JP3365837B2 - Focusing method of 3-group zoom lens - Google Patents

Focusing method of 3-group zoom lens

Info

Publication number
JP3365837B2
JP3365837B2 JP26728393A JP26728393A JP3365837B2 JP 3365837 B2 JP3365837 B2 JP 3365837B2 JP 26728393 A JP26728393 A JP 26728393A JP 26728393 A JP26728393 A JP 26728393A JP 3365837 B2 JP3365837 B2 JP 3365837B2
Authority
JP
Japan
Prior art keywords
lens
group
focusing
lens group
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26728393A
Other languages
Japanese (ja)
Other versions
JPH07120678A (en
Inventor
茂 加藤
加茂裕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP26728393A priority Critical patent/JP3365837B2/en
Priority to US08/327,323 priority patent/US5850312A/en
Publication of JPH07120678A publication Critical patent/JPH07120678A/en
Application granted granted Critical
Publication of JP3365837B2 publication Critical patent/JP3365837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レンズシャッターカメ
ラ等に適した3群ズームレンズのフォーカシング方式に
関し、特に、構成レンズ枚数が少なく、小型で低コスト
であるにも関わらず、無限遠から近距離まで性能の良好
な3群ズームレンズのフォーカシング方式に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focusing system for a three-group zoom lens suitable for a lens shutter camera and the like. In particular, it has a small number of constituent lenses, is small in size, and is low in cost. The present invention relates to a focusing method for a three-group zoom lens having excellent performance.

【0002】[0002]

【従来の技術】従来から、小型で低コストなズームレン
ズに適したタイプとして、正・負の2群ズームタイプが
知られている。このズームレンズのフォーカシング方式
として、第1群による前玉繰り出しが一般に知られてい
る。
2. Description of the Related Art Conventionally, a positive / negative two-group zoom type is known as a type suitable for a compact and low-cost zoom lens. As a focusing method for this zoom lens, front lens feeding by the first group is generally known.

【0003】正・負の2群ズームタイプは、変倍に伴う
像面湾曲変動がある。例えば広角側と望遠側の収差を良
好に補正した場合、中間焦点距離で像面がアンダー傾向
になる。しかし、前玉繰り出しでは、フォーカシングに
伴う像面湾曲変動が大きく、像面が更にアンダー側へ大
きく倒れてしまう。そのため、至近距離合焦時に全焦点
距離領域で像面湾曲を補正することが困難であった。
The positive / negative two-group zoom type has a field curvature variation associated with zooming. For example, when the aberrations on the wide-angle side and the telephoto side are properly corrected, the image plane tends to be under at the intermediate focal length. However, when the front lens is extended, the curvature of field varies greatly with focusing, and the image surface further falls to the under side. Therefore, it is difficult to correct the field curvature in the entire focal length region when focusing on a very close object.

【0004】そこで、特開平2−10307号に示され
ているように、正屈折力の前群を2つに分割し、別々に
物体側へ繰り出すことで、像面湾曲変動の少ないフォー
カシングが可能になることが知られている。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 2-10307, the front group having a positive refracting power is divided into two parts and they are separately fed to the object side, whereby focusing with little fluctuation of the field curvature is possible. Is known to become.

【0005】また、ガラスレンズの代わりにプラスチッ
クレンズを使用することによってコストを大幅に低減で
きることは周知のことだが、プラスチックレンズは温度
・湿度による屈折率、レンズ形状変化が大きく、結像性
能への影響が大きい問題がある。その対策として、特開
平5−113537号に示されるように、プラスチック
レンズの屈折力を非常に小さくしてしまう方法が知られ
ている。
It is well known that the cost can be significantly reduced by using a plastic lens instead of a glass lens, but the plastic lens has a large change in the refractive index and the lens shape due to temperature and humidity, and thus the image forming performance is greatly affected. There is a problem that has a large impact. As a countermeasure, there is known a method in which the refractive power of a plastic lens is made extremely small, as shown in JP-A-5-113537.

【0006】[0006]

【発明の解決しようとする課題】上記した特開平2−1
0307号のものは、正屈折力の前群を正・負レンズ2
枚以上で構成した第1群と正の屈折力を持つ第2群とか
ら構成している。低コスト化のためにそのガラスレンズ
をプラスチックレンズに置き換えると、屈折力の強いプ
ラスチックレンズとなり、温度・湿度の影響が大きくな
る問題がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
No. 0307 has a positive refractive power front lens group with a positive / negative lens 2
It is composed of a first group composed of one or more sheets and a second group having a positive refractive power. If the glass lens is replaced with a plastic lens for cost reduction, the plastic lens has a strong refractive power, and there is a problem that the influence of temperature and humidity becomes large.

【0007】また、前述した特開平5−113537号
のものは、中間焦点距離での像面湾曲が無限遠側で元々
アンダー側にあるので、至近距離撮影では更にアンダー
側へ大きくなってしまう問題がある。
Further, in the above-mentioned Japanese Patent Laid-Open No. 5-113537, since the field curvature at the intermediate focal length is originally on the under side on the infinity side, it becomes larger on the under side in close-up photography. There is.

【0008】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、その目的は、構成レンズ枚数
が少なく、小型、低コストでありながら、遠距離から至
近距離まで性能の良好なズームレンズのフォーカシング
方式を提供することである。
The present invention has been made in view of the above problems of the prior art, and an object thereof is that the number of constituent lenses is small, the size is small and the cost is low, and the performance is good from a long distance to a very close distance. It is to provide a focusing method for a zoom lens.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明の3群ズームレンズのフォーカシング方式は、物体側
から順に、第1レンズ群、正屈折力の第2レンズ群、負
屈折力の第3レンズ群からなり、各レンズ群間隔を変化
させて変倍を行うズームレンズにおいて、第1レンズ群
が非球面を少なくとも1面含み、かつ、第1レンズ群中
に含まれる全てのレンズが以下の条件式(3)を満足す
るレンズからなり、合焦時には第1レンズ群と第2レン
ズ群が光軸上を移動することを特徴とするものである。 |fT /f1 |<0.1 ・・・(3) ただし、fT は望遠側での全系の焦点距離、f1 は第1
レンズ群内の各レンズ焦点距離である。
A focusing system for a three-group zoom lens according to the present invention, which achieves the above object, comprises a first lens group, a second lens group having a positive refractive power, and a second lens group having a negative refractive power in order from the object side. In a zoom lens composed of three lens groups and performing zooming by changing the distance between the lens groups, the first lens group includes at least one aspherical surface, and all the lenses included in the first lens group are as follows. The first lens group and the second lens group move along the optical axis when focusing is achieved. | F T / f 1 | <0.1 (3) where f T is the focal length of the entire system on the telephoto side, and f 1 is the first
It is the focal length of each lens in the lens group.

【0010】この場合、合焦時に、第1レンズ群と第2
レンズ群を一体に光軸上を移動させるようにすることも
できる。
In this case, when focusing, the first lens group and the second lens group
It is also possible to integrally move the lens group on the optical axis.

【0011】また、本発明の別の3群ズームレンズのフ
ォーカシング方式は、物体側から順に、第1レンズ群、
正屈折力の第2レンズ群、負屈折力の第3レンズ群から
なり、各レンズ群間隔を変化させて変倍を行うズームレ
ンズにおいて、第1レンズ群が非球面を少なくとも1面
含み、かつ、第1レンズ群中に含まれる全てのレンズが
以下の条件式(3)を満足するレンズからなり、第2レ
ンズ群が非球面を少なくとも1面含み、合焦時には第2
レンズ群が光軸上を移動することを特徴とするものであ
る。 |fT /f1 |<0.1 ・・・(3) ただし、fT は望遠側での全系の焦点距離、f1 は第1
レンズ群内の各レンズ焦点距離である。
Further, another focusing system for a three-group zoom lens according to the present invention is, in order from the object side, the first lens group,
A zoom lens comprising a second lens group having a positive refracting power and a third lens group having a negative refracting power to change the magnification by changing the distance between the lens groups, wherein the first lens group includes at least one aspherical surface, and , All the lenses included in the first lens group are lenses that satisfy the following conditional expression (3), the second lens group includes at least one aspherical surface, and the second lens group includes the second lens when focusing.
It is characterized in that the lens group moves on the optical axis. | F T / f 1 | <0.1 (3) where f T is the focal length of the entire system on the telephoto side, and f 1 is the first
It is the focal length of each lens in the lens group.

【0012】[0012]

【作用】以下に、本発明において上記構成をとった理由
とその作用について説明する。上記の第1群は、非球面
を使用することで収差を効果的に発生させ、特に第2群
で発生する球面収差、コマ収差、像面湾曲等を相殺し、
レンズ系全体の収差を小さくする働きを持つ。また、パ
ワーレスのレンズから構成することにより、第1群での
色収差の発生を小さくできる。
The reason why the above configuration is adopted in the present invention and the action thereof will be described below. The first group described above effectively generates aberration by using an aspherical surface, and particularly cancels spherical aberration, coma aberration, field curvature, etc., which occur in the second group,
It works to reduce the aberration of the entire lens system. In addition, the use of a powerless lens can reduce the occurrence of chromatic aberration in the first group.

【0013】次に、第2群、第3群であるが、これらは
従来の正・負2群ズームタイプと同様の近軸作用(変倍
・焦点調整作用)を持ったレンズ群である。球面収差、
コマ収差、像面湾曲等については、従来の正・負2群ズ
ームタイプと同様で、第2群、第3群のみで十分に補正
することは難しく、第2群、第3群に非球面を使用して
もこれらの収差の補正は十分でない。したがって、前述
した第1群の非球面の補正効果によりレンズ系全体の収
差を小さくしている。
The second and third groups are lens groups having paraxial action (magnification / focus adjustment action) similar to those of the conventional positive / negative two-group zoom type. Spherical aberration,
The coma aberration, the curvature of field, etc. are similar to those of the conventional positive / negative two-group zoom type, and it is difficult to sufficiently correct them with only the second and third groups, and the second and third groups have aspherical surfaces. Is not sufficient to correct these aberrations. Therefore, the aberration of the entire lens system is reduced by the correction effect of the aspherical surface of the first group described above.

【0014】近軸作用を持つ第2群と第3群の間隔を縮
めながらこれらを物体側へ移動することで、広角端から
望遠端への変倍がなされるわけだが、この時、第1群と
第2群を一体的に移動させると、従来の2群ズームタイ
プ同様に、変倍に伴う収差変動が起きてしまう。そこ
で、第1群と第2群の間隔を変倍に連動して変化させる
ことで、収差バランスを変化させ、変倍に伴う収差変動
を改善することができる。
By moving the second group and the third group having a paraxial action toward the object side while shortening the distance between them, the magnification is changed from the wide-angle end to the telephoto end. If the group and the second group are moved integrally, aberration variation due to zooming will occur as in the conventional two-group zoom type. Therefore, by changing the distance between the first group and the second group in conjunction with zooming, it is possible to change the aberration balance and improve aberration fluctuations associated with zooming.

【0015】また、フォーカシング時、第1群、第2群
の合成群と第3群での収差バランスが崩れ、像面がアン
ダー側に倒れる。そこで、像面湾曲の発生を変えるた
め、変倍時と同様にフォーカシングに連動して第1群と
第2群の間隔を変化させる。つまり、第1群と第2群を
別々に光軸上を移動させることで、像面湾曲の改善を行
う。
Further, during focusing, the aberration balance between the combined group of the first group, the second group and the third group is lost, and the image surface falls to the under side. Therefore, in order to change the occurrence of the field curvature, the interval between the first group and the second group is changed in association with focusing as in the case of zooming. That is, the field curvature is improved by moving the first group and the second group separately on the optical axis.

【0016】第2群で像面湾曲がアンダー側に発生する
場合、第1群の非球面でオーバー方向へ補正している。
第1群と第2群の繰り出しで像面湾曲が更にアンダー側
へ変動してしまうが、第1群と第2群の間隔を広げる
と、像面湾曲がオーバー方向へ戻り、全体の像面湾曲を
小さくすることができる。
When the field curvature is generated on the under side in the second lens unit, the aspherical surface of the first lens unit is corrected in the over direction.
The curvature of field fluctuates further to the under side due to the extension of the first group and the second group, but if the distance between the first group and the second group is widened, the field curvature returns to the over direction and the entire image surface The curvature can be reduced.

【0017】また、3群ズームタイプとなり、無限遠で
の変倍に伴う像面湾曲変動が小さくなっているので、第
1群と第2群を一体的にフォーカシングさせても、従来
の正・負2群ズームタイプより性能低下が少ない。この
ようにフォーカシングする場合、最至近距離をあまり短
くできないものの、フォーカシング枠機構が簡素化でき
る利点がある。
Further, since the zoom lens is a three-group zoom type, and the field curvature variation due to zooming at infinity is small, even if the first and second groups are integrally focused, the conventional positive and Less performance degradation than the negative 2 group zoom type. In the case of focusing in this way, although the shortest distance cannot be shortened so much, there is an advantage that the focusing frame mechanism can be simplified.

【0018】さらに、第2群に非球面を使用した場合、
第2群での収差発生は非常に小さくなる。特に像面湾曲
の発生をアンダー側からオーバー側にでき、第1群の像
面湾曲発生も前述とは逆のアンダー側になる。この場
合、第1群と第2群の間隔が小さくなると、像面湾曲が
オーバー側へ変動するようになるので、第1群、第2群
を繰り出した後、像面湾曲補正のために第1群を下げる
ことになり、結果として、第2群のみでフォーカシング
を行っても、像面湾曲の変動は小さくなる。このフォー
カシング方式は、フォーカス移動群が1つになるので、
フォーカシング枠が機構的に最も簡素化でき、好まし
い。
Further, when an aspherical surface is used for the second lens unit,
Aberration occurrence in the second group is very small. In particular, the curvature of field can be generated from the under side to the over side, and the curvature of field of the first group is also on the under side, which is the opposite of the above. In this case, if the distance between the first group and the second group becomes small, the field curvature will fluctuate to the over side. Therefore, after the first group and the second group are extended, the first group for the field curvature correction is made. As a result, the first lens group is lowered, and as a result, even if focusing is performed only by the second lens group, the fluctuation of the field curvature becomes small. In this focusing method, since there is only one focus moving group,
The focusing frame is preferable because it can be mechanically most simplified.

【0019】さらに、第1群と第2群のフォーカシング
移動量ΔG1 、ΔG2 の関係は、下記条件式を満たすこ
とが好ましい。 −1<ΔG1 /ΔG2 <2 ・・・(1) 上記条件式(1)の範囲を外れると、像面湾曲が補正オ
ーバーになり好ましくない。さらに、その下限の−1を
越えると、無限遠合焦時の入射面が絞りから離れてしま
い、周辺光線高が高くなり、レンズ径が大きくなってし
まう。また、上限の2を越えると、最至近合焦時に入射
面が絞りから離れてしまい、レンズ径が大きくなってし
まう。
Further, the relationship between the focusing movement amounts ΔG 1 and ΔG 2 of the first group and the second group preferably satisfies the following conditional expression. −1 <ΔG 1 / ΔG 2 <2 (1) If the condition (1) is not satisfied, the field curvature is overcorrected, which is not preferable. Further, when the lower limit of -1 is exceeded, the entrance surface at the time of focusing at infinity is separated from the stop, the marginal ray height becomes high, and the lens diameter becomes large. On the other hand, if the upper limit of 2 is exceeded, the entrance surface will be separated from the diaphragm at the closest focusing, and the lens diameter will be large.

【0020】また、望遠側のレンズ全長を短くするに
は、第3群の負の屈折力を強くし、変倍効果を高め、ズ
ーム移動量を少なくする必要がある。だが、この場合、
像面特性を良好に保つため、第3群中の負レンズが下記
の条件を満たすことが望ましい。 1.65<nN <1.90 ・・・(2) ただし、nN は第3群の負レンズの屈折率の平均値であ
る。
Further, in order to shorten the total length of the lens on the telephoto side, it is necessary to strengthen the negative refractive power of the third lens group, enhance the zooming effect, and reduce the zoom movement amount. But in this case,
In order to maintain good image surface characteristics, it is desirable that the negative lens in the third lens group satisfy the following conditions. 1.65 <n N <1.90 (2) where n N is the average value of the refractive index of the negative lens of the third group.

【0021】この条件式(2)の下限の1.65を越え
ると、ペッツバール和が負に大きくなり、上限の1.9
0を越えると、正に大きくなり、どちらの場合も非点収
差が大きくなり好ましくない。
When the lower limit of 1.65 to condition (2) is exceeded, the Petzval sum becomes negatively large, and the upper limit of 1.9 is reached.
When it exceeds 0, it becomes positively large, and in both cases, astigmatism becomes large, which is not preferable.

【0022】また、第1群は、下記条件式を満たすこと
が望ましい。 |fT /f1 |<0.1 ・・・(3) ただし、fT は望遠側での全系の焦点距離、f1 は第1
群内の各レンズ焦点距離である。上記条件式(3)を外
れると、第1群での色収差発生が大きくなり、全体の色
収差が悪化する。
Further, it is desirable that the first lens group satisfies the following conditional expression. | F T / f 1 | <0.1 (3) where f T is the focal length of the entire system on the telephoto side, and f 1 is the first
It is the focal length of each lens in the group. If the conditional expression (3) is not satisfied, chromatic aberration will be increased in the first lens group, and the overall chromatic aberration will be deteriorated.

【0023】さらに、ガラスレンズよりコストが安いプ
ラスチックレンズで第1群を構成した場合、上記条件式
(3)を満たしていれば、温度・湿度により屈折率やレ
ンズ形状が変化しても、レンズ屈折力の変化がほとんど
なく、結像性能への影響を最小にできる利点もある。ま
た、従来のように正・負2枚以上のレンズで色消ししな
くとも、第1群の色収差はレンズ1枚構成で十分小さく
できる。
Further, when the first lens group is made up of a plastic lens which is cheaper than a glass lens, if the conditional expression (3) is satisfied, even if the refractive index or the lens shape changes due to temperature and humidity, the lens group There is also an advantage that the influence on the imaging performance can be minimized since the refractive power hardly changes. Further, the chromatic aberration of the first group can be made sufficiently small with the one-lens configuration without achromatizing with two or more positive and negative lenses as in the prior art.

【0024】[0024]

【実施例】以下に、本発明のズームレンズのフォーカシ
ング方式の実施例1〜3について説明する。各実施例の
レンズデータは後記するが、実施例1〜3の無限遠合焦
時の広角端(a)と中間焦点距離(b)と望遠端(c)
のレンズ断面図をそれぞれ図1〜図3に示す。
EXAMPLES Examples 1 to 3 of the focusing system for a zoom lens according to the present invention will be described below. The lens data of each example will be described later, but the wide-angle end (a), the intermediate focal length (b), and the telephoto end (c) when focusing on infinity in Examples 1 to 3 are described.
1 to 3 are sectional views of the lens of FIG.

【0025】レンズ配置については、実施例1は、物体
側から、屈折力が非常に弱いプラスチックレンズからな
る第1群G1、負レンズと正レンズの接合正レンズから
なる第2群G2、正レンズと負レンズからなる負の屈折
力を持つ第3群G3の計5枚で構成され、非球面が第1
群G1と第3群G3に1面ずつ使用されている。中心光
束と周辺光束が分離する第1群G1の入射面を非球面と
したことで、特に周辺部の像面湾曲やコマ収差の変動が
良好に補正されている。特に、像面湾曲は第2群G2で
アンダーに発生しているが、第1群G1の非球面を光軸
から離れるに従って正の屈折力が弱くなる形状とし、像
面湾曲をオーバー側に発生させ、第1群G1、第2群G
2での像面湾曲を小さくしている。
Regarding the lens arrangement, in Example 1, from the object side, the first group G1 consisting of a plastic lens having a very weak refractive power, the second group G2 consisting of a cemented positive lens of a negative lens and a positive lens, and a positive lens. And a negative lens which has a negative refracting power and is composed of a total of 5 lenses of the third group G3, and the aspherical surface is the first.
One surface is used for each of the group G1 and the third group G3. Since the entrance surface of the first group G1 where the central light flux and the peripheral light flux are separated is an aspherical surface, the field curvature and the coma aberration fluctuation in the peripheral portion are well corrected. In particular, the field curvature is generated under in the second group G2, but the aspherical surface of the first group G1 is formed in a shape in which the positive refractive power becomes weaker as the distance from the optical axis is increased, and the field curvature is generated on the over side. The first group G1 and the second group G
The field curvature at 2 is reduced.

【0026】変倍時に第2群G2と第3群G3の間隔を
縮めると同時に、第1群G1と第2群G2の間隔を変化
させることで、中間焦点距離での像面湾曲を改善してい
る。フォーカシングは、第1群G1と第2群G2を一体
で繰り出してもよいが(図5)、至近距離を短くする場
合は、第1群G1と第2群G2の間隔を広げながら両群
を繰り出す(図6)。この時、第1群G1と第2群G2
の移動量比を一定にすると、結像性能が良好のまま繰り
出し制御系を簡単化できる。
At the time of zooming, the distance between the second lens group G2 and the third lens group G3 is shortened, and at the same time, the distance between the first lens group G1 and the second lens group G2 is changed to improve the field curvature at the intermediate focal length. ing. For focusing, the first group G1 and the second group G2 may be extended together (FIG. 5). However, when the shortest distance is shortened, both the first group G1 and the second group G2 are widened to increase the distance between the first group G1 and the second group G2. Get out (Fig. 6). At this time, the first group G1 and the second group G2
If the moving amount ratio of is constant, the payout control system can be simplified while the imaging performance remains good.

【0027】なお、本実施例の第2群G2に設けられた
ガラスレンズ、特に第2群G2の最も物体側の面に非球
面を用いてもよい。この場合、第2群G2のガラスレン
ズに非球面を用いることによって、収差性能を向上させ
ることができるので、本実施例のフォーカシングは、第
2群G2の繰り出しだけでまかなえる。したがって、構
成の簡素化、コストの低減を図ることができるという効
果を得ることもできる。
It should be noted that an aspherical surface may be used for the glass lens provided in the second lens group G2 of this embodiment, particularly the most object side surface of the second lens group G2. In this case, the aberration performance can be improved by using an aspherical surface for the glass lens of the second group G2, so that the focusing of the present embodiment can be performed only by extending the second group G2. Therefore, it is possible to obtain the effect that the configuration can be simplified and the cost can be reduced.

【0028】実施例2は、物体側から、屈折力が非常に
弱いプラスチックレンズからなる第1群G1、パワーレ
スのプラスチックレンズと、負レンズと正レンズの接合
正レンズからなる第2群G2、正レンズと負レンズから
なる負の屈折力を持つ第3群G3の計6枚で構成され、
非球面が各群に1面ずつ使用されている。第2群G2中
のプラスチックレンズは非球面レンズであり、温度・湿
度による性能変化を低減するため、パワーレスとしてい
る。また、この非球面の収差補正効果で、第2群G2で
の収差発生は実施例1よりはるかに小さく、特に像面湾
曲は僅かにオーバー側へ発生している。したがって、第
1群G1では非球面を光軸から離れるに従って正の屈折
力が強くなる形状とし、像面湾曲をアンダー側へ発生さ
せている。しかし、どちらの群も収差発生量は小さいの
で、第1群、第2群間の位置精度が低くても性能低下は
少ない。
In the second embodiment, from the object side, a first group G1 composed of a plastic lens having a very weak refractive power, a second group G2 composed of a powerless plastic lens and a cemented positive lens composed of a negative lens and a positive lens, It is composed of a total of 6 pieces of the 3rd group G3 which has a negative refractive power which consists of a positive lens and a negative lens,
One aspherical surface is used for each group. The plastic lens in the second group G2 is an aspherical lens and is powerless in order to reduce the performance change due to temperature and humidity. Further, due to the aberration correction effect of this aspherical surface, the aberration generation in the second lens group G2 is much smaller than that in the first embodiment, and in particular the field curvature slightly occurs on the over side. Therefore, in the first group G1, the aspherical surface has a shape in which the positive refracting power becomes stronger as the distance from the optical axis increases, and the field curvature is generated on the under side. However, since the amount of aberration generated is small in both groups, the performance is not degraded even if the positional accuracy between the first group and the second group is low.

【0029】変倍は実施例1と同様であるが、フォーカ
シングは、第2群G2の繰り出しのみで良好な性能が得
られる(図8)。また、同時に第1群を繰り込むと、更
に性能が改善される(図9)。
The zooming is the same as that of the first embodiment, but the focusing provides good performance only by extending the second lens group G2 (FIG. 8). Further, if the first group is retracted at the same time, the performance is further improved (FIG. 9).

【0030】実施例3は、物体側から、屈折力が非常に
弱いプラスチックレンズからなる第1群G1、正レンズ
と負レンズの接合正レンズからなる第2群G2、正レン
ズと負レンズからなる負の屈折力を持つ第3群G3の計
5枚で構成され、非球面が第1群G1に2面、第3群G
3に1面使用されている。第1群G1は両面非球面レン
ズであるが、両面での周辺光線高に差があり、発生する
収差が異なる。そのため、中心部(球面収差)、周辺部
(像面湾曲等)の補正バランスの自由度が増し、更に良
好な収差補正が可能になる。また、両非球面共、光軸か
ら離れるに従って正の屈折力が強くなる形状であるが、
レンズとしてはオーバーの像面湾曲を発生している。変
倍、フォーカシングは第1実施例と同様である(図1
1、図12))。
The third embodiment comprises, from the object side, a first group G1 consisting of a plastic lens having a very weak refractive power, a second group G2 consisting of a positive lens cemented with a positive lens and a negative lens, a positive lens and a negative lens. It is composed of a total of 5 pieces of the third lens group G3 having a negative refracting power, and the aspheric surface has two surfaces in the first lens group G1 and the third lens group G3
One side is used every three. The first group G1 is a double-sided aspherical lens, but there are differences in the marginal ray heights on both sides, and the generated aberrations are different. Therefore, the degree of freedom in correction balance in the central portion (spherical aberration) and the peripheral portion (field curvature, etc.) is increased, and more favorable aberration correction is possible. Also, both aspherical surfaces have a shape in which the positive refracting power becomes stronger as the distance from the optical axis increases,
The lens has an over curvature of field. Zooming and focusing are the same as in the first embodiment (FIG. 1).
1, FIG. 12)).

【0031】以下に、各実施例のレンズデータを示す
が、記号は、上記の外、fは全系焦点距離、FNOはFナ
ンバー、2ωは画角、fB はバックフォーカス、r1
2 …は各レンズ面の曲率半径、d1 、d2 …は各レン
ズ面間の間隔、nd1、nd2…は各レンズのd線の屈折
率、νd1、νd2…は各レンズのアッベ数である。なお、
非球面形状は、光軸方向をx、光軸に直交する方向をy
としたとき、次の式で表される。 x=(y2 /r)/[1+{1−P(y/
r)2 1/2 ]+A44 +A66 +A88 + A1010 ただし、rは近軸曲率半径、Pは円錐係数、A4、A6
A8、A10 は非球面係数である。
The lens data of each embodiment are shown below. The symbols are the above, f is the focal length of the entire system, F NO is the F number, 2ω is the angle of view, f B is the back focus, r 1 and
r 2 ... curvature radius of each lens surface, d 1, d 2 ... the spacing between the lens surfaces, n d1, n d2 ... d-line refractive index of each lens, ν d1, ν d2 ... Each lens Is the Abbe number. In addition,
The aspherical shape is x in the optical axis direction and y in the direction orthogonal to the optical axis.
Then, it is expressed by the following equation. x = (y 2 / r) / [1+ {1-P (y /
r) 2 } 1/2 ] + A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 However, r is a paraxial radius of curvature, P is a conic coefficient, A 4 , A 6 ,
A 8 and A 10 are aspherical coefficients.

【0032】実施例1 f = 39.2 〜 58.6 〜 87.1 FNO= 4.66 〜 6.21 〜 8.28 2ω= 56.4 °〜 40.0 °〜 27.7 ° fB = 9.51 〜 28.13 〜 55.49 r1 = 25.4210(非球面) d1 = 3.000 nd1 =1.49241 νd1 =57.66 r2 = 24.5490 d2 =(可変) r3 = 157.8680 d3 = 1.500 nd2 =1.83400 νd2 =37.16 r4 = 13.6650 d4 = 9.980 nd3 =1.69680 νd3 =55.52 r5 = -17.5900 d5 = 1.000 r6 = ∞(絞り) d6 =(可変) r7 = -29.8590 d7 = 3.000 nd4 =1.57501 νd4 =41.49 r8 = -16.2750 d8 = 3.660 r9 = -13.0430(非球面) d9 = 1.800 nd5 =1.72916 νd5 =54.68 r10= -640.3870 非球面係数 第1面 P = 0.2454 A4 =-0.49968×10-4 A6 =-0.28262×10-6 A8 =-0.12628×10-8 A10=-0.47657×10-11 第9面 P = 0.2409 A4 =-0.19743×10-4 A6 = 0.55883×10-8 A8 =-0.12032×10-8 A10= 0.59178×10-11
Example 1 f = 39.2 to 58.6 to 87.1 F NO = 4.66 to 6.21 to 8.28 2ω = 56.4 ° to 40.0 ° to 27.7 ° f B = 9.51 to 28.13 to 55.49 r 1 = 25.4210 (aspherical surface) d 1 = 3.000 n d1 = 1.49241 ν d1 = 57.66 r 2 = 24.5490 d 2 = ( variable) r 3 = 157.8680 d 3 = 1.500 n d2 = 1.83400 ν d2 = 37.16 r 4 = 13.6650 d 4 = 9.980 n d3 = 1.69680 ν d3 = 55.52 r 5 = -17.5900 d 5 = 1.000 r 6 = ∞ (aperture) d 6 = (variable) r 7 = -29.8590 d 7 = 3.000 n d4 = 1.57501 ν d4 = 41.49 r 8 = -16.2750 d 8 = 3.660 r 9 = -13.0430 (aspherical surface) d 9 = 1.800 n d5 = 1.72916 ν d5 = 54.68 r 10 = -640.3870 Aspheric coefficient Coefficient 1st surface P = 0.2454 A 4 = -0.49968 × 10 -4 A 6 = -0.28262 × 10 -6 A 8 = -0.12628 × 10 -8 A 10 = -0.47657 × 10 -11 9th surface P = 0.2409 A 4 = -0.19743 x 10 -4 A 6 = 0.55883 x 10 -8 A 8 = -0.12032 x 10 -8 A 10 = 0.59178 x 10 -11
.

【0033】実施例2 f = 39.1 〜 59.1 〜 87.0 FNO= 4.64 〜 6.15 〜 8.28 2ω= 56.8 °〜 39.8 °〜 27.8 ° fB = 9.28 〜 29.66 〜 57.96 r1 = 129.4710(非球面) d1 = 2.000 nd1 =1.49241 νd1 =57.66 r2 = 137.4900 d2 =(可変) r3 = 37.7490(非球面) d3 = 2.000 nd2 =1.49241 νd2 =57.66 r4 = 36.6790 d4 = 1.420 r5 = -119.5760 d5 = 9.020 nd3 =1.67270 νd3 =32.10 r6 = 25.8550 d6 = 3.830 nd4 =1.62041 νd4 =60.27 r7 = -15.3280 d7 = 1.000 r8 = ∞(絞り) d8 =(可変) r9 = -30.1720 d9 = 4.100 nd5 =1.62004 νd5 =36.25 r10= -15.3450 d10= 3.290 r11= -11.3270(非球面) d11= 1.800 nd6 =1.69680 νd6 =55.52 r12= -142.9020 非球面係数 第1面 P = 1.0000 A4 = 0.47463×10-6 A6 = 0.72872×10-7 A8 =-0.36425×10-9 A10= 0 第3面 P = 7.1963 A4 =-0.99201×10-4 A6 =-0.10089×10-5 A8 = 0.53956×10-8 A10=-0.64608×10-10 第11面 P =-1.7719 A4 =-0.20403×10-3 A6 = 0.81619×10-6 A8 =-0.43485×10-8 A10= 0.95073×10-11
Example 2 f = 39.1 to 59.1 to 87.0 F NO = 4.64 to 6.15 to 8.28 2ω = 56.8 ° to 39.8 ° to 27.8 ° f B = 9.28 to 29.66 to 57.96 r 1 = 129.4710 (aspherical surface) d 1 = 2.000 n d1 = 1.49241 ν d1 = 57.66 r 2 = 137.4900 d 2 = ( variable) r 3 = 37.7490 (aspherical) d 3 = 2.000 n d2 = 1.49241 ν d2 = 57.66 r 4 = 36.6790 d 4 = 1.420 r 5 = -119.5760 d 5 = 9.020 n d3 = 1.67270 ν d3 = 32.10 r 6 = 25.8550 d 6 = 3.830 nd 4 = 1.62041 ν d4 = 60.27 r 7 = -15.3280 d 7 = 1.000 r 8 = ∞ (aperture) d 8 = ( Variable) r 9 = -30.1720 d 9 = 4.100 n d5 = 1.62004 ν d5 = 36.25 r 10 = -15.3450 d 10 = 3.290 r 11 = -11.3270 (aspherical) d 11 = 1.800 n d6 = 1.69680 ν d6 = 55.52 r 12 = -142.9020 Aspherical coefficient 1st surface P = 1.0000 A 4 = 0.47463 × 10 -6 A 6 = 0.72872 × 10 -7 A 8 = -0.36425 × 10 -9 A 10 = 0 3rd surface P = 7.1963 A 4 = -0.99201 × 10 -4 A 6 = -0.10089 × 10 -5 A 8 = 0.53956 × 10 -8 A 10 = -0.64608 × 10 -10 11th surface P = -1.7719 A 4 = -0.20403 × 10 -3 A 6 = 0.81619 × 10 -6 A 8 = -0.43485 × 10 -8 A 10 = 0.95073 × 10 -11
.

【0034】実施例3 f = 38.9 〜 70.2 〜101.9 FNO= 4.61 〜 7.52 〜 9.99 2ω= 57.3 °〜 34.3 °〜 24.0 ° fB = 10.60 〜 42.09 〜 74.02 r1 = -34.6220(非球面) d1 = 5.000 nd1 =1.49241 νd1 =57.66 r2 = -37.2550(非球面) d2 =(可変) r3 = -59.6620 d3 = 8.010 nd2 =1.51633 νd2 =64.15 r4 = -9.2970 d4 = 1.130 nd3 =1.84666 νd3 =23.78 r5 = -11.5560 d5 = 1.000 r6 = ∞(絞り) d6 =(可変) r7 = -57.1080 d7 = 3.760 nd4 =1.61293 νd4 =37.00 r8 = -19.1090 d8 = 4.160 r9 = -12.0390(非球面) d9 = 1.800 nd5 =1.75500 νd5 =52.33 r10= -304.1050 非球面係数 第1面 P = 1.0000 A4 = 0.65037×10-5 A6 = 0.67721×10-6 A8 =-0.11970×10-8 A10= 0 第2面 P = 1.0000 A4 = 0.13326×10-3 A6 = 0.13112×10-5 A8 = 0.12946×10-7 A10= 0 第9面 P = 0.7782 A4 = 0.25048×10-4 A6 = 0.11094×10-6 A8 = 0.12981×10-8 A10=-0.69510×10-11
Example 3 f = 38.9 to 70.2 to 101.9 F NO = 4.61 to 7.52 to 9.99 2ω = 57.3 ° to 34.3 ° to 24.0 ° f B = 1.60 to 42.09 to 74.02 r 1 = -34.6220 (aspherical surface) d 1 = 5.000 n d1 = 1.49241 ν d1 = 57.66 r 2 = -37.2550 ( aspherical) d 2 = (variable) r 3 = -59.6620 d 3 = 8.010 n d2 = 1.51633 ν d2 = 64.15 r 4 = -9.2970 d 4 = 1.130 n d3 = 1.84666 ν d3 = 23.78 r 5 = -11.5560 d 5 = 1.000 r 6 = ∞ (aperture) d 6 = (variable) r 7 = -57.1080 d 7 = 3.760 nd 4 = 1.61293 ν d4 = 37.00 r 8 = -19.1090 d 8 = 4.160 r 9 = -12.0390 (aspherical surface) d 9 = 1.800 n d5 = 1.75500 ν d5 = 52.33 r 10 = -304.1050 Aspheric surface Coefficient 1st surface P = 1.0000 A 4 = 0.65037 × 10 -5 A 6 = 0.67721 × 10 -6 A 8 = -0.11970 × 10 -8 A 10 = 0 2nd surface P = 1.0000 A 4 = 0.13326 × 10 -3 A 6 = 0.13112 × 10 -5 A 8 = 0.12946 × 10 -7 A 10 = 0 9th surface P = 0.7782 A 4 = 0.25048 × 10 -4 A 6 = 0.11094 × 10 -6 A 8 = 0.12981 × 10 -8 A 10 = -0.695 10 × 10 -11
.

【0035】次に、上記実施例1〜3のフォーカシング
の際の第1群G1、第2群の繰り出し量ΔG1 、ΔG2
を以下の表に示す。 注)符号−は物体側へ移動、符号+は像面側へ移動を表
し、( )内の値は第1群G1、第2群G2の移動量の
比(条件式(1))を表す。
Next, the pay-out amounts ΔG 1 and ΔG 2 of the first and second groups G1 and G2 during focusing in the first to third embodiments.
Is shown in the table below. Note) The sign − represents the movement toward the object side, the sign + represents the movement toward the image plane side, and the value in parentheses represents the ratio of the movement amounts of the first group G1 and the second group G2 (conditional expression (1)). .

【0036】次に、また、各実施例の前記条件式
(2)、(3)の値を次の表に示す。
Next, the values of the conditional expressions (2) and (3) of each embodiment are shown in the following table.

【0037】上記実施例1〜3の無限遠合焦時の広角端
(a)、中間焦点距離(b)、望遠端(c)における球
面収差、非点収差、歪曲収差、倍率色収差を表す収差図
をそれぞれ図4、図7、図10に示す。また、実施例1
の第1群G1、第2群G2一体繰り出しによる1m合焦
時の同様な収差図を図5に、実施例1の第1群G1、第
2群G2独立繰り出しによる0.6m合焦時の同様な収
差図を図6に示す。さらに、実施例2の第2群G2繰り
出しによる0.6m合焦時の同様な収差図を図8に、実
施例2の第1群G1繰り込み、第2群G2繰り出しによ
る0.6m合焦時の同様な収差図を図9に示す。さら
に、実施例3の第1群G1、第2群G2一体繰り出しに
よる1m合焦時の同様な収差図を図11に、実施例3の
第1群G1、第2群G2独立繰り出しによる0.6m合
焦時の同様な収差図を図12に示す。
Aberrations representing spherical aberration, astigmatism, distortion, and lateral chromatic aberration at the wide-angle end (a), the intermediate focal length (b), and the telephoto end (c) when focusing on infinity in Examples 1 to 3 above. The drawings are shown in FIGS. 4, 7, and 10, respectively. In addition, Example 1
A similar aberration diagram at the time of 1 m focusing by the first group G1 and the second group G2 integrally extended is shown in FIG. 5, and when the first group G1 and the second group G2 of the first example are independently extended and 0.6 m are focused. A similar aberration diagram is shown in FIG. Further, FIG. 8 shows a similar aberration diagram at the time of focusing 0.6 m by the second group G2 extension in Example 2, and at the time of 0.6 m focusing by the first group G1 extension and second group G2 extension in Example 2. A similar aberration diagram of is shown in FIG. Further, FIG. 11 is a similar aberration diagram at the time of 1 m focusing by the first group G1 and the second group G2 integrally extended in Example 3, and FIG. 11 shows the same aberration diagrams when the first group G1 and the second group G2 are independently extended. A similar aberration diagram at the time of focusing at 6 m is shown in FIG.

【0038】[0038]

【発明の効果】以上の説明から明らかなように、本発明
によれば、構成レンズ枚数が少なく、小型、低コストで
ありながら、遠距離から至近距離まで性能の良好なズー
ムレンズのフォーカシング方式が得られる。
As is clear from the above description, according to the present invention, there is provided a focusing system for a zoom lens, which has a small number of constituent lenses, is small in size, and is low in cost, but has good performance from a long distance to a very close distance. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフォーカシング方式を適用した実施例
1の3群ズームレンズの無限遠合焦時の広角端(a)、
中間焦点距離(b)、望遠端(c)の断面図である。
FIG. 1 is a wide-angle end (a) at the time of focusing at infinity of a three-group zoom lens of Example 1 to which a focusing system of the present invention is applied,
It is sectional drawing of an intermediate focal length (b) and a telephoto end (c).

【図2】実施例2の図1と同様な断面図である。2 is a sectional view similar to FIG. 1 of Example 2. FIG.

【図3】実施例3の図1と同様な断面図である。3 is a sectional view similar to FIG. 1 of Example 3. FIG.

【図4】実施例1の無限遠合焦時の広角端(a)、中間
焦点距離(b)、望遠端(c)における球面収差、非点
収差、歪曲収差、倍率色収差を表す収差図である。
FIG. 4 is an aberration diagram showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification at the wide-angle end (a), the intermediate focal length (b), and the telephoto end (c) when focusing on infinity in Example 1. is there.

【図5】実施例1の第1群、第2群一体繰り出しによる
1m合焦時の図4と同様な収差図である。
FIG. 5 is an aberration diagram similar to FIG. 4 at the time of 1 m focusing by the first group and second group integrally feeding in Example 1.

【図6】実施例1の第1群、第2群独立繰り出しによる
0.6m合焦時の図4と同様な収差図である。
FIG. 6 is an aberration diagram similar to that of FIG. 4 at the time of focusing at 0.6 m by the first group and the second group independent extension in Example 1;

【図7】実施例2の無限遠合焦時の図4と同様な収差図
である。
FIG. 7 is an aberration diagram for Example 2 at the time of focusing at infinity, which is similar to FIG.

【図8】実施例2の第2群繰り出しによる0.6m合焦
時の図4と同様な収差図である。
FIG. 8 is an aberration diagram similar to FIG. 4 at the time of focusing at 0.6 m by the second lens unit extension in Example 2;

【図9】実施例2の第1群繰り込み、第2群繰り出しに
よる0.6m合焦時の図4と同様な収差図である。
FIG. 9 is an aberration diagram similar to that of FIG. 4 when the first lens unit is retracted and the second lens unit is extended to focus at 0.6 m in Example 2;

【図10】実施例3の無限遠合焦時の図4と同様な収差
図である。
FIG. 10 is an aberration diagram similar to FIG. 4 at the time of focusing on infinity in Example 3.

【図11】実施例3の第1群、第2群一体繰り出しによ
る1m合焦時の図4と同様な収差図である。
FIG. 11 is an aberration diagram similar to that of FIG. 4 at the time of 1 m focusing by the first group and second group integrally moving out in Example 3;

【図12】実施例3の第1群、第2群独立繰り出しによ
る0.6m合焦時の図4と同様な収差図である。
FIG. 12 is an aberration diagram similar to FIG. 4 at the time of focusing at 0.6 m by the first group and the second group independent extension in Example 3;

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G1 ... First lens group G2: Second lens group G3 ... Third lens group

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−10307(JP,A) 特開 平2−48622(JP,A) 特開 平3−127010(JP,A) 特開 平3−150518(JP,A) 特開 平4−78814(JP,A) 特開 平4−153613(JP,A) 特開 平5−134180(JP,A) 特開 平4−95912(JP,A) 特開 平6−294932(JP,A) 国際公開92/21048(WO,A1) (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-10307 (JP, A) JP-A-2-48622 (JP, A) JP-A-3-127010 (JP, A) JP-A-3- 150518 (JP, A) JP 4-78814 (JP, A) JP 4-153613 (JP, A) JP 5-134180 (JP, A) JP 4-95912 (JP, A) JP-A-6-294932 (JP, A) International publication 92/21048 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02- 21/04 G02B 25/00-25/04

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体側から順に、第1レンズ群、正屈折
力の第2レンズ群、負屈折力の第3レンズ群からなり、
各レンズ群間隔を変化させて変倍を行うズームレンズに
おいて、 第1レンズ群が非球面を少なくとも1面含み、かつ、第
1レンズ群中に含まれる全てのレンズが以下の条件式
(3)を満足するレンズからなり、 合焦時には第1レンズ群と第2レンズ群が光軸上を移動
することを特徴とする3群ズームレンズのフォーカシン
グ方式。 |f T /f 1 |<0.1 ・・・(3) ただし、f T は望遠側での全系の焦点距離、f 1 は第1
レンズ群内の各レンズ焦点距離である。
From 1. A object side, a first lens group, a positive refractive power second lens group, a third lens unit having a negative refractive power,
In a zoom lens that performs zooming by changing the distance between lens groups, the first lens group includes at least one aspherical surface, and all the lenses included in the first lens group have the following conditional expressions:
A focusing system for a three-group zoom lens, comprising a lens satisfying the condition (3), wherein the first lens group and the second lens group move on the optical axis at the time of focusing. | F T / f 1 | <0.1 (3) where f T is the focal length of the entire system on the telephoto side, and f 1 is the first
It is the focal length of each lens in the lens group.
【請求項2】 合焦時に、第1レンズ群と第2レンズ群
が一体に光軸上を移動することを特徴とする請求項1記
載の3群ズームレンズのフォーカシング方式。
2. The focusing system for a three-group zoom lens according to claim 1, wherein the first lens group and the second lens group move integrally on the optical axis during focusing.
【請求項3】 物体側から順に、第1レンズ群、正屈折
力の第2レンズ群、負屈折力の第3レンズ群からなり、
各レンズ群間隔を変化させて変倍を行うズームレンズに
おいて、 第1レンズ群が非球面を少なくとも1面含み、かつ、第
1レンズ群中に含まれる全てのレンズが以下の条件式
(3)を満足するレンズからなり、第2レンズ群が非球
面を少なくとも1面含み、 合焦時には第2レンズ群が光軸上を移動することを特徴
とする3群ズームレンズのフォーカシング方式。 |f T /f 1 |<0.1 ・・・(3) ただし、f T は望遠側での全系の焦点距離、f 1 は第1
レンズ群内の各レンズ焦点距離である。
From wherein object side, a first lens group, a positive refractive power second lens group, a third lens unit having a negative refractive power,
In a zoom lens that performs zooming by changing the distance between lens groups, the first lens group includes at least one aspherical surface, and all the lenses included in the first lens group have the following conditional expressions:
A focusing system for a three-group zoom lens, comprising a lens satisfying the condition (3) , wherein the second lens group includes at least one aspherical surface, and the second lens group moves on the optical axis during focusing. | F T / f 1 | <0.1 (3) where f T is the focal length of the entire system on the telephoto side, and f 1 is the first
It is the focal length of each lens in the lens group.
【請求項4】 合焦に連動して前記第1レンズ群と前記
第2レンズ群を別々に光軸上を移動させることを特徴と
する請求項1記載の3群ズームレンズのフォーカシング
方式。
4. The focusing system for a three-group zoom lens according to claim 1, wherein the first lens group and the second lens group are separately moved along the optical axis in conjunction with focusing.
【請求項5】 合焦時に前記第1レンズ群と前記第2レ
ンズ群の間隔を広げつつ繰り出すことを特徴とする請求
項1記載の3群ズームレンズのフォーカシング方式。
5. The focusing system for a three-group zoom lens according to claim 1, wherein the focusing system is arranged such that the first lens group and the second lens group are extended while being extended during focusing.
【請求項6】 前記第1レンズ群と前記第2レンズ群の
合焦時の移動量ΔG1 、ΔG2 が下記条件式を満たすこ
とを特徴とする請求項1から5の何れか1項記載の3群
ズームレンズのフォーカシング方式。 −1<ΔG1 /ΔG2 <2 ・・・(1)
6. The moving amounts ΔG 1 and ΔG 2 of the first lens group and the second lens group during focusing satisfy the following conditional expressions: Focusing method for 3 group zoom lens. -1 <ΔG 1 / ΔG 2 <2 (1)
【請求項7】 前記第3レンズ群中の負レンズが下記の
条件式を満たすことを特徴とする請求項1から6の何れ
か1項記載の3群ズームレンズのフォーカシング方式。 1.65<nN <1.90 ・・・(2) ただし、nN は第3レンズ群の負レンズの屈折率の平均
値である。
7. The focusing system for a three-group zoom lens according to claim 1, wherein the negative lens in the third lens group satisfies the following conditional expression. 1.65 <n N <1.90 (2) where n N is the average value of the refractive index of the negative lens of the third lens group.
【請求項8】 前記第1レンズ群をプラスチックレンズ
で構成したことを特徴とする請求項1から7の何れか1
記載の3群ズームレンズのフォーカシング方式。
8. any of claims 1 to 7, characterized in that said first lens group is constituted by a plastic lens 1
Focusing method for the three-group zoom lens described in the item .
【請求項9】 前記第1レンズ群はレンズ1枚構成であ
ることを特徴とする請求項1から8の何れか1項記載の
3群ズームレンズのフォーカシング方式。
9. The focusing system for a three-group zoom lens according to claim 1, wherein the first lens group is composed of one lens.
JP26728393A 1993-10-22 1993-10-26 Focusing method of 3-group zoom lens Expired - Fee Related JP3365837B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26728393A JP3365837B2 (en) 1993-10-26 1993-10-26 Focusing method of 3-group zoom lens
US08/327,323 US5850312A (en) 1993-10-22 1994-10-21 Three-unit zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26728393A JP3365837B2 (en) 1993-10-26 1993-10-26 Focusing method of 3-group zoom lens

Publications (2)

Publication Number Publication Date
JPH07120678A JPH07120678A (en) 1995-05-12
JP3365837B2 true JP3365837B2 (en) 2003-01-14

Family

ID=17442684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26728393A Expired - Fee Related JP3365837B2 (en) 1993-10-22 1993-10-26 Focusing method of 3-group zoom lens

Country Status (1)

Country Link
JP (1) JP3365837B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101912588B1 (en) * 2011-04-29 2018-10-29 엘지이노텍 주식회사 Camera lens module

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3240883B2 (en) * 1995-07-05 2001-12-25 ミノルタ株式会社 Zoom lens
JP3412939B2 (en) * 1994-12-22 2003-06-03 キヤノン株式会社 Zoom lens
JP3769373B2 (en) * 1997-11-19 2006-04-26 フジノン株式会社 Bright wide-angle lens
JP3417860B2 (en) * 1998-12-24 2003-06-16 ペンタックス株式会社 Zoom lens system and focusing method thereof
JP2002006219A (en) * 2000-06-23 2002-01-09 Asahi Optical Co Ltd Zoom lens system and focusing method therefor
JP4048904B2 (en) * 2002-10-08 2008-02-20 ソニー株式会社 Imaging lens
US7119968B2 (en) 2004-05-12 2006-10-10 Pentax Corporation AF control apparatus
US7277237B2 (en) 2004-05-12 2007-10-02 Pentax Corporation AF control apparatus for zoom lens system
JP2011197470A (en) * 2010-03-19 2011-10-06 Panasonic Corp Zoom lens system, interchangeable lens device, and camera system
JP2011197469A (en) 2010-03-19 2011-10-06 Panasonic Corp Zoom lens system, interchangeable lens device, and camera system
JP5807166B2 (en) * 2010-07-12 2015-11-10 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device and camera system
JP2021170078A (en) * 2020-04-16 2021-10-28 株式会社タムロン Image capturing lens and image capturing device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596796B2 (en) * 1988-06-29 1997-04-02 オリンパス光学工業株式会社 Focusing method of zoom lens
JP2556106B2 (en) * 1988-08-11 1996-11-20 キヤノン株式会社 Zoom lens for finite distance
JP3021487B2 (en) * 1989-10-13 2000-03-15 ミノルタ株式会社 Compact zoom lens
JP2707766B2 (en) * 1989-11-08 1998-02-04 キヤノン株式会社 Zoom lens
JP2924119B2 (en) * 1990-07-20 1999-07-26 ミノルタ株式会社 Zoom lens
JP2830418B2 (en) * 1990-08-07 1998-12-02 キヤノン株式会社 Zoom lens with simple configuration
JP2811950B2 (en) * 1990-10-17 1998-10-15 キヤノン株式会社 Zoom lens having simple configuration and camera having the same
US5268792A (en) * 1991-05-20 1993-12-07 Eastman Kodak Company Zoom lens
JP3294870B2 (en) * 1991-07-04 2002-06-24 旭光学工業株式会社 Zoom lens
JP3211481B2 (en) * 1993-04-07 2001-09-25 キヤノン株式会社 Zoom lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101912588B1 (en) * 2011-04-29 2018-10-29 엘지이노텍 주식회사 Camera lens module

Also Published As

Publication number Publication date
JPH07120678A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
US6320698B1 (en) Zoom lens with vibration reduction function
JP3304518B2 (en) Zoom lens
JPH10221601A (en) Zoom lens
JP3365835B2 (en) Compact 3-group zoom lens
JPH05173071A (en) Wide angle zoom lens
JPH083580B2 (en) Compact high-magnification zoom lens
JP2001228397A (en) Zoom lens
JP3204703B2 (en) Zoom lens
JP2002365548A (en) Zoom lens
JP3231355B2 (en) Small zoom lens
JP3365837B2 (en) Focusing method of 3-group zoom lens
JP2963520B2 (en) Zoom lens with short overall length
JPH11167061A (en) Photographic optical system
US5483380A (en) Compact zoom lens system having high zoom ratio and wide view angle
JP3331011B2 (en) Small two-group zoom lens
JP3821330B2 (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JP3414552B2 (en) Zoom lens
JPH06230284A (en) Focusing system for zoom lens
JP2901066B2 (en) Zoom lens
JP3392881B2 (en) Zoom lens
JPH10197793A (en) Zoom lens
US5589986A (en) Zoom lens
JP3054185B2 (en) Zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees