JP2002365548A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2002365548A
JP2002365548A JP2001170490A JP2001170490A JP2002365548A JP 2002365548 A JP2002365548 A JP 2002365548A JP 2001170490 A JP2001170490 A JP 2001170490A JP 2001170490 A JP2001170490 A JP 2001170490A JP 2002365548 A JP2002365548 A JP 2002365548A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
object side
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001170490A
Other languages
Japanese (ja)
Inventor
Takanori Yamanashi
隆則 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2001170490A priority Critical patent/JP2002365548A/en
Publication of JP2002365548A publication Critical patent/JP2002365548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a compact zoom lens which can be applied to a comparatively large imaging element, whose angle of view at a wide-angle end exceeds 70 deg. and which maintains sufficient image-forming performance, even when its variable power ratio exceeds about 10. SOLUTION: This zoom lens is constituted of a 1st positive group G1, a 2nd negative group G2, a 3rd positive group G3, a 4th positive group G4 and a 5th group G5. In the case of varying power form the wide-angle end to a telephoto end, the respective lens groups from the 1st group G1 to the 5th group G5 are moved, so that the space between the 1st group and the 2nd group becomes larger and the space between the 2nd group and the 3rd group becomes smaller, and then the 5th group moves to return to the image side, while moving to the object side. The zoom lens satisfies conditional expression (1) for stipulating back focus and a conditional expression (2) for stipulating that it is an optical system with light being made incident on the image forming element at a small angle taken into account.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ズームレンズに関
するものであり、特に、ビデオカメラ等に最適で高性能
な大口径広角高倍率ズームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, and more particularly to a large-diameter, wide-angle, high-magnification zoom lens which is optimal for a video camera or the like and has high performance.

【0002】[0002]

【従来の技術】カメラ用の高倍率ズームレンズは、業務
用テレビカメラやシネカメラ用途で比較的古くから開発
が行われてきた。ビデオカメラが普及してからは、業務
用や家庭用において開発が盛んに行われてきた。しかし
ながら、高倍率を有して広角側の画角が70°以上とな
ると、光学設計も非常に高度な技術が要求されることも
知られている。古くは、その構成が、物体側より順に、
正屈折力の第1レンズ群、負屈折力の第2レンズ群、正
屈折力(又は負屈折力)の第3レンズ群及び正屈折力の
第4レンズ群にて構成するタイプが普及した。第2レン
ズ群で変倍し、第3レンズ群で像面位置を補償するタイ
プである。例えば特公平2−48087号のものがあ
る。これは実績が多いタイプで、変倍時に第1レンズ群
と第4レンズ群が固定されていることに特徴がある。ま
た、このタイプで第1レンズ群に広角化を意図した専用
フロントコンバーターを配置する考え方で開発された方
式がある。例えば米国特許第3,682,534号のも
のがある。これらは、業務用であると思われ、レンズ構
成枚数が多く、大型であった。
2. Description of the Related Art A high-magnification zoom lens for a camera has been developed for a commercial television camera or a cine camera for a relatively long time. Since the widespread use of video cameras, development has been active in business and home use. However, it is also known that when the angle of view on the wide angle side is 70 ° or more with a high magnification, a very advanced technology for optical design is required. In old times, the composition is, in order from the object side,
A type including a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power (or a negative refractive power), and a fourth lens group having a positive refractive power has become widespread. This is a type in which the magnification is changed by the second lens group and the image plane position is compensated by the third lens group. For example, there is Japanese Patent Publication No. 2-48087. This is a type that has many achievements, and is characterized in that the first lens unit and the fourth lens unit are fixed at the time of zooming. In addition, there is a method developed based on the idea of arranging a dedicated front converter for widening the angle in the first lens group in this type. For example, US Pat. No. 3,682,534. These were considered to be for business use, had a large number of lens components, and were large.

【0003】また、構成が、物体側より順に、正屈折力
の第1レンズ群、負屈折力の第2レンズ群、正屈折力の
第3レンズ群及び正屈折力の第4レンズ群にて構成する
タイプであって、第2レンズ群から第4レンズ群までが
変倍時に可動であり、第4レンズ群でフォーカスする方
式の広角系高倍率ズームレンズが提案されている。例え
ば特開平6−148520号のものがある。
[0003] Further, in order from the object side, the first lens unit has a positive refractive power, the second lens unit has a negative refractive power, the third lens unit has a positive refractive power, and the fourth lens unit has a positive refractive power. There has been proposed a wide-angle high-magnification zoom lens of a type that is configured so that the second lens group to the fourth lens group are movable at the time of zooming and the fourth lens group focuses. For example, there is Japanese Patent Application Laid-Open No. 6-148520.

【0004】また、構成が、物体側より順に、正屈折力
の第1レンズ群、負屈折力の第2レンズ群、正屈折力の
第3レンズ群及び正屈折力の第4レンズ群と単体レンズ
にて構成された第5レンズ群の5群ズームタイプがある
が、現在までに本発明で考える広角高倍率ズームレンズ
に近いものとして、米国特許第5,973,854号の
ものがある。これは、従来の銀塩フィルムカメラ用交換
レンズを意図して考案されたものであり、最終レンズ群
は単体レンズであって固定群とすることもできるもので
ある。
Further, the lens unit is composed of a first lens unit having a positive refracting power, a second lens unit having a negative refracting power, a third lens unit having a positive refracting power, and a fourth lens unit having a positive refracting power. There is a fifth-group zoom type of a fifth lens group composed of lenses, and a lens close to a wide-angle, high-magnification zoom lens considered in the present invention up to now is disclosed in US Pat. No. 5,973,854. This is designed with the intention of a conventional interchangeable lens for a silver halide film camera, and the final lens group is a single lens and can be a fixed group.

【0005】さらに、物体側より順に、正屈折力の第1
レンズ群、負屈折力の第2レンズ群、正屈折力の第3レ
ンズ群、正屈折力の第4レンズ群及び負屈折力の第5レ
ンズ群で構成するものとして、米国特許第5,872,
659号や米国特許第4,861,145号のものは、
第5レンズ群が単体又はダブレットの構成で、第3レン
ズ群より後ろの群が広角端から望遠端の変倍時に物体側
へ移動するのが特徴であり、銀塩カメラ用、特に一眼レ
フ用の光学系であり、第5レンズ群は変倍時に固定とし
た技術も既に開示されている。
Further, in order from the object side, the first positive refractive power
U.S. Pat. No. 5,872, which comprises a lens group, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a fifth lens group having a negative refractive power. ,
No. 659 and US Pat. No. 4,861,145,
The fifth lens group has a single or doublet configuration, and the group behind the third lens group moves toward the object side during zooming from the wide-angle end to the telephoto end. A technique in which the fifth lens group is fixed at the time of zooming has already been disclosed.

【0006】また、米国特許第5,299,064号の
ものは、ビデオカメラ用で、第1レンズ群、第3レンズ
群、第5レンズ群が変倍時に固定で、第4レンズ群の移
動によりフォーカスをするタイプのズームレンズで、イ
メージャーサイズの比較的小さい場合の提案であると言
うことができる。
US Pat. No. 5,299,064 is for a video camera, in which a first lens group, a third lens group, and a fifth lens group are fixed at the time of zooming, and a fourth lens group is moved. It can be said that this is a proposal for a zoom lens of a type that focuses on a relatively small imager size.

【0007】また、構成が、物体側より順に、正屈折力
の第1レンズ群、負屈折力の第2レンズ群、正屈折力の
第3レンズ群及び正屈折力の第4レンズ群にて構成する
タイプであって、変倍時に第1レンズ群以下が可動であ
るタイプとして、特開平7−20381号のものがあ
る。
[0007] Further, the arrangement is such that, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power. Japanese Patent Application Laid-Open No. Hei 7-20381 discloses a type which is constituted and in which the first lens group and below are movable at the time of zooming.

【0008】これらの提案は、レンズ構成が簡単である
が、今後の結像素子の高画素化に対応するには、課題が
あった。このズームレンズタイプは、むしろ従来の銀塩
フィルムを使用するカメラにおいて開発が始められたも
のである。例えば、構成が、物体側より順に、正屈折力
の第1レンズ群、負屈折力の第2レンズ群、正屈折力の
第3レンズ群及び正屈折力の第4レンズ群にて構成する
タイプであって、各々のレンズ群が移動するズーム方式
で、広角端の画角が80°を越えるものとして、米国特
許第4,299,454号のものがある。
[0008] These proposals have a simple lens configuration, but have a problem to cope with a future increase in the number of pixels of the imaging element. This type of zoom lens was rather developed in a camera using a conventional silver halide film. For example, a type in which the configuration includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power. U.S. Pat. No. 4,299,454 discloses a zoom system in which each lens group moves and a field angle at the wide-angle end exceeds 80 °.

【0009】また、画角が74°程度から19°程度の
約5倍の変倍比を持つものとして提案されたのが、特公
昭58−33531号のものである。この提案は、構成
が、物体側より順に、正屈折力の第1レンズ群、負屈折
力の第2レンズ群、正屈折力の第3レンズ群及び負屈折
力の第4レンズ群及び正屈折力の第5レンズ群にて構成
するタイプであって、第1レンズ群と第2レンズ群を一
体とするフォーカシング方法に特色があった。
Japanese Patent Publication No. 58-33531 has been proposed as having a zoom ratio of about 5 from about 74 ° to about 19 °. According to this proposal, the configuration is such that, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power. This is a type constituted by a fifth lens unit having a power, and has a feature in a focusing method in which the first lens unit and the second lens unit are integrated.

【0010】また、画角74°程度から8.3°程度ま
で包括するズームレンズとして、米国特許第4,89
6,950号のものがある。これは、構成が、物体側よ
り順に、正屈折力の第1レンズ群、負屈折力の第2レン
ズ群、正屈折力の第3レンズ群及び負屈折力の第4レン
ズ群及び正屈折力の第5レンズ群にて構成するタイプで
あって、第5レンズ群が変倍中に固定である。
As a zoom lens covering an angle of view of about 74 ° to about 8.3 °, US Pat.
No. 6,950. This is because, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, the third lens group having a positive refractive power, the fourth lens group having a negative refractive power, and the positive refractive power. Of the fifth lens group, wherein the fifth lens group is fixed during zooming.

【0011】また、物体側より、第1レンズ群が正屈折
力、第2レンズ群が負屈折力、第3レンズ群から第5レ
ンズ群までが正屈折力で、変倍中に第5レンズ群が固定
で、広角端の画角が74°程度の大口径比のズームレン
ズとして、特開平6−281862号のものがある。
From the object side, the first lens group has a positive refractive power, the second lens group has a negative refractive power, and the third to fifth lens groups have a positive refractive power. As a zoom lens having a large aperture ratio and a fixed group and an angle of view at the wide-angle end of about 74 °, there is one disclosed in Japanese Patent Application Laid-Open No. 6-281852.

【0012】さらに、物体側より、第1レンズ群が正屈
折力、第2レンズ群が負屈折力、第3レンズ群から第5
レンズ群までが正屈折力であって、各レンズ群が変倍中
にそれぞれ移動するズームレンズとして、特開平10−
161028号のものがある。
Further, from the object side, the first lens group has a positive refractive power, the second lens group has a negative refractive power, and the third lens group has a fifth refractive power.
A zoom lens in which each lens group has a positive refractive power and each lens group moves during zooming is disclosed in
No. 161028.

【0013】[0013]

【発明が解決しようとする課題】これらの従来技術のも
のは、銀塩フィルム用途には問題がなかったが、デジタ
ルカメラの用途には向いていない。デジタルカメラでは
撮像素子としてCCDが用いられているが、このCCD
には開口率の問題がある。ところが、従来技術では開口
率については考慮されていないので、CCDにおける開
口率を損なわずにそのままで使用することはできない。
また、色収差を含めた色むらの問題を考慮した場合に、
軸外主光線の射出角度を十分に考え像面照度まで考慮し
た光学設計が必要とされているが、従来技術ではこの点
についても考慮されていない。
Although these prior arts have no problem in silver halide film applications, they are not suitable for digital camera applications. In a digital camera, a CCD is used as an image pickup device.
Has a problem of aperture ratio. However, since the aperture ratio is not taken into account in the prior art, the CCD cannot be used as it is without impairing the aperture ratio.
Also, considering the problem of color unevenness including chromatic aberration,
Although an optical design is required that takes the exit angle of the off-axis chief ray into consideration sufficiently and takes the image plane illuminance into consideration, this point is not considered in the prior art.

【0014】従来のビデオカメラにおいては、広角高倍
率ズームレンズとしての提案はあるが、結像素子のサイ
ズが極めて小さい場合を想定したものである。そのた
め、従来のビデオカメラ用のズームレンズを基にした光
学設計では、全長、前玉径の非常に大きなズームレンズ
となり、実用にならないことさえある。
In a conventional video camera, there is a proposal as a wide-angle and high-magnification zoom lens, but it is assumed that the size of an image forming element is extremely small. Therefore, an optical design based on a conventional zoom lens for a video camera results in a zoom lens having a very large overall length and a large front lens diameter, and may not even be practical.

【0015】本発明は従来技術のこのような問題点に鑑
みてなされたものであり、その目的は、比較的大きな結
像素子に適用でき、広角端が70°を越え、変倍比が1
0倍程度を越える厳しい仕様条件においても、十分な結
像性能を維持し得る小型のズームレンズを提供すること
である。
The present invention has been made in view of such problems of the prior art, and has an object to be applicable to a relatively large imaging element, a wide-angle end exceeding 70 °, and a zoom ratio of 1
An object of the present invention is to provide a small-sized zoom lens capable of maintaining a sufficient imaging performance even under severe specification conditions exceeding about 0 times.

【0016】[0016]

【課題を解決するための手段】上記目的を達成する本発
明のズームレンズは、物体側より順に、正屈折力の第1
レンズ群、負屈折力の第2レンズ群、正屈折力の第3レ
ンズ群、正屈折力の第4レンズ群、及び、第5レンズ群
で構成し、広角端から望遠端への変倍時に、第1レンズ
群から第5レンズ群までの各々のレンズ群が移動し、第
1レンズ群と第2レンズ群の間隔が大きくなり、第2レ
ンズ群と第3レンズ群の間隔が狭くなるように移動し、
第5レンズ群が物体側に移動し、以下の条件式を満足す
ることを特徴とするものである。
According to the present invention, there is provided a zoom lens having a first positive refractive power in order from the object side.
The zoom lens system includes a lens unit, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, a fourth lens unit having a positive refractive power, and a fifth lens unit. The respective lens groups from the first lens group to the fifth lens group move, so that the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases. Go to
The fifth lens unit moves to the object side, and satisfies the following conditional expression.

【0017】 0.05<fBW/|fW12 |<3.0 ・・・(1) 4<|ExpdW×Y|/fW ・・・(2) ただし、fW は広角端での全系の焦点距離、fBWは広角
端でのレンズ最終面(フィルタ類含まず)から結像面ま
での距離、|fW12 |は広角端の第1レンズ群から第2
レンズ群までの焦点距離、ExpdWは広角端での結像面位
置(フィルタ類含まず)から射出瞳までの光軸上距離、
Yは結像面での実際の最大像高、である。
0.05 <f BW / | f W12 | <3.0 (1) 4 <| E xpdW × Y | / f W (2) where f W is at the wide-angle end. The focal length of the entire system, f BW is the distance from the last lens surface (not including filters) at the wide-angle end to the imaging plane, and | f W12 | is the second to the second lens group at the wide-angle end.
The focal length to the lens group, ExpdW is the distance on the optical axis from the image plane position (not including filters) at the wide angle end to the exit pupil,
Y is the actual maximum image height on the image plane.

【0018】この場合、以下の条件式を満たすことが望
ましい。
In this case, it is desirable to satisfy the following conditional expression.

【0019】 2.0<f1 /fW <12.0 ・・・(3) 0.3<|f2 /fW |<3.5 ・・・(4) 0.15<f3 /fW345<3.0 ・・・(5) 2.0<|f5 |/fW345<20 ・・・(6) ただし、f1 は第1レンズ群の焦点距離、f2 は第2レ
ンズ群の焦点距離、f3は第3レンズ群の焦点距離、f
5 は第5レンズ群の焦点距離、fW345は広角端における
第3レンズ群から第5レンズ群までの焦点距離である。
2.0 <f 1 / f W <12.0 (3) 0.3 <| f 2 / f W | <3.5 (4) 0.15 <f 3 / f W345 <3.0 (5) 2.0 <| f 5 | / f W345 <20 (6) where f 1 is the focal length of the first lens unit, and f 2 is the second lens. The focal length of the group, f 3, is the focal length of the third lens group, f
5 is the focal length of the fifth lens group, and f W345 is the focal length from the third lens group to the fifth lens group at the wide angle end.

【0020】また、第4レンズ群が少なくとも一組の接
合レンズを含むことが望ましい。
It is preferable that the fourth lens group includes at least one set of cemented lenses.

【0021】また、第5レンズ群が少なくとも一組の接
合レンズを含むことが望ましい。
Preferably, the fifth lens group includes at least one set of cemented lenses.

【0022】また、有限遠物体へのフォーカシングは、
第1レンズ群と第2レンズ群を一体で移動するか又は第
2レンズ群のみを移動することによって行うことが望ま
しい。
Focusing on a finite object is as follows.
It is desirable to perform this by moving the first lens group and the second lens group integrally or by moving only the second lens group.

【0023】以下、本発明において上記構成をとる理由
とその作用について説明する。
Hereinafter, the reason for adopting the above configuration in the present invention and its operation will be described.

【0024】本発明は、小型で高性能な広角高倍率ズー
ムレンズを提供することにあり、バックフォーカスが比
較的に短い光学系を意図している。従来の光学系として
は、物体側より順に、正屈折力の第1レンズ群、負屈折
力の第2レンズ群、正屈折力の第3レンズ群及び正屈折
力の第4レンズ群から構成するズームレンズがカメラレ
ンズの主流となっており、高倍率ズームレンズでは、第
1レンズ群を始めとしてレンズ群が可動である方式が一
般化してきている。また、第3レンズ群と第4レンズ群
の相互の移動は、変倍以外に変倍時の像面湾曲の変動を
補正するために必要であり、基本的には、これらのレン
ズ群は1つのレンズ群であると考えられる場合さえあ
る。
An object of the present invention is to provide a compact, high-performance, wide-angle, high-magnification zoom lens, which is intended for an optical system having a relatively short back focus. The conventional optical system includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power. Zoom lenses have become the mainstream of camera lenses, and in high-magnification zoom lenses, a system in which the first lens group and other lens groups are movable has become common. Further, the mutual movement of the third lens unit and the fourth lens unit is necessary to correct the fluctuation of the curvature of field at the time of zooming in addition to the zooming. It may even be considered one lens group.

【0025】しかしながら、 さらに広画角と大きな変倍
比を達成しようとする場合には、正レンズ群以外に1つ
の負レンズ群を設けて移動させることで、収差補正上か
らも変倍から考えても有利となる。特に、本発明のよう
に、例えば変倍比が10倍程度以上になると、非常に優
位性が明確になった。一般的には、レンズ群数が増すと
各レンズ群で色収差補正が必要であると言う考えがあ
り、レンズ構成枚数が増えると考えられる。しかしなが
ら、本発明では、非球面を有効に活用し、歪曲収差補正
を主に第2レンズ群の負レンズの面で補正し、後部レン
ズ群でコマ収差等を十分に補正できるように非球面を積
極的に採用し、小型化を意図した。
However, in order to achieve a wider angle of view and a larger zoom ratio, one negative lens group is provided in addition to the positive lens group to move the zoom lens. This is also advantageous. In particular, as in the present invention, for example, when the zoom ratio is about 10 times or more, the superiority became clear. Generally, as the number of lens groups increases, it is considered that chromatic aberration correction is required for each lens group, and it is considered that the number of lens components increases. However, in the present invention, the aspherical surface is effectively used, the distortion is mainly corrected by the surface of the negative lens of the second lens unit, and the aspherical surface is sufficiently corrected by the rear lens unit so as to sufficiently correct coma and the like. Actively adopted and intended for miniaturization.

【0026】すなわち、物体側より順に、正屈折力の第
1レンズ群、負屈折力の第2レンズ群、正屈折力の第3
レンズ群、正屈折力の第4レンズ群、及び、第5レンズ
群で構成し、広角端から望遠端への変倍時に、第1レン
ズ群から第5レンズ群までの各々のレンズ群が移動し、
第1レンズ群と第2レンズ群の間隔が大きくなり、第2
レンズ群と第3レンズ群の間隔が狭くなるように移動
し、第5レンズ群が物体側に移動し、以下の条件式を満
足することを特徴とするものである。
That is, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power.
Consisting of a lens unit, a fourth lens unit having a positive refractive power, and a fifth lens unit, each of which moves from the first lens unit to the fifth lens unit during zooming from the wide-angle end to the telephoto end. And
The distance between the first lens group and the second lens group is increased,
The distance between the lens group and the third lens group moves so as to be narrow, and the fifth lens group moves toward the object side, and satisfies the following conditional expression.

【0027】 0.05<fBW/|fW12 |<3.0 ・・・(1) 4<|ExpdW×Y|/fW ・・・(2) ただし、fW は広角端での全系の焦点距離、fBWは広角
端でのレンズ最終面(フィルタ類含まず)から結像面ま
での距離、|fW12 |は広角端の第1レンズ群から第2
レンズ群までの焦点距離、ExpdWは広角端での結像面位
置(フィルタ類含まず)から射出瞳までの光軸上距離、
Yは結像面での実際の最大像高、である。
0.05 <f BW / | f W12 | <3.0 (1) 4 <| E xpdW × Y | / f W (2) where f W is at the wide angle end. The focal length of the entire system, f BW is the distance from the last lens surface (not including filters) at the wide-angle end to the imaging plane, and | f W12 | is the second to the second lens group at the wide-angle end.
The focal length to the lens group, ExpdW is the distance on the optical axis from the image plane position (not including filters) at the wide angle end to the exit pupil,
Y is the actual maximum image height on the image plane.

【0028】また、レンズ群の近軸屈折力配置は、以下
の条件式にて規制する。
The paraxial refractive power arrangement of the lens unit is regulated by the following conditional expression.

【0029】 2.0<f1 /fW <12.0 ・・・(3) 0.3<|f2 /fW |<3.5 ・・・(4) 0.15<f3 /fW345<3.0 ・・・(5) 2.0<|f5 |/fW345<20 ・・・(6) ただし、f1 は第1レンズ群の焦点距離、f2 は第2レ
ンズ群の焦点距離、f3は第3レンズ群の焦点距離、f
5 は第5レンズ群の焦点距離、fW345は広角端における
第3レンズ群から第5レンズ群までの焦点距離である。
2.0 <f 1 / f W <12.0 (3) 0.3 <| f 2 / f W | <3.5 (4) 0.15 <f 3 / f W345 <3.0 (5) 2.0 <| f 5 | / f W345 <20 (6) where f 1 is the focal length of the first lens unit, and f 2 is the second lens. The focal length of the group, f 3, is the focal length of the third lens group, f
5 is the focal length of the fifth lens group, and f W345 is the focal length from the third lens group to the fifth lens group at the wide angle end.

【0030】本発明は、広角端の画角が70°程度以上
でも十分に対応でき、高い結像性能を有するズームレン
ズ系を提供することが大きな目的である。このために、
ズームレンズ方式として、物体側から、正屈折力の第1
レンズ群、負屈折力の第2レンズ群、正屈折力の第3レ
ンズ群、負屈折力の第4レンズ群、及び、正屈折力若し
くは負屈折力の第5レンズ群で構成し、条件式(1)〜
(6)に適ったパワー配置を見出し、これに最適なレン
ズを構成し配することで実現できたものである。
It is a major object of the present invention to provide a zoom lens system which can sufficiently cope with an angle of view at the wide angle end of about 70 ° or more and has high image forming performance. For this,
As a zoom lens system, the first with positive refracting power from the object side
The lens system includes a lens group, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive or negative refractive power. (1)-
This was realized by finding a power arrangement suitable for (6) and constructing and arranging an optimal lens for this.

【0031】また、広角高倍率ズームレンズにありがち
な大型化や性能低下という問題を解決したものである。
広角域の周辺部の像面湾曲は、ある程度まで全長が大き
くなるか、若しくは、対称性のレンズ構成であれば解決
するが、全長の短縮を意図した開発のために、大きな課
題となる。これにはレンズ構成と非球面の使い方が重要
になる。
Further, the present invention has solved the problems of large size and reduced performance, which are common in wide-angle and high-magnification zoom lenses.
The curvature of field in the peripheral portion of the wide-angle region can be solved by increasing the overall length to some extent or by using a symmetric lens configuration. However, this is a major problem due to development aimed at shortening the overall length. For this, the lens configuration and the use of the aspherical surface are important.

【0032】条件式(1)は、本発明のズームレンズ系
のフィルター類を含まない最も像側のレンズを基準とし
たバックフォーカスを規定する条件式である。従来の銀
塩カメラ用の光学系は一眼レフカメラを想定しており、
クイックリターンミラーのスペースを想定した光学設計
になっている。条件式(1)の下限値0.05を下回る
と、フィルター類の挿入スペースが不足してしまう。ま
た、上限値3.0を上回ると、本発明の狙いの1つであ
る小型化のためには、十分すぎるバックフォーカスとな
り好ましくない。このバックフォーカスは、例えばCC
D結像素子の場合に、画素数によって決めることが必要
であり、小型化するためにもある範囲から最適化する必
要がある。
Conditional expression (1) is a conditional expression that defines the back focus based on the lens closest to the image, which does not include the filters of the zoom lens system of the present invention. The optical system for conventional silver halide cameras assumes a single-lens reflex camera,
It has an optical design that assumes the space of a quick return mirror. When the value goes below the lower limit of 0.05 to condition (1), the insertion space for filters becomes insufficient. On the other hand, when the value exceeds the upper limit of 3.0, the back focus becomes too large for downsizing, which is one of the aims of the present invention, which is not preferable. This back focus is, for example, CC
In the case of a D imaging element, it is necessary to determine the number depending on the number of pixels, and it is necessary to optimize from a certain range in order to reduce the size.

【0033】なお、条件式(1)はさらに次の範囲にな
るとより好ましい。
It is more preferable that the conditional expression (1) falls within the following range.

【0034】 0.1<fBW/|fW12 |<1.0 ・・・(1’) また、条件式(2)は、銀塩カメラ用途とは異なり、ビ
デオカメラ等の用途の場合、軸外主光線の結像面への入
射角度を考える必要がある。この条件式は、開口率等の
ためにできるだけ結像素子に対して小さい角度で入射す
ることを考慮に入れた光学系であることを規定する。条
件式(2)の下限の4を外れると、開口率が劣化するた
めに望ましくない。特に、条件式(2)においては、光
学系の射出瞳位置を考慮することを意味している。
0.1 <f BW / | f W12 | <1.0 (1 ′) In addition, the conditional expression (2) is different from the silver halide camera application, and in the case of a video camera or the like, It is necessary to consider the angle of incidence of the off-axis chief ray on the image plane. This conditional expression stipulates that the optical system takes into consideration that the light enters the imaging element at an angle as small as possible due to the aperture ratio and the like. If the lower limit of 4 to condition (2) is not satisfied, the aperture ratio is undesirably deteriorated. In particular, the conditional expression (2) means that the position of the exit pupil of the optical system is considered.

【0035】なお、条件式(2)はさらに次の範囲にな
るとより好ましい。
It is more preferable that the conditional expression (2) be in the following range.

【0036】 30<|ExpdW×Y|/fW ・・・(2’) 条件式(3)は、第1レンズ群のパワー配置を規定する
ものである。第1レンズ群は、本発明のようなズーム方
式であれば、変倍時に移動するため、その移動量と前玉
径の増大に注意しながら結像性能を維持できるようにす
ることが重要である。条件式(3)の上限値12.0を
上回ると、第1レンズ群としての収差残存量が減り、収
差補正上で有利となるが、変倍時の移動量が増し、入射
瞳距離も増し、 その結果レンズ外径も増すために全体と
して大型化の傾向となるために、望ましくない。また、
下限値2.0を下回る場合には、小型化の方向であり、
前玉径も変倍時の移動量も減る傾向性が出るが、収差補
正上から好ましいとは言えない。特に望遠域での色収差
の補正に関係してくる。
30 <| E xpdW × Y | / f W (2 ′) Conditional expression (3) defines the power arrangement of the first lens unit. Since the first lens group moves at the time of zooming in the case of the zoom method as in the present invention, it is important to maintain the imaging performance while paying attention to the movement amount and the increase of the front lens diameter. is there. If the upper limit of 12.0 to condition (3) is exceeded, the amount of residual aberration of the first lens group decreases, which is advantageous for aberration correction. However, the amount of movement during zooming increases, and the entrance pupil distance also increases. As a result, the outer diameter of the lens increases, which tends to increase the overall size, which is not desirable. Also,
If the value is below the lower limit of 2.0, it is a direction of miniaturization,
Although the front lens diameter and the movement amount during zooming tend to decrease, this is not preferable from the viewpoint of aberration correction. In particular, it relates to correction of chromatic aberration in the telephoto range.

【0037】なお、条件式(3)はさらに次の範囲にな
るとより好ましい。
It is more preferable that the conditional expression (3) falls within the following range.

【0038】 3.0<f1 /fW <10.0 ・・・(3’) 条件式(4)は、負屈折力の第2レンズ群のパワー配置
を決める条件式である。第2レンズ群は、第1レンズ群
のパワー決定にも関係がある。第2レンズ群が小さなパ
ワーであれば、第1レンズ群も同様となり、大型化する
傾向を有することになる。条件式(4)で、上限値の
3.5を上回る場合、レンズ構成も少なくて済むが、第
2レンズ群以外に第1レンズ群のパワーも小さくなり、
第1レンズ群の前玉径の増大、変倍時の移動量の増大を
招く等、収差補正上の利点があるが、これ以外の課題が
多く派生するために、望ましくない結果となる。一方
で、下限値0.3を下回る場合には、レンズ系の小型化
を意図することができるが、収差補正上で困難が生じ、
歪曲収差の発生、軸外コマ収差の発生が顕著になる。ま
た、本条件式内であっても、適切なレンズ構成とするこ
とによってのみレンズ系の小型化と高い結像性能を得る
ことができるものである。
3.0 <f 1 / f W <10.0 (3 ′) Conditional expression (4) is a conditional expression that determines the power arrangement of the second lens unit having a negative refractive power. The second lens group is also concerned with determining the power of the first lens group. If the second lens group has a small power, the first lens group is also the same and tends to be large. In condition (4), when the value exceeds the upper limit of 3.5, the number of lens configurations may be small, but the power of the first lens unit other than the second lens unit also decreases, and
There are advantages in aberration correction, such as an increase in the diameter of the front lens of the first lens unit and an increase in the amount of movement during zooming. However, many other problems arise, which is undesirable. On the other hand, if the lower limit is less than 0.3, it is possible to reduce the size of the lens system, but it becomes difficult to correct aberrations.
Distortion and off-axis coma become noticeable. Further, even within this conditional expression, it is possible to obtain a compact lens system and high imaging performance only by using an appropriate lens configuration.

【0039】条件式(5)は、第3レンズ群のパワー決
定に関する条件式である。このズーム方式では、第3レ
ンズ群から第5レンズ群によって結像部を構成してお
り、ズーム方式から鑑みれば、独立した3つのレンズ群
で構成していると言うことができる。これまでの多くの
ズーム方式である、第3レンズ群が正屈折力、そして第
4レンズ群が正屈折力である方式とその変倍方法を異に
するものである。この第3レンズ群は、強い発散性のパ
ワーの第2レンズ群からの光束を収斂し球面収差や軸外
収差を補正する役割を有する。また、軸上球面収差の補
正を良好に行うという役割を有している。条件式(5)
の上限値の3.0を上回ると、第3レンズ群の収差補正
面では非常に有利であるが、第3レンズ群の変倍時の移
動量が増し、好ましくない。また、下限値の0.15を
下回ると、変倍時の移動量が減り、小型化には望ましい
が、収差補正という観点から見ると、球面収差補正が困
難となるばかりでなく、軸外コマ収差の補正が困難とな
り、望ましくない結果となる。
Conditional expression (5) is a conditional expression for determining the power of the third lens unit. In this zoom system, the image forming unit is constituted by the third lens unit to the fifth lens unit. From the viewpoint of the zoom system, it can be said that the image forming unit is constituted by three independent lens units. The zooming method differs from the zooming method in which the third lens group has a positive refractive power and the fourth lens group has a positive refractive power, which is a conventional zoom method. The third lens group has a role of converging a light beam from the second lens group having a strong diverging power and correcting spherical aberration and off-axis aberration. Further, it has a role of favorably correcting on-axis spherical aberration. Conditional expression (5)
If the upper limit of 3.0 is exceeded, the aberration correction surface of the third lens unit is very advantageous, but the amount of movement of the third lens unit during zooming increases, which is not preferable. When the value is below the lower limit of 0.15, the amount of movement at the time of zooming is reduced, which is desirable for miniaturization. However, from the viewpoint of aberration correction, not only spherical aberration correction becomes difficult, but also off-axis Correction of aberrations becomes difficult, which is undesirable.

【0040】条件式(6)は、第5レンズ群のパワーを
決める条件式である。このレンズ群では、軸外光束の主
光線の制御上で重要な役割を果たす。特にCCD撮像素
子等の仕様においては、軸外主光線にある程度テレセン
トリック性を持たせる役割がある点で、大きな役割を持
っている。この条件式の上限値20を上回ると、第5レ
ンズ群の収差補正は容易になるが、変倍時の移動量が増
すので好ましくない。また、下限値の2.0を下回る
と、軸外収差の補正が難しくなると同時に、レンズ構成
を増やさないと収差補正が困難となる。さらに、このレ
ンズ群は、レンズ構成が増すとレンズ系全体の大型化に
つながるために、望ましい結果が得られない場合が多
い。また、第5レンズ群は、 第4レンズ群の屈折力とズ
ーミング移動形式によって正レンズ群になる場合と負レ
ンズ群になる場合がある。 また、第5レンズ群の取り得
る屈折力の範囲もかなり広いことが後記の実施例におい
て示されている。
Conditional expression (6) is a conditional expression for determining the power of the fifth lens unit. This lens group plays an important role in controlling the principal ray of the off-axis light beam. In particular, in the specifications of the CCD image pickup device and the like, it plays a significant role in that the off-axis principal ray has a role of giving a certain degree of telecentricity. If the upper limit of the conditional expression (20) is exceeded, aberration correction of the fifth lens group is facilitated, but the amount of movement during zooming increases, which is not preferable. On the other hand, when the value is below the lower limit of 2.0, it becomes difficult to correct off-axis aberrations, and it becomes difficult to correct aberrations unless the lens configuration is increased. Further, in this lens group, an increase in the lens configuration leads to an increase in the size of the entire lens system, so that a desired result is not often obtained. The fifth lens group may be a positive lens group or a negative lens group depending on the refractive power of the fourth lens group and the type of zooming movement. Further, it is shown in Examples described later that the range of refracting power that can be taken by the fifth lens group is considerably wide.

【0041】また、本発明においては、高倍率でありな
がら広角端が70°程度以上を包括することを意図して
おり、構成が簡素である高度な光学系を提案するもので
ある。すなわち、焦点距離で言うならば、広角端の焦点
距離が、光学系の結像面又は素子の有効対角長より短い
ことを特徴とするズームレンズである。また、本発明の
実施例に見るように、CCDを結像素子として考えた場
合も含め、結像面での開口率の問題に鑑みて、有効対角
線長が従来より大きいにも関らず、ある程度のテレセン
トリック性を維持できる光学系を提案している。
Further, in the present invention, it is intended to cover a wide angle end of about 70 ° or more while having a high magnification, and to propose an advanced optical system having a simple configuration. That is, in terms of focal length, the zoom lens is characterized in that the focal length at the wide-angle end is shorter than the effective diagonal length of the imaging surface of the optical system or the element. Further, as seen in the embodiment of the present invention, including the case where the CCD is considered as the imaging element, in consideration of the problem of the aperture ratio on the imaging surface, despite the fact that the effective diagonal length is larger than before, An optical system that can maintain a certain degree of telecentricity has been proposed.

【0042】近軸構成が前記条件式で決まった後に、本
発明の厚肉レンズ構成を決定することとなる。すなわ
ち、第1レンズ群は少なくとも1枚の負レンズと正レン
ズで構成しており、本発明においては、一組の接合レン
ズ、又は、空気分離型のダブレットを基本構成とし、さ
らに1枚の正レンズにて構成する。望遠端が高倍率ズー
ムレンズとして望遠域にある場合、異常分散性硝子を使
用することが望ましく、高画素化の結像素子に対応する
ことが容易になる。
After the paraxial configuration is determined by the above conditional expression, the thick lens configuration of the present invention is determined. That is, the first lens group includes at least one negative lens and a positive lens. In the present invention, a pair of cemented lenses or an air separation type doublet is used as a basic configuration. It consists of a lens. When the telephoto end is in the telephoto range as a high-magnification zoom lens, it is desirable to use anomalous dispersive glass, and it is easy to cope with an imaging element with a high pixel count.

【0043】第2レンズ群は、少なくとも2枚の負レン
ズと1枚の正レンズで構成する。本発明では、条件式
(4)に示すように、大きなパワーで構成することによ
り小型化を意図しており、物体側から、負メニスカスレ
ンズ、両凹負レンズ、正レンズ、負レンズにて構成する
のが望ましい。最初の負メニスカスレンズの物体側面を
非球面とすることで、歪曲収差発生量の大きいこの面で
の補正が可能となる。さらに続く負レンズに非球面を使
用することができると、広角域での像面湾曲の補正に効
果があり、広角化を積極的に進める場合には重要であ
る。また、最も像側のレンズは負レンズと正レンズの接
合ダブレット、又は、空気レンズを挟んだダブレットが
ペッツバール和の補正上等で効果があることがよく知ら
れている。
The second lens group includes at least two negative lenses and one positive lens. In the present invention, as shown in conditional expression (4), miniaturization is intended by configuring with a large power, and includes a negative meniscus lens, a biconcave negative lens, a positive lens, and a negative lens from the object side. It is desirable to do. By making the object side surface of the first negative meniscus lens an aspherical surface, it is possible to perform correction on this surface where a large amount of distortion occurs. If an aspherical surface can be used for the subsequent negative lens, it is effective in correcting the curvature of field in a wide-angle range, and is important when aggressively increasing the angle of view. Also, it is well known that a doublet that is a cemented doublet of a negative lens and a positive lens or a doublet sandwiching an air lens is effective in correcting the Petzval sum for the lens closest to the image.

【0044】第3レンズ群は、少なくとも2枚の正レン
ズと1枚の負レンズで構成することが望ましく、非球面
を正レンズに使用することで、大口径化した場合の軸上
球面収差、軸外の色収差の補正上でも効果が大きい。開
口絞りは、第3レンズ群の物体側に隣接して配置される
場合に、軸外収差よりも軸上収差の補正に意味がある。
すなわち、球面収差が正レンズでは補正不足となる傾向
にあるために、これを補正するための非球面の積極的使
用が非常に有効となる。屈折力が強くなる傾向があるレ
ンズ群であり、大口径化を意図する場合には、非球面が
複数面であるとより効果が高い。通常は、その非球面形
状を規定するよりも、その収差補正のバランスで作用が
変化するという事実がある。この場合に、軸上球面収差
の補正を重視するのであれば、レンズの周縁部に行くに
従ってレンズのパワーが緩くなるように、非球面を構成
することになる。また、軸外収差とのバランスで、非球
面に変曲点を生ずることもある。また、このレンズ群
は、3枚の正レンズと1枚の負レンズで構成する場合も
ある。
It is desirable that the third lens group includes at least two positive lenses and one negative lens. By using an aspheric surface for the positive lens, it is possible to reduce the on-axis spherical aberration, The effect is also great in correcting off-axis chromatic aberration. When the aperture stop is disposed adjacent to the object side of the third lens group, the aperture stop is more significant for correcting the axial aberration than the off-axis aberration.
That is, since the spherical aberration tends to be insufficiently corrected by the positive lens, the positive use of the aspherical surface for correcting the spherical aberration is very effective. This is a lens group that tends to have a high refractive power. In the case of increasing the aperture, the effect is higher if the aspherical surface has a plurality of surfaces. Normally, there is a fact that the action changes depending on the balance of aberration correction, rather than defining the aspherical shape. In this case, if the correction of on-axis spherical aberration is emphasized, the aspherical surface is configured such that the power of the lens becomes gentler toward the periphery of the lens. Further, an inflection point may occur on the aspheric surface due to the balance with off-axis aberration. This lens group may be composed of three positive lenses and one negative lens.

【0045】第4レンズ群は、1組のダブレットで構成
する正のレンズ群である。このレンズ群は、軸外収差の
補正、特に変倍というよりも軸外収差の補正に果たす役
割が大きい。第4レンズ群は、1枚の負レンズとパワー
の小さい正レンズで構成できるが、最も像側のレンズ面
に非球面を使用することで、軸外の収差の補正がより容
易になる。例えば負レンズと正レンズのダブレットの場
合、ダブレットの像側面に非球面を使用することが望ま
しい。
The fourth lens group is a positive lens group composed of a set of doublets. This lens group plays a large role in correcting off-axis aberrations, particularly correcting off-axis aberrations rather than zooming. The fourth lens group can be composed of one negative lens and a positive lens having a small power. However, by using an aspherical surface for the lens surface closest to the image, it is easier to correct off-axis aberrations. For example, in the case of a doublet with a negative lens and a positive lens, it is desirable to use an aspheric surface on the image side surface of the doublet.

【0046】第5レンズ群は、少なくとも1枚の正レン
ズと1枚の負レンズの接合レンズ、又は、空気分離型ダ
ブレットで構成される。第5レンズ群の屈折力が大きく
なる場合には、2組のダブレットにて構成し、一方のダ
ブレットで色収差補正、 もう一方のダブレットでペッツ
バール和を補正すると言う考え方が望ましい。 第5レン
ズ群に少なくとも1面の非球面を使用する場合、ある程
度のテレセントリック性を維持して、かつ、周辺光量を
維持した光学系を実現することが可能となる。
The fifth lens group is composed of a cemented lens of at least one positive lens and one negative lens, or an air separation type doublet. When the refracting power of the fifth lens group is increased, it is desirable that the doublet be composed of two sets of doublets, with one doublet correcting chromatic aberration and the other doublet correcting Petzval sum. When at least one aspherical surface is used for the fifth lens group, it is possible to realize an optical system that maintains a certain degree of telecentricity and maintains a peripheral light amount.

【0047】また、本発明においては、第1レンズ群と
第3レンズ群が略線形的な変倍移動をする場合があり、
これら以外のレンズ群については、変倍時の倍率関係
は、第4レンズ群の関係以外は、一般に広角端から望遠
端への移動について言えば、その倍率の絶対値が増倍の
方向性を維持するものである。これにより、効率的な変
倍が可能となっている。
In the present invention, the first lens unit and the third lens unit may move substantially linearly in some cases.
With respect to the other lens groups, the magnification relationship at the time of zooming, except for the relationship of the fourth lens group, generally indicates the absolute value of the magnification in the direction from the wide-angle end to the telephoto end except for the direction of magnification. To maintain. This enables efficient zooming.

【0048】また、本発明のズームレンズにおいて、第
4レンズ群の移動軌跡について基本的なズーミング移動
の方法に2通りがある。これは、後記の実施例において
示す通りであり、一方は、実施例1から3にあるよう
に、第4レンズ群が広角端から望遠端に移動する場合
に、物体側に移動しながら、望遠域で戻り第5レンズ群
に近づく場合である。もう一方は、実施例4、5等に示
すように、広角端から望遠端へのズーミング時に物体側
に移動し、望遠域では第3レンズ群に近づくという場合
である。このズーミング移動については、各レンズ群の
屈折力配置によって変化する。
In the zoom lens of the present invention, there are two basic zooming methods for the movement locus of the fourth lens group. This is as shown in the later-described embodiment. On the other hand, when the fourth lens group moves from the wide-angle end to the telephoto end as in the first to third embodiments, the fourth lens group moves to the object side while moving to the telephoto end. This is the case where the lens returns in the area and approaches the fifth lens group. The other case is, as shown in Examples 4 and 5, etc., where the zoom lens moves to the object side during zooming from the wide-angle end to the telephoto end, and approaches the third lens group in the telephoto range. This zooming movement changes depending on the refractive power arrangement of each lens group.

【0049】特に大きな違いが現れる場合として、第5
レンズ群の屈折力と符号がある。実施例1、2、3で
は、それぞれ−0.0032、−0.00997、−
0.0079である。一方で、実施例4、5では、それ
ぞれ0.0104、0.00995である。このよう
に、第5レンズ群が負の屈折力を有する場合に、第4レ
ンズ群が戻りがある非線形移動を示し、一方で、第5レ
ンズ群が正の屈折力を有する場合には、広角端から望遠
端へのズーミング時に物体側に移動するという特徴を実
施例において示している。
As a case where a great difference appears particularly,
There is a sign and the refractive power of the lens group. In Examples 1, 2, and 3, -0.0032, -0.00997, and-
0.0079. On the other hand, in Examples 4 and 5, they are 0.0104 and 0.00995, respectively. Thus, when the fifth lens group has a negative refractive power, the fourth lens group exhibits a non-linear movement with a return, while when the fifth lens group has a positive refractive power, a wide angle The embodiment shows a feature of moving to the object side during zooming from the end to the telephoto end.

【0050】本発明では、特に第5レンズ群が正屈折力
を有し、かつ、広角端でのバックフォーカスが総体的に
短く、 結像面に入射する軸外主光線がある程度のテレセ
ントリック性に近い光学系であることに大きな特徴を有
している。
In the present invention, particularly, the fifth lens group has a positive refracting power, the back focus at the wide-angle end is generally short, and the off-axis principal ray incident on the image plane has a certain degree of telecentricity. A major feature is that it is a close optical system.

【0051】さらに、フォーカシングについては、本発
明のような広角高倍率ズームレンズでは、過去のズーム
レンズで使用された第1レンズ群移動による方法では、
大型化や収差変動等、実用的ではなく、第1レンズ群と
第2レンズ群を一体に移動する方がむしろよい。また、
収差変動の観点では、近接撮影に使用するのであれば、
第2レンズ群の移動が使用できる。
Further, regarding the focusing, in the wide-angle and high-magnification zoom lens as in the present invention, the method by moving the first lens group used in the past zoom lens is as follows.
It is not practical because of enlargement and fluctuation of aberration, and it is better to move the first lens group and the second lens group integrally. Also,
From the viewpoint of aberration variation, if it is used for close-up photography,
Movement of the second lens group can be used.

【0052】本発明によれば、単なる高倍率ズームレン
ズでは、もちろん画角70°程度を越える広角を含む高
倍率ズームレンズが可能である。このために、適切なズ
ーム方式と、パワー配置、適切なレンズ構成、並びに、
非球面の効果的使用方法を実現することができた。
According to the present invention, a simple high-magnification zoom lens can of course be a high-magnification zoom lens having a wide angle exceeding an angle of view of about 70 °. For this purpose, a proper zoom method, power arrangement, proper lens configuration, and
An effective method of using an aspheric surface was realized.

【0053】フォーカス方法については、実施例8と9
にて近距離の場合の収差を示したように、広角域では、
フォーカス移動量が小さくなる方法が必要である。
Embodiments 8 and 9 show the focusing method.
In the wide-angle range, as shown in FIG.
A method for reducing the amount of focus movement is required.

【0054】次の表1、2、3、4にそれぞれ実施例8
の3次収差係数を示した。表1は、広角端の無限遠の各
レンズ群の収差係数の総和である。表2は、第2レンズ
群をフォーカスレンズ群とした場合の広角端の1mでの
収差係数を示す。また、表3は、望遠端の無限遠での収
差係数の総和、表4は、1mでの収差係数である。ここ
で、SA3は球面収差係数、CM3はコマ収差係数、A
S3は非点収差係数、DT3は歪曲収差係数、PZ3は
像面湾曲の収差係数である。 (表1) 群 SA3 CM3 AS3 DT3 PZ3 G1 -0.00007 0.00139 -0.15849 4.24199 -0.09669 G2 0.04657 0.23763 0.09107 -5.75862 0.63836 G3 -0.80015 -2.11485 -0.59220 -0.09106 -0.26885 G4 0.29549 1.30197 0.46447 0.45241 -0.16432 G5 -0.01561 -0.12216 0.09213 -0.06706 -0.13348 Σ -0.47377 -0.69602 -0.10302 -1.22233 -0.02498 。
The following Tables 1, 2, 3, and 4 show Example 8 respectively.
Are shown. Table 1 shows the sum of aberration coefficients of each lens group at infinity at the wide-angle end. Table 2 shows aberration coefficients at 1 m at the wide-angle end when the second lens group is a focus lens group. Table 3 shows the total aberration coefficient at infinity at the telephoto end, and Table 4 shows the aberration coefficient at 1 m. Here, SA3 is a spherical aberration coefficient, CM3 is a coma aberration coefficient, and A
S3 is an astigmatism coefficient, DT3 is a distortion aberration coefficient, and PZ3 is an aberration coefficient of field curvature. (Table 1) group SA3 CM3 AS3 DT3 PZ3 G1 -0.00007 0.00139 -0.15849 4.24199 -0.09669 G2 0.04657 0.23763 0.09107 -5.75862 0.63836 G3 -0.80015 -2.11485 -0.59220 -0.09106 -0.26885 G4 0.29549 1.30197 0.46447 0.45241 -0.156132 -0.06706 -0.13348 Σ -0.47377 -0.69602 -0.10302 -1.22233 -0.02498.

【0055】 (表2) 群 SA3 CM3 AS3 DT3 PZ3 G1 -0.00009 -0.00230 -0.13835 4.18323 -0.09650 G2 0.04559 0.23633 0.06898 -5.76039 0.63705 G3 -0.79523 -2.10618 -0.59098 -0.09106 -0.26829 G4 0.29367 1.29663 0.46351 0.45241 -0.16398 G5 -0.01551 -0.12166 0.09194 -0.06706 -0.13320 Σ -0.47157 -0.69717 -0.10490 -1.28287 -0.02493 。(Table 2) Group SA3 CM3 AS3 DT3 PZ3 G1 -0.00009 -0.00230 -0.13835 4.18323 -0.09650 G2 0.04559 0.23633 0.06898 -5.76039 0.63705 G3 -0.79523 -2.10618 -0.59098 -0.09106 -0.26829 G4 0.29367 1.29661 -0.46359824 0.01551 -0.12166 0.09194 -0.06706 -0.13320 Σ -0.47157 -0.69717 -0.10490 -1.28287 -0.02493.

【0056】 (表3) 群 SA3 CM3 AS3 DT3 PZ3 G1 -0.32939 0.97038 -0.43820 0.74656 -0.07498 G2 1.13360 0.69728 0.58691 -0.54450 0.49499 G3 -6.13781 -5.87884 -0.49620 -0.01815 -0.20847 G4 2.63067 2.67139 0.25762 0.11928 -0.12742 G5 -0.04023 -0.12387 -0.00379 -0.44429 -0.10350 Σ -2.74315 -1.66366 -0.09365 -0.14109 -0.01937 。(Table 3) Group SA3 CM3 AS3 DT3 PZ3 G1 -0.32939 0.97038 -0.43820 0.74656 -0.07498 G2 1.13360 0.69728 0.58691 -0.54450 0.49499 G3 -6.13781 -5.87884 -0.49620 -0.01815 -0.20847 G4 2.63067 2.28139 -0.25762 0.1 -0.12387 -0.00379 -0.44429 -0.10350 Σ -2.74315 -1.66366 -0.09365 -0.14109 -0.01937

【0057】 (表4) 群 SA3 CM3 AS3 DT3 PZ3 G1 -0.05697 0.23458 -0.20323 0.86484 -0.07170 G2 0.71583 1.00826 0.33890 -0.77037 0.47333 G3 -5.36686 -5.37563 -0.47449 -0.01815 -0.19935 G4 2.30024 2.44273 0.24635 0.11928 -0.12184 G5 -0.03517 -0.11327 -0.00363 -0.44429 -0.09897 Σ -2.44293 -1.80333 -0.09609 -0.24868 -0.01852 。(Table 4) Group SA3 CM3 AS3 DT3 PZ3 G1 -0.05697 0.23458 -0.20323 0.86484 -0.07170 G2 0.71583 1.00826 0.33890 -0.77037 0.47333 G3 -5.36686 -5.37563 -0.47449 -0.01815 -0.19935 G4 2.30024 2.44273 0.246350.1195 -0.14 -0.11327 -0.00363 -0.44429 -0.09897 Σ -2.44293 -1.80333 -0.09609 -0.24868 -0.01852.

【0058】表1、表2を比較することで、第2レンズ
群によるフォーカス方法であれば、広角端での収差変動
は非常に小さいと言うことが分かる。また、表3、表4
により、望遠端ではややフォーカシングによる収差変動
が目立ってくるが、実用できる水準の変化であると言え
る。
By comparing Tables 1 and 2, it can be seen that the aberration variation at the wide-angle end is very small if the focusing method is performed by the second lens group. Tables 3 and 4
Accordingly, at the telephoto end, aberration fluctuation due to focusing becomes conspicuous, but it can be said that the change is at a practical level.

【0059】表5、6、7、8は、実施例9における3
次収差係数を示す。表5は、広角端の無限遠の各レンズ
群の収差係数の総和である。表6は、第1レンズ群と第
2レンズ群をフォーカスレンズ群とした場合の広角端の
1mでの収差係数を示す。また、表7は、望遠端の無限
遠での収差係数の総和、表8は、1mでの収差係数であ
る。 (表5) 群 SA3 CM3 AS3 DT3 PZ3 G1 -0.00007 0.00158 -0.16139 4.28990 -0.09748 G2 0.05308 0.24186 0.08488 -5.85091 0.63487 G3 -0.37710 -1.48901 -0.48080 -0.03899 -0.26785 G4 0.32290 1.35146 0.46131 0.41841 -0.15979 G5 -0.01918 -0.13169 0.09866 -0.00822 -0.13550 Σ -0.02039 -0.02579 0.00266 -1.18980 -0.02575 。
Tables 5, 6, 7, and 8 show 3 in Example 9.
The following shows the aberration coefficient. Table 5 shows the sum of aberration coefficients of each lens group at infinity at the wide-angle end. Table 6 shows the aberration coefficient at 1 m at the wide-angle end when the first lens group and the second lens group are used as focus lens groups. Table 7 shows the sum of aberration coefficients at infinity at the telephoto end, and Table 8 shows aberration coefficients at 1 m. (Table 5) Group SA3 CM3 AS3 DT3 PZ3 G1 -0.00007 0.00158 -0.16139 4.28990 -0.09748 G2 0.05308 0.24186 0.08488 -5.85091 0.63487 G3 -0.37710 -1.48901 -0.48080 -0.03899 -0.26785 G4 0.32290 1.35146 0.46131 0.41841 -0.01979 -0.00822 -0.13550 Σ -0.02039 -0.02579 0.00266 -1.18980 -0.02575.

【0060】 (表6) 群 SA3 CM3 AS3 DT3 PZ3 G1 -0.00009 -0.00217 -0.14113 4.25856 -0.09747 G2 0.05225 0.24105 0.06288 -5.84861 0.63478 G3 -0.37694 -1.48859 -0.48073 -0.03899 -0.26781 G4 0.32276 1.35108 0.46125 0.41841 -0.15977 G5 -0.01918 -0.13165 0.09864 -0.00822 -0.13548 Σ -0.02120 -0.03028 0.00091 -1.21885 -0.02575 。(Table 6) Group SA3 CM3 AS3 DT3 PZ3 G1 -0.00009 -0.00217 -0.14113 4.25856 -0.09747 G2 0.05225 0.24105 0.06288 -5.84861 0.63478 G3 -0.37694 -1.48859 -0.48073 -0.03899 -0.26781 G4 0.32276 1.35108 0.46125 0.4841 0.01918 -0.13165 0.09864 -0.00822 -0.13548 Σ -0.02120 -0.03028 0.00091 -1.21885 -0.02575.

【0061】 (表7) 群 SA3 CM3 AS3 DT3 PZ3 G1 -0.35641 1.05024 -0.46784 0.78060 -0.07666 G2 1.28033 0.75120 0.62527 -0.57830 0.49928 G3 -3.59931 -4.33083 -0.39167 0.00254 -0.21064 G4 2.66621 2.56597 0.22760 0.10321 -0.12566 G5 -0.04764 -0.11162 0.02437 -0.35010 -0.10656 Σ -0.05683 -0.07504 0.01773 -0.04206 -0.02025 。(Table 7) group SA3 CM3 AS3 DT3 PZ3 G1 -0.35641 1.05024 -0.46784 0.78060 -0.07666 G2 1.28033 0.75120 0.62527 -0.57830 0.49928 G3 -3.59931 -4.33083 -0.39167 0.00254 -0.21064 G4 2.66621 2.56597 0.22760 0.105 0.11162 0.02437 -0.35010 -0.10656 Σ -0.05683 -0.07504 0.01773 -0.04206 -0.02025.

【0062】 (表8) 群 SA3 CM3 AS3 DT3 PZ3 G1 -0.11285 0.43331 -0.28860 0.90321 -0.07613 G2 0.94222 1.11440 0.41437 -0.78370 0.49580 G3 -3.52451 -4.27062 -0.38894 0.00254 -0.20918 G4 2.61080 2.53030 0.22601 0.10321 -0.12478 G5 -0.04665 -0.11007 0.02420 -0.35010 -0.10582 Σ -0.13099 -0.30267 -0.01296 -0.12485 -0.02011 。(Table 8) Group SA3 CM3 AS3 DT3 PZ3 G1 -0.11285 0.43331 -0.28860 0.90321 -0.07613 G2 0.94222 1.11440 0.41437 -0.78370 0.49580 G3 -3.52451 -4.27062 -0.38894 0.00254 -0.20918 G4 2.61080 2.53030 0.22601 0.1035 -0.12 0.11007 0.02420 -0.35010 -0.10582 Σ -0.13099 -0.30267 -0.01296 -0.12485 -0.02011.

【0063】表5と表6を比較して各収差係数値を比較
することで、第1レンズ群と第2レンズ群を物体側に移
動することによるフォーカス方法は、広角端で見ると収
差変動が非常に小さいことが明らかである。また、望遠
端においては、表7と表8を比較すれば明らかになる
が、無限から至近距離にフォーカスすると、3次収差係
数の領域である程度収差変動が目立つようになることが
分かるが、後記の収差図に示すように、至近距離の設定
にもよるが、実用上で大きな問題となる収差変動ではな
く、非常に安定した方法であることが分かる。
By comparing Table 5 and Table 6 and comparing the respective aberration coefficient values, the focusing method by moving the first lens group and the second lens group toward the object side shows the aberration variation when viewed at the wide-angle end. Is very small. Further, at the telephoto end, it becomes clear by comparing Tables 7 and 8, but it can be seen that when focusing from infinity to a close distance, the aberration variation becomes conspicuous to some extent in the region of the third-order aberration coefficient. As can be seen from the aberration diagram, although it depends on the setting of the close distance, it is not an aberration fluctuation which is a serious problem in practical use, but a very stable method.

【0064】ここで提案するフォーカス方法によれば、
特定の物体距離であっても、焦点距離が変化するに従っ
てフォーカシング移動量が異なることが明らかであり、
フォーカス移動量の少ない広角域での収差変動は有利で
ある。さらに発展的には、第1レンズ群と第2レンズ群
を一体に移動することによってフォーカシングする以外
に、第1レンズ群と第2レンズ群の間隔を、フォーカシ
ング時の収差変動補正のために変化させる方法も可能で
ある。また、例えば望遠域での収差変動が大きくなる場
合に、高倍率になる場合には、別のフォーカス方法に切
り替える方法もある。
According to the focus method proposed here,
Even at a specific object distance, it is clear that the focusing movement amount changes as the focal length changes,
Aberration fluctuation in a wide-angle region where the focus movement amount is small is advantageous. More preferably, apart from focusing by moving the first and second lens groups together, the distance between the first and second lens groups is changed to correct aberration fluctuations during focusing. It is also possible to make it. In addition, for example, when the variation in aberration in the telephoto range becomes large, and when the magnification becomes high, there is a method of switching to another focus method.

【0065】[0065]

【発明の実施の形態】以下、本発明のズームレンズの実
施例1〜9について説明する。実施例1〜7の無限遠に
フォーカシングした場合の広角端(a)、中間状態
(b)、望遠端(c)のレンズ断面図をそれぞれ図1〜
図7に示す。また、実施例8〜9の同様の広角端
(a)、望遠端(b)のレンズ断面図をそれぞれ図8〜
図9に示す。なお、各実施例の数値データは後記する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 to 9 of the zoom lens according to the present invention will be described below. FIG. 1 is a sectional view of a lens at a wide angle end (a), an intermediate state (b), and a telephoto end (c) when focusing at infinity in Examples 1 to 7.
As shown in FIG. FIGS. 8 to 9 are sectional views of a lens at the wide-angle end (a) and the telephoto end (b) of Examples 8 and 9, respectively.
As shown in FIG. The numerical data of each embodiment will be described later.

【0066】(実施例1)実施例1は、焦点距離14.
36mmから143.57mmで、Fナンバーが2.9
9から4.02の高倍率ズームレンズであり、 広角端の
画角は、74°程度を想定している。 広角端のレンズ全
長は、114.1mmであり、 前玉有効径もφ60mm
以下である。フィルタ類を想定しない広角端のバックフ
ォーカスf BWは、6mm程度と短い。
(Embodiment 1) The embodiment 1 has a focal length of 14.1.
36mm to 143.57mm, F-number 2.9
9 to 4.02 high-magnification zoom lens,
The angle of view is assumed to be about 74 °. All lenses at the wide-angle end
The length is 114.1mm and the effective diameter of the front lens is also φ60mm
It is as follows. Wide angle end backfoil without filters
Ocus f BWIs as short as about 6 mm.

【0067】広角端から望遠端への変倍時には、図1に
示すように、第1レンズ群G1及び第3レンズ群G3
は、物体側に大きく移動し、第4レンズ群G4と第5レ
ンズ群G5は、物体側に移動しながら物体側に凸面を向
けるような形状の軌跡を描いて移動する。
At the time of zooming from the wide-angle end to the telephoto end, as shown in FIG. 1, the first lens group G1 and the third lens group G3
Moves greatly toward the object side, and the fourth lens group G4 and the fifth lens group G5 move while drawing a locus having a shape facing the convex side toward the object side while moving toward the object side.

【0068】第1レンズ群G1は、物体側に凸の負メニ
スカスレンズと両凸正レンズの接合レンズと、物体側に
凸の正メニスカスレンズで構成されている。
The first lens group G1 comprises a cemented lens of a negative meniscus lens convex to the object side and a biconvex positive lens, and a positive meniscus lens convex to the object side.

【0069】第2レンズ群G2は、物体側に凸の負メニ
スカスレンズと、両凹負レンズと、両凸正レンズと、像
側に凸の負メニスカスレンズとから構成されている。
The second lens group G2 includes a negative meniscus lens convex on the object side, a biconcave negative lens, a biconvex positive lens, and a negative meniscus lens convex on the image side.

【0070】第3レンズ群G3は、開口絞りと、両凸正
レンズと、物体側に凸の負メニスカスレンズと物体側に
凸の負メニスカスレンズの接合レンズと、両凸正レンズ
とから構成されている。
The third lens group G3 comprises an aperture stop, a biconvex positive lens, a cemented lens of a negative meniscus lens convex on the object side and a negative meniscus lens convex on the object side, and a biconvex positive lens. ing.

【0071】第4レンズ群G4は、両凸正レンズと像側
に凸の負メニスカスレンズの接合レンズから構成されて
いる。
The fourth lens group G4 comprises a cemented lens of a biconvex positive lens and a negative meniscus lens convex on the image side.

【0072】第5レンズ群G5は、像側に凸の正メニス
カスレンズと、両凹負レンズと、物体側に凸の正メニス
カスレンズとから構成されている。
The fifth lens group G5 includes a positive meniscus lens convex on the image side, a biconcave negative lens, and a positive meniscus lens convex on the object side.

【0073】非球面は、第2レンズ群G2の負メニスカ
スレンズの物体側面と、このレンズの像側に位置する両
凹負レンズの物体側面に使用しており、これにより歪曲
収差、そして広角域での周辺性能を改善している。この
非球面を採用しない場合には、広角端の歪曲収差又はコ
マ収差の劣化、さらに像面湾曲が大きくなる。また、第
3レンズ群G3の物体側の両凸正レンズの物体側面と、
その像側のダブレットの物体側面にも非球面を使用して
いる。さらに、第5レンズ群G5の物体側の正メニスカ
スレンズの像側面と、最も像側に位置する正メニスカス
レンズの像側面に非球面を採用している。
The aspherical surface is used on the object side surface of the negative meniscus lens of the second lens group G2 and on the object side surface of the biconcave negative lens located on the image side of this lens, thereby providing distortion and wide angle range. Peripheral performance has been improved. If this aspherical surface is not used, the distortion or coma at the wide-angle end deteriorates, and the field curvature increases. The object side surface of the biconvex positive lens on the object side of the third lens group G3;
An aspheric surface is also used on the object side surface of the doublet on the image side. Further, the image side surface of the positive meniscus lens on the object side of the fifth lens group G5 and the image side surface of the positive meniscus lens located closest to the image side are aspherical.

【0074】また、第1レンズ群G1には、1枚の正レ
ンズに異常分散性を有する硝子を使用して色収差の補正
を行うように意図している。開口絞りは、第3レンズ群
G3の物体側に配置し、変倍時には第3レンズ群G3と
共に移動する。また、その開口絞りは変倍時に開口径も
変化する。第2レンズ群G2のパワーは大きく、これに
より第1レンズ群G1の径が小さく抑えられている。球
面収差及び望遠域での軸外色収差を補正するために、パ
ワーの大きい第3レンズ群G3を2枚の正レンズとパワ
ーの小さいレンズと負レンズのダブレットにて構成して
いる。また、異常分散性の硝子を使用して色収差の補正
を行っている。さらに、第5レンズ群G5をトリプレッ
トにて構成し、第1正レンズの像側面と最も像側に位置
する第2正レンズの像側の面に非球面度の大きい非球面
を採用している。これにより、変倍域での結像性能の安
定を得ている。また、軸外主光線の射出角度が5°以下
となり、かつ、安定した性能を得ることを可能にしてい
る。
The first lens group G1 is intended to correct chromatic aberration by using glass having anomalous dispersion in one positive lens. The aperture stop is arranged on the object side of the third lens group G3, and moves together with the third lens group G3 during zooming. Also, the aperture stop changes its aperture diameter during zooming. The power of the second lens group G2 is large, so that the diameter of the first lens group G1 is kept small. In order to correct spherical aberration and off-axis chromatic aberration in the telephoto range, the third lens group G3 having a large power is composed of a doublet composed of two positive lenses, a lens having a small power, and a negative lens. Further, chromatic aberration is corrected using anomalous dispersion glass. Further, the fifth lens group G5 is formed of a triplet, and an aspheric surface having a large asphericity is employed for the image side surface of the first positive lens and the image side surface of the second positive lens located closest to the image side. . Thereby, stable imaging performance in the variable power range is obtained. Further, the emission angle of the off-axis principal ray is 5 ° or less, and it is possible to obtain stable performance.

【0075】第1レンズ群G1の焦点距離が84.1m
m、第2レンズ群G2の焦点距離が−9.43mm、第
3レンズ群G3の焦点距離が20.54mm、第4レン
ズ群G4の焦点距離が119.09mm、さらに第5レ
ンズ群G5の焦点距離が−313.61mmである。
The focal length of the first lens group G1 is 84.1 m
m, the focal length of the second lens group G2 is -9.43 mm, the focal length of the third lens group G3 is 20.54 mm, the focal length of the fourth lens group G4 is 119.09 mm, and the focal point of the fifth lens group G5 The distance is -313.61 mm.

【0076】この実施例1の無限遠にフォーカシングし
た場合の収差図を図10に示す。この図の(a)は広角
端、(b)は中間状態、(c)は望遠端での収差を表
し、“SA”は球面収差、“AS”は非点収差、“D
T”は歪曲収差、“CC”は倍率色収差を示す。また、
各収差図中、“FIY”は像高を示す。以下の収差図も
同じ。この実施例においては、広角端の歪曲収差は、最
大値で−5%以下を狙っている。
FIG. 10 is an aberration diagram when focusing is performed at infinity according to the first embodiment. In this figure, (a) shows the aberration at the wide-angle end, (b) shows the aberration at the telephoto end, "SA" is spherical aberration, "AS" is astigmatism, "D"
“T” indicates distortion, “CC” indicates chromatic aberration of magnification.
In each aberration diagram, “FIY” indicates an image height. The same applies to the following aberration diagrams. In this embodiment, the distortion at the wide-angle end aims at a maximum value of -5% or less.

【0077】(実施例2)実施例2は、焦点距離が1
4.36mmから143.67mmで、Fナンバーが
2.86から3.94のズームレンズである。
(Embodiment 2) In Embodiment 2, the focal length is 1
This is a zoom lens having an F number of 2.86 to 3.94 mm from 4.36 mm to 143.67 mm.

【0078】広角端から望遠端への変倍時には、図2に
示すように、第1レンズ群G1及び第3レンズ群G3
は、物体側に大きく移動し、第4レンズ群G4と第5レ
ンズ群G5は、物体側に移動しながら物体側に凸面を向
けるような形状の軌跡を描いて移動する。
At the time of zooming from the wide-angle end to the telephoto end, as shown in FIG. 2, the first lens group G1 and the third lens group G3
Moves greatly toward the object side, and the fourth lens group G4 and the fifth lens group G5 move while drawing a locus having a shape facing the convex side toward the object side while moving toward the object side.

【0079】第1レンズ群G1は、物体側に凸の負メニ
スカスレンズと両凸正レンズの接合レンズと、物体側に
凸の正メニスカスレンズで構成されている。
The first lens group G1 comprises a cemented lens of a negative meniscus lens convex to the object side and a biconvex positive lens, and a positive meniscus lens convex to the object side.

【0080】第2レンズ群G2は、物体側に凸の負メニ
スカスレンズと、両凹負レンズと、両凸正レンズと、像
側に凸の負メニスカスレンズとから構成されている。
The second lens group G2 comprises a negative meniscus lens convex on the object side, a biconcave negative lens, a biconvex positive lens, and a negative meniscus lens convex on the image side.

【0081】第3レンズ群G3は、開口絞りと、両凸正
レンズと、両凸正レンズと両凹負レンズの接合レンズ
と、両凸正レンズとから構成されている。
The third lens group G3 comprises an aperture stop, a biconvex positive lens, a cemented lens of a biconvex positive lens and a biconcave negative lens, and a biconvex positive lens.

【0082】第4レンズ群G4は、両凸正レンズと像側
に凸の負メニスカスレンズの接合レンズから構成されて
いる。
The fourth lens group G4 comprises a cemented lens of a biconvex positive lens and a negative meniscus lens convex on the image side.

【0083】第5レンズ群G5は、物体側に凸の負メニ
スカスレンズと、両凸正レンズと像側に凸の負メニスカ
スレンズの接合レンズと、両凸正レンズとから構成され
ている。
The fifth lens group G5 comprises a negative meniscus lens convex on the object side, a cemented lens of a biconvex positive lens and a negative meniscus lens convex on the image side, and a biconvex positive lens.

【0084】非球面は、第2レンズ群G2の負メニスカ
スレンズの物体側面と、このレンズの像側に位置する両
凹負レンズの物体側面に使用しており、また、第3レン
ズ群G3の物体側の両凸正レンズの物体側面と、その像
側のダブレットの物体側面にも非球面を使用している。
また、第4レンズ群G4を接合ダブレットにて構成し
て、その像側の面に使用している。また、第5レンズ群
G4の最も像側の面にも非球面を採用している。この実
施例2の無限遠にフォーカシングした場合の収差図を図
11に示す。歪曲収差は、広角端で最大−5 %以下を狙
っている。
The aspherical surfaces are used on the object side surface of the negative meniscus lens of the second lens group G2 and the object side surface of the biconcave negative lens located on the image side of this lens. Aspheric surfaces are used for the object side surface of the biconvex positive lens on the object side and the object side surface of the doublet on the image side.
Further, the fourth lens group G4 is formed of a cemented doublet, and is used on the image-side surface thereof. An aspherical surface is also used for the most image side surface of the fifth lens group G4. FIG. 11 is an aberration diagram when focusing is performed at infinity according to the second embodiment. The distortion is aimed at a maximum of -5% or less at the wide-angle end.

【0085】(実施例3)実施例3は、焦点距離が1
4.36mmから139.5mmで、Fナンバーが2.
85から3.67のズームレンズである。
(Embodiment 3) In Embodiment 3, the focal length is 1
4.36mm to 139.5mm with F-number 2.
It is a zoom lens of 85 to 3.67.

【0086】広角端から望遠端への変倍時には、図3に
示すように、第1レンズ群G1及び第3レンズ群G3
は、物体側に大きく移動し、第4レンズ群G4は、物体
側に移動しながら物体側に凸面を向けるような形状の軌
跡を描いて移動し、第5レンズ群G5は、物体側に移動
する。
At the time of zooming from the wide-angle end to the telephoto end, as shown in FIG. 3, the first lens group G1 and the third lens group G3
Moves largely toward the object side, the fourth lens group G4 moves while drawing a locus shaped so as to turn a convex surface toward the object side while moving toward the object side, and the fifth lens group G5 moves toward the object side. I do.

【0087】第1レンズ群G1は、物体側に凸の負メニ
スカスレンズと両凸正レンズの接合レンズと、物体側に
凸の正メニスカスレンズで構成されている。
The first lens group G1 includes a cemented lens of a negative meniscus lens convex to the object side and a biconvex positive lens, and a positive meniscus lens convex to the object side.

【0088】第2レンズ群G2は、物体側に凸の負メニ
スカスレンズと、両凹負レンズと、両凸正レンズと、両
凹負レンズとから構成されている。
The second lens group G2 includes a negative meniscus lens convex to the object side, a biconcave negative lens, a biconvex positive lens, and a biconcave negative lens.

【0089】第3レンズ群G3は、開口絞りと、両凸正
レンズと、物体側に凸の正メニスカスレンズと物体側に
凸の負メニスカスレンズの接合レンズと、両凸正レンズ
とから構成されている。
The third lens group G3 comprises an aperture stop, a biconvex positive lens, a cemented lens of a positive meniscus lens convex on the object side and a negative meniscus lens convex on the object side, and a biconvex positive lens. ing.

【0090】第4レンズ群G4は、両凸正レンズと像側
に凸の負メニスカスレンズの接合レンズから構成されて
いる。
The fourth lens group G4 comprises a cemented lens of a biconvex positive lens and a negative meniscus lens convex on the image side.

【0091】第5レンズ群G5は、像側に凸の負メニス
カスレンズと像側に凸の正メニスカスレンズの接合レン
ズと、両凸正レンズとから構成されている。
The fifth lens group G5 includes a cemented lens of a negative meniscus lens convex on the image side and a positive meniscus lens convex on the image side, and a biconvex positive lens.

【0092】非球面は、第2レンズ群G2の負メニスカ
スレンズの物体側面に用いているが、このレンズの像側
に位置する両凹負レンズには採用していない。また、第
3レンズ群G3の物体側の両凸正レンズの物体側面と、
その像側のダブレットの物体側面にも非球面を使用して
いる。また、第4レンズ群G4を接合ダブレットにて構
成して、その像側の面に使用している。また、第5レン
ズ群G4を物体側に強い凹面を向けたパワーの大きい負
レンズとパワーの小さい正レンズの接合ダブレット及び
物体側に強い凸面を向けた両凸正レンズの3枚で構成
し、その最も像側の面にも非球面を採用している。この
実施例3の無限遠にフォーカシングした場合の収差図を
図12に示す。広角端及び中間状態の歪曲収差の補正状
態は、実施例1及び2に比べて劣っていることが分か
る。
The aspherical surface is used for the object side surface of the negative meniscus lens of the second lens group G2, but is not used for the biconcave negative lens located on the image side of this lens. The object side surface of the biconvex positive lens on the object side of the third lens group G3;
An aspheric surface is also used on the object side surface of the doublet on the image side. Further, the fourth lens group G4 is formed of a cemented doublet, and is used on the image-side surface thereof. Further, the fifth lens group G4 is composed of a cemented doublet of a negative lens having a strong concave surface facing the object side and a positive lens having a low power and a biconvex positive lens having a strong convex surface facing the object side. An aspherical surface is also used for the most image side surface. FIG. 12 is an aberration diagram when focusing is performed at infinity according to the third embodiment. It can be seen that the corrected state of the distortion at the wide angle end and in the intermediate state is inferior to those in Examples 1 and 2.

【0093】(実施例4)実施例4は、焦点距離が1
4.35mmから143.07mmで、Fナンバーが
2.69から3.48のズームレンズである。この実施
例は、第1レンズ群G1を僅かに空気間隔を有するダブ
レットで構成し、第2レンズ群G2には、実施例1同様
の2面の非球面を使用し、第3レンズ群G3を2枚の両
凸正レンズと物体側に強い凹面を有する両凹負レンズで
構成し、両凸正レンズの物体側面に非球面を使用してい
る。これによって軸上の色収差、望遠域でのg線を含む
色収差の補正を実現している。また、第5レンズ群G5
は、二組の接合ダブレットを配し、物体側のダブレット
で色収差の補正、 像側のダブレットによってペッツバー
ル和の補正を行っている。
(Embodiment 4) In Embodiment 4, the focal length is 1
The zoom lens has a size of 4.35 mm to 143.07 mm and an F number of 2.69 to 3.48. In this embodiment, the first lens group G1 is constituted by a doublet having a slight air gap, the second lens group G2 uses the same two aspheric surfaces as in the first embodiment, and the third lens group G3 is It is composed of two biconvex positive lenses and a biconcave negative lens having a strong concave surface on the object side, and uses an aspheric surface on the object side surface of the biconvex positive lens. This realizes correction of axial chromatic aberration and chromatic aberration including g-line in the telephoto range. The fifth lens group G5
Has two sets of bonded doublets, the chromatic aberration is corrected by the doublet on the object side, and the Petzval sum is corrected by the doublet on the image side.

【0094】広角端から望遠端への変倍時には、図4に
示すように、第1レンズ群G1から第5レンズ群G5は
物体側に移動するが、その中、第1レンズ群G1及び第
4レンズ群G4が物体側に特に大きく移動する。
At the time of zooming from the wide-angle end to the telephoto end, as shown in FIG. 4, the first lens unit G1 to the fifth lens unit G5 move to the object side. The four-lens group G4 moves particularly large toward the object side.

【0095】第1レンズ群G1は、物体側に凸の負メニ
スカスレンズと、両凸正レンズと、物体側に凸の正メニ
スカスレンズとで構成されている。
The first lens group G1 comprises a negative meniscus lens convex on the object side, a biconvex positive lens, and a positive meniscus lens convex on the object side.

【0096】第2レンズ群G2は、物体側に凸の負メニ
スカスレンズと、両凹負レンズと、両凸正レンズと、両
凹負レンズとから構成されている。
The second lens group G2 includes a negative meniscus lens convex to the object side, a biconcave negative lens, a biconvex positive lens, and a biconcave negative lens.

【0097】第3レンズ群G3は、開口絞りと、両凸正
レンズと、両凸正レンズと、両凹負レンズとから構成さ
れている。
The third lens group G3 includes an aperture stop, a biconvex positive lens, a biconvex positive lens, and a biconcave negative lens.

【0098】第4レンズ群G4は、物体側に凸の負メニ
スカスレンズと物体側に凸の正メニスカスレンズの接合
レンズから構成されている。
The fourth lens group G4 comprises a cemented lens of a negative meniscus lens convex on the object side and a positive meniscus lens convex on the object side.

【0099】第5レンズ群G5は、物体側に凸の負メニ
スカスレンズと両凸正レンズの接合レンズと、像側に凸
の正メニスカスレンズと像側に凸の負メニスカスレンズ
の接合レンズとから構成されている。
The fifth lens group G5 includes a cemented lens of a negative meniscus lens convex to the object side and a biconvex positive lens, and a cemented lens of a positive meniscus lens convex to the image side and a negative meniscus lens convex to the image side. It is configured.

【0100】非球面は、第2レンズ群G2の負メニスカ
スレンズの物体側面と、このレンズの像側に位置する両
凹負レンズの物体側面に使用しており、また、第3レン
ズ群G3の2枚の両凸正レンズの物体側面と、両凹負レ
ンズの像側面に使用している。また、第4レンズ群G4
の接合ダブレットの像側の面に使用している。また、第
5レンズ群G4の最も像側の面にも非球面を採用してい
る。この実施例4の無限遠にフォーカシングした場合の
収差図を図13に示す。
The aspheric surface is used on the object side surface of the negative meniscus lens of the second lens group G2 and the object side surface of the biconcave negative lens located on the image side of this lens. It is used for the object side surface of the two biconvex positive lenses and the image side surface of the biconcave negative lens. The fourth lens group G4
Used on the image-side surface of the bonded doublet. An aspherical surface is also used for the most image side surface of the fifth lens group G4. FIG. 13 is an aberrational diagram when focusing on infinity according to the fourth embodiment.

【0101】(実施例5)実施例5は、焦点距離14.
36mmから143.07mmで、Fナンバーが2.7
5から3.41のズームレンズである。レンズ構成及び
変倍時の各レンズ群の移動は、実施例4と同様である。
ただし、第4レンズ群G4のパワーをより大きくしてい
る。この例により、第4レンズ群G4に適性なパワー配
置があることが明確になった。
(Embodiment 5) In Embodiment 5, the focal length is determined as follows.
36mm to 143.07mm, F-number 2.7
5 to 3.41 zoom lens. The lens configuration and the movement of each lens unit during zooming are the same as in the fourth embodiment.
However, the power of the fourth lens group G4 is increased. This example has clarified that the fourth lens group G4 has an appropriate power arrangement.

【0102】広角端から望遠端への変倍時には、図5に
示すように、第1レンズ群G1から第4レンズ群G4は
物体側に移動するが、その中、第1レンズ群G1及び第
4レンズ群G4が物体側に特に大きく移動する。また、
第5レンズ群は、 物体側に移動しながら望遠側で像側に
戻る移動をする。
At the time of zooming from the wide-angle end to the telephoto end, as shown in FIG. 5, the first to fourth lens units G1 to G4 move to the object side. The four-lens group G4 moves particularly large toward the object side. Also,
The fifth lens group moves back to the image side at the telephoto side while moving to the object side.

【0103】第1レンズ群G1は、物体側に凸の負メニ
スカスレンズと、物体側に凸の正メニスカスレンズと、
物体側に凸の正メニスカスレンズとで構成されている。
The first lens group G1 includes a negative meniscus lens convex on the object side, a positive meniscus lens convex on the object side,
It consists of a positive meniscus lens convex on the object side.

【0104】第2レンズ群G2は、物体側に凸の負メニ
スカスレンズと、両凹負レンズと、両凸正レンズと、両
凹負レンズとから構成されている。
The second lens group G2 includes a negative meniscus lens convex to the object side, a biconcave negative lens, a biconvex positive lens, and a biconcave negative lens.

【0105】第3レンズ群G3は、開口絞りと、両凸正
レンズと、両凸正レンズと、両凹負レンズとから構成さ
れている。
The third lens group G3 includes an aperture stop, a biconvex positive lens, a biconvex positive lens, and a biconcave negative lens.

【0106】第4レンズ群G4は、物体側に凸の負メニ
スカスレンズと両凸正レンズの接合レンズから構成され
ている。
The fourth lens group G4 comprises a cemented lens of a negative meniscus lens convex to the object side and a biconvex positive lens.

【0107】第5レンズ群G5は、物体側に凸の負メニ
スカスレンズと両凸正レンズの接合レンズと、像側に凸
の正メニスカスレンズと像側に凸の負メニスカスレンズ
の接合レンズとから構成されている。
The fifth lens group G5 includes a cemented lens of a negative meniscus lens convex to the object side and a biconvex positive lens, and a cemented lens of a positive meniscus lens convex to the image side and a negative meniscus lens convex to the image side. It is configured.

【0108】非球面は、第2レンズ群G2の負メニスカ
スレンズの物体側面と、このレンズの像側に位置する両
凹負レンズの物体側面に使用しており、また、第3レン
ズ群G3の2枚の両凸正レンズの物体側面に使用してい
る。また、第4レンズ群G4の接合ダブレットの像側の
面に使用している。また、第5レンズ群G4の物体側の
接合ダブレットの像側の面に使用している。この実施例
5の無限遠にフォーカシングした場合の収差図を図14
に示す。
The aspheric surfaces are used on the object side surface of the negative meniscus lens of the second lens group G2 and the object side surface of the biconcave negative lens located on the image side of this lens. It is used on the object side of two biconvex positive lenses. It is used on the image side surface of the doublet of the fourth lens group G4. It is used on the image-side surface of the doublet on the object side of the fifth lens group G4. FIG. 14 is an aberrational diagram when focusing on infinity according to the fifth embodiment.
Shown in

【0109】(実施例6)実施例6は、焦点距離14.
36mmから139.5mmで、Fナンバー2.77か
ら3.63のズームレンズである。この実施例は、実施
例3と同様に第2レンズ群G2の非球面を1面のみと
し、変倍時の移動も実施例3と略同様とするものであ
る。この実施例は、第4レンズ群Gと第5レンズ群G5
を2枚の特徴的なレンズ構成によって実施したものであ
る。
(Embodiment 6) Embodiment 6 has a focal length of 14.1.
It is a zoom lens having an F number of 2.77 to 3.63 with a diameter of 36 mm to 139.5 mm. In this embodiment, as in the third embodiment, the second lens group G2 has only one aspheric surface, and the movement during zooming is substantially the same as that in the third embodiment. In this embodiment, the fourth lens group G and the fifth lens group G5
Is implemented by two characteristic lens configurations.

【0110】広角端から望遠端への変倍時には、図6に
示すように、第1レンズ群G1及び第3レンズ群G3
は、物体側に大きく移動し、第4レンズ群G4と第5レ
ンズ群G5は、物体側に移動しながら望遠側で像側に戻
る移動をする。
At the time of zooming from the wide-angle end to the telephoto end, as shown in FIG. 6, the first lens group G1 and the third lens group G3
Greatly moves to the object side, and the fourth lens group G4 and the fifth lens group G5 move back to the image side at the telephoto side while moving to the object side.

【0111】第1レンズ群G1は、物体側に凸の負メニ
スカスレンズと両凸正レンズの接合レンズと、物体側に
凸の正メニスカスレンズで構成されている。
The first lens group G1 includes a cemented lens of a negative meniscus lens convex to the object side and a biconvex positive lens, and a positive meniscus lens convex to the object side.

【0112】第2レンズ群G2は、物体側に凸の負メニ
スカスレンズと、両凹負レンズと、両凸正レンズと、両
凹負レンズとから構成されている。
The second lens group G2 includes a negative meniscus lens convex to the object side, a biconcave negative lens, a biconvex positive lens, and a biconcave negative lens.

【0113】第3レンズ群G3は、開口絞りと、両凸正
レンズと、両凸正レンズと両凹負レンズの接合レンズ
と、両凸正レンズとから構成されている。
The third lens group G3 comprises an aperture stop, a biconvex positive lens, a cemented lens of a biconvex positive lens and a biconcave negative lens, and a biconvex positive lens.

【0114】第4レンズ群G4は、像側に凸の正メニス
カスレンズと、像側に凸の正メニスカスレンズとから構
成されている。
The fourth lens group G4 comprises a positive meniscus lens convex on the image side and a positive meniscus lens convex on the image side.

【0115】第5レンズ群G5は、像側に凸の負メニス
カスレンズと、両凸正レンズとから構成されている。
The fifth lens group G5 includes a negative meniscus lens convex on the image side and a biconvex positive lens.

【0116】非球面は、第2レンズ群G2の負メニスカ
スレンズの物体側面に用いているが、このレンズの像側
に位置する両凹負レンズには採用していない。また、第
3レンズ群G3の物体側の両凸正レンズの物体側面と、
その像側のダブレットの物体側面にも非球面を使用して
いる。また、第4レンズ群G4の最も像側の面、第5レ
ンズ群G4の最も像側の面に非球面を採用している。こ
の実施例6の無限遠にフォーカシングした場合の収差図
を図15に示す。
The aspherical surface is used for the object side surface of the negative meniscus lens of the second lens group G2, but is not used for the biconcave negative lens located on the image side of this lens. The object side surface of the biconvex positive lens on the object side of the third lens group G3;
An aspheric surface is also used on the object side surface of the doublet on the image side. Further, an aspherical surface is employed for the most image side surface of the fourth lens group G4 and the most image side surface of the fifth lens group G4. FIG. 15 shows an aberration diagram of the sixth embodiment when focusing is performed at infinity.

【0117】(実施例7)実施例7は、焦点距離14.
36mmから143.07mmで、Fナンバーが3.5
2から4.85のズームレンズである。変倍時の移動に
ついては、実施例6と略同様である。口径比が小さい関
係でレンズ径が小型化しているが、性能面を考慮して、
第3レンズ群G3に2つの非球面を使用している。ま
た、第5レンズ群G5と像面の間にフィルター類を挿入
してある。
(Embodiment 7) The embodiment 7 has a focal length of 14.1.
36mm to 143.07mm, F-number is 3.5
2 to 4.85 zoom lenses. The movement during zooming is substantially the same as in the sixth embodiment. The lens diameter has been reduced due to the small aperture ratio, but in view of performance,
Two aspheric surfaces are used for the third lens group G3. Further, filters are inserted between the fifth lens group G5 and the image plane.

【0118】広角端から望遠端への変倍時には、図7に
示すように、第1レンズ群G1及び第3レンズ群G3
は、物体側に大きく移動し、第4レンズ群G4と第5レ
ンズ群G5は、物体側に移動しながら望遠側で像側に戻
る移動をする。
At the time of zooming from the wide-angle end to the telephoto end, as shown in FIG. 7, the first lens group G1 and the third lens group G3
Greatly moves to the object side, and the fourth lens group G4 and the fifth lens group G5 move back to the image side at the telephoto side while moving to the object side.

【0119】第1レンズ群G1は、物体側に凸の負メニ
スカスレンズと、両凸正レンズと、物体側に凸の正メニ
スカスレンズとで構成されている。
The first lens group G1 comprises a negative meniscus lens convex on the object side, a biconvex positive lens, and a positive meniscus lens convex on the object side.

【0120】第2レンズ群G2は、物体側に凸の負メニ
スカスレンズと、両凹負レンズと、両凸正レンズと、像
側に凸の負メニスカスレンズとから構成されている。
The second lens group G2 comprises a negative meniscus lens convex on the object side, a biconcave negative lens, a biconvex positive lens, and a negative meniscus lens convex on the image side.

【0121】第3レンズ群G3は、開口絞りと、両凸正
レンズと、両凸正レンズと、像側に凸の負メニスカスレ
ンズとから構成されている。
The third lens group G3 comprises an aperture stop, a biconvex positive lens, a biconvex positive lens, and a negative meniscus lens convex on the image side.

【0122】第4レンズ群G4は、像側に凸の正メニス
カスレンズと像側に凸の負メニスカスレンズの接合レン
ズから構成されている。
The fourth lens group G4 comprises a cemented lens of a positive meniscus lens convex on the image side and a negative meniscus lens convex on the image side.

【0123】第5レンズ群G5は、両凹負レンズと両凸
正レンズの接合レンズと、両凸正レンズとから構成され
ている。
The fifth lens group G5 is composed of a cemented lens of a biconcave negative lens and a biconvex positive lens, and a biconvex positive lens.

【0124】非球面は、第2レンズ群G2の負メニスカ
スレンズの物体側面に用いているが、このレンズの像側
に位置する両凹負レンズには採用していない。また、第
3レンズ群G3の像側の両凸正レンズの物体側面と、負
メニスカスレンズの像側面に非球面を使用している。ま
た、第4レンズ群G4の最も像側の面、第5レンズ群G
4の最も像側の面に非球面を採用している。この実施例
7の無限遠にフォーカシングした場合の収差図を図16
に示す。
Although the aspherical surface is used on the object side surface of the negative meniscus lens of the second lens group G2, it is not used for the biconcave negative lens located on the image side of this lens. Further, aspherical surfaces are used for the object side surface of the biconvex positive lens on the image side of the third lens group G3 and the image side surface of the negative meniscus lens. The most image-side surface of the fourth lens group G4, the fifth lens group G
4 has an aspherical surface on the most image side surface. FIG. 16 is an aberrational diagram when focusing on infinity according to the seventh embodiment.
Shown in

【0125】以下の実施例8及び実施例9は、本発明の
フォーカシング方法の提案に関するものである。フォー
カシングの詳細は前記した通りである。
Embodiments 8 and 9 below relate to a proposal of a focusing method of the present invention. The details of focusing are as described above.

【0126】(実施例8)実施例8は、焦点距離が1
4.36mmから143.07mmで、Fナンバーが
2.81から3.62のズームレンズである。レンズの
構成及び非球面の使用面は実施例4に近い。
(Eighth Embodiment) In the eighth embodiment, the focal length is 1
The zoom lens has a F number of 2.81 to 3.62 and a size of 4.36 mm to 143.07 mm. The structure of the lens and the aspherical surface to be used are close to those of the fourth embodiment.

【0127】広角端から望遠端への変倍時には、図8に
示すように、第1レンズ群G1から第5レンズ群G5は
全て物体側に移動するが、その中、第1レンズ群G1及
び第4レンズ群G4が物体側に特に大きく移動する。
At the time of zooming from the wide-angle end to the telephoto end, as shown in FIG. 8, all of the first lens unit G1 to the fifth lens unit G5 move to the object side. The fourth lens group G4 moves particularly large to the object side.

【0128】第1レンズ群G1は、物体側に凸の負メニ
スカスレンズと、両凸正レンズと、物体側に凸の正メニ
スカスレンズとで構成されている。
The first lens group G1 includes a negative meniscus lens convex on the object side, a biconvex positive lens, and a positive meniscus lens convex on the object side.

【0129】第2レンズ群G2は、物体側に凸の負メニ
スカスレンズと、両凹負レンズと、両凸正レンズと、両
凹負レンズとから構成されている。
The second lens group G2 includes a negative meniscus lens convex to the object side, a biconcave negative lens, a biconvex positive lens, and a biconcave negative lens.

【0130】第3レンズ群G3は、開口絞りと、両凸正
レンズと、両凸正レンズと、両凹負レンズとから構成さ
れている。
The third lens group G3 includes an aperture stop, a biconvex positive lens, a biconvex positive lens, and a biconcave negative lens.

【0131】第4レンズ群G4は、物体側に凸の負メニ
スカスレンズと物体側に凸の正メニスカスレンズの接合
レンズから構成されている。
The fourth lens group G4 is composed of a cemented lens composed of a negative meniscus lens convex on the object side and a positive meniscus lens convex on the object side.

【0132】第5レンズ群G5は、物体側に凸の負メニ
スカスレンズと両凸正レンズの接合レンズと、像側に凸
の正メニスカスレンズと、像側に凸の負メニスカスレン
ズとから構成されている。
The fifth lens group G5 comprises a cemented lens of a negative meniscus lens convex to the object side and a biconvex positive lens, a positive meniscus lens convex to the image side, and a negative meniscus lens convex to the image side. ing.

【0133】非球面は、第2レンズ群G2の負メニスカ
スレンズの物体側面と、このレンズの像側に位置する両
凹負レンズの物体側面に使用しており、また、第3レン
ズ群G3の2枚の両凸正レンズの物体側面と、両凹負レ
ンズの像側面に使用している。また、第4レンズ群G4
の接合ダブレットの像側の面に使用している。また、第
5レンズ群G4の最も像側の面にも非球面を採用してい
る。
The aspheric surfaces are used on the object side surface of the negative meniscus lens of the second lens group G2 and the object side surface of the biconcave negative lens located on the image side of this lens. It is used for the object side surface of the two biconvex positive lenses and the image side surface of the biconcave negative lens. The fourth lens group G4
Used on the image-side surface of the doublet. An aspherical surface is also used for the most image side surface of the fifth lens group G4.

【0134】この実施例8の無限遠にフォーカシングし
た場合の収差図を図17に、第2レンズ群G2を移動す
ることで撮影距離2mにフォーカシングした場合の収差
図を図18にそれぞれ示す。これら収差図から、収差変
動が小さいことが分かる。
FIG. 17 is an aberration diagram for Example 8 when focusing on infinity, and FIG. 18 is an aberration diagram for focusing on an object distance of 2 m by moving the second lens group G2. It can be seen from these aberration diagrams that the aberration variation is small.

【0135】(実施例9)実施例9は、焦点距離が1
4.36mmから143.07mmで、Fナンバーが
2.81から3.59のズームレンズである。レンズの
構成は実施例4に近い。
(Embodiment 9) In Embodiment 9, the focal length is 1
This is a zoom lens having a F number of 2.81 to 3.59 from 4.36 mm to 143.07 mm. The structure of the lens is close to that of the fourth embodiment.

【0136】広角端から望遠端への変倍時には、図9に
示すように、第1レンズ群G1から第5レンズ群G5は
全て物体側に移動するが、その中、第1レンズ群G1及
び第4レンズ群G4が物体側に特に大きく移動する。
At the time of zooming from the wide-angle end to the telephoto end, as shown in FIG. 9, all of the first to fifth lens units G1 to G5 move toward the object side. The fourth lens group G4 moves particularly largely to the object side.

【0137】第1レンズ群G1は、物体側に凸の負メニ
スカスレンズと、両凸正レンズと、物体側に凸の正メニ
スカスレンズとで構成されている。
The first lens group G1 comprises a negative meniscus lens convex on the object side, a biconvex positive lens, and a positive meniscus lens convex on the object side.

【0138】第2レンズ群G2は、物体側に凸の負メニ
スカスレンズと、両凹負レンズと、両凸正レンズと、両
凹負レンズとから構成されている。
The second lens group G2 includes a negative meniscus lens convex to the object side, a biconcave negative lens, a biconvex positive lens, and a biconcave negative lens.

【0139】第3レンズ群G3は、開口絞りと、両凸正
レンズと、両凸正レンズと、両凹負レンズとから構成さ
れている。
The third lens group G3 includes an aperture stop, a biconvex positive lens, a biconvex positive lens, and a biconcave negative lens.

【0140】第4レンズ群G4は、物体側に凸の負メニ
スカスレンズと物体側に凸の正メニスカスレンズの接合
レンズから構成されている。
The fourth lens group G4 comprises a cemented lens of a negative meniscus lens convex on the object side and a positive meniscus lens convex on the object side.

【0141】第5レンズ群G5は、物体側に凸の負メニ
スカスレンズと両凸正レンズの接合レンズと、両凸正レ
ンズと、像側に凸の負メニスカスレンズとから構成され
ている。
The fifth lens group G5 comprises a cemented lens of a negative meniscus lens convex to the object side and a biconvex positive lens, a biconvex positive lens, and a negative meniscus lens convex to the image side.

【0142】非球面は、第2レンズ群G2の負メニスカ
スレンズの物体側面と、このレンズの像側に位置する両
凹負レンズの物体側面に使用しており、また、第3レン
ズ群G3の2枚の両凸正レンズの物体側面に使用してい
る。また、第4レンズ群G4の接合ダブレットの像側の
面に使用している。また、第5レンズ群G4の最も像側
の面にも非球面を採用している。
The aspheric surfaces are used on the object side surface of the negative meniscus lens of the second lens group G2 and the object side surface of the biconcave negative lens located on the image side of this lens. It is used on the object side of two biconvex positive lenses. It is used on the image side surface of the doublet of the fourth lens group G4. An aspherical surface is also used for the most image side surface of the fifth lens group G4.

【0143】この実施例9の無限遠にフォーカシングし
た場合の収差図を図19に、第1レンズ群G1と第2レ
ンズ群G2を一体に移動することで撮影距離2mにフォ
ーカシングした場合の収差図を図20にそれぞれ示す。
FIG. 19 is an aberration diagram for Example 9 when focusing on infinity and FIG. 19 is an aberration diagram for focusing at a shooting distance of 2 m by moving the first lens group G1 and the second lens group G2 together. Are shown in FIG.

【0144】以下に、上記各実施例の数値データを示す
が、記号は上記の外、fは全系焦点距離、2ωは画角、
NOはFナンバー、FBはバックフォーカス、WEは広
角端、STは中間状態、TEは望遠端、r1 、r2 …は
各レンズ面の曲率半径、d1、d2 …は各レンズ面間の
間隔、nd1、nd2…は各レンズのd線の屈折率、νd1
νd2…は各レンズのアッベ数である。なお、非球面形状
は、xを光の進行方向を正とした光軸とし、yを光軸と
直交する方向にとると、下記の式にて表される。
The numerical data of each of the above embodiments is shown below, where the symbols are the same as above, f is the focal length of the entire system, 2ω is the angle of view,
F NO is the F-number, FB designates the back focal, WE wide-angle end, ST intermediate state, TE is the telephoto end, r 1, r 2 ... curvature radius of each lens surface, d 1, d 2 ... each lens surface , N d1 , n d2 ... are the d-line refractive indices of each lens, ν d1 ,
ν d2 ... is the Abbe number of each lens. The aspherical shape is represented by the following equation, where x is an optical axis where the traveling direction of light is positive, and y is a direction orthogonal to the optical axis.

【0145】x=(y2 /r)/[1+{1−(K+
1)(y/r)2 1/2 ]+A44 +A66 +A88
A1010 ただし、rは近軸曲率半径、Kは円錐係数、A4、A6
A8、A10 はそれぞれ4次、6次、8次、10次の非球面
係数である。
X = (y 2 / r) / [1+ {1- (K +
1) (y / r) 2 } 1/2] + A 4 y 4 + A 6 y 6 + A 8 y 8 +
A 10 y 10 where r is the paraxial radius of curvature, K is the conic coefficient, A 4 , A 6 ,
A 8 and A 10 are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively.

【0146】 (実施例1) r1 = 127.177 d1 = 1.850 nd1 =1.80518 νd1 =25.42 r2 = 62.562 d2 = 10.150 nd2 =1.49700 νd2 =81.54 r3 = -403.196 d3 = 0.110 r4 = 54.338 d4 = 6.500 nd3 =1.69680 νd3 =55.53 r5 = 191.229 d5 = D1 r6 = 44.299 (非球面) d6 = 1.200 nd4 =1.80610 νd4 =40.74 r7 = 12.268 d7 = 9.781 r8 = -23.021 (非球面) d8 = 1.000 nd5 =1.74330 νd5 =49.33 r9 = 29.480 d9 = 0.100 r10= 31.054 d10= 3.950 nd6 =1.84666 νd6 =23.78 r11= -22.497 d11= 1.277 r12= -14.550 d12= 0.850 nd7 =1.77250 νd7 =49.60 r13= -115.826 d13= D2 r14= ∞(絞り) d14= 0.700 r15= 17.171 (非球面) d15= 6.750 nd8 =1.49700 νd8 =81.54 r16= -29.115 d16= 0.100 r17= 31.332 (非球面) d17= 2.800 nd9 =1.58913 νd9 =61.25 r18= 30.660 d18= 1.250 nd10=1.80518 νd10=25.42 r19= 16.689 d19= 1.166 r20= 23.864 d20= 4.600 nd11=1.49700 νd11=81.54 r21= -74.360 d21= D3 r22= 203.717 d22= 9.537 nd12=1.49700 νd12=81.54 r23= -24.212 d23= 1.450 nd13=1.77250 νd13=49.60 r24= -44.642 d24= D4 r25= -77.192 d25= 4.400 nd14=1.78472 νd14=25.68 r26= -15.055 (非球面) d26= 0.100 r27= -31.208 d27= 1.350 nd15=1.80518 νd15=25.42 r28= 25.954 d28= 9.700 r29= 34.835 d29= 6.150 nd16=1.49700 νd16=81.54 r30= 108.656 (非球面) r31= ∞(像面) 非球面係数 第6面 K = 0.0000 A4 = 2.5626 ×10-7 A6 =-1.9814 ×10-8 A8 =-1.6732 ×10-10 A10= 1.9550 ×10-13 第8面 K = 0.0000 A4 = 4.1211 ×10-5 A6 = 3.1399 ×10-7 A8 =-1.1506 ×10-9 A10= 2.0248 ×10-11 第15面 K = 0.0000 A4 =-3.3289 ×10-5 A6 =-1.4555 ×10-7 A8 = 3.4900 ×10-10 A10=-2.1863 ×10-12 第17面 K = 0.0000 A4 =-2.7626 ×10-5 A6 = 5.4995 ×10-8 A8 =-1.1813 ×10-10 A10= 2.9304 ×10-12 第26面 K = 0.0000 A4 = 1.0974 ×10-4 A6 =-2.1063 ×10-7 A8 = 1.3911 ×10-9 A10=-1.2267 ×10-12 第30面 K = 0.0000 A4 =-9.5702 ×10-5 A6 = 2.4966 ×10-7 A8 =-5.9688 ×10-10 A10= 9.2903 ×10-13 ズームデータ(∞) WE ST TE f (mm) 14.359 44.498 143.568 FNO 2.807 3.342 3.522 2ω (°) 79.3 29.2 9.0 FB (mm) 6.030 14.493 14.210 D1 0.975 20.617 47.046 D2 16.178 4.721 1.110 D3 2.559 1.000 33.000 D4 1.500 17.399 3.569 。[0146] (Example 1) r 1 = 127.177 d 1 = 1.850 n d1 = 1.80518 ν d1 = 25.42 r 2 = 62.562 d 2 = 10.150 n d2 = 1.49700 ν d2 = 81.54 r 3 = -403.196 d 3 = 0.110 r 4 = 54.338 d 4 = 6.500 n d3 = 1.69680 ν d3 = 55.53 r 5 = 191.229 d 5 = D1 r 6 = 44.299 ( aspherical) d 6 = 1.200 n d4 = 1.80610 ν d4 = 40.74 r 7 = 12.268 d 7 = 9.781 r 8 = -23.021 (aspherical surface) d 8 = 1.000 n d5 = 1.74330 ν d5 = 49.33 r 9 = 29.480 d 9 = 0.100 r 10 = 31.054 d 10 = 3.950 nd 6 = 1.84666 ν d6 = 23.78 r 11 =- 22.497 d 11 = 1.277 r 12 = -14.550 d 12 = 0.850 n d7 = 1.77250 ν d7 = 49.60 r 13 = -115.826 d 13 = D2 r 14 = ∞ ( stop) d 14 = 0.700 r 15 = 17.171 ( aspherical surface) d 15 = 6.750 n d8 = 1.49700 v d8 = 81.54 r 16 = -29.115 d 16 = 0.100 r 17 = 31.332 (aspherical surface) d 17 = 2.800 n d9 = 1.58913 v d9 = 61.25 r 18 = 30.660 d 18 = 1.250 n d10 = 1.80518 ν d10 = 25.42 r 19 = 16.689 d 19 = 1.166 r 20 = 23.864 d 2 0 = 4.600 n d11 = 1.49700 ν d11 = 81.54 r 21 = -74.360 d 21 = D3 r 22 = 203.717 d 22 = 9.537 n d12 = 1.49700 ν d12 = 81.54 r 23 = -24.212 d 23 = 1.450 n d13 = 1.77250 ν d13 = 49.60 r 24 = -44.642 d 24 = D4 r 25 = -77.192 d 25 = 4.400 n d14 = 1.78472 ν d14 = 25.68 r 26 = -15.055 ( aspherical) d 26 = 0.100 r 27 = -31.208 d 27 = 1.350 n d15 = 1.80518 ν d15 = 25.42 r 28 = 25.954 d 28 = 9.700 r 29 = 34.835 d 29 = 6.150 n d16 = 1.49700 ν d16 = 81.54 r 30 = 108.656 ( aspherical) r 31 = ∞ (image plane) non Spherical coefficient 6th surface K = 0.0000 A 4 = 2.5626 × 10 -7 A 6 = -1.9814 × 10 -8 A 8 = -1.6732 × 10 -10 A 10 = 1.9550 × 10 -13 8th surface K = 0.0000 A 4 = 4.1211 × 10 -5 A 6 = 3.1399 × 10 -7 A 8 = -1.1506 × 10 -9 A 10 = 2.0248 × 10 -11 Surface 15 K = 0.0000 A 4 = -3.3289 × 10 -5 A 6 =- 1.4555 × 10 -7 A 8 = 3.4900 × 10 -10 A 10 = -2.1863 × 10 -12 Surface 17 K = 0.0000 A 4 = -2.7626 × 10 -5 A 6 = 5.4995 × 10 -8 A 8 = -1.1813 × 10 -10 A 10 = 2.9304 10 -12 26 surface K = 0.0000 A 4 = 1.0974 × 10 -4 A 6 = -2.1063 × 10 -7 A 8 = 1.3911 × 10 -9 A 10 = -1.2267 × 10 -12 30th surface K = 0.0000 A 4 = -9.5702 × 10 -5 A 6 = 2.4966 × 10 -7 A 8 = -5.9688 × 10 -10 A 10 = 9.2903 × 10 -13 Zoom data (∞) WEST TE f (mm) 14.359 44.498 143.568 F NO 2.807 3.342 3.522 2ω (°) 79.3 29.2 9.0 FB (mm) 6.030 14.493 14.210 D1 0.975 20.617 47.046 D2 16.178 4.721 1.110 D3 2.559 1.000 33.000 D4 1.500 17.399 3.569.

【0147】 (実施例2) r1 = 117.873 d1 = 1.975 nd1 =1.80518 νd1 =25.42 r2 = 61.522 d2 = 10.275 nd2 =1.49700 νd2 =81.54 r3 = -594.968 d3 = 0.100 r4 = 57.108 d4 = 6.375 nd3 =1.69680 νd3 =55.53 r5 = 221.211 d5 = D1 r6 = 27.053 (非球面) d6 = 1.200 nd4 =1.80610 νd4 =40.74 r7 = 10.533 d7 = 5.995 r8 = -17.383 (非球面) d8 = 1.000 nd5 =1.69680 νd5 =55.53 r9 = 27.430 d9 = 0.100 r10= 26.047 d10= 4.300 nd6 =1.84666 νd6 =23.78 r11= -26.880 d11= 1.277 r12= -13.880 d12= 0.850 nd7 =1.74100 νd7 =52.64 r13= -79.961 d13= D2 r14= ∞(絞り) d14= 0.700 r15= 19.072 (非球面) d15= 5.958 nd8 =1.49700 νd8 =81.54 r16= -29.005 d16= 2.046 r17= 18.647 (非球面) d17= 5.400 nd9 =1.56384 νd9 =60.67 r18= -90.621 d18= 1.100 nd10=1.80100 νd10=34.97 r19= 16.667 d19= 4.704 r20= 29.735 d20= 4.950 nd11=1.49700 νd11=81.54 r21= -40.612 d21= D3 r22= 63.695 d22= 7.000 nd12=1.48749 νd12=70.23 r23= -16.161 d23= 0.920 nd13=1.74330 νd13=49.33 r24= -37.923 (非球面) d24= D4 r25= 30.239 d25= 0.880 nd14=1.88300 νd14=40.76 r26= 15.354 d26= 2.104 r27= 35.463 d27= 10.100 nd15=1.59551 νd15=39.24 r28= -12.469 d28= 1.350 nd16=1.81600 νd16=46.62 r29= -375.825 d29= 0.100 r30= 38.916 d30= 5.443 nd17=1.49700 νd17=81.54 r31= -218.085 (非球面) r32= ∞(像面) 非球面係数 第6面 K = 0.0000 A4 = 7.1059 ×10-6 A6 = 9.8999 ×10-8 A8 =-1.3409 ×10-9 A10= 7.3223 ×10-12 第8面 K = 0.0000 A4 = 2.9792 ×10-5 A6 = 1.8988 ×10-7 A8 =-3.9505 ×10-10 A10= 8.3972 ×10-12 第15面 K = 0.0000 A4 =-1.3127 ×10-5 A6 =-2.3534 ×10-7 A8 = 1.0629 ×10-9 A10=-2.7306 ×10-12 第17面 K = 0.0000 A4 =-3.9845 ×10-5 A6 = 4.0878 ×10-8 A8 = 3.0626 ×10-11 A10=-2.4746 ×10-13 第24面 K = 0.0000 A4 =-3.6480 ×10-6 A6 =-3.2025 ×10-8 A8 = 1.1015 ×10-10 A10=-3.7919 ×10-13 第31面 K = 0.0000 A4 =-6.4247 ×10-5 A6 =-1.4763 ×10-8 A8 = 2.1835 ×10-10 A10=-1.5886 ×10-13 ズームデータ(∞) WE ST TE f (mm) 14.359 44.600 143.670 FNO 2.864 3.470 3.940 2ω (°) 78.3 29.0 8.9 FB (mm) 6.038 14.085 14.113 D1 0.975 20.777 48.770 D2 16.178 4.416 1.110 D3 2.000 7.118 32.334 D4 1.500 13.725 3.250 。[0147] (Example 2) r 1 = 117.873 d 1 = 1.975 n d1 = 1.80518 ν d1 = 25.42 r 2 = 61.522 d 2 = 10.275 n d2 = 1.49700 ν d2 = 81.54 r 3 = -594.968 d 3 = 0.100 r 4 = 57.108 d 4 = 6.375 n d3 = 1.69680 ν d3 = 55.53 r 5 = 221.211 d 5 = D1 r 6 = 27.053 ( aspherical) d 6 = 1.200 n d4 = 1.80610 ν d4 = 40.74 r 7 = 10.533 d 7 = 5.995 r 8 = -17.383 (aspheric surface) d 8 = 1.000 n d5 = 1.69680 ν d5 = 55.53 r 9 = 27.430 d 9 = 0.100 r 10 = 26.047 d 10 = 4.300 n d6 = 1.84666 ν d6 = 23.78 r 11 = - 26.880 d 11 = 1.277 r 12 = -13.880 d 12 = 0.850 n d7 = 1.74100 ν d7 = 52.64 r 13 = -79.961 d 13 = D2 r 14 = ∞ ( stop) d 14 = 0.700 r 15 = 19.072 ( aspherical surface) d 15 = 5.958 n d8 = 1.49700 ν d8 = 81.54 r 16 = -29.005 d 16 = 2.046 r 17 = 18.647 ( aspherical) d 17 = 5.400 n d9 = 1.56384 ν d9 = 60.67 r 18 = -90.621 d 18 = 1.100 n d10 = 1.80100 ν d10 = 34.97 r 19 = 16.667 d 19 = 4.704 r 20 = 29.735 d 2 0 = 4.950 n d11 = 1.49700 ν d11 = 81.54 r 21 = -40.612 d 21 = D3 r 22 = 63.695 d 22 = 7.000 n d12 = 1.48749 ν d12 = 70.23 r 23 = -16.161 d 23 = 0.920 n d13 = 1.74330 ν d13 = 49.33 r 24 = -37.923 (aspherical) d 24 = D4 r 25 = 30.239 d 25 = 0.880 n d14 = 1.88300 ν d14 = 40.76 r 26 = 15.354 d 26 = 2.104 r 27 = 35.463 d 27 = 10.100 n d15 = 1.59551 ν d15 = 39.24 r 28 = -12.469 d 28 = 1.350 n d16 = 1.81600 ν d16 = 46.62 r 29 = -375.825 d 29 = 0.100 r 30 = 38.916 d 30 = 5.443 n d17 = 1.49700 ν d17 = 81.54 r 31 = -218.085 (aspherical surface) r 32 = ∞ (image surface) Aspherical surface coefficient 6th surface K = 0.0000 A 4 = 7.1059 × 10 -6 A 6 = 9.8999 × 10 -8 A 8 = -1.3409 × 10 -9 A 10 = 7.3223 × 10 -12 Surface 8 K = 0.0000 A 4 = 2.9792 × 10 -5 A 6 = 1.8988 × 10 -7 A 8 = -3.9505 × 10 -10 A 10 = 8.3972 × 10 -12 Surface 15 K = 0.0000 A 4 = -1.3127 × 10 -5 A 6 = -2.3534 × 10 -7 A 8 = 1.0629 × 10 -9 A 10 = -2.7306 × 10 -12 Surface 17 K = 0.0000 A 4 = -3.9845 × 10 -5 A 6 = 4.0878 × 10 -8 A 8 = 3.0626 × 10 -11 A 10 = -2.4746 × 10 -13 24th surface K = 0.0000 A 4 = -3.6480 × 10 -6 A 6 = -3.2025 × 10 - 8 A 8 = 1.1015 × 10 -10 A 10 = -3.7919 × 10 -13 Surface 31 K = 0.0000 A 4 = -6.4247 × 10 -5 A 6 = -1.4763 × 10 -8 A 8 = 2.1835 × 10 -10 A 10 = -1.5886 × 10 -13 Zoom data (∞) WEST TE f (mm) 14.359 44.600 143.670 F NO 2.864 3.470 3.940 2ω (°) 78.3 29.0 8.9 FB (mm) 6.038 14.085 14.113 D1 0.975 20.777 48.770 D2 16.178 4.416 1.110 D3 2.000 7.118 32.334 D4 1.500 13.725 3.250.

【0148】 (実施例3) r1 = 108.596 d1 = 2.000 nd1 =1.80518 νd1 =25.42 r2 = 56.173 d2 = 10.770 nd2 =1.49700 νd2 =81.54 r3 = -1089.662 d3 = 0.110 r4 = 49.852 d4 = 6.870 nd3 =1.69680 νd3 =55.53 r5 = 178.420 d5 = D1 r6 = 53.480 (非球面) d6 = 1.200 nd4 =1.77250 νd4 =49.60 r7 = 12.436 d7 = 6.993 r8 = -24.755 d8 = 1.000 nd5 =1.72916 νd5 =54.68 r9 = 52.928 d9 = 0.100 r10= 32.653 d10= 3.950 nd6 =1.84666 νd6 =23.78 r11= -26.919 d11= 1.277 r12= -18.206 d12= 0.850 nd7 =1.77250 νd7 =49.60 r13= 67.699 d13= D2 r14= ∞(絞り) d14= 0.650 r15= 17.672 (非球面) d15= 5.100 nd8 =1.49700 νd8 =81.54 r16= -46.331 d16= 3.892 r17= 18.021 (非球面) d17= 3.250 nd9 =1.48749 νd9 =70.23 r18= 37.895 d18= 1.250 nd10=1.84666 νd10=23.78 r19= 18.490 d19= 6.965 r20= 27.722 d20= 4.300 nd11=1.49700 νd11=81.54 r21= -78.441 d21= D3 r22= 47.676 d22= 6.000 nd12=1.49700 νd12=81.54 r23= -18.735 d23= 1.000 nd13=1.77250 νd13=49.60 r24= -52.084 (非球面) d24= D4 r25= -17.260 d25= 0.850 nd14=1.60300 νd14=65.44 r26= -146.577 d26= 1.850 nd15=1.84666 νd15=23.78 r27= -126.664 d27= 0.100 r28= 33.977 d28= 5.750 nd16=1.49700 νd16=81.54 r29= -89.821 (非球面) r30= ∞(像面) 非球面係数 第6面 K = 0.0000 A4 = 7.5297 ×10-6 A6 =-2.8649 ×10-9 A8 = 2.8238 ×10-11 A10= 0 第15面 K = 0.0000 A4 =-1.7097 ×10-5 A6 =-1.2911 ×10-7 A8 = 5.8459 ×10-10 A10=-1.8618 ×10-12 第17面 K = 0.0000 A4 =-3.8679 ×10-5 A6 =-2.5757 ×10-8 A8 =-3.2358 ×10-10 A10=-1.8898 ×10-12 第24面 K = 0.0000 A4 = 5.4761 ×10-6 A6 =-2.7865 ×10-8 A8 =-2.2305 ×10-11 A10=-4.5417 ×10-14 第29面 K = 0.0000 A4 =-3.4965 ×10-5 A6 = 6.7077 ×10-8 A8 =-9.0744 ×10-11 A10= 2.6864 ×10-13 ズームデータ(∞) WE ST TE f (mm) 14.360 40.000 139.500 FNO 2.851 3.306 3.673 FB (mm) 6.096 13.740 16.149 D1 0.970 19.777 45.000 D2 16.178 5.603 1.210 D3 2.000 7.756 33.000 D4 9.085 16.451 3.450 。(Example 3) r 1 = 108.596 d 1 = 2.000 n d1 = 1.805518 v d1 = 25.42 r 2 = 56.173 d 2 = 10.770 n d2 = 1.49700 v d2 = 81.54 r 3 = -1089.662 d 3 = 0.110 r 4 = 49.852 d 4 = 6.870 n d3 = 1.69680 ν d3 = 55.53 r 5 = 178.420 d 5 = D1 r 6 = 53.480 ( aspherical) d 6 = 1.200 n d4 = 1.77250 ν d4 = 49.60 r 7 = 12.436 d 7 = 6.993 r 8 = -24.755 d 8 = 1.000 n d5 = 1.72916 ν d5 = 54.68 r 9 = 52.928 d 9 = 0.100 r 10 = 32.653 d 10 = 3.950 n d6 = 1.84666 ν d6 = 23.78 r 11 = -26.919 d 11 = 1.277 r 12 = -18.206 d 12 = 0.850 n d7 = 1.77250 ν d7 = 49.60 r 13 = 67.699 d 13 = D2 r 14 = ∞ ( stop) d 14 = 0.650 r 15 = 17.672 ( aspherical) d 15 = 5.100 n d8 = 1.49700 ν d8 = 81.54 r 16 = -46.331 d 16 = 3.892 r 17 = 18.021 ( aspherical) d 17 = 3.250 n d9 = 1.48749 ν d9 = 70.23 r 18 = 37.895 d 18 = 1.250 n d10 = 1.84666 ν d10 = 23.78 r 19 = 18.490 d 19 = 6.965 r 20 = 27.722 d 20 = 4.300 n d11 = 1.49700 ν d11 = 81.54 r 21 = -78.441 d 21 = D3 r 22 = 47.676 d 22 = 6.000 n d12 = 1.49700 ν d12 = 81.54 r 23 = -18.735 d 23 = 1.000 n d13 = 1.77250 ν d13 = 49.60 r 24 = -52.084 (aspherical) d 24 = D4 r 25 = -17.260 d 25 = 0.850 n d14 = 1.60300 ν d14 = 65.44 r 26 = -146.577 d 26 = 1.850 n d15 = 1.84666 ν d15 = 23.78 r 27 = -126.664 d 27 = 0.100 r 28 = 33.977 d 28 = 5.750 n d16 = 1.49700 ν d16 = 81.54 r 29 = -89.821 (aspherical surface) r 30 = ∞ (image surface) Aspherical surface coefficient 6th surface K = 0.0000 A 4 = 7.5297 × 10 -6 A 6 = -2.8649 × 10 -9 A 8 = 2.8238 × 10 -11 A 10 = 0 15th page K = 0.0000 A 4 = -1.7097 × 10 -5 A 6 = -1.2911 × 10 -7 A 8 = 5.8459 × 10 -10 A 10 = -1.8618 × 10 -12 Surface 17 K = 0.0000 A 4 = -3.8679 × 10 -5 A 6 = -2.5757 × 10 -8 A 8 = -3.2358 × 10 -10 A 10 = -1.8898 × 10 -12 24th page K = 0.0000 A 4 = 5.4761 × 10 -6 A 6 = -2.7865 × 10 -8 A 8 = -2.2305 × 10 -11 A 10 = -4.5417 × 10 -14 29 sides K = 0.0000 A 4 = -3.4965 × 10 -5 A 6 = 6.7077 × 10 -8 A 8 = -9.0744 × 10 -11 A 10 = 2.6864 × 10 -13 Zoom data (∞) WEST TE f (mm) 14.360 40.000 139.500 F NO 2.851 3.306 3.673 FB (mm) 6.096 13.740 16.149 D1 0.970 19.777 45.000 D2 16.178 5.603 1.210 D3 2.000 7.756 33.000 D4 9.085 16.451 3.450.

【0149】 (実施例4) r1 = 111.613 d1 = 2.500 nd1 =1.80518 νd1 =25.42 r2 = 59.896 d2 = 0.100 r3 = 58.886 d3 = 11.900 nd2 =1.49700 νd2 =81.54 r4 = -634.952 d4 = 0.100 r5 = 61.583 d5 = 7.000 nd3 =1.71300 νd3 =53.87 r6 = 203.484 d6 = D1 r7 = 70.912 (非球面) d7 = 1.300 nd4 =1.74330 νd4 =49.33 r8 = 13.281 d8 = 5.822 r9 = -27.322 (非球面) d9 = 1.100 nd5 =1.58913 νd5 =61.28 r10= 21.798 d10= 0.150 r11= 21.948 d11= 3.950 nd6 =1.84666 νd6 =23.78 r12= -62.544 d12= 1.078 r13= -26.090 d13= 1.050 nd7 =1.74100 νd7 =52.64 r14= 62.070 d14= D2 r15= ∞(絞り) d15= 1.150 r16= 20.648 (非球面) d16= 6.200 nd8 =1.49700 νd8 =81.54 r17= -41.205 d17= 0.100 r18= 38.393 (非球面) d18= 5.100 nd9 =1.58913 νd9 =61.28 r19= -38.151 d19= 1.134 r20= -23.073 d20= 1.450 nd10=1.80610 νd10=40.92 r21= 80.177 (非球面) d21= D3 r22= 17.196 d22= 2.000 nd11=1.80349 νd11=30.40 r23= 12.886 d23= 13.182 nd12=1.53996 νd12=59.46 r24= 254.214 (非球面) d24= D4 r25= 24.007 d25= 1.300 nd13=1.80518 νd13=25.42 r26= 14.490 d26= 8.650 nd14=1.49700 νd14=81.54 r27= -375.936 d27= 1.670 r28= -105.865 d28= 8.350 nd15=1.76182 νd15=26.52 r29= -15.700 d29= 1.600 nd16=1.80610 νd16=40.74 r30= -131.463 (非球面) r31= ∞(像面) 非球面係数 第7面 K = 0.0000 A4 = 5.9482 ×10-6 A6 =-4.3050 ×10-8 A8 = 1.2290 ×10-10 A10=-6.8542 ×10-13 第9面 K = 0.0000 A4 = 8.2323 ×10-6 A6 = 1.4081 ×10-7 A8 =-9.9300 ×10-10 A10= 9.5347 ×10-12 第16面 K = 0.0000 A4 = 1.7978 ×10-5 A6 =-8.0132 ×10-8 A8 =-2.3002 ×10-10 A10= 1.3472 ×10-12 第18面 K = 0.0000 A4 =-3.5758 ×10-5 A6 = 2.7967 ×10-8 A8 = 5.8324 ×10-10 A10= 3.7519 ×10-12 第21面 K = 0.0000 A4 =-1.7543 ×10-5 A6 = 7.8636 ×10-8 A8 = 3.5554 ×10-10 A10= 2.8448 ×10-12 第24面 K = 0.0000 A4 = 5.8971 ×10-5 A6 = 1.3408 ×10-7 A8 =-7.7682 ×10-11 A10= 2.4568 ×10-12 第30面 K = 0.0000 A4 =-6.0896 ×10-6 A6 =-3.0249 ×10-8 A8 = 2.0113 ×10-11 A10=-3.4201 ×10-13 ズームデータ(∞) WE ST TE f (mm) 14.350 45.150 143.069 FNO 2.688 3.039 3.482 2ω (°) 79.4 27.7 9.1 FB (mm) 9.187 21.736 24.073 D1 1.550 26.551 50.872 D2 15.870 5.821 1.350 D3 13.466 5.531 1.270 D4 1.500 16.610 31.777 。[0149] (Example 4) r 1 = 111.613 d 1 = 2.500 n d1 = 1.80518 ν d1 = 25.42 r 2 = 59.896 d 2 = 0.100 r 3 = 58.886 d 3 = 11.900 n d2 = 1.49700 ν d2 = 81.54 r 4 = -634.952 d 4 = 0.100 r 5 = 61.583 d 5 = 7.000 n d3 = 1.71300 ν d3 = 53.87 r 6 = 203.484 d 6 = D1 r 7 = 70.912 ( aspherical) d 7 = 1.300 n d4 = 1.74330 ν d4 = 49.33 r 8 = 13.281 d 8 = 5.822 r 9 = -27.322 ( aspheric surface) d 9 = 1.100 n d5 = 1.58913 ν d5 = 61.28 r 10 = 21.798 d 10 = 0.150 r 11 = 21.948 d 11 = 3.950 n d6 = 1.84666 ν d6 = 23.78 r 12 = -62.544 d 12 = 1.078 r 13 = -26.090 d 13 = 1.050 n d7 = 1.74100 ν d7 = 52.64 r 14 = 62.070 d 14 = D2 r 15 = ∞ ( stop) d 15 = 1.150 r 16 = 20.648 (aspherical) d 16 = 6.200 n d8 = 1.49700 ν d8 = 81.54 r 17 = -41.205 d 17 = 0.100 r 18 = 38.393 ( aspherical) d 18 = 5.100 n d9 = 1.58913 ν d9 = 61.28 r 19 = -38.151 d 19 = 1.134 r 20 = -23.073 d 20 = 1.450 n d10 = 1.80610 ν d 10 = 40.92 r 21 = 80.177 (aspherical) d 21 = D3 r 22 = 17.196 d 22 = 2.000 n d11 = 1.80349 ν d11 = 30.40 r 23 = 12.886 d 23 = 13.182 n d12 = 1.53996 ν d12 = 59.46 r 24 = 254.214 (aspherical) d 24 = D4 r 25 = 24.007 d 25 = 1.300 n d13 = 1.80518 ν d13 = 25.42 r 26 = 14.490 d 26 = 8.650 n d14 = 1.49700 ν d14 = 81.54 r 27 = -375.936 d 27 = 1.670 r 28 = -105.865 d 28 = 8.350 n d15 = 1.76182 ν d15 = 26.52 r 29 = -15.700 d 29 = 1.600 nd16 = 1.80610 ν d16 = 40.74 r 30 = -131.463 (aspherical surface) r 31 = ∞ (image surface) ) Aspheric surface 7th surface K = 0.0000 A 4 = 5.9482 × 10 -6 A 6 = -4.3050 × 10 -8 A 8 = 1.2290 × 10 -10 A 10 = -6.8542 × 10 -13 9th surface K = 0.0000 A 4 = 8.2323 × 10 -6 A 6 = 1.4081 × 10 -7 A 8 = -9.9300 × 10 -10 A 10 = 9.5347 × 10 -12 Surface 16 K = 0.0000 A 4 = 1.7978 × 10 -5 A 6 = -8.0132 × 10 -8 A 8 = -2.3002 × 10 -10 A 10 = 1.3472 × 10 -12 Surface 18 K = 0.0000 A 4 = -3.5758 × 10 -5 A 6 = 2.7967 × 10 -8 A 8 = 5.8324 × 10 - 10 A 10 = 3.7519 × 10 -12 21st plane K = 0.0000 A 4 = -1.7543 × 10 -5 A 6 = 7.8636 × 10 -8 A 8 = 3.5554 × 10 -10 A 10 = 2.8448 × 10 -12 24th Surface K = 0.0000 A 4 = 5.8971 × 10 -5 A 6 = 1.3408 × 10 -7 A 8 = -7.7682 × 10 -11 A 10 = 2.4568 × 10 -12 Surface 30 K = 0.0000 A 4 = -6.0896 × 10 -6 A 6 = -3.0249 × 10 -8 A 8 = 2.0113 × 10 -11 A 10 = -3.4201 × 10 -13 Zoom data (∞) WEST TE f (mm) 14.350 45.150 143.069 F NO 2.688 3.039 3.482 2ω ( °) 79.4 27.7 9.1 FB (mm) 9.187 21.736 24.073 D1 1.550 26.551 50.872 D2 15.870 5.821 1.350 D3 13.466 5.531 1.270 D4 1.500 16.610 31.777.

【0150】 (実施例5) r1 = 92.462 d1 = 2.300 nd1 =1.80518 νd1 =25.42 r2 = 52.274 d2 = 0.100 r3 = 51.548 d3 = 10.550 nd2 =1.49700 νd2 =81.54 r4 = 2128.505 d4 = 0.100 r5 = 60.461 d5 = 7.000 nd3 =1.71300 νd3 =53.87 r6 = 241.046 d6 = D1 r7 = 140.533 (非球面) d7 = 1.300 nd4 =1.74330 νd4 =49.33 r8 = 13.625 d8 = 5.399 r9 = -37.223 (非球面) d9 = 1.100 nd5 =1.58913 νd5 =61.28 r10= 17.206 d10= 0.150 r11= 17.673 d11= 3.950 nd6 =1.84666 νd6 =23.78 r12= -54.835 d12= 1.078 r13= -24.618 d13= 1.050 nd7 =1.74100 νd7 =52.64 r14= 51.486 d14= D2 r15= ∞(絞り) d15= 1.150 r16= 19.811 (非球面) d16= 5.000 nd8 =1.49700 νd8 =81.54 r17= -477.814 d17= 2.098 r18= 20.334 (非球面) d18= 6.900 nd9 =1.49700 νd9 =81.54 r19= -19.775 d19= 0.208 r20= -20.811 d20= 1.200 nd10=1.80100 νd10=34.97 r21= 49.225 d21= D3 r22= 30.552 d22= 1.800 nd11=1.78800 νd11=47.37 r23= 17.932 d23= 6.600 nd12=1.55292 νd12=51.14 r24= -47.765 (非球面) d24= D4 r25= 21.866 d25= 1.300 nd13=1.80100 νd13=34.97 r26= 16.328 d26= 8.850 nd14=1.49700 νd14=81.54 r27= -181.530 (非球面) d27= 1.800 r28= -49.404 d28= 8.500 nd15=1.63444 νd15=43.45 r29= -14.925 d29= 1.600 nd16=1.72916 νd16=54.68 r30= -133.171 r31= ∞(像面) 非球面係数 第7面 K = 0.0000 A4 = 1.4696 ×10-5 A6 =-5.0394 ×10-8 A8 = 2.5159 ×10-10 A10=-6.0791 ×10-13 第9面 K = 0.0000 A4 = 1.3583 ×10-7 A6 = 2.0644 ×10-7 A8 =-3.2998 ×10-9 A10= 1.8852 ×10-11 第16面 K = 0.0000 A4 = 1.6337 ×10-5 A6 =-1.3391 ×10-7 A8 = 1.1289 ×10-9 A10=-4.1480 ×10-12 第18面 K = 0.0000 A4 =-4.6928 ×10-5 A6 =-1.6549 ×10-8 A8 =-3.4585 ×10-10 A10=-4.0346 ×10-12 第24面 K = 0.0000 A4 = 9.6586 ×10-6 A6 = 7.2807 ×10-9 A8 =-1.0460 ×10-10 A10= 9.1618 ×10-14 第27面 K = 0.0000 A4 = 3.1895 ×10-6 A6 =-3.7152 ×10-8 A8 = 1.0981 ×10-10 A10=-8.8276 ×10-13 ズームデータ(∞) WE ST TE f (mm) 14.360 45.150 143.071 FNO 2.753 2.967 3.411 2ω (°) 78.7 27.6 8.9 FB (mm) 12.894 21.720 20.394 D1 1.550 27.083 49.525 D2 16.178 5.956 1.350 D3 13.573 7.311 1.270 D4 1.500 23.160 40.729 。[0150] (Example 5) r 1 = 92.462 d 1 = 2.300 n d1 = 1.80518 ν d1 = 25.42 r 2 = 52.274 d 2 = 0.100 r 3 = 51.548 d 3 = 10.550 n d2 = 1.49700 ν d2 = 81.54 r 4 = 2128.505 d 4 = 0.100 r 5 = 60.461 d 5 = 7.000 n d3 = 1.71300 ν d3 = 53.87 r 6 = 241.046 d 6 = D1 r 7 = 140.533 ( aspherical) d 7 = 1.300 n d4 = 1.74330 ν d4 = 49.33 r 8 = 13.625 d 8 = 5.399 r 9 = -37.223 ( aspheric surface) d 9 = 1.100 n d5 = 1.58913 ν d5 = 61.28 r 10 = 17.206 d 10 = 0.150 r 11 = 17.673 d 11 = 3.950 n d6 = 1.84666 ν d6 = 23.78 r 12 = -54.835 d 12 = 1.078 r 13 = -24.618 d 13 = 1.050 n d7 = 1.74100 ν d7 = 52.64 r 14 = 51.486 d 14 = D2 r 15 = ∞ ( stop) d 15 = 1.150 r 16 = 19.811 (aspherical) d 16 = 5.000 n d8 = 1.49700 ν d8 = 81.54 r 17 = -477.814 d 17 = 2.098 r 18 = 20.334 ( aspherical) d 18 = 6.900 n d9 = 1.49700 ν d9 = 81.54 r 19 = -19.775 d 19 = 0.208 r 20 = -20.811 d 20 = 1.200 n d10 = 1.80100 ν d10 = 34.97 r 21 = 49.225 d 21 = D3 r 22 = 30.552 d 22 = 1.800 n d11 = 1.78800 ν d11 = 47.37 r 23 = 17.932 d 23 = 6.600 n d12 = 1.55292 ν d12 = 51.14 r 24 = -47.765 ( non spherical) d 24 = D4 r 25 = 21.866 d 25 = 1.300 n d13 = 1.80100 ν d13 = 34.97 r 26 = 16.328 d 26 = 8.850 n d14 = 1.49700 ν d14 = 81.54 r 27 = -181.530 ( aspherical) d 27 = 1.800 r 28 = -49.404 d 28 = 8.500 n d15 = 1.63444 ν d15 = 43.45 r 29 = -14.925 d 29 = 1.600 n d16 = 1.72916 ν d16 = 54.68 r 30 = -133.171 r 31 = ∞ ( image plane) aspherical Coefficient 7th surface K = 0.0000 A 4 = 1.4696 × 10 -5 A 6 = -5.0394 × 10 -8 A 8 = 2.5159 × 10 -10 A 10 = -6.0791 × 10 -13 9th surface K = 0.0000 A 4 = 1.3583 × 10 -7 A 6 = 2.0644 × 10 -7 A 8 = -3.2998 × 10 -9 A 10 = 1.8852 × 10 -11 Surface 16 K = 0.0000 A 4 = 1.6337 × 10 -5 A 6 = -1.3391 × 10 -7 A 8 = 1.1289 × 10 -9 A 10 = -4.1480 × 10 -12 Surface 18 K = 0.0000 A 4 = -4.6928 × 10 -5 A 6 = -1.6549 × 10 -8 A 8 = -3.4585 × 10 -10 A 10 = -4.0346 × 10 -12 Surface 24 K = 0.0000 A 4 = 9.6586 × 10 -6 A 6 = 7.2807 × 10 -9 A 8 = -1.0460 × 10 -10 A 10 = 9.1618 × 10 -14 Surface 27 K = 0.0000 A 4 = 3.1895 × 10 -6 A 6 = -3.7152 × 10 -8 A 8 = 1.0981 × 10 -10 A 10 = -8.8276 × 10 -13 Zoom data (∞) WEST TE f (mm) 14.360 45.150 143.071 F NO 2.753 2.967 3.411 2ω (°) 78.7 27.6 8.9 FB (mm) 12.894 21.720 20.394 D1 1.550 27.083 49.525 D2 16.178 5.956 1.350 D3 13.573 7.311 1.270 D4 1.500 23.160 40.729.

【0151】 (実施例6) r1 = 112.227 d1 = 2.000 nd1 =1.80518 νd1 =25.42 r2 = 57.264 d2 = 11.100 nd2 =1.49700 νd2 =81.54 r3 = -490.436 d3 = 0.100 r4 = 52.852 d4 = 6.800 nd3 =1.69680 νd3 =55.53 r5 = 209.300 d5 = D1 r6 = 65.339 (非球面) d6 = 1.200 nd4 =1.77250 νd4 =49.60 r7 = 12.576 d7 = 6.355 r8 = -18.878 d8 = 1.000 nd5 =1.72916 νd5 =54.68 r9 = 46.601 d9 = 0.100 r10= 33.405 d10= 3.950 nd6 =1.84666 νd6 =23.78 r11= -22.269 d11= 1.277 r12= -16.441 d12= 0.850 nd7 =1.77250 νd7 =49.60 r13= 396.524 d13= D2 r14= ∞(絞り) d14= 0.650 r15= 16.400 (非球面) d15= 6.150 nd8 =1.49700 νd8 =81.54 r16= -30.914 d16= 0.172 r17= 21.541 (非球面) d17= 3.400 nd9 =1.49700 νd9 =81.54 r18= -629.302 d18= 1.570 nd10=1.74950 νd10=35.28 r19= 14.696 d19= 0.341 r20= 16.525 d20= 5.150 nd11=1.49700 νd11=81.54 r21= -62.456 d21= D3 r22= -22.724 d22= 7.760 nd12=1.49700 νd12=81.54 r23= -17.687 d23= 0.100 r24= -30.027 d24= 1.770 nd13=1.77250 νd13=49.60 r25= -26.523 (非球面) d25= D4 r26= -14.878 d26= 1.700 nd14=1.77250 νd14=49.60 r27= -30.634 d27= 0.100 r28= 44.023 d28= 6.900 nd15=1.49700 νd15=81.54 r29= -68.866 (非球面) r30= ∞(像面) 非球面係数 第6面 K = 0.0000 A4 = 1.1760 ×10-5 A6 =-7.2310 ×10-9 A8 = 8.4899 ×10-11 A10= 0 第15面 K = 0.0000 A4 =-1.8417 ×10-5 A6 =-2.1774 ×10-7 A8 = 6.3157 ×10-10 A10=-3.1753 ×10-12 第17面 K = 0.0000 A4 =-4.8230 ×10-5 A6 = 3.0756 ×10-8 A8 =-8.0575 ×10-10 A10= 6.9722 ×10-12 第25面 K = 0.0000 A4 = 2.4672 ×10-5 A6 = 1.7253 ×10-8 A8 = 1.9870 ×10-10 A10=-2.1997 ×10-13 第29面 K = 0.0000 A4 =-6.0262 ×10-5 A6 = 1.3333 ×10-7 A8 =-1.9864 ×10-10 A10= 3.0550 ×10-13 ズームデータ(∞) WE ST TE f (mm) 14.360 40.000 139.500 FNO 2.765 3.402 3.633 2ω (°) 80.0 32.9 9.1 FB (mm) 6.005 18.192 12.852 D1 1.042 19.777 45.000 D2 14.821 6.087 1.210 D3 2.000 13.335 30.537 D4 11.897 8.991 3.250 。[0151] (Example 6) r 1 = 112.227 d 1 = 2.000 n d1 = 1.80518 ν d1 = 25.42 r 2 = 57.264 d 2 = 11.100 n d2 = 1.49700 ν d2 = 81.54 r 3 = -490.436 d 3 = 0.100 r 4 = 52.852 d 4 = 6.800 n d3 = 1.69680 ν d3 = 55.53 r 5 = 209.300 d 5 = D1 r 6 = 65.339 ( aspherical) d 6 = 1.200 n d4 = 1.77250 ν d4 = 49.60 r 7 = 12.576 d 7 = 6.355 r 8 = -18.878 d 8 = 1.000 n d5 = 1.72916 ν d5 = 54.68 r 9 = 46.601 d 9 = 0.100 r 10 = 33.405 d 10 = 3.950 nd 6 = 1.84666 ν d6 = 23.78 r 11 = -22.269 d 11 = 1.277 r 12 = -16.441 d 12 = 0.850 n d7 = 1.77250 ν d7 = 49.60 r 13 = 396.524 d 13 = D2 r 14 = ∞ ( stop) d 14 = 0.650 r 15 = 16.400 ( aspherical) d 15 = 6.150 n d8 = 1.49700 ν d8 = 81.54 r 16 = -30.914 d 16 = 0.172 r 17 = 21.541 ( aspherical) d 17 = 3.400 n d9 = 1.49700 ν d9 = 81.54 r 18 = -629.302 d 18 = 1.570 n d10 = 1.74950 ν d10 = 35.28 r 19 = 14.696 d 19 = 0.341 r 20 = 16.525 d 20 = 5.150 n d 11 = 1.49700 ν d11 = 81.54 r 21 = -62.456 d 21 = D3 r 22 = -22.724 d 22 = 7.760 n d12 = 1.49700 ν d12 = 81.54 r 23 = -17.687 d 23 = 0.100 r 24 = -30.027 d 24 = 1.770 n d13 = 1.77250 ν d13 = 49.60 r 25 = -26.523 ( aspherical) d 25 = D4 r 26 = -14.878 d 26 = 1.700 n d14 = 1.77250 ν d14 = 49.60 r 27 = -30.634 d 27 = 0.100 r 28 = 44.023 d 28 = 6.900 n d15 = 1.49700 ν d15 = 81.54 r 29 = -68.866 ( aspherical) r 30 = ∞ (image plane) aspheric coefficients sixth surface K = 0.0000 A 4 = 1.1760 × 10 -5 A 6 = -7.2310 × 10 -9 A 8 = 8.4899 × 10 -11 A 10 = 0 fifteenth surface K = 0.0000 A 4 = -1.8417 × 10 -5 A 6 = -2.1774 × 10 -7 A 8 = 6.3157 × 10 - 10 A 10 = -3.1753 × 10 -12 Surface 17 K = 0.0000 A 4 = -4.8230 × 10 -5 A 6 = 3.0756 × 10 -8 A 8 = -8.0575 × 10 -10 A 10 = 6.9722 × 10 -12 25th page K = 0.0000 A 4 = 2.4672 × 10 -5 A 6 = 1.7253 × 10 -8 A 8 = 1.9870 × 10 -10 A 10 = -2.1997 × 10 -13 Page 29 K = 0.0000 A 4 = -6.0262 × 10 -5 A 6 = 1.3333 × 10 -7 A 8 = -1.986 4 × 10 -10 A 10 = 3.0550 × 10 -13 Zoom data (∞) WEST TE f (mm) 14.360 40.000 139.500 F NO 2.765 3.402 3.633 2ω (°) 80.0 32.9 9.1 FB (mm) 6.005 18.192 12.852 D1 1.042 19.777 45.000 D2 14.821 6.087 1.210 D3 2.000 13.335 30.537 D4 11.897 8.991 3.250.

【0152】 (実施例7) r1 = 99.983 d1 = 2.000 nd1 =1.80518 νd1 =25.42 r2 = 56.005 d2 = 0.177 r3 = 55.915 d3 = 10.000 nd2 =1.49700 νd2 =81.54 r4 = -407.344 d4 = 0.100 r5 = 51.263 d5 = 6.000 nd3 =1.61800 νd3 =63.33 r6 = 199.802 d6 = D1 r7 = 48.967 (非球面) d7 = 1.270 nd4 =1.77250 νd4 =49.60 r8 = 10.448 d8 = 4.857 r9 = -17.964 d9 = 1.050 nd5 =1.74100 νd5 =52.64 r10= 68.047 d10= 0.100 r11= 31.856 d11= 3.550 nd6 =1.84666 νd6 =23.78 r12= -22.934 d12= 1.078 r13= -16.068 d13= 1.000 nd7 =1.78800 νd7 =47.37 r14= -265.443 d14= D2 r15= ∞(絞り) d15= 1.303 r16= 13.345 d16= 4.060 nd8 =1.49700 νd8 =81.54 r17= -74.617 d17= 3.141 r18= 25.624 (非球面) d18= 4.970 nd9 =1.49700 νd9 =81.54 r19= -14.090 d19= 0.100 r20= -13.543 d20= 1.090 nd10=1.80100 νd10=34.97 r21= -47.007 (非球面) d21= D3 r22= -46.474 d22= 6.372 nd11=1.48749 νd11=70.23 r23= -12.712 d23= 6.318 nd12=1.80100 νd12=34.97 r24= -16.977 (非球面) d24= D4 r25= -16.977 d25= 1.530 nd13=1.80440 νd13=39.59 r26= 102.335 d26= 3.750 nd14=1.74077 νd14=27.79 r27= -63.254 d27= 0.100 r28= 29.604 d28= 6.463 nd15=1.49700 νd15=81.54 r29= -111.048 (非球面) d29= D5 r30= ∞ d30= 2.460 nd16=1.54771 νd16=62.84 r31= ∞ d31= 1.000 nd17=1.51633 νd17=64.14 r32= ∞ d32= 0.500 r33= ∞ d33= 0.700 nd18=1.51633 νd18=64.14 r34= ∞ r35= ∞(像面) 非球面係数 第7面 K = 0.0000 A4 = 1.4223 ×10-5 A6 = 2.9976 ×10-9 A8 =-2.2239 ×10-10 A10= 1.4053 ×10-12 第18面 K = 0.0000 A4 =-5.7699 ×10-5 A6 =-9.6075 ×10-9 A8 =-8.2047 ×10-9 A10= 8.1027 ×10-11 第21面 K = 0.0000 A4 = 2.4996 ×10-5 A6 = 2.6089 ×10-7 A8 =-4.4687 ×10-9 A10= 1.0312 ×10-10 第24面 K = 0.0000 A4 = 2.5134 ×10-5 A6 =-1.2819 ×10-8 A8 = 1.0852 ×10-10 A10=-7.9288 ×10-13 第29面 K = 0.0000 A4 =-4.1397 ×10-5 A6 = 1.7634 ×10-7 A8 =-4.1085 ×10-10 A10= 5.8985 ×10-13 ズームデータ(∞) WE ST TE f (mm) 14.357 39.989 143.044 FNO 3.517 4.340 4.849 2ω (°) 78.8 32.2 8.8 FB (mm) 1.215 1.215 1.215 D1 1.595 19.377 45.338 D2 15.328 6.162 1.100 D3 1.000 11.175 26.846 D4 11.207 9.152 5.049 D5 1.000 14.667 10.881 。[0152] (Example 7) r 1 = 99.983 d 1 = 2.000 n d1 = 1.80518 ν d1 = 25.42 r 2 = 56.005 d 2 = 0.177 r 3 = 55.915 d 3 = 10.000 n d2 = 1.49700 ν d2 = 81.54 r 4 = -407.344 d 4 = 0.100 r 5 = 51.263 d 5 = 6.000 n d3 = 1.61800 ν d3 = 63.33 r 6 = 199.802 d 6 = D1 r 7 = 48.967 ( aspherical) d 7 = 1.270 n d4 = 1.77250 ν d4 = 49.60 r 8 = 10.448 d 8 = 4.857 r 9 = -17.964 d 9 = 1.050 n d5 = 1.74100 ν d5 = 52.64 r 10 = 68.047 d 10 = 0.100 r 11 = 31.856 d 11 = 3.550 n d6 = 1.84666 ν d6 = 23.78 r 12 = -22.934 d 12 = 1.078 r 13 = -16.068 d 13 = 1.000 n d7 = 1.78800 ν d7 = 47.37 r 14 = -265.443 d 14 = D2 r 15 = ∞ ( stop) d 15 = 1.303 r 16 = 13.345 d 16 = 4.060 n d8 = 1.49700 ν d8 = 81.54 r 17 = -74.617 d 17 = 3.141 r 18 = 25.624 ( aspherical) d 18 = 4.970 n d9 = 1.49700 ν d9 = 81.54 r 19 = -14.090 d 19 = 0.100 r 20 = -13.543 d 20 = 1.090 n d10 = 1.80100 ν d10 = 34.97 r 21 = -47.007 ( Spherical) d 21 = D3 r 22 = -46.474 d 22 = 6.372 n d11 = 1.48749 ν d11 = 70.23 r 23 = -12.712 d 23 = 6.318 n d12 = 1.80100 ν d12 = 34.97 r 24 = -16.977 ( aspherical) d 24 = D4 r 25 = -16.977 d 25 = 1.530 n d13 = 1.80440 ν d13 = 39.59 r 26 = 102.335 d 26 = 3.750 n d14 = 1.74077 ν d14 = 27.79 r 27 = -63.254 d 27 = 0.100 r 28 = 29.604 d 28 = 6.463 n d15 = 1.49700 ν d15 = 81.54 r 29 = -111.048 ( aspherical) d 29 = D5 r 30 = ∞ d 30 = 2.460 n d16 = 1.54771 ν d16 = 62.84 r 31 = ∞ d 31 = 1.000 n d17 = 1.51633 ν d17 = 64.14 r 32 = 32 d 32 = 0.500 r 33 = d d 33 = 0.700 nd 18 = 1.51633 ν d18 = 64.14 r 34 = ∞ r 35 = ∞ (image plane) Aspheric coefficient Seventh surface K = 0.0000 A 4 = 1.4223 × 10 -5 A 6 = 2.9976 × 10 -9 A 8 = -2.2239 × 10 -10 A 10 = 1.4053 × 10 -12 Surface 18 K = 0.0000 A 4 = -5.7699 × 10 -5 A 6 = -9.6075 × 10 -9 A 8 = -8.2047 × 10 -9 A 10 = 8.1027 × 10 -11 Surface 21 K = 0.0000 A 4 = 2.4996 × 10 -5 A 6 = 2.6089 × 10 -7 A 8 = -4.4687 × 10 -9 A 10 = 1.0312 × 10 -10 Surface 24 K = 0.0000 A 4 = 2.5134 × 10 -5 A 6 = -1.2819 × 10 -8 A 8 = 1.0852 × 10 -10 A 10 = -7.9288 × 10 -13 29th surface K = 0.0000 A 4 = -4.1397 × 10 -5 A 6 = 1.7634 × 10 -7 A 8 = -4.1085 × 10 -10 A 10 = 5.8985 × 10 - 13 zoom data (∞) WE ST TE f ( mm) 14.357 39.989 143.044 F NO 3.517 4.340 4.849 2ω (°) 78.8 32.2 8.8 FB (mm) 1.215 1.215 1.215 D1 1.595 19.377 45.338 D2 15.328 6.162 1.100 D3 1.000 11.175 26.846 D4 11.207 9.152 5.049 D5 1.000 14.667 10.881.

【0153】 (実施例8) r1 = 101.370 d1 = 2.300 nd1 =1.80518 νd1 =25.42 r2 = 53.848 d2 = 0.100 r3 = 54.052 d3 = 11.000 nd2 =1.49700 νd2 =81.54 r4 = -1397.113 d4 = 0.100 r5 = 47.816 d5 = 7.500 nd3 =1.72916 νd3 =54.68 r6 = 142.634 d6 = D1 r7 = 60.373 (非球面) d7 = 1.250 nd4 =1.80610 νd4 =40.74 r8 = 12.304 d8 = 5.698 r9 = -20.695 (非球面) d9 = 1.050 nd5 =1.62952 νd5 =61.61 r10= 25.120 d10= 0.150 r11= 23.289 d11= 4.300 nd6 =1.84666 νd6 =23.78 r12= -29.901 d12= 1.277 r13= -16.015 d13= 0.850 nd7 =1.77250 νd7 =49.60 r14= 6876.227 d14= D2 r15= ∞(絞り) d15= 0.700 r16= 26.890 (非球面) d16= 5.814 nd8 =1.49700 νd8 =81.54 r17= -102.442 d17= 0.100 r18= 21.044 (非球面) d18= 7.548 nd9 =1.49700 νd9 =81.54 r19= -23.816 d19= 0.197 r20= -23.916 d20= 1.100 nd10=1.78590 νd10=44.20 r21= 120.169 (非球面) d21= D3 r22= 14.347 d22= 2.000 nd11=1.80100 νd11=34.97 r23= 10.796 d23= 10.191 nd12=1.49700 νd12=81.54 r24= 52.280 (非球面) d24= D4 r25= 44.639 d25= 1.300 nd13=1.78590 νd13=44.20 r26= 22.376 d26= 8.900 nd14=1.49700 νd14=81.54 r27= -63.482 d27= 0.100 r28= -1889.877 d28= 5.900 nd15=1.60946 νd15=39.20 r29= -25.066 d29= 0.535 r30= -22.365 d30= 1.750 nd16=1.80610 νd16=40.74 r31= -70.513 (非球面) r32= ∞(像面) 非球面係数 第7面 K = 0.0000 A4 = 1.0169 ×10-5 A6 =-1.1539 ×10-8 A8 = 1.5793 ×10-10 A10=-6.8542 ×10-13 第9面 K = 0.0000 A4 = 1.2790 ×10-5 A6 = 2.3129 ×10-7 A8 =-3.7083 ×10-9 A10= 2.9822 ×10-11 第16面 K = 0.0000 A4 = 4.2597 ×10-5 A6 =-2.2521 ×10-7 A8 = 1.5360 ×10-9 A10=-3.4809 ×10-12 第18面 K = 0.0000 A4 =-4.9336 ×10-5 A6 = 9.0403 ×10-8 A8 =-5.3345 ×10-10 A10=-2.4267 ×10-12 第21面 K = 0.0000 A4 =-1.7543 ×10-5 A6 = 7.8636 ×10-8 A8 = 3.5554 ×10-10 A10= 2.8448 ×10-12 第24面 K = 0.0000 A4 = 1.0347 ×10-4 A6 = 3.2425 ×10-7 A8 =-6.9709 ×10-10 A10= 1.3579 ×10-11 第31面 K = 0.0000 A4 =-1.3058 ×10-5 A6 =-2.0178 ×10-8 A8 = 9.4047 ×10-12 A10=-2.4178 ×10-14 ズームデータ(∞) WE ST TE f (mm) 14.360 45.000 143.070 FNO 2.809 3.144 3.622 2ω (°) 79.9 28.7 9.4 FB (mm) 6.033 28.233 19.061 D1 0.970 22.777 43.394 D2 16.178 5.218 1.300 D3 8.991 2.940 1.270 D4 9.218 11.161 38.035 。[0153] (Example 8) r 1 = 101.370 d 1 = 2.300 n d1 = 1.80518 ν d1 = 25.42 r 2 = 53.848 d 2 = 0.100 r 3 = 54.052 d 3 = 11.000 n d2 = 1.49700 ν d2 = 81.54 r 4 = -1397.113 d 4 = 0.100 r 5 = 47.816 d 5 = 7.500 n d3 = 1.72916 ν d3 = 54.68 r 6 = 142.634 d 6 = D1 r 7 = 60.373 ( aspherical) d 7 = 1.250 n d4 = 1.80610 ν d4 = 40.74 r 8 = 12.304 d 8 = 5.698 r 9 = -20.695 ( aspheric surface) d 9 = 1.050 n d5 = 1.62952 ν d5 = 61.61 r 10 = 25.120 d 10 = 0.150 r 11 = 23.289 d 11 = 4.300 n d6 = 1.84666 ν d6 = 23.78 r 12 = -29.901 d 12 = 1.277 r 13 = -16.015 d 13 = 0.850 n d7 = 1.77250 ν d7 = 49.60 r 14 = 6876.227 d 14 = D2 r 15 = ∞ ( stop) d 15 = 0.700 r 16 = 26.890 (aspherical) d 16 = 5.814 n d8 = 1.49700 ν d8 = 81.54 r 17 = -102.442 d 17 = 0.100 r 18 = 21.044 ( aspherical) d 18 = 7.548 n d9 = 1.49700 ν d9 = 81.54 r 19 = -23.816 d 19 = 0.197 r 20 = -23.916 d 20 = 1.100 n d10 = 1.78590 ν d10 = 44.20 r 21 = 120.169 ( aspherical) d 21 = D3 r 22 = 14.347 d 22 = 2.000 n d11 = 1.80100 ν d11 = 34.97 r 23 = 10.796 d 23 = 10.191 n d12 = 1.49700 ν d12 = 81.54 r 24 = 52.280 (aspherical) d 24 = D4 r 25 = 44.639 d 25 = 1.300 n d13 = 1.78590 ν d13 = 44.20 r 26 = 22.376 d 26 = 8.900 n d14 = 1.49700 ν d14 = 81.54 r 27 = -63.482 d 27 = 0.100 r 28 = -1889.877 d 28 = 5.900 n d15 = 1.60946 ν d15 = 39.20 r 29 = -25.066 d 29 = 0.535 r 30 = -22.365 d 30 = 1.750 n d16 = 1.80610 ν d16 = 40.74 r 31 = -70.513 ( Aspheric surface) r 32 = ∞ (image surface) aspheric surface coefficient seventh surface K = 0.0000 A 4 = 1.0169 × 10 -5 A 6 = -1.1539 × 10 -8 A 8 = 1.5793 × 10 -10 A 10 = -6.8542 × 10 -13 9th surface K = 0.0000 A 4 = 1.2790 × 10 -5 A 6 = 2.3129 × 10 -7 A 8 = -3.7083 × 10 -9 A 10 = 2.9822 × 10 -11 16th surface K = 0.0000 A 4 = 4.2597 × 10 -5 A 6 = -2.2521 × 10 -7 A 8 = 1.5360 × 10 -9 A 10 = -3.4809 × 10 -12 Surface 18 K = 0.0000 A 4 = -4.9336 × 10 -5 A 6 = 9 .0403 × 10 -8 A 8 = -5.3345 × 10 -10 A 10 = -2.4267 × 10 -12 Surface 21 K = 0.0000 A 4 = -1.7543 × 10 -5 A 6 = 7.8636 × 10 -8 A 8 = 3.5554 × 10 -10 A 10 = 2.8448 × 10 -12 Surface 24 K = 0.0000 A 4 = 1.0347 × 10 -4 A 6 = 3.2425 × 10 -7 A 8 = -6.9709 × 10 -10 A 10 = 1.3579 × 10 -11 31 surface K = 0.0000 A 4 = -1.3058 × 10 -5 A 6 = -2.0178 × 10 -8 A 8 = 9.4047 × 10 -12 A 10 = -2.4178 × 10 -14 zoom data (∞) WE ST TE f (mm) 14.360 45.000 143.070 F NO 2.809 3.144 3.622 2ω (°) 79.9 28.7 9.4 FB (mm) 6.033 28.233 19.061 D1 0.970 22.777 43.394 D2 16.178 5.218 1.300 D3 8.991 2.940 1.270 D4 9.218 11.161 38.035.

【0154】 (実施例9) r1 = 101.441 d1 = 2.300 nd1 =1.80518 νd1 =25.42 r2 = 53.262 d2 = 0.373 r3 = 53.611 d3 = 11.000 nd2 =1.49700 νd2 =81.54 r4 = -1213.504 d4 = 0.100 r5 = 47.555 d5 = 7.500 nd3 =1.72916 νd3 =54.68 r6 = 145.723 d6 = D1 r7 = 76.046 (非球面) d7 = 1.250 nd4 =1.80610 νd4 =40.74 r8 = 12.898 d8 = 5.918 r9 = -21.407 (非球面) d9 = 1.050 nd5 =1.62692 νd5 =61.85 r10= 24.000 d10= 0.150 r11= 22.786 d11= 4.300 nd6 =1.84666 νd6 =23.78 r12= -30.266 d12= 1.277 r13= -16.631 d13= 0.850 nd7 =1.77250 νd7 =49.60 r14= 314.002 d14= D2 r15= ∞(絞り) d15= 0.700 r16= 26.521 (非球面) d16= 5.752 nd8 =1.49700 νd8 =81.54 r17= -112.830 d17= 0.100 r18= 21.063 (非球面) d18= 7.520 nd9 =1.49700 νd9 =81.54 r19= -23.907 d19= 0.134 r20= -23.964 d20= 1.100 nd10=1.78590 νd10=44.20 r21= 125.951 d21= D3 r22= 14.342 d22= 2.000 nd11=1.80100 νd11=34.97 r23= 10.832 d23= 9.615 nd12=1.49700 νd12=81.54 r24= 49.327 (非球面) d24= D4 r25= 42.656 d25= 1.300 nd13=1.78590 νd13=44.20 r26= 20.093 d26= 8.900 nd14=1.49700 νd14=81.54 r27= -56.838 d27= 0.100 r28= 304.190 d28= 5.900 nd15=1.61919 νd15=37.84 r29= -26.853 d29= 0.610 r30= -23.569 d30= 1.750 nd16=1.80610 νd16=40.74 r31= -100.907 (非球面) r32= ∞(像面) 非球面係数 第7面 K = 0.0000 A4 = 1.1483 ×10-5 A6 =-8.3178 ×10-9 A8 = 1.2646 ×10-10 A10= 0 第9面 K = 0.0000 A4 = 8.2042 ×10-6 A6 = 1.7436 ×10-7 A8 =-3.1666 ×10-9 A10= 2.5387 ×10-11 第16面 K = 0.0000 A4 = 4.2966 ×10-5 A6 =-2.2200 ×10-7 A8 = 1.5200 ×10-9 A10=-3.5262 ×10-12 第18面 K = 0.0000 A4 =-4.8894 ×10-5 A6 = 9.0031 ×10-8 A8 =-5.7540 ×10-10 A10=-2.1527 ×10-12 第24面 K = 0.0000 A4 = 1.0203 ×10-4 A6 = 3.1862 ×10-7 A8 =-9.2601 ×10-10 A10= 1.5124 ×10-11 第31面 K = 0.0000 A4 =-1.3197 ×10-5 A6 =-2.3802 ×10-8 A8 = 1.2168 ×10-11 A10=-3.4583 ×10-14 ズームデータ(∞) WE ST TE f (mm) 14.360 45.000 143.070 FNO 2.821 3.125 3.588 2ω (°) 78.6 28.5 9.3 FB (mm) 6.045 29.605 20.002 D1 0.970 22.688 42.961 D2 16.178 5.172 1.300 D3 9.230 2.963 1.270 D4 10.130 9.259 37.684 。(Example 9) r 1 = 101.441 d 1 = 2.300 n d1 = 1.80518 v d1 = 25.42 r 2 = 53.262 d 2 = 0.373 r 3 = 53.611 d 3 = 11.000 n d2 = 1.49700 v d2 = 81.54 r 4 = -1213.504 d 4 = 0.100 r 5 = 47.555 d 5 = 7.500 n d3 = 1.72916 ν d3 = 54.68 r 6 = 145.723 d 6 = D1 r 7 = 76.046 ( aspherical) d 7 = 1.250 n d4 = 1.80610 ν d4 = 40.74 r 8 = 12.898 d 8 = 5.918 r 9 = -21.407 ( aspheric surface) d 9 = 1.050 n d5 = 1.62692 ν d5 = 61.85 r 10 = 24.000 d 10 = 0.150 r 11 = 22.786 d 11 = 4.300 n d6 = 1.84666 ν d6 = 23.78 r 12 = -30.266 d 12 = 1.277 r 13 = -16.631 d 13 = 0.850 n d7 = 1.77250 ν d7 = 49.60 r 14 = 314.002 d 14 = D2 r 15 = ∞ ( stop) d 15 = 0.700 r 16 = 26.521 (aspherical) d 16 = 5.752 n d8 = 1.49700 ν d8 = 81.54 r 17 = -112.830 d 17 = 0.100 r 18 = 21.063 ( aspherical) d 18 = 7.520 n d9 = 1.49700 ν d9 = 81.54 r 19 = -23.907 d 19 = 0.134 r 20 = -23.964 d 20 = 1.100 n d10 = 1.78590 d10 = 44.20 r 21 = 125.951 d 21 = D3 r 22 = 14.342 d 22 = 2.000 n d11 = 1.80100 ν d11 = 34.97 r 23 = 10.832 d 23 = 9.615 n d12 = 1.49700 ν d12 = 81.54 r 24 = 49.327 ( aspherical ) d 24 = D4 r 25 = 42.656 d 25 = 1.300 n d13 = 1.78590 ν d13 = 44.20 r 26 = 20.093 d 26 = 8.900 n d14 = 1.49700 ν d14 = 81.54 r 27 = -56.838 d 27 = 0.100 r 28 = 304.190 d 28 = 5.900 n d15 = 1.61919 ν d15 = 37.84 r 29 = -26.853 d 29 = 0.610 r 30 = -23.569 d 30 = 1.750 n d16 = 1.80610 ν d16 = 40.74 r 31 = -100.907 ( aspherical) r 32 = ∞ (image surface) Aspheric coefficient 7th surface K = 0.0000 A 4 = 1.1483 × 10 -5 A 6 = -8.3178 × 10 -9 A 8 = 1.2646 × 10 -10 A 10 = 0 9th surface K = 0.0000 A 4 = 8.2042 × 10 -6 A 6 = 1.7436 × 10 -7 A 8 = -3.1666 × 10 -9 A 10 = 2.5387 × 10 -11 Surface 16 K = 0.0000 A 4 = 4.2966 × 10 -5 A 6 =- 2.2200 × 10 -7 A 8 = 1.5200 × 10 -9 A 10 = -3.5262 × 10 -12 Surface 18 K = 0.0000 A 4 = -4.8894 × 10 -5 A 6 = 9.0031 × 10 -8 A 8 = -5.7540 × 10 -10 A 10 = -2.1527 × 10 -12 Surface 24 K = 0.0000 A 4 = 1.0203 × 10 -4 A 6 = 3.1862 × 10 -7 A 8 = -9.2601 × 10 -10 A 10 = 1.5124 × 10 -11 Surface 31 K = 0.0000 A 4 = -1.3197 × 10 -5 A 6 = -2.3802 × 10 -8 A 8 = 1.2168 × 10 -11 A 10 = -3.4583 × 10 -14 Zoom data (∞) WEST TE f (mm) 14.360 45.000 143.070 F NO 2.821 3.125 3.588 2ω (°) 78.6 28.5 9.3 FB (mm) 6.045 29.605 20.002 D1 0.970 22.688 42.961 D2 16.178 5.172 1.300 D3 9.230 2.963 1.270 D4 10.130 9.259 37.684.

【0155】以下に、上記実施例1〜9の条件式(1)
〜(6)に関する値を示す。
Hereinafter, the conditional expressions (1) of Examples 1 to 9 will be described.
This shows values related to (6).

【0156】 fBW/|fW12 | |ExpdW×Y|/fW 実施例1 0.474 39.467 実施例2 0.484 39.084 実施例3 0.464 41.547 実施例4 0.657 110.825 実施例5 0.878 116.49 実施例6 0.460 40.647 実施例7 0.378 45.867 実施例8 0.465 81.317 実施例9 0.468 80.583 。F BW / | f W12 || E xpdW × Y | / f W Example 1 0.474 39.467 Example 2 0.484 39.084 Example 3 0.464 41.547 Example 4 0.657 110.825 Example 5 0.878 116.49 Example 6 0.460 40.647 Example Example 7 0.378 45.867 Example 8 0.465 81.317 Example 9 0.468 80.583.

【0157】 f1 /fW |f2 /fW | f3 /fW345 |f5 |/fW345 実施例1 5.857 0.657 0.943 14.401 実施例2 5.944 0.654 1.006 4.740 実施例3 5.563 0.662 1.044 5.854 実施例4 6.288 0.716 1.202 3.483 実施例5 6.048 0.741 1.242 3.789 実施例6 5.494 0.665 0.885 8.615 実施例7 5.468 0.672 0.862 4.678 実施例8 5.417 0.648 1.161 3.088 実施例9 5.341 0.644 1.167 3.076 。[0157] f 1 / f W | f 2 / f W | f 3 / f W345 | f 5 | / f W345 Example 1 5.857 0.657 0.943 14.401 Example 2 5.944 0.654 1.006 4.740 Example 3 5.563 0.662 1.044 5.854 Example 4 6.288 0.716 1.202 3.483 Example 5 6.048 0.741 1.242 3.789 Example 6 5.494 0.665 0.885 8.615 Example 7 5.468 0.672 0.862 4.678 Example 8 5.417 0.648 1.161 3.088 Example 9 5.341 0.644 1.167 3.076

【0158】[0158]

【発明の効果】本発明によれば、比較的大きな結像素子
に適用でき、単なる高倍率ズームレンズはもちろん、広
角端の画角が70°を越え、変倍比が10倍程度を越え
ても十分な結像性能を維持する小型のズームレンズを提
供することができる。また、このようなズームレンズに
おいて最適なレンズ群の移動による像移動を補償する方
式を提供することができる。
According to the present invention, the present invention can be applied to a comparatively large image forming element, not only a high-magnification zoom lens but also a wide-angle end angle of view exceeding 70 ° and a zoom ratio exceeding about 10 times. In addition, it is possible to provide a small zoom lens that maintains sufficient imaging performance. Further, it is possible to provide a method of compensating for image movement due to optimal movement of the lens group in such a zoom lens.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のズームレンズの広角端
(a)、中間状態(b)、望遠端(c)のレンズ断面図
である。
FIG. 1 is a sectional view of a zoom lens according to a first embodiment of the present invention at a wide-angle end (a), in an intermediate state (b), and at a telephoto end (c).

【図2】本発明の実施例2のズームレンズの図1と同様
のレンズ断面図である。
FIG. 2 is a sectional view of a zoom lens according to a second embodiment of the present invention, similar to FIG.

【図3】本発明の実施例3のズームレンズの図1と同様
のレンズ断面図である。
FIG. 3 is a sectional view of a zoom lens according to a third embodiment of the present invention, similar to FIG.

【図4】本発明の実施例4のズームレンズの図1と同様
のレンズ断面図である。
FIG. 4 is a sectional view of a zoom lens according to a fourth embodiment of the present invention, similar to FIG.

【図5】本発明の実施例5のズームレンズの図1と同様
のレンズ断面図である。
FIG. 5 is a sectional view of a zoom lens according to a fifth embodiment of the present invention, similar to FIG.

【図6】本発明の実施例6のズームレンズの図1と同様
のレンズ断面図である。
FIG. 6 is a sectional view of a zoom lens according to a sixth embodiment of the present invention, similar to FIG.

【図7】本発明の実施例7のズームレンズの図1と同様
のレンズ断面図である。
FIG. 7 is a sectional view of a zoom lens according to a seventh embodiment of the present invention, similar to FIG.

【図8】本発明の実施例8のズームレンズの広角端
(a)、望遠端(b)のレンズ断面図である。
FIG. 8 is a sectional view of a zoom lens according to an eighth embodiment of the present invention at the wide-angle end (a) and at the telephoto end (b).

【図9】本発明の実施例9のズームレンズの図8と同様
のレンズ断面図である。
9 is a sectional view of a zoom lens according to a ninth embodiment of the present invention, similar to FIG.

【図10】実施例1の無限遠にフォーカシングした場合
の広角端(a)、中間状態(b)、望遠端(c)の収差
図である。
FIG. 10 is an aberration diagram at a wide-angle end (a), in an intermediate state (b), and at a telephoto end (c) when focusing is performed at infinity according to the first embodiment.

【図11】実施例2の図8と同様の収差図である。FIG. 11 is an aberration diagram similar to FIG. 8 of the second embodiment.

【図12】実施例3の図8と同様の収差図である。FIG. 12 is an aberration diagram similar to FIG. 8 of the third embodiment.

【図13】実施例4の図8と同様の収差図である。FIG. 13 is an aberration diagram similar to FIG. 8 of the fourth embodiment.

【図14】実施例5の図8と同様の収差図である。14 is an aberration diagram similar to FIG. 8 in Example 5. FIG.

【図15】実施例6の図8と同様の収差図である。FIG. 15 is an aberration diagram similar to FIG. 8 of the sixth embodiment.

【図16】実施例7の図8と同様の収差図である。FIG. 16 is an aberration diagram similar to FIG. 8 of the seventh embodiment.

【図17】実施例8の無限遠にフォーカシングした場合
の広角端(a)、中間状態(b)、望遠端(c)の収差
図である。
FIG. 17 is an aberration diagram at a wide-angle end (a), in an intermediate state (b), and at a telephoto end (c) when focusing is performed at infinity according to the eighth embodiment.

【図18】実施例8の2mにフォーカシングした場合の
広角端(a)、中間状態(b)、望遠端(c)の収差図
である。
FIG. 18 is an aberration diagram at a wide-angle end (a), in an intermediate state (b), and at a telephoto end (c) when focusing to 2 m in Example 8.

【図19】実施例9の無限遠にフォーカシングした場合
の広角端(a)、中間状態(b)、望遠端(c)の収差
図である。
FIG. 19 is an aberration diagram at a wide-angle end (a), in an intermediate state (b), and at a telephoto end (c) when focusing on infinity according to the ninth embodiment.

【図20】実施例8の2mにフォーカシングした場合の
広角端(a)、中間状態(b)、望遠端(c)の収差図
である。
FIG. 20 is an aberration diagram at a wide-angle end (a), in an intermediate state (b), and at a telephoto end (c) when focusing to 2 m in Example 8.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G4…第4レンズ群 G5…第5レンズ群 G1 first lens group G2 second lens group G3 third lens group G4 fourth lens group G5 fifth lens group

フロントページの続き Fターム(参考) 2H087 KA03 MA12 MA13 MA19 PA11 PA12 PA13 PA16 PA19 PB15 PB16 PB17 QA02 QA06 QA07 QA17 QA21 QA25 QA32 QA34 QA37 QA41 QA42 QA45 QA46 RA05 RA12 RA13 RA36 SA43 SA47 SA49 SA52 SA55 SA62 SA63 SA64 SA65 SA66 SB04 SB15 SB24 SB25 SB33 SB43 SB44 SB45 Continued on front page F-term (reference) 2H087 KA03 MA12 MA13 MA19 PA11 PA12 PA13 PA16 PA19 PB15 PB16 PB17 QA02 QA06 QA07 QA17 QA21 QA25 QA32 QA34 QA37 QA41 QA42 QA45 QA46 RA05 RA12 RA13 RA36 SA43 SA64 SA52 SA64 SA66 SA66 SB15 SB24 SB25 SB33 SB43 SB44 SB45

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に、正屈折力の第1レンズ
群、負屈折力の第2レンズ群、正屈折力の第3レンズ
群、正屈折力の第4レンズ群、及び、第5レンズ群で構
成し、広角端から望遠端への変倍時に、第1レンズ群か
ら第5レンズ群までの各々のレンズ群が移動し、第1レ
ンズ群と第2レンズ群の間隔が大きくなり、第2レンズ
群と第3レンズ群の間隔が狭くなるように移動し、第5
レンズ群が物体側に移動し、以下の条件式を満足するこ
とを特徴とするズームレンズ。 0.05<fBW/|fW12 |<3.0 ・・・(1) 4<|ExpdW×Y|/fW ・・・(2) ただし、fW は広角端での全系の焦点距離、fBWは広角
端でのレンズ最終面(フィルタ類含まず)から結像面ま
での距離、|fW12 |は広角端の第1レンズ群から第2
レンズ群までの焦点距離、ExpdWは広角端での結像面位
置(フィルタ類含まず)から射出瞳までの光軸上距離、
Yは結像面での実際の最大像高、である。
1. A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a fifth lens group, in that order from the object side. Each of the first to fifth lens units moves during zooming from the wide-angle end to the telephoto end, and the distance between the first and second lens units increases. Move so that the distance between the second lens group and the third lens group becomes smaller,
A zoom lens wherein the lens group moves to the object side and satisfies the following conditional expression. 0.05 <f BW / | f W12 | <3.0 (1) 4 <| E xpdW × Y | / f W (2) where f W is the value of the entire system at the wide-angle end. Focal length, f BW is the distance from the last lens surface (not including filters) at the wide-angle end to the imaging plane, and | f W12 | is the second from the first lens group at the wide-angle end.
The focal length to the lens group, ExpdW is the distance on the optical axis from the image plane position (not including filters) at the wide angle end to the exit pupil,
Y is the actual maximum image height on the image plane.
【請求項2】 以下の条件式を満たすことを特徴とする
請求項1記載のズームレンズ。 2.0<f1 /fW <12.0 ・・・(3) 0.3<|f2 /fW |<3.5 ・・・(4) 0.15<f3 /fW345<3.0 ・・・(5) 2.0<|f5 |/fW345<20 ・・・(6) ただし、f1 は第1レンズ群の焦点距離、f2 は第2レ
ンズ群の焦点距離、f3は第3レンズ群の焦点距離、f
5 は第5レンズ群の焦点距離、fW345は広角端における
第3レンズ群から第5レンズ群までの焦点距離である。
2. The zoom lens according to claim 1, wherein the following conditional expression is satisfied. 2.0 <f 1 / f W <12.0 (3) 0.3 <| f 2 / f W | <3.5 (4) 0.15 <f 3 / f W345 < 3.0 (5) 2.0 <| f 5 | / f W345 <20 (6) where f 1 is the focal length of the first lens group, and f 2 is the focal point of the second lens group. Distance, f 3 is the focal length of the third lens group, f
5 is the focal length of the fifth lens group, and f W345 is the focal length from the third lens group to the fifth lens group at the wide angle end.
【請求項3】 第4レンズ群は、少なくとも一組の接合
レンズを含むことを特徴とする請求項1又は2記載のズ
ームレンズ。
3. The zoom lens according to claim 1, wherein the fourth lens group includes at least one set of cemented lenses.
【請求項4】 第5レンズ群は、少なくとも一組の接合
レンズを含むことを特徴とする請求項1から3の何れか
1項記載のズームレンズ。
4. The zoom lens according to claim 1, wherein the fifth lens group includes at least one set of cemented lenses.
【請求項5】 有限遠物体へのフォーカシングは、第1
レンズ群と第2レンズ群を一体で移動するか又は第2レ
ンズ群のみを移動することによって行うことを特徴とす
る請求項1から4の何れか1項記載のズームレンズ。
5. Focusing on a finite object is performed in the first step.
The zoom lens according to any one of claims 1 to 4, wherein the zooming is performed by moving the lens group and the second lens group integrally or by moving only the second lens group.
【請求項6】 第5レンズ群は、物体側に移動しつつ像
側に戻るように移動することを特徴とする請求項1から
5の何れか1項記載のズームレンズ。
6. The zoom lens according to claim 1, wherein the fifth lens group moves to return to the image side while moving to the object side.
JP2001170490A 2001-06-06 2001-06-06 Zoom lens Pending JP2002365548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001170490A JP2002365548A (en) 2001-06-06 2001-06-06 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001170490A JP2002365548A (en) 2001-06-06 2001-06-06 Zoom lens

Publications (1)

Publication Number Publication Date
JP2002365548A true JP2002365548A (en) 2002-12-18

Family

ID=19012403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001170490A Pending JP2002365548A (en) 2001-06-06 2001-06-06 Zoom lens

Country Status (1)

Country Link
JP (1) JP2002365548A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345968A (en) * 2004-06-07 2005-12-15 Canon Inc Zoom lens and imaging device having the same
US7180680B2 (en) 2004-04-23 2007-02-20 Samsung Techwin Co., Ltd. High magnification zoom lens system
US7199940B2 (en) 2004-09-15 2007-04-03 Nikon Corporation Zoom lens system
KR100726777B1 (en) 2005-10-31 2007-06-11 삼성테크윈 주식회사 Zoom lens optical system
JP2007178598A (en) * 2005-12-27 2007-07-12 Tamron Co Ltd High-magnification zoom lens
JP2007241223A (en) * 2006-02-10 2007-09-20 Ricoh Co Ltd Zoom lens, imaging apparatus and personal digital assistant
EP2048533A1 (en) 2007-10-01 2009-04-15 Nikon Corporation Zoom lens, optical apparatus equipped with the zoom lens and method for forming an image of an object and varying a focal length
JP2009098585A (en) * 2007-09-25 2009-05-07 Ricoh Co Ltd Zoom lens, camera and personal digital assistant device
JP2009098449A (en) * 2007-10-17 2009-05-07 Olympus Imaging Corp Zoom lens and imaging apparatus having the same
JP2009198722A (en) * 2008-02-20 2009-09-03 Olympus Imaging Corp Zoom lens and imaging device using it
JP2012194278A (en) * 2011-03-15 2012-10-11 Sony Corp Zoom lens and imaging apparatus
JP2013171207A (en) * 2012-02-21 2013-09-02 Tamron Co Ltd Zoom lens
JP2013242431A (en) * 2012-05-21 2013-12-05 Canon Inc Zoom lens and imaging apparatus including the same
JP2013242430A (en) * 2012-05-21 2013-12-05 Canon Inc Zoom lens and imaging apparatus including the same
JP2014089288A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
JP2014089286A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
JP2014089287A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
WO2014208371A1 (en) * 2013-06-28 2014-12-31 コニカミノルタ株式会社 Aspherical lens, method for manufacturing lens unit provided with aspherical lens, lens unit manufactured by said method for manufacturing, and lens molding mold
JP2015118214A (en) * 2013-12-18 2015-06-25 株式会社タムロン Zoom lens and imaging device
CN104769477A (en) * 2012-10-30 2015-07-08 株式会社尼康 Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2015210386A (en) * 2014-04-25 2015-11-24 株式会社ニコン Variable power optical system, optical device, and method of manufacturing variable power optical system
US10234663B2 (en) 2014-04-25 2019-03-19 Nikon Corporation Variable power optical system, optical device, and method of manufacturing variable power optical system

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180680B2 (en) 2004-04-23 2007-02-20 Samsung Techwin Co., Ltd. High magnification zoom lens system
JP4630577B2 (en) * 2004-06-07 2011-02-09 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2005345968A (en) * 2004-06-07 2005-12-15 Canon Inc Zoom lens and imaging device having the same
US7199940B2 (en) 2004-09-15 2007-04-03 Nikon Corporation Zoom lens system
US7218456B2 (en) 2004-09-15 2007-05-15 Nikon Corporation Zoom lens system
US7336425B2 (en) 2004-09-15 2008-02-26 Nikon Corporation Zoom lens system
US7502173B2 (en) 2004-09-15 2009-03-10 Nikon Corporation Zoom lens system
KR100726777B1 (en) 2005-10-31 2007-06-11 삼성테크윈 주식회사 Zoom lens optical system
JP2007178598A (en) * 2005-12-27 2007-07-12 Tamron Co Ltd High-magnification zoom lens
JP2007241223A (en) * 2006-02-10 2007-09-20 Ricoh Co Ltd Zoom lens, imaging apparatus and personal digital assistant
JP2009098585A (en) * 2007-09-25 2009-05-07 Ricoh Co Ltd Zoom lens, camera and personal digital assistant device
US7903344B2 (en) 2007-10-01 2011-03-08 Nikon Corporation Zoom lens, optical apparatus equipped with the zoom lens and method for forming an image of an object and varying a focal length
EP2048533A1 (en) 2007-10-01 2009-04-15 Nikon Corporation Zoom lens, optical apparatus equipped with the zoom lens and method for forming an image of an object and varying a focal length
JP2009098449A (en) * 2007-10-17 2009-05-07 Olympus Imaging Corp Zoom lens and imaging apparatus having the same
JP2009198722A (en) * 2008-02-20 2009-09-03 Olympus Imaging Corp Zoom lens and imaging device using it
JP2012194278A (en) * 2011-03-15 2012-10-11 Sony Corp Zoom lens and imaging apparatus
JP2013171207A (en) * 2012-02-21 2013-09-02 Tamron Co Ltd Zoom lens
JP2013242431A (en) * 2012-05-21 2013-12-05 Canon Inc Zoom lens and imaging apparatus including the same
JP2013242430A (en) * 2012-05-21 2013-12-05 Canon Inc Zoom lens and imaging apparatus including the same
JP2014089286A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
JP2014089288A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
JP2014089287A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
CN104769477A (en) * 2012-10-30 2015-07-08 株式会社尼康 Variable magnification optical system, optical device, and production method for variable magnification optical system
US9874730B2 (en) 2012-10-30 2018-01-23 Nikon Corporation Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2014208371A1 (en) * 2013-06-28 2014-12-31 コニカミノルタ株式会社 Aspherical lens, method for manufacturing lens unit provided with aspherical lens, lens unit manufactured by said method for manufacturing, and lens molding mold
JP2015118214A (en) * 2013-12-18 2015-06-25 株式会社タムロン Zoom lens and imaging device
CN107272171A (en) * 2013-12-18 2017-10-20 株式会社腾龙 Zoom lens and camera device
CN107272171B (en) * 2013-12-18 2019-12-31 株式会社腾龙 Zoom lens and image pickup apparatus
JP2015210386A (en) * 2014-04-25 2015-11-24 株式会社ニコン Variable power optical system, optical device, and method of manufacturing variable power optical system
US10234663B2 (en) 2014-04-25 2019-03-19 Nikon Corporation Variable power optical system, optical device, and method of manufacturing variable power optical system

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
JP2002365548A (en) Zoom lens
JP3173277B2 (en) Zoom lens
JP4931136B2 (en) Zoom lens
JP2001228397A (en) Zoom lens
JP2001330777A (en) Zoom lens
JP3352227B2 (en) Zoom lens
JP2001091833A (en) Zoom lens
JP2963520B2 (en) Zoom lens with short overall length
JPH11119100A (en) Zoom lens
JPH0560973A (en) Variable power lens of short overall length
JP3365837B2 (en) Focusing method of 3-group zoom lens
JP2000121942A (en) Zoom lens
JP3445359B2 (en) Zoom lens
JP3394624B2 (en) Zoom lens
JP3369598B2 (en) Zoom lens
JP3733355B2 (en) Zoom lens
JP2000275522A (en) Zoom lens
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP2001083420A (en) Zoom lens
JP3008711B2 (en) Small zoom lens
US5589986A (en) Zoom lens
JPH0868940A (en) Zoom lens
JP3412939B2 (en) Zoom lens
JP3331228B2 (en) Bright wide-angle lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091125