xlO−’、  A、
=−0,18155xlO−8f    6    1
2   24 D、     33.044   11.647   
 2.640D22.926 12.228  5.0
768 D3   0.800  12.865  29.05
5D4   1.400   3.095   6.6
10屈折率分布型レンズ NoN。
2(,1=69.9°~18.2°, maximum image height 4.0m
mr+ = -150,2428 d1= 1.2000 11. = 1.72916
v1= 54.68r2= 12.9449 (
Aspheric surface) d2 = 2.5028 r3 = 38.8737 d3 = 5.4361 n2 = 1.80518
v2= 25.43r4= -20,1239 d4= 1.0416 na= 1.77250
V3 = 49.66r, = 70.3603 d5 = D, (variable) r, = 57.5209 da = 7.2517 n4 = 1.72916
v4"54.68rt"-14,2287 d, = 1.0000 n5 = 1.80518
v5 = 25.43i'8 = -64,6672 d8 = 0. (Variable) r9 = 42.2352 d, = 5.0191 na = 1.72916
V6 =54.68r+o =-29,1522 dlo”0.9025 n7=1.8051
8 1/7 = 25.43r++ = -46
,6193 d++=Da (variable) r, 2=(capital) (aperture) d, 2=04 (variable) rza =-4,3521 d+a =3.0076 Gradient index lens rz
=-5,7088 Aspheric coefficient P=1.0000. A, = -0,60947X
10-'Aa=-0.14192xlO-', A,
=-0,18155xlO-8f 6 1
2 24 D, 33.044 11.647
2.640D22.926 12.228 5.0
768 D3 0.800 12.865 29.05
5D4 1.400 3.095 6.6
10 refractive index gradient lens NoN.

d線1.72916 −0.63215X 1[1−2
C線1.72510 −0.63392x to−2F
線1.73844 −0.62803x 1O−2N、
+4+ lfw” = 0.228β=−0,297、
fw/f4=0.215Σ1Δxl/h= o、 17
4  、 ra/rb= o、 7622 0.11343x 10−’ 0.11916x to−’ 0.10005x 10−’ 実施例9 f = 7〜21mm 、 F/2.8. 。
d line 1.72916 -0.63215X 1[1-2
C line 1.72510 -0.63392x to-2F
Line 1.73844 -0.62803x 1O-2N,
+4+lfw” = 0.228β=-0,297,
fw/f4=0.215Σ1Δxl/h=o, 17
4, ra/rb=o, 7622 0.11343x 10-' 0.11916x to-' 0.10005x 10-' Example 9 f = 7-21mm, F/2.8. .

2ω=62.0°〜21.2°、最高像高4.0mmr
+ = −112,6325 d+= 1.0057  0.= 1.69680  
 ν+ = 56.49172= 12.1148 d2= 3.6530 r3=−47,口492(非球面) d3= 1.、1821   n2= 1.69680
   V2 = 56.49r4= 35.1681 9 d、= 0.9997 rs=−130,6409 d5= 2.5481    n−= 184666 
  1/2  =23.78r6=−20,4926 d、=D、(可変) r7= 20.6117 d、=2.7824    n4=1.72916  
  v4 =54.68ra: 35.2827 d、=D、(可変) r、= 23.5329 d、= 5.1967    屈折率分布型レンズrl
o =−54,6926 d、。=D3(可変) r、、 =11.2556 d、、 =0.805On、=1.80518   v
、 =25.43r+□=8.1751 d1□= 0.9000 r+a =QQ (絞り) dla =1.6094 rz =−5,4331 0 d、4 =1.3044  n−=1.80548  
  v、=25.43r+5 =−6,4290 a、5 =3.2563 r+a  =−264,’2006 d、6 =1.8071  n8”1..77250 
   v8 =49.66r+y  =−16,114
2 非球面係数 P  = 1.0000  、   A、=  0.7
2141xlO−’A、= 0.39739xlO=6
.  A、=−0,41865xlO−9f    7
    12   21 D、   27.662  1.000  0.500
D、   7.058 24.162  0.500D
30.500. 8.936 16.441屈折率分布
型レンズ NoN+        N2 d線1.69680 −0.10464x 10−30
.81316x 10−’C線1.69303−0.1
4252x10−30.59.519xlO−’F線1
.70537 −0.16248xlO−’  0.1
3217xlO−’N+p−fw” =−0,513x
 10−2β=−0,367、fw/f4=0.188
Σ1△xl/h= 0.0462  、ra/rb= 
0.845ただしr r + r 2 +・・・はレン
ズ各面の曲率半径、dl、d2.・・・は各レンズの肉
厚および空気間隔、n r 。
2ω=62.0°~21.2°, maximum image height 4.0mmr
+ = -112,6325 d+ = 1.0057 0. = 1.69680
ν+ = 56.49172 = 12.1148 d2 = 3.6530 r3 = -47, mouth 492 (aspherical surface) d3 = 1. , 1821 n2= 1.69680
V2 = 56.49r4 = 35.1681 9 d, = 0.9997 rs = -130,6409 d5 = 2.5481 n- = 184666
1/2 = 23.78 r6 = -20,4926 d, = D, (variable) r7 = 20.6117 d, = 2.7824 n4 = 1.72916
v4 =54.68ra: 35.2827 d, =D, (variable) r, = 23.5329 d, = 5.1967 gradient index lens rl
o = -54,6926 d,. =D3 (variable) r,, =11.2556 d,, =0.805On, =1.80518 v
, =25.43r+□=8.1751 d1□=0.9000 r+a =QQ (aperture) dla =1.6094 rz =-5,4331 0 d,4 =1.3044 n-=1.80548
v, =25.43r+5 =-6,4290 a,5 =3.2563 r+a =-264,'2006 d,6 =1.8071 n8"1..77250
v8=49.66r+y=-16,114
2 Aspheric coefficient P = 1.0000, A, = 0.7
2141xlO-'A, = 0.39739xlO=6
.. A, = -0,41865xlO-9f 7
12 21 D, 27.662 1.000 0.500
D, 7.058 24.162 0.500D
30.500. 8.936 16.441 Gradient index lens NoN+ N2 d-line 1.69680 -0.10464x 10-30
.. 81316x 10-'C line 1.69303-0.1
4252x10-30.59.519xlO-'F line 1
.. 70537 -0.16248xlO-' 0.1
3217xlO-'N+p-fw" =-0,513x
10-2β=-0,367, fw/f4=0.188
Σ1△xl/h=0.0462, ra/rb=
0.845 However, r r + r 2 +... is the radius of curvature of each lens surface, dl, d2. ... is the wall thickness and air spacing of each lens, n r .

n 2 + ・・・は各レンズの屈折率、シ1.シ2.
・・・は各レンズのアツベ数である。
n 2 + . . . is the refractive index of each lens; C2.
... is the Atsube number of each lens.

実施例1は第1図に示すような構成で、第1レンズ群の
最も像側のレンズが正の屈折力を持つ屈折率分布型レン
ズである。また第2面を条件(5)を満足するような非
球面にすることによってワイド側での負の歪曲収差を良
好に補正している。しかもレンズ系の全長、絞り位置、
Fナンバーはズ。
Example 1 has a configuration as shown in FIG. 1, in which the lens closest to the image side of the first lens group is a gradient index lens having positive refractive power. Further, by making the second surface an aspherical surface that satisfies condition (5), negative distortion on the wide side is favorably corrected. Moreover, the total length of the lens system, the aperture position,
The F number is Z.

−ミンク中も変化しない。- Does not change during minking.

この実施例のワイド、スタンダード、テレにおける収差
状況は、夫々第10図、第11図、第12図に示す通り
である。
The aberration situations in wide, standard, and telephoto in this example are as shown in FIGS. 10, 11, and 12, respectively.

実施例2は第2図に示す構成で、第2レンズ群を条件け
)を満足する屈折率分布型レンズ1枚にし4倍の変倍比
な得ている。この実施例も実施例1のような非球面を用
いることによって収差が一層良好に補正されている。又
この実施例も、レンズ系の全長、絞り位置、Fナンバー
が固定である。
Embodiment 2 has the configuration shown in FIG. 2, and uses a single gradient index lens that satisfies the condition (2) for the second lens group, and obtains a variable power ratio of 4x. In this embodiment as well, aberrations are more effectively corrected by using an aspherical surface like in the first embodiment. Also in this embodiment, the overall length of the lens system, the aperture position, and the F number are fixed.

この実施例のワイド、スタンダード、テレにおける収差
状況は、夫々第13図、第14図、第15図に示す通り
である。
The aberration situations in wide, standard, and telephoto in this example are as shown in FIGS. 13, 14, and 15, respectively.

実施例3は第3図に示す構成で、第3レンズ群の正レン
ズを条件+1.1 を満足するような屈折率分布型レン
ズにしている。この実施例では、第1面を非球面にして
ワイド側での負の歪曲収差を補正している。又この実施
例も、レンズ系の全長、絞り位置、Fナンバーが固定で
ある。
Embodiment 3 has the configuration shown in FIG. 3, in which the positive lens of the third lens group is a gradient index lens that satisfies the condition +1.1. In this embodiment, the first surface is made an aspherical surface to correct negative distortion on the wide side. Also in this embodiment, the overall length of the lens system, the aperture position, and the F number are fixed.

この実施例のワイド、スタンダード、テレにおける収差
状況は、夫々第16図、第17図、第18図に示す通り
である。
The aberration situations in wide, standard, and telephoto in this example are as shown in FIGS. 16, 17, and 18, respectively.

実施例4は第4図に示す構成で、最も像側のレンズが正
のパワーの屈折率分布層レンズで、これによってワイド
端からテレ端にかけて球面収差を補正している。またワ
イド端の画角が70°と非常に広い画角であり、第2面
を非球面にしてワイド側で発生する負の歪曲収差を良好
に補正してIJN 3 る。この実施例も、レンズ系の全長、絞り位置。
Embodiment 4 has the configuration shown in FIG. 4, in which the lens closest to the image side is a gradient index layer lens with positive power, which corrects spherical aberration from the wide end to the telephoto end. In addition, the angle of view at the wide end is 70°, which is a very wide angle of view, and the second surface is made an aspherical surface to satisfactorily correct negative distortion that occurs at the wide end. This example also shows the total length of the lens system and the aperture position.

Fナンバーが固定である。The F number is fixed.

この実施例のワイド、スタンダード、テレにおける収差
状況は、夫々第19図、第20図、第21図に示す通り
である。
The aberration situations in wide, standard, and telephoto in this example are as shown in FIGS. 19, 20, and 21, respectively.

実施例5は第5図に示す構成で、第2レンズ群が条件+
11を満足する屈折率分布型レンズ1枚であり、更に第
4レンズ群の最も像側のレンズを条件(2)を満足する
屈折率分布型レンズとし、ワイド端での画角が70°、
変倍比が5のレンズ系になっている。この実施例5でも
実施例1と同じように第2面と第5面を非球面とし収差
を良好に補正している。又この実施例も、レンズ系の全
長、絞り位置、Fナンバーが固定である。
Example 5 has the configuration shown in FIG. 5, and the second lens group meets the condition +
One gradient index lens satisfies condition (2), and the lens closest to the image side of the fourth lens group is a gradient index lens that satisfies condition (2), and the angle of view at the wide end is 70°.
It is a lens system with a variable power ratio of 5. In this fifth embodiment, as in the first embodiment, the second and fifth surfaces are made aspheric to satisfactorily correct aberrations. Also in this embodiment, the overall length of the lens system, the aperture position, and the F number are fixed.

この実施例5のワイド、スタンダード、テレにおける収
差状況は、夫々第22図、第23図、第24図に示す通
りである。
The aberration situations in wide, standard, and telephoto in Example 5 are as shown in FIGS. 22, 23, and 24, respectively.

実施例6は、第6図に示す構成で、第3レンズ群を条件
(1)を満足するような屈折率分布型レンズ1枚で構成
している。この実施例は、絞り位置4 とFナンバーは固定であるが、第1レンズ群を変倍中移
動させて、全長の小型化を図っている。
Example 6 has the configuration shown in FIG. 6, in which the third lens group is composed of one gradient index lens that satisfies condition (1). In this embodiment, the aperture position 4 and the F number are fixed, but the first lens group is moved during zooming to reduce the overall length.

この実施例6のワイド、スタンダード、テレにおける収
差状況は、夫々第25図、第26図9第27図に示す通
りである。
The aberration situations in wide, standard, and telephoto in Example 6 are as shown in FIG. 25, FIG. 26, and FIG. 27, respectively.

実施例7は、第7図に示す構成で、最も像側のレンズが
条件(2)を満足する屈折率分布型レンズで、又高次の
球面収差を補正するために接合レンズにしである。又第
1面を非球面にしてワイド側での負の歪曲収差の補正を
行なっている。また第1レンズ群を変倍中に移動するこ
とにより収差補正が容易になり、レンズ枚数を7枚にし
た。尚絞り位置とFナンバーは固定である。
Example 7 has the configuration shown in FIG. 7, in which the lens closest to the image side is a gradient index lens that satisfies condition (2), and is also a cemented lens to correct high-order spherical aberration. Furthermore, the first surface is made an aspherical surface to correct negative distortion on the wide side. Furthermore, by moving the first lens group during zooming, aberration correction becomes easier, and the number of lenses is reduced to seven. Note that the aperture position and F number are fixed.

この実施例7のワイド、スタンダード、テレにおける収
差状況は、夫々第28図、第29図、第30図に示す通
りである。
The aberration situations in wide, standard, and telephoto in Example 7 are as shown in FIGS. 28, 29, and 30, respectively.

実施例8は第8図に示す構成で、第4レンズ群を条件(
2)を満足する屈折率分布型レンズ1枚で構成している
。又変倍中絞りの径を変えることによって、レンズ系の
全長、絞り位置、Fナンバーを固定した。尚変倍中に絞
りの径を変えなければFナンバーは可変となる。
Example 8 has the configuration shown in FIG. 8, and the fourth lens group is set under the condition (
It is composed of one gradient index lens that satisfies 2). Also, by changing the diameter of the aperture during zooming, the overall length of the lens system, aperture position, and F number were fixed. Note that the F number will be variable unless the diameter of the aperture is changed during zooming.

この実施例8のワイド、スタンダード、テレにおける収
差状況は、夫々第31図、第32図、第33図に示す通
りである。
The aberration situations in wide, standard, and telephoto in Example 8 are as shown in FIGS. 31, 32, and 33, respectively.

実施例9は、第9図に示す構成で、第3レンズ群を条件
(1)を満足する屈折率分布型レンズ1枚にて構成した
。この実施例では、絞りを第4レンズ群中に配置し、こ
の絞りをはさんだレンズを絞りに対しコンセントリック
な形状としたもので、軸外収差の補正にとって有利であ
る。この実施例は、絞り位置とFナンバーが固定である
Example 9 has the configuration shown in FIG. 9, in which the third lens group is composed of one gradient index lens that satisfies condition (1). In this embodiment, the diaphragm is arranged in the fourth lens group, and the lenses sandwiching the diaphragm have a concentric shape with respect to the diaphragm, which is advantageous for correcting off-axis aberrations. In this embodiment, the aperture position and F number are fixed.

この実施例9のワイド、スタンダード、テレにおける収
差状況は、夫々第34図、第35図、第36図に示す通
りである。
The aberration situations in wide, standard, and telephoto in Example 9 are as shown in FIGS. 34, 35, and 36, respectively.

[発明の効果] 本発明の変倍レンズは、以上説明したようなレンズ構成
で、屈折率分布型レンズを適切に用いることによってワ
イド端での画角が60°〜70°程度と広画角、変倍比
が3〜5程度、口径比がF/2.8程度のスペックを同
時に満足するものである。
[Effects of the Invention] The variable magnification lens of the present invention has the lens configuration as described above, and by appropriately using a gradient index lens, it has a wide angle of view of about 60° to 70° at the wide end. , a variable power ratio of about 3 to 5, and an aperture ratio of about F/2.8.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第9図は夫々本発明の変倍レンズの実施例1
乃至実施例9の断面図、第10図乃至第12図は実施例
1の収差曲線図、第13図乃至第15図は実施例2の収
差曲線図、第16図乃至第18図は実施例3の収差曲線
図、第19図乃至第21図は実施例4の収差曲線図、第
22図乃至第24図は実施例5の収差曲線図、第25図
乃至第27図は実施例6の収差曲線図、第28図乃至第
30図は実施例7の収差曲線図、第31図乃至第33図
は実施例8の収差曲線図、第34図乃至第36図は実施
例9の収差曲線図、第37図は4群ズームで第2〜第4
レンズ群を一つのレンズ群と考えた時の構成を示す図で
ある。
1 to 9 show Example 1 of the variable power lens of the present invention, respectively.
10 to 12 are aberration curve diagrams of Example 1, FIGS. 13 to 15 are aberration curve diagrams of Example 2, and FIGS. 16 to 18 are sectional views of Example 9. 3, FIGS. 19 to 21 are aberration curve diagrams of Example 4, FIGS. 22 to 24 are aberration curve diagrams of Example 5, and FIGS. 25 to 27 are aberration curve diagrams of Example 6. Aberration curve diagrams, FIGS. 28 to 30 are aberration curve diagrams of Example 7, FIGS. 31 to 33 are aberration curve diagrams of Example 8, and FIGS. 34 to 36 are aberration curve diagrams of Example 9. Figures 37 and 37 show the 2nd to 4th zoom groups using the 4-group zoom.
FIG. 3 is a diagram showing a configuration when a lens group is considered as one lens group.

Claims (1)

【特許請求の範囲】[Claims]  物体側より順に負の屈折力を持つ第1レンズ群と、夫
々正の屈折力を持つ第2レンズ群、第3レンズ群、第4
レンズ群と、第3レンズ群よりも像側に配置された絞り
とよりなり、各レンズ群の間隔を変化させて変倍を行な
うレンズ系で、レンズ系中に少なくとも1枚の光軸と垂
直な方向に屈折率分布を持つ屈折率分布型レンズを有す
ることを特徴とする変倍レンズ。
In order from the object side, a first lens group having a negative refractive power, a second lens group, a third lens group, and a fourth lens group each having a positive refractive power.
A lens system consisting of a lens group and an aperture located closer to the image side than the third lens group, and which performs magnification by changing the distance between each lens group.At least one lens in the lens system is perpendicular to the optical axis. 1. A variable magnification lens comprising a gradient index lens having a gradient index in a direction.
JP27717389A 1989-10-26 1989-10-26 Power varying lens Pending JPH03139607A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27717389A JPH03139607A (en) 1989-10-26 1989-10-26 Power varying lens
US07/603,327 US5157550A (en) 1989-10-26 1990-10-25 Vari-focal lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27717389A JPH03139607A (en) 1989-10-26 1989-10-26 Power varying lens

Publications (1)

Publication Number Publication Date
JPH03139607A true JPH03139607A (en) 1991-06-13

Family

ID=17579828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27717389A Pending JPH03139607A (en) 1989-10-26 1989-10-26 Power varying lens

Country Status (1)

Country Link
JP (1) JPH03139607A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152558A (en) * 1993-11-25 1996-06-11 Asahi Optical Co Ltd Zoom lens
JPH08248312A (en) * 1995-03-08 1996-09-27 Nikon Corp Zoom lens
JP2002090624A (en) * 2000-07-10 2002-03-27 Olympus Optical Co Ltd Electronic imaging device
US6850373B2 (en) 2002-08-02 2005-02-01 Olympus Corporation Zoom lens, and electronic imaging system using the same
US6865026B2 (en) 2002-04-10 2005-03-08 Olympus Corporation Zoom lens, and electronic imaging system using the same
US7085070B2 (en) 2002-05-14 2006-08-01 Olympus Corporation Zoom lens and electronic imaging device having the same
US7177094B2 (en) 2002-04-05 2007-02-13 Olympus Corporation Zoom lens, and electronic imaging system using the same
US7365910B2 (en) 2001-05-14 2008-04-29 Olympus Corporation Electronic image pickup system
US7436449B2 (en) 2002-07-18 2008-10-14 Olympus Corporation Electronic imaging system
JP2008257178A (en) * 2007-03-12 2008-10-23 Olympus Imaging Corp Imaging optical system and electronic imaging apparatus having the same
JP2012252253A (en) * 2011-06-06 2012-12-20 Canon Inc Zoom lens and imaging device with the same
JP2013008064A (en) * 2008-07-02 2013-01-10 Panasonic Corp Zoom lens system, imaging device and camera
JP2014059480A (en) * 2012-09-18 2014-04-03 Ricoh Co Ltd Zoom lens and projector
JP2019109488A (en) * 2017-12-19 2019-07-04 リコーインダストリアルソリューションズ株式会社 Zoom lens for projection and projection type picture display unit

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152558A (en) * 1993-11-25 1996-06-11 Asahi Optical Co Ltd Zoom lens
JPH08248312A (en) * 1995-03-08 1996-09-27 Nikon Corp Zoom lens
JP4540261B2 (en) * 2000-07-10 2010-09-08 オリンパス株式会社 Electronic imaging device
JP2002090624A (en) * 2000-07-10 2002-03-27 Olympus Optical Co Ltd Electronic imaging device
US7436599B2 (en) 2001-05-14 2008-10-14 Olympus Corporation Electronic image pickup system
US9696524B2 (en) 2001-05-14 2017-07-04 Olympus Corporation Electronic image pickup system
US9274321B2 (en) 2001-05-14 2016-03-01 Olympus Corporation Electronic image pickup system
US7365910B2 (en) 2001-05-14 2008-04-29 Olympus Corporation Electronic image pickup system
US8885262B2 (en) 2001-05-14 2014-11-11 Olympus Corporation Electronic image pickup system
US8094381B2 (en) 2001-05-14 2012-01-10 Olympus Corporation Electronic image pickup system
US10031322B2 (en) 2001-05-14 2018-07-24 Olympus Corporation Electronic image pickup system
US7872806B2 (en) 2001-05-14 2011-01-18 Olympus Corporation Electronic image pickup system
US7177094B2 (en) 2002-04-05 2007-02-13 Olympus Corporation Zoom lens, and electronic imaging system using the same
US6865026B2 (en) 2002-04-10 2005-03-08 Olympus Corporation Zoom lens, and electronic imaging system using the same
US7486446B2 (en) 2002-05-14 2009-02-03 Olympus Corporation Zoom lens and electronic imaging device having the same
US7782542B2 (en) 2002-05-14 2010-08-24 Olympus Corporation Zoom lens and electronic imaging device having the same
US7215486B2 (en) 2002-05-14 2007-05-08 Olympus Optical Co., Ltd Zoom lens and electronic imaging device having the same
US7085070B2 (en) 2002-05-14 2006-08-01 Olympus Corporation Zoom lens and electronic imaging device having the same
US7436449B2 (en) 2002-07-18 2008-10-14 Olympus Corporation Electronic imaging system
US6850373B2 (en) 2002-08-02 2005-02-01 Olympus Corporation Zoom lens, and electronic imaging system using the same
JP2008257178A (en) * 2007-03-12 2008-10-23 Olympus Imaging Corp Imaging optical system and electronic imaging apparatus having the same
JP2013008064A (en) * 2008-07-02 2013-01-10 Panasonic Corp Zoom lens system, imaging device and camera
JP2012252253A (en) * 2011-06-06 2012-12-20 Canon Inc Zoom lens and imaging device with the same
JP2014059480A (en) * 2012-09-18 2014-04-03 Ricoh Co Ltd Zoom lens and projector
JP2019109488A (en) * 2017-12-19 2019-07-04 リコーインダストリアルソリューションズ株式会社 Zoom lens for projection and projection type picture display unit

Similar Documents

Publication Publication Date Title
EP1096287B1 (en) Zoom lens of the retrofocus type having three lens groups
US5087988A (en) Zoom lens
JP2000338397A (en) Zoom lens
JP2002365548A (en) Zoom lens
JP2006058584A (en) Zoom lens and imaging device incorporating it
JPH07253542A (en) Zoom lens
JP3849129B2 (en) Zoom lens
JPH03139607A (en) Power varying lens
JP4101992B2 (en) Compact high-magnification wide-angle zoom lens
JP3018723B2 (en) Zoom lens
JPH05150161A (en) Variable power lens
JPH0843737A (en) Zoom lens
JPH0566348A (en) Variable power lens with short overall length
JPH0572476A (en) Zoom lens
JP3394624B2 (en) Zoom lens
JPH07151975A (en) Zoom lens
JPH09211327A (en) Zoom lens
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP3260836B2 (en) Wide-angle high zoom lens
JPS6031110A (en) Zoom lens
JPH0640170B2 (en) High-magnification wide-angle zoom lens
JPH0727979A (en) Zoom lens
JP3008711B2 (en) Small zoom lens
JPH05346542A (en) Small-sized two-group zoom lens
JPH02284109A (en) Small-sized wide angle zoom lens