JP3365835B2 - Compact 3-group zoom lens - Google Patents

Compact 3-group zoom lens

Info

Publication number
JP3365835B2
JP3365835B2 JP26482793A JP26482793A JP3365835B2 JP 3365835 B2 JP3365835 B2 JP 3365835B2 JP 26482793 A JP26482793 A JP 26482793A JP 26482793 A JP26482793 A JP 26482793A JP 3365835 B2 JP3365835 B2 JP 3365835B2
Authority
JP
Japan
Prior art keywords
lens
group
lens group
zoom
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26482793A
Other languages
Japanese (ja)
Other versions
JPH07120677A (en
Inventor
茂 加藤
加茂裕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP26482793A priority Critical patent/JP3365835B2/en
Priority to US08/327,323 priority patent/US5850312A/en
Publication of JPH07120677A publication Critical patent/JPH07120677A/en
Application granted granted Critical
Publication of JP3365835B2 publication Critical patent/JP3365835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レンズシャッターカメ
ラ等に適したズームレンズに関し、特に、構成レンズ枚
数が少なく、小型で低コストであるにも係わらず、変倍
比が2倍を越え、性能の良好なコンパクトな3群ズーム
レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens suitable for a lens shutter camera or the like, and in particular, it has a variable magnification ratio of more than 2 in spite of its small number of constituent lenses, small size and low cost. The present invention relates to a compact 3-group zoom lens having good performance.

【0002】[0002]

【従来の技術】従来から、小型で低コストなズームレン
ズに適したタイプとして、正・負の2群ズームタイプが
知られている。しかし、更なる小型・低コスト化のため
に構成レンズ枚数を少なくして行くと、各群での収差補
正が充分にできなくなり、変倍に伴う収差変動が大きく
なる。そのため、広角側、望遠側での収差を良好に補正
すると、中間焦点距離での収差が大きくなってしまう。
この傾向は変倍比が大きくなるにつれ悪くなり、特に中
間焦点距離での像面湾曲が補正不足となる。
2. Description of the Related Art Conventionally, a positive / negative two-group zoom type is known as a type suitable for a compact and low-cost zoom lens. However, if the number of constituent lenses is reduced in order to further reduce the size and cost, it becomes impossible to sufficiently correct the aberrations in each group, and the aberration variation due to zooming increases. Therefore, if the aberrations on the wide-angle side and the telephoto side are properly corrected, the aberrations at the intermediate focal length become large.
This tendency becomes worse as the zoom ratio becomes larger, and the field curvature at the intermediate focal length is insufficiently corrected.

【0003】そこで、特開平2−34812号に示され
ているように、第1群の正レンズ群を屈折力の弱い前群
と正屈折力の後群に分割し、変倍に連動して上記前後群
間隔を変化させることで、中間焦点距離での像面湾曲を
改善するズームタイプが知られている。
Therefore, as disclosed in Japanese Patent Laid-Open No. 2-34812, the positive lens group of the first group is divided into a front group having a weak refracting power and a rear group having a positive refracting power, and is linked with zooming. A zoom type is known in which the field curvature at the intermediate focal length is improved by changing the front-rear group spacing.

【0004】また、ガラスレンズの代わりにプラスチッ
クレンズを使用することで、コストを大幅に低減できる
ことは周知のことだが、プラスチックレンズは温度・湿
度による屈折率・レンズ形状変化が大きく、結像性能へ
の影響が問題となる。その対策として、特開平5−11
3537号に示されるように、プラスチックレンズの屈
折力を非常に弱くしてしまう方法が知られている。さら
に、近年では、特開平5−224122号のように、全
てのレンズをプラスチックで構成する提案もある。
It is well known that the cost can be significantly reduced by using a plastic lens instead of a glass lens. However, the plastic lens has a large change in the refractive index and the lens shape due to temperature and humidity, which leads to an image forming performance. Is a problem. As a countermeasure, Japanese Patent Laid-Open No. 5-11
As shown in No. 3537, there is known a method of making the refractive power of a plastic lens extremely weak. Furthermore, in recent years, there is a proposal that all the lenses are made of plastic, as in Japanese Patent Laid-Open No. 5-224122.

【0005】[0005]

【発明が解決しようとする課題】上記特開平2−348
12号のものは、正・負レンズの組み合わせによる色消
し作用で、各群での色収差を小さくし、レンズ系全体の
色収差を補正する手法をとっている。そのため、各群共
正レンズと負レンズの2枚以上のレンズが必要であり、
構成枚数を少なくすることが難しい。また、低コスト化
のためにプラスチックレンズを使用するには、屈折力が
強いため、温度・湿度による性能変化が大きくなってし
まう。そのため、その実施例は、7群8枚構成で、全て
ガラスレンズであり、コスト的に良いとは言えない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The No. 12 lens has an achromatizing action by combining a positive lens and a negative lens, thereby reducing the chromatic aberration in each group and correcting the chromatic aberration of the entire lens system. Therefore, each group requires two or more lenses, a positive lens and a negative lens,
It is difficult to reduce the number of components. Further, when a plastic lens is used for cost reduction, its refractive power is strong, so that the performance change due to temperature and humidity becomes large. Therefore, the embodiment is composed of 8 elements in 7 groups and is made of glass lenses, which is not cost effective.

【0006】また、特開平5−113537号のもの
は、変倍比が大きくなった場合、変倍に伴う像面湾曲変
動が大きくなり、全焦点距離域で良好な性能を得るのが
困難になる。
Further, in the case of Japanese Patent Laid-Open No. 5-113537, when the zoom ratio becomes large, the curvature of field variation accompanying the zoom becomes large, making it difficult to obtain good performance in the entire focal length range. Become.

【0007】さらに、特開平5−224122号のもの
は、全レンズがプラスチックであるので、コスト的には
有利だが、温度・湿度による性能変化が大きい。また、
絞り前に屈折力の弱いレンズしかないため、絞り前後で
色収差を打ち消し合うことが困難である。特に、変倍比
が大きい場合、変倍に伴う色収差変動が大きくなってし
まう。
Further, in Japanese Unexamined Patent Publication No. 5-224122, all the lenses are made of plastic, which is advantageous in terms of cost, but the performance changes greatly depending on temperature and humidity. Also,
Since there is only a lens having a weak refractive power before the stop, it is difficult to cancel chromatic aberration before and after the stop. In particular, when the zoom ratio is large, variation in chromatic aberration due to zooming becomes large.

【0008】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、その目的は、変倍比が2倍を
越えながら、構成レンズ枚数が少なく、小型・低コスト
で、性能も良好なズームレンズを提供することである。
The present invention has been made in view of the above problems of the prior art, and its object is to reduce the number of constituent lenses, reduce the size and cost, and improve the performance while the zoom ratio exceeds 2. Is to provide a good zoom lens.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明のコンパクトな3群ズームレンズは、物体側から順
に、第1レンズ群、正屈折力の第2レンズ群、負屈折力
の第3レンズ群からなり、各レンズ群間隔を変化させて
変倍を行うズームレンズにおいて、第1レンズ群は、非
球面を少なくとも1面含み、かつ、第1レンズ群の有す
るレンズは全て以下の条件式(3)を満足するレンズか
らなり、かつ、下記条件式(1)を満たすことを特徴と
するものである。 1.65<nN <1.90 ・・・(1) |fT /f1 |<0.1 ・・・(3) ただし、nN は第3レンズ群の負レンズの屈折率の平均
値、fT は望遠端での全系の焦点距離、f1 は第1レン
ズ群内の各レンズの焦点距離である。
A compact three-group zoom lens according to the present invention that achieves the above object has, in order from the object side, a first lens group, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. In a zoom lens composed of lens groups for changing the magnification by changing the distance between the lens groups, the first lens group includes at least one aspherical surface, and all the lenses included in the first lens group have the following conditional expressions: It is characterized by comprising a lens satisfying the condition (3) and satisfying the following conditional expression (1). 1.65 <n N <1.90 (1) | f T / f 1 | <0.1 (3) where n N is the average of the refractive indices of the negative lenses of the third lens group. The value, f T is the focal length of the entire system at the telephoto end, and f 1 is the focal length of each lens in the first lens group.

【0010】この場合、第1レンズ群は単レンズからな
ることが望ましい。また、第2レンズ群が少なくとも負
レンズと正レンズを含み、下記条件式を満たすことが望
ましい。 1.65<nN ' <1.90 ・・・(1') ただし、nN ' は第2レンズ群と第3レンズ群の負レン
ズの屈折率の平均値である。
In this case, it is desirable that the first lens group consists of a single lens. Further, it is desirable that the second lens group includes at least a negative lens and a positive lens, and that the following conditional expression is satisfied. 1.65 <n N '<1.90 ··· (1') , however, n N 'is the average value of the refractive index of the negative lens in the second lens group and the third lens group.

【0011】[0011]

【作用】以下に、上記構成をとる理由と作用について説
明する。上記第1群は、非球面を使用することで収差を
効果的に発生させ、特に、第2群で発生する球面収差、
コマ収差、像面湾曲等を相殺し、レンズ系全体の収差を
小さくする働きを持つ。また、パワーレスのレンズから
構成することにより、第1群での色収差発生を小さくで
きる。
The function and operation of the above configuration will be described below. The first group effectively generates aberrations by using an aspherical surface, and in particular, spherical aberrations generated by the second group,
It has a function of canceling coma aberration, field curvature, etc., and reducing the aberration of the entire lens system. Further, by using a powerless lens, it is possible to reduce the occurrence of chromatic aberration in the first group.

【0012】次に、第2群、第3群であるが、これらは
従来の正・負2群ズームタイプと同様の近軸作用(変倍
・焦点調整作用)を持ったレンズ群である。望遠側のレ
ンズ全長を短くするには、第3群の負の屈折力を強くし
て変倍効果を高め、ズーム移動量を少なくする必要があ
る。だが、この場合、像面特性を良好に保つために、第
3群中の負レンズが下記条件を満たす必要がある。 1.65<nN <1.90 ・・・(1) ただし、nN は第3レンズ群の負レンズの屈折率の平均
値である。
Next, there are the second and third groups, which are lens groups having paraxial action (magnification / focus adjustment action) similar to the conventional positive / negative two-group zoom type. In order to shorten the total length of the lens on the telephoto side, it is necessary to strengthen the negative refractive power of the third lens group to enhance the zooming effect and reduce the zoom movement amount. However, in this case, the negative lens in the third lens group needs to satisfy the following condition in order to maintain good image surface characteristics. 1.65 <n N <1.90 (1) where n N is the average value of the refractive index of the negative lens of the third lens group.

【0013】上記条件(1)の下限の1.65を越える
と、ペッツバール和が負に大きくなり、上限の1.90
を越えると、正に大きくなり、どちらの場合も非点収差
が大きくなり好ましくない。
When the lower limit of 1.65 of the above condition (1) is exceeded, the Petzval sum becomes negatively large, and the upper limit of 1.90 is reached.
When the value exceeds, it becomes positively large, and in both cases, astigmatism becomes large, which is not preferable.

【0014】球面収差、コマ収差、像面湾曲等について
は、従来の正・負2群ズームタイプと同様で、第2群・
第3群のみで十分に補正することは難しく、第2群・第
3群に非球面を使用しても補正が十分でない。そのた
め、前述した第1群の非球面の補正効果により、レンズ
系全体の収差を小さくしている。
The spherical aberration, coma aberration, curvature of field, etc. are the same as those of the conventional positive / negative two-group zoom type.
It is difficult to make a sufficient correction with only the third lens group, and even if an aspherical surface is used for the second lens group and the third lens group, the correction is not sufficient. Therefore, the aberration of the entire lens system is reduced by the correction effect of the aspherical surface of the first group described above.

【0015】上記の近軸作用を持つ第2群と第3群の間
隔を縮めながら物体側へ移動することで、広角端から望
遠端への変倍がなされるわけだが、この時、第1群と第
2群を一体的に移動させると、従来の2群ズームタイプ
同様に、変倍に伴う収差変動が起きてしまう。そこで、
本発明においては、第1群と第2群の間隔を変倍に連動
して変化させることで、収差バランスを変化させ、変倍
に伴う収差変動を改善している。
By moving to the object side while shortening the distance between the second group and the third group having the above-mentioned paraxial action, the magnification change from the wide-angle end to the telephoto end is performed. If the group and the second group are moved integrally, aberration variation due to zooming will occur as in the conventional two-group zoom type. Therefore,
In the present invention, the distance between the first group and the second group is changed in association with the magnification change to change the aberration balance and improve the aberration fluctuation associated with the magnification change.

【0016】また、第2群と第3群は屈折力が強いレン
ズ群であるので、構成枚数が少ない場合、各群内で十分
な色収差補正ができない。しかし、絞りをこれら2つの
群間に設置することで、両群で発生する倍率の色収差は
逆になり、互いに打ち消し合い、全体としては小さくで
きる。もちろん、単レンズ構成では色収差の発生が大き
くなってしまうので、両群共、負レンズと正レンズを少
なくとも含むことで、軸上の色収差及び倍率の色収差を
補正することが望ましい。特に、変倍比が大きい場合
は、色収差を各群内で補正することで、変倍時の色収差
変動が更に小さくなり好ましい。
Further, since the second group and the third group are lens groups having strong refractive power, if the number of constituent elements is small, it is not possible to sufficiently correct chromatic aberration within each group. However, by installing the diaphragm between these two groups, the chromatic aberrations of magnification that occur in both groups become opposite, cancel each other out, and the overall size can be reduced. Of course, since the generation of chromatic aberration increases in the single lens configuration, it is desirable that both groups include at least a negative lens and a positive lens to correct axial chromatic aberration and lateral chromatic aberration. In particular, when the zoom ratio is large, it is preferable that the chromatic aberration is corrected within each group so that the variation of the chromatic aberration during zooming can be further reduced.

【0017】したがって、下記条件式を満たすことが望
ましい。 1.65<nN ' <1.90 ・・・(1') |νdP−νdN|>10 ・・・(2) ただし、nN ' は第2レンズ群と第3レンズ群の負レン
ズの屈折率の平均値、νdPは第2レンズ群又は第3レン
ズ群の正レンズのアッベ数の平均値、νdNは第2レンズ
群又は第3レンズ群の負レンズのアッベ数の平均値であ
る。
Therefore, it is desirable to satisfy the following conditional expression. 1.65 <n N '<1.90 ··· (1') | ν dP -ν dN |> 10 ··· (2) However, n N 'is a negative second lens group and the third lens group Average value of refractive index of lens, ν dP is average value of Abbe number of positive lens of second lens group or third lens group, and ν dN is average of Abbe number of negative lens of second lens group or third lens group It is a value.

【0018】上記条件式(2)の範囲を外れて10以下
になると、第2群又は第3群での色収差が大きくなり、
変倍に伴う色収差変動が大きくなる。条件式(1')につ
いては、上記した条件式(1)と同様の作用がある。
When the value is out of the range of the conditional expression (2) and becomes 10 or less, the chromatic aberration in the second group or the third group becomes large,
The variation of chromatic aberration associated with zooming becomes large. The conditional expression (1 ′) has the same action as the conditional expression (1) described above.

【0019】また、第1群は下記条件式を満たすことが
望ましい。 |fT /f1 |<0.1 ・・・(3) ただし、fT は望遠端での全系の焦点距離、f1 は第1
群内の各レンズの焦点距離である。上記条件式(3)を
外れて0.1以上になると、第1群での色収差発生が大
きくなり、全体の色収差が悪化してしまう。
Further, it is desirable that the first lens group satisfies the following conditional expression. | F T / f 1 | <0.1 (3) where f T is the focal length of the entire system at the telephoto end, and f 1 is the first
It is the focal length of each lens in the group. If the conditional expression (3) is deviated from and falls to 0.1 or more, chromatic aberration is increased in the first lens group, and the overall chromatic aberration is deteriorated.

【0020】さらに、ガラスレンズよりコストが安いプ
ラスチックレンズで第1群を構成した場合、上記条件式
(3)を満たしていれば、温度・湿度により屈折率やレ
ンズ形状が変化しても、レンズ屈折力の変化がほとんど
なく、結像性能への影響を最小にできる利点もある。ま
た、従来のように正・負2枚以上のレンズで色消ししな
くとも、第1群の色収差はレンズ1枚構成で十分小さく
できる。
Further, when the first lens group is made of a plastic lens which is cheaper than the glass lens, if the conditional expression (3) is satisfied, even if the refractive index and the lens shape change due to temperature and humidity, the lens There is also an advantage that the influence on the imaging performance can be minimized since the refractive power hardly changes. Further, the chromatic aberration of the first group can be made sufficiently small with the one-lens configuration without achromatizing with two or more positive and negative lenses as in the prior art.

【0021】本発明のズームレンズは、レンズ枠の機構
上は3群ズームレンズであるが、第1群が第2群とほぼ
一体的に移動するので、従来の3群ズームタイプに比
べ、レンズ枠の移動機構を小さくできる。そのために、
下記の条件式を満たすことが望ましい。 |ΔD1 /ΔD2 |<0.5 ・・・(4) ただし、ΔD1 は第1群・第2群間隔変化量の最大値、
ΔD2 は第2群・第3群間隔変化量の最大値である。こ
の条件(4)の上限の0.5を越えると、第1群・第2
群間隔変化量が大きくなり、レンズ枠機構が大型化して
しまう。
The zoom lens according to the present invention is a three-group zoom lens in terms of the mechanism of the lens frame, but since the first group moves almost integrally with the second group, the lens is different from the conventional three-group zoom type. The frame moving mechanism can be made smaller. for that reason,
It is desirable to satisfy the following conditional expression. | ΔD 1 / ΔD 2 | <0.5 (4) where ΔD 1 is the maximum value of the first group / second group interval change amount,
ΔD 2 is the maximum value of the second group / third group spacing change amount. If the upper limit of 0.5 to condition (4) is exceeded, the first and second groups
The amount of change in group spacing becomes large, and the lens frame mechanism becomes large.

【0022】また、レンズ構成長は従来の2群ズームタ
イプ並み以下なので、瞳位置からレンズの入射面・射出
面までの距離が近い。そのため、入射面・射出面での周
辺光線高は低く、レンズ径が大きくならない。
Further, since the lens construction length is equal to or less than that of the conventional two-group zoom type, the distance from the pupil position to the entrance surface / exit surface of the lens is short. Therefore, the marginal ray heights on the entrance and exit surfaces are low, and the lens diameter does not increase.

【0023】[0023]

【実施例】以下に、本発明のズームレンズの実施例1〜
7について説明する。各実施例のレンズデータは後記す
るが、実施例1〜7の広角端(a)と望遠端(b)のレ
ンズ断面図をそれぞれ図1〜図7に示す。
EXAMPLES Examples 1 to 1 of the zoom lens of the present invention will be described below.
7 will be described. Although the lens data of each example will be described later, FIGS. 1 to 7 show lens cross-sectional views at the wide-angle end (a) and the telephoto end (b) of Examples 1 to 7, respectively.

【0024】レンズ配置については、実施例1は、物体
側から、屈折力が非常に弱いプラスチックレンズからな
る第1群G1、負レンズと正レンズの接合正レンズから
なる第2群G2、正レンズと負レンズからなる負の屈折
力を持つ第3群G3の計5枚で構成され、非球面が第1
群G1と第3群G3に1面ずつ使用されている。中心光
束と周辺光束が分離する第1群G1の入射面を非球面と
したことで、特に周辺部の像面湾曲やコマ収差の変動が
良好に補正されている。
Regarding the lens arrangement, in Example 1, from the object side, the first group G1 consisting of a plastic lens having a very weak refractive power, the second group G2 consisting of a cemented positive lens of a negative lens and a positive lens, and a positive lens. And a negative lens which has a negative refracting power and is composed of a total of five lenses in the third group G3, and the aspheric surface is the first
One surface is used for each of the group G1 and the third group G3. Since the entrance surface of the first group G1 where the central light flux and the peripheral light flux are separated is an aspherical surface, the field curvature and the coma aberration fluctuation in the peripheral portion are well corrected.

【0025】実施例2は、物体側から、屈折力が非常に
弱いプラスチックレンズからなる第1群G1、パワーレ
スのプラスチックレンズと、負レンズと正レンズの接合
正レンズからなる第2群G2、正レンズと負レンズから
なる負の屈折力を持つ第3群G3の計6枚で構成され、
非球面が各群に1面ずつ使用されている。第2群G2中
のプラスチックレンズは非球面レンズであり、温度・湿
度による性能変化を低減するため、パワーレスとしてい
る。また、この非球面の収差補正効果で、第2群G2で
の収差発生は実施例1よりはるかに小さくなっている。
したがって、第1群G1の収差発生も小さくでき、第1
群G1と第2群G2間の位置精度を緩くできる。
In the second embodiment, from the object side, a first group G1 composed of a plastic lens having a very weak refractive power, a second lens group G2 composed of a powerless plastic lens and a cemented positive lens composed of a negative lens and a positive lens, It is composed of a total of 6 pieces of the 3rd group G3 which has a negative refractive power which consists of a positive lens and a negative lens,
One aspherical surface is used for each group. The plastic lens in the second group G2 is an aspherical lens and is powerless in order to reduce the performance change due to temperature and humidity. Further, due to the aberration correction effect of this aspherical surface, the occurrence of aberration in the second group G2 is much smaller than that in the first embodiment.
Therefore, it is possible to reduce the occurrence of aberration in the first group G1,
The positional accuracy between the group G1 and the second group G2 can be loosened.

【0026】実施例3は、物体側から、屈折力が非常に
弱いプラスチックレンズからなる第1群G1、正レンズ
と負レンズの接合正レンズからなる第2群G2、正レン
ズと負レンズからなる負の屈折力を持つ第3群G3の計
5枚で構成され、非球面が各群に1面ずつ使用されてい
る。実施例2と同様に、第2群G2中に非球面が使用さ
れているので、第1群G1と第2群G2間の位置精度を
緩くできる。
The third embodiment comprises, from the object side, a first group G1 consisting of a plastic lens having a very weak refractive power, a second group G2 consisting of a positive lens cemented with a positive lens and a negative lens, a positive lens and a negative lens. It is composed of a total of 5 sheets of the third group G3 having a negative refractive power, and one aspherical surface is used for each group. Since the aspherical surface is used in the second lens group G2 as in the second embodiment, the positional accuracy between the first lens group G1 and the second lens group G2 can be relaxed.

【0027】実施例4は、物体側から、屈折力が非常に
弱いプラスチックレンズからなる第1群G1、負レンズ
と正レンズからなる正の屈折力を持つ第2群G2、正レ
ンズと負レンズ2枚からなる負の屈折力を持つ第3群G
3の計6枚で構成され、非球面が第1群G1に1面使用
されている。
In the fourth embodiment, from the object side, a first lens group G1 made of a plastic lens having a very weak refractive power, a second lens group G2 having a positive refractive power composed of a negative lens and a positive lens, a positive lens and a negative lens. 3rd group G with negative refractive power consisting of 2 sheets
The first lens group G1 has one aspherical surface.

【0028】実施例5は、物体側から、屈折力が非常に
弱いプラスチックレンズからなる第1群G1、負レンズ
と正レンズの接合正レンズからなる第2群G2、正レン
ズと負レンズからなる負の屈折力を持つ第3群G3の計
5枚で構成され、非球面が第1群G1、第3群G3に1
面ずつ、第2群G2に2面使用されている。実施例2と
同様に、第2群G2中に非球面が使用されているので、
第1群G1と第2群G2間の位置精度を緩くできる。
The fifth embodiment comprises, from the object side, a first group G1 consisting of a plastic lens having a very weak refractive power, a second group G2 consisting of a cemented positive lens of a negative lens and a positive lens, a positive lens and a negative lens. It is composed of a total of five third group G3 having negative refracting power, and the aspherical surface is divided into the first group G1 and the third group G3.
Two surfaces are used for the second group G2, one for each surface. Since an aspherical surface is used in the second group G2 as in the second embodiment,
The positional accuracy between the first group G1 and the second group G2 can be loosened.

【0029】実施例6は、物体側から、屈折力が非常に
弱いプラスチックレンズからなる第1群G1、正レンズ
と負レンズの接合正レンズからなる第2群G2、正レン
ズと負レンズからなる負の屈折力を持つ第3群G3の計
5枚で構成され、非球面が第1群G1に2面、第3群G
3に1面使用されている。第1群G1は両面非球面レン
ズであるが、両面での周辺光線高に差があり、発生する
収差が異なる。そのため、中心部(球面収差)、周辺部
(像面湾曲等)の補正バランスの自由度が増し、更に良
好な収差補正が可能になる。
The sixth embodiment comprises, from the object side, a first group G1 consisting of a plastic lens having a very weak refractive power, a second group G2 consisting of a positive lens cemented with a positive lens and a negative lens, a positive lens and a negative lens. It is composed of a total of 5 pieces of the third lens group G3 having a negative refracting power, and the aspheric surface has two surfaces in the first lens group G1 and the third lens group G3.
One side is used every three. The first group G1 is a double-sided aspherical lens, but there are differences in the marginal ray heights on both sides, and the generated aberrations are different. Therefore, the degree of freedom in correction balance in the central portion (spherical aberration) and the peripheral portion (field curvature, etc.) is increased, and more favorable aberration correction is possible.

【0030】本実施例の入射面は物体に凹面を向けた形
状となっているが、絞りからの光軸上距離が離れてしま
うため、周辺光線高が高くなり、レンズ径が大きくなっ
てしまう。そのため、結像性能上の問題はないものの、
大きさの点では若干不利になる。
Although the incident surface of this embodiment has a shape in which a concave surface is directed toward the object, the distance on the optical axis from the stop becomes large, so that the marginal ray height becomes high and the lens diameter becomes large. . Therefore, although there is no problem in imaging performance,
There is a slight disadvantage in terms of size.

【0031】実施例7は、物体側から、屈折力が非常に
弱いプラスチックレンズ2枚からなる第1群G1、負レ
ンズと正レンズの接合正レンズからなる第2群G2、正
レンズと負レンズからなる負の屈折力を持つ第3群G3
の計6枚で構成され、非球面が第1群G1に2面、第3
群G3に1面使用されている。実施例6と同様に、第1
群G1の2つの非球面での周辺光線高に差があり、更に
良好な収差補正が可能になる。第1群G1は2枚構成と
なっているが、どちらもプラスチックレンズであるの
で、コスト的にはまだ有利である。
In the seventh embodiment, from the object side, a first group G1 composed of two plastic lenses having very weak refractive power, a second group G2 composed of a cemented positive lens of a negative lens and a positive lens, a positive lens and a negative lens. G3, which has negative refractive power and consists of
It is composed of a total of 6 aspherical surfaces, and the aspherical surface has two surfaces in the first group G1 and a third surface
One side is used for group G3. Similar to the sixth embodiment, the first
There is a difference in the marginal ray heights on the two aspherical surfaces of the group G1, and it becomes possible to perform better aberration correction. The first group G1 has a double-lens structure, but both of them are plastic lenses, which is still advantageous in terms of cost.

【0032】以上の全ての実施例において、第1群G1
を低コスト化のためプラスチックレンズとしたが、第1
群G1をガラスレンズで構成しても、性能上は何の問題
もない。
In all the above embodiments, the first group G1
Is a plastic lens for cost reduction, but
Even if the group G1 is composed of a glass lens, there is no problem in performance.

【0033】以下に、各実施例のレンズデータを示す
が、記号は、上記の外、fは全系焦点距離、FNOはFナ
ンバー、2ωは画角、fB はバックフォーカス、r1
2 …は各レンズ面の曲率半径、d1 、d2 …は各レン
ズ面間の間隔、nd1、nd2…は各レンズのd線の屈折
率、νd1、νd2…は各レンズのアッベ数である。なお、
非球面形状は、光軸方向をx、光軸に直交する方向をy
としたとき、次の式で表される。 x=(y2 /r)/[1+{1−P(y/
r)2 1/2 ]+A44 +A66 +A88 + A1010 ただし、rは近軸曲率半径、Pは円錐係数、A4、A6
A8、A10 は非球面係数である。
The lens data of each embodiment will be shown below. In addition to the above, the symbols are f, the focal length of the entire system, F NO is the F number, 2ω is the angle of view, f B is the back focus, r 1 and
r 2 ... curvature radius of each lens surface, d 1, d 2 ... the spacing between the lens surfaces, n d1, n d2 ... d-line refractive index of each lens, ν d1, ν d2 ... Each lens Is the Abbe number. In addition,
The aspherical shape is x in the optical axis direction and y in the direction orthogonal to the optical axis.
Then, it is expressed by the following equation. x = (y 2 / r) / [1+ {1-P (y /
r) 2 } 1/2 ] + A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 However, r is a paraxial radius of curvature, P is a conic coefficient, A 4 , A 6 ,
A 8 and A 10 are aspherical coefficients.

【0034】実施例1 f = 39.2 〜 58.6 〜 87.1 FNO= 4.66 〜 6.21 〜 8.28 2ω= 56.4 °〜 40.0 °〜 27.7 ° fB = 9.51 〜 28.13 〜 55.49 r1 = 25.4210(非球面) d1 = 3.000 nd1 =1.49241 νd1 =57.66 r2 = 24.5490 d2 =(可変) r3 = 157.8680 d3 = 1.500 nd2 =1.83400 νd2 =37.16 r4 = 13.6650 d4 = 9.980 nd3 =1.69680 νd3 =55.52 r5 = -17.5900 d5 = 1.000 r6 = ∞(絞り) d6 =(可変) r7 = -29.8590 d7 = 3.000 nd4 =1.57501 νd4 =41.49 r8 = -16.2750 d8 = 3.660 r9 = -13.0430(非球面) d9 = 1.800 nd5 =1.72916 νd5 =54.68 r10= -640.3870 非球面係数 第1面 P = 0.2454 A4 =-0.49968×10-4 A6 =-0.28262×10-6 A8 =-0.12628×10-8 A10=-0.47657×10-11 第9面 P = 0.2409 A4 =-0.19743×10-4 A6 = 0.55883×10-8 A8 =-0.12032×10-8 A10= 0.59178×10-11
Example 1 f = 39.2 to 58.6 to 87.1 F NO = 4.66 to 6.21 to 8.28 2ω = 56.4 ° to 40.0 ° to 27.7 ° f B = 9.51 to 28.13 to 55.49 r 1 = 25.4210 (aspherical surface) d 1 = 3.000 n d1 = 1.49241 ν d1 = 57.66 r 2 = 24.5490 d 2 = ( variable) r 3 = 157.8680 d 3 = 1.500 n d2 = 1.83400 ν d2 = 37.16 r 4 = 13.6650 d 4 = 9.980 n d3 = 1.69680 ν d3 = 55.52 r 5 = -17.5900 d 5 = 1.000 r 6 = ∞ (aperture) d 6 = (variable) r 7 = -29.8590 d 7 = 3.000 n d4 = 1.57501 ν d4 = 41.49 r 8 = -16.2750 d 8 = 3.660 r 9 = -13.0430 (aspherical surface) d 9 = 1.800 n d5 = 1.72916 ν d5 = 54.68 r 10 = -640.3870 Aspheric coefficient Coefficient 1st surface P = 0.2454 A 4 = -0.49968 × 10 -4 A 6 = -0.28262 × 10 -6 A 8 = -0.12628 × 10 -8 A 10 = -0.47657 × 10 -11 9th surface P = 0.2409 A 4 = -0.19743 x 10 -4 A 6 = 0.55883 x 10 -8 A 8 = -0.12032 x 10 -8 A 10 = 0.59178 x 10 -11
.

【0035】実施例2 f = 39.1 〜 59.1 〜 87.0 FNO= 4.64 〜 6.15 〜 8.28 2ω= 56.8 °〜 39.8 °〜 27.8 ° fB = 9.28 〜 29.66 〜 57.96 r1 = 129.4710(非球面) d1 = 2.000 nd1 =1.49241 νd1 =57.66 r2 = 137.4900 d2 =(可変) r3 = 37.7490(非球面) d3 = 2.000 nd2 =1.49241 νd2 =57.66 r4 = 36.6790 d4 = 1.420 r5 = -119.5760 d5 = 9.020 nd3 =1.67270 νd3 =32.10 r6 = 25.8550 d6 = 3.830 nd4 =1.62041 νd4 =60.27 r7 = -15.3280 d7 = 1.000 r8 = ∞(絞り) d8 =(可変) r9 = -30.1720 d9 = 4.100 nd5 =1.62004 νd5 =36.25 r10= -15.3450 d10= 3.290 r11= -11.3270(非球面) d11= 1.800 nd6 =1.69680 νd6 =55.52 r12= -142.9020 非球面係数 第1面 P = 1.0000 A4 = 0.47463×10-6 A6 = 0.72872×10-7 A8 =-0.36425×10-9 A10= 0 第3面 P = 7.1963 A4 =-0.99201×10-4 A6 =-0.10089×10-5 A8 = 0.53956×10-8 A10=-0.64608×10-10 第11面 P =-1.7719 A4 =-0.20403×10-3 A6 = 0.81619×10-6 A8 =-0.43485×10-8 A10= 0.95073×10-11
Example 2 f = 39.1 to 59.1 to 87.0 F NO = 4.64 to 6.15 to 8.28 2ω = 56.8 ° to 39.8 ° to 27.8 ° f B = 9.28 to 29.66 to 57.96 r 1 = 129.4710 (aspherical surface) d 1 = 2.000 n d1 = 1.49241 ν d1 = 57.66 r 2 = 137.4900 d 2 = ( variable) r 3 = 37.7490 (aspherical) d 3 = 2.000 n d2 = 1.49241 ν d2 = 57.66 r 4 = 36.6790 d 4 = 1.420 r 5 = -119.5760 d 5 = 9.020 n d3 = 1.67270 ν d3 = 32.10 r 6 = 25.8550 d 6 = 3.830 nd 4 = 1.62041 ν d4 = 60.27 r 7 = -15.3280 d 7 = 1.000 r 8 = ∞ (aperture) d 8 = ( Variable) r 9 = -30.1720 d 9 = 4.100 n d5 = 1.62004 ν d5 = 36.25 r 10 = -15.3450 d 10 = 3.290 r 11 = -11.3270 (aspherical) d 11 = 1.800 n d6 = 1.69680 ν d6 = 55.52 r 12 = -142.9020 Aspherical coefficient 1st surface P = 1.0000 A 4 = 0.47463 × 10 -6 A 6 = 0.72872 × 10 -7 A 8 = -0.36425 × 10 -9 A 10 = 0 3rd surface P = 7.1963 A 4 = -0.99201 × 10 -4 A 6 = -0.10089 × 10 -5 A 8 = 0.53956 × 10 -8 A 10 = -0.64608 × 10 -10 11th surface P = -1.7719 A 4 = -0.20403 × 10 -3 A 6 = 0.81619 × 10 -6 A 8 = -0.43485 × 10 -8 A 10 = 0.95073 × 10 -11
.

【0036】実施例3 f = 36.0 〜 55.8 〜 76.5 FNO= 4.63 〜 6.19 〜 8.26 2ω= 60.8 °〜 42.1 °〜 31.5 ° fB = 10.48 〜 31.73 〜 53.93 r1 = 67.6840(非球面) d1 = 2.000 nd1 =1.49241 νd1 =57.66 r2 = 61.6270 d2 =(可変) r3 = -34.8290(非球面) d3 = 8.150 nd2 =1.56883 νd2 =56.34 r4 = -7.2930 d4 = 2.380 nd3 =1.76182 νd3 =26.52 r5 = -10.5950 d5 = 1.000 r6 = ∞(絞り) d6 =(可変) r7 = -164.3180 d7 = 2.320 nd4 =1.59551 νd4 =39.21 r8 = -34.2860(非球面) d8 = 5.580 r9 = -13.4330 d9 = 1.800 nd4 =1.69350 νd4 =53.23 r10= 44509.3797 非球面係数 第1面 P = 1.0000 A4 =-0.13489×10-4 A6 = 0.64043×10-7 A8 = 0.19443×10-8 A10= 0 第3面 P =-0.6780 A4 =-0.17571×10-3 A6 =-0.13611×10-5 A8 =-0.36953×10-7 A10= 0.45263×10-9 第8面 P =-14.4239 A4 =-0.78313×10-4 A6 = 0.13324×10-6 A8 =-0.14315×10-8 A10= 0.67894×10-11
Example 3 f = 36.0 to 55.8 to 76.5 F NO = 4.63 to 6.19 to 8.26 2ω = 60.8 ° to 42.1 ° to 31.5 ° f B = 10.48 to 31.73 to 53.93 r 1 = 67.6840 (aspherical surface) d 1 = 2.000 n d1 = 1.49241 ν d1 = 57.66 r 2 = 61.6270 d 2 = ( variable) r 3 = -34.8290 (aspherical) d 3 = 8.150 n d2 = 1.56883 ν d2 = 56.34 r 4 = -7.2930 d 4 = 2.380 n d3 = 1.76182 ν d3 = 26.52 r 5 = -10.5950 d 5 = 1.000 r 6 = ∞ (aperture) d 6 = (variable) r 7 = -164.3180 d 7 = 2.320 n d4 = 1.59551 ν d4 = 39.21 r 8 =- 34.2860 (aspherical surface) d 8 = 5.580 r 9 = -13.4330 d 9 = 1.800 n d4 = 1.69350 ν d4 = 53.23 r 10 = 44509.3797 Aspheric surface Coefficient 1st surface P = 1.0000 A 4 = -0.13489 × 10 -4 A 6 = 0.640 43 × 10 -7 A 8 = 0.19443 × 10 -8 A 10 = 0 3rd surface P = -0.6780 A 4 = -0.17571 × 10 -3 A 6 = -0.13611 × 10 -5 A 8 = -0.36953 × 10 -7 A 10 = 0.45263 × 10 -9 8th surface P = -14.4239 A 4 = -0.78313 × 10 -4 A 6 = 0.13324 × 10 -6 A 8 = -0.14315 × 10 -8 A 10 = 0.67894 × 10 -11
.

【0037】実施例4 f = 36.2 〜 55.3 〜 76.4 FNO= 4.70 〜 6.13 〜 8.24 2ω= 60.4 °〜 42.3 °〜 31.5 ° fB = 8.97 〜 28.37 〜 49.87 r1 = 21.6080(非球面) d1 = 2.000 nd1 =1.49241 νd1 =57.66 r2 = 21.2590 d2 =(可変) r3 = 1007.2180 d3 = 4.960 nd2 =1.69895 νd2 =30.12 r4 = 20.2030 d4 = 1.070 r5 = 25.5950 d5 = 5.230 nd3 =1.67000 νd3 =57.33 r6 = -15.3610 d6 = 1.000 r7 = ∞(絞り) d7 =(可変) r8 = -37.6030 d8 = 2.880 nd4 =1.62004 νd4 =36.25 r9 = -16.9550 d9 = 0.110 r10= -28.1660 d10= 1.200 nd5 =1.77250 νd5 =49.66 r11= -56.9180 d11= 3.750 r12= -14.6170 d12= 1.800 nd6 =1.69680 νd6 =55.52 r13= -215.5420 非球面係数 第1面 P = 1.5313 A4 =-0.92894×10-4 A6 =-0.70841×10-6 A8 =-0.73431×10-9 A10=-0.22903×10-10
Example 4 f = 36.2 to 55.3 to 76.4 F NO = 4.70 to 6.13 to 8.24 2ω = 60.4 ° to 42.3 ° to 31.5 ° f B = 8.97 to 28.37 to 49.87 r 1 = 21.6080 (aspherical surface) d 1 = 2.000 n d1 = 1.49241 ν d1 = 57.66 r 2 = 21.2590 d 2 = ( variable) r 3 = 1007.2180 d 3 = 4.960 n d2 = 1.69895 ν d2 = 30.12 r 4 = 20.2030 d 4 = 1.070 r 5 = 25.5950 d 5 = 5.230 n d3 = 1.67000 ν d3 = 57.33 r 6 = -15.3610 d 6 = 1.000 r 7 = ∞ ( stop) d 7 = (variable) r 8 = -37.6030 d 8 = 2.880 n d4 = 1.62004 ν d4 = 36.25 r 9 = -16.9550 d 9 = 0.110 r 10 = -28.1660 d 10 = 1.200 n d5 = 1.77250 ν d5 = 49.66 r 11 = -56.9180 d 11 = 3.750 r 12 = -14.6170 d 12 = 1.800 n d6 = 1.69680 ν d6 = 55.52 r 13 = -215.5420 Aspherical coefficient 1st surface P = 1.5313 A 4 = -0.92894 × 10 -4 A 6 = -0.70841 × 10 -6 A 8 = -0.73431 × 10 -9 A 10 = -0.22903 × 10 -10
.

【0038】実施例5 f = 29.0 〜 45.6 〜 67.7 FNO= 4.69 〜 6.18 〜 8.26 2ω= 72.7 °〜 50.9 °〜 35.5 ° fB = 6.44 〜 22.71 〜 44.51 r1 = -19.0410(非球面) d1 = 2.000 nd1 =1.49241 νd1 =57.66 r2 = -20.1480 d2 =(可変) r3 = -96.7730(非球面) d3 = 5.850 nd2 =1.75520 νd2 =27.51 r4 = 47.5540 d4 = 7.390 nd3 =1.58913 νd3 =61.18 r5 = -11.4450(非球面) d5 = 1.000 r6 = ∞(絞り) d6 =(可変) r7 = -37.2850 d7 = 2.400 nd4 =1.63980 νd4 =34.48 r8 = -21.3830(非球面) d8 = 4.580 r9 = -10.7740 d9 = 1.800 nd5 =1.78650 νd5 =50.00 r10= -75.1320 非球面係数 第1面 P = 1.0000 A4 = 0.24151×10-5 A6 = 0.68851×10-6 A8 =-0.48859×10-8 A10= 0 第3面 P =41.0051 A4 =-0.13598×10-3 A6 =-0.21459×10-5 A8 = 0.16093×10-7 A10=-0.24295×10-9 第5面 P = 1.0000 A4 = 0.13462×10-4 A6 = 0.24192×10-6 A8 =-0.75276×10-9 A10= 0 第8面 P =-5.3465 A4 =-0.13278×10-3 A6 =-0.37666×10-6 A8 = 0.13005×10-7 A10=-0.15651×10-9
Example 5 f = 29.0 to 45.6 to 67.7 F NO = 4.69 to 6.18 to 8.26 2ω = 72.7 ° to 50.9 ° to 35.5 ° f B = 6.44 to 22.71 to 44.51 r 1 = -19.0410 (aspherical surface) d 1 = 2.000 n d1 = 1.49241 ν d1 = 57.66 r 2 = -20.1480 d 2 = ( variable) r 3 = -96.7730 (aspherical) d 3 = 5.850 n d2 = 1.75520 ν d2 = 27.51 r 4 = 47.5540 d 4 = 7.390 n d3 = 1.58913 ν d3 = 61.18 r 5 = -11.4450 (aspherical surface) d 5 = 1.000 r 6 = ∞ (aperture) d 6 = (variable) r 7 = -37.2850 d 7 = 2.400 n d4 = 1.63980 ν d4 = 34.48 r 8 = -21.3830 (aspherical surface) d 8 = 4.580 r 9 = -10.7740 d 9 = 1.800 n d5 = 1.78650 ν d5 = 50.00 r 10 = -75.1320 Aspherical coefficient 1st surface P = 1.0000 A 4 = 0.24151 × 10 -5 A 6 = 0.68851 × 10 -6 A 8 = -0.48859 × 10 -8 A 10 = 0 3rd surface P = 41.0051 A 4 = -0.13598 × 10 -3 A 6 = -0.21459 × 10 -5 A 8 = 0.16093 × 10 -7 A 10 = -0.24295 × 10 -9 fifth surface P = 1.0000 A 4 = 0.13462 × 10 -4 A 6 = 0.24192 × 10 - 6 A 8 = -0.775276 x 10 -9 A 10 = 0 8th surface P = -5.3465 A 4 = -0.13278 x 10 -3 A 6 = -0.37666 x 10 -6 A 8 = 0.13005 x 10 -7 A 10 = -0.15651 x 10 -9
.

【0039】実施例6 f = 38.9 〜 70.2 〜101.9 FNO= 4.61 〜 7.52 〜 9.99 2ω= 57.3 °〜 34.3 °〜 24.0 ° fB = 10.60 〜 42.09 〜 74.02 r1 = -34.6220(非球面) d1 = 5.000 nd1 =1.49241 νd1 =57.66 r2 = -37.2550(非球面) d2 =(可変) r3 = -59.6620 d3 = 8.010 nd2 =1.51633 νd2 =64.15 r4 = -9.2970 d4 = 1.130 nd3 =1.84666 νd3 =23.78 r5 = -11.5560 d5 = 1.000 r6 = ∞(絞り) d6 =(可変) r7 = -57.1080 d7 = 3.760 nd4 =1.61293 νd4 =37.00 r8 = -19.1090 d8 = 4.160 r9 = -12.0390(非球面) d9 = 1.800 nd5 =1.75500 νd5 =52.33 r10= -304.1050 非球面係数 第1面 P = 1.0000 A4 = 0.65037×10-5 A6 = 0.67721×10-6 A8 =-0.11970×10-8 A10= 0 第2面 P = 1.0000 A4 = 0.13326×10-3 A6 = 0.13112×10-5 A8 = 0.12946×10-7 A10= 0 第9面 P = 0.7782 A4 = 0.25048×10-4 A6 = 0.11094×10-6 A8 = 0.12981×10-8 A10=-0.69510×10-11
Example 6 f = 38.9 to 70.2 to 101.9 F NO = 4.61 to 7.52 to 9.99 2ω = 57.3 ° to 34.3 ° to 24.0 ° f B = 1.60 to 42.09 to 74.02 r 1 = -34.6220 (aspherical surface) d 1 = 5.000 n d1 = 1.49241 ν d1 = 57.66 r 2 = -37.2550 ( aspherical) d 2 = (variable) r 3 = -59.6620 d 3 = 8.010 n d2 = 1.51633 ν d2 = 64.15 r 4 = -9.2970 d 4 = 1.130 n d3 = 1.84666 ν d3 = 23.78 r 5 = -11.5560 d 5 = 1.000 r 6 = ∞ (aperture) d 6 = (variable) r 7 = -57.1080 d 7 = 3.760 nd 4 = 1.61293 ν d4 = 37.00 r 8 = -19.1090 d 8 = 4.160 r 9 = -12.0390 (aspherical surface) d 9 = 1.800 n d5 = 1.75500 ν d5 = 52.33 r 10 = -304.1050 Aspheric surface Coefficient 1st surface P = 1.0000 A 4 = 0.65037 × 10 -5 A 6 = 0.67721 × 10 -6 A 8 = -0.11970 × 10 -8 A 10 = 0 2nd surface P = 1.0000 A 4 = 0.13326 × 10 -3 A 6 = 0.13112 × 10 -5 A 8 = 0.12946 × 10 -7 A 10 = 0 9th surface P = 0.7782 A 4 = 0.25048 × 10 -4 A 6 = 0.11094 × 10 -6 A 8 = 0.12981 × 10 -8 A 10 = -0.695 10 × 10 -11
.

【0040】実施例7 f = 39.1 〜 58.8 〜 86.7 FNO= 3.74 〜 5.61 〜 8.24 2ω= 57.0 °〜 40.1 °〜 27.9 ° fB = 9.41 〜 29.21 〜 57.26 r1 = 35.3740(非球面) d1 = 2.000 nd1 =1.49241 νd1 =57.66 r2 = 34.0270 d2 = 3.190 r3 = -24.8730 d3 = 2.000 nd2 =1.49241 νd2 =57.66 r4 = -24.7720(非球面) d4 =(可変) r5 = -146.7040 d5 = 4.120 nd3 =1.80518 νd3 =25.43 r6 = 51.1930 d6 = 5.130 nd4 =1.65830 νd4 =57.33 r7 = -16.5940 d7 = 1.000 r8 = ∞(絞り) d8 =(可変) r9 = -44.4300 d9 = 3.900 nd5 =1.62606 νd5 =39.21 r10= -19.3240 d10= 4.000 r11= -13.1620(非球面) d11= 1.800 nd6 =1.69680 νd6 =55.52 r12= 342.7680 非球面係数 第1面 P =-2.5291 A4 =-0.53535×10-4 A6 =-0.36823×10-6 A8 = 0.18007×10-8 A10=-0.39220×10-10 第4面 P = 1.0000 A4 = 0.16946×10-4 A6 = 0.44124×10-6 A8 =-0.10783×10-7 A10= 0.11085×10-9 第11面 P =-0.3296 A4 =-0.39311×10-4 A6 =-0.76313×10-7 A8 = 0.11467×10-8 A10=-0.75329×10-11
Example 7 f = 39.1 to 58.8 to 86.7 F NO = 3.74 to 5.61 to 8.24 2ω = 57.0 ° to 40.1 ° to 27.9 ° f B = 9.41 to 29.21 to 57.26 r 1 = 35.3740 (aspherical surface) d 1 = 2.000 n d1 = 1.49241 ν d1 = 57.66 r 2 = 34.0270 d 2 = 3.190 r 3 = -24.8730 d 3 = 2.000 n d2 = 1.49241 ν d2 = 57.66 r 4 = -24.7720 ( aspherical) d 4 = (variable) r 5 = -146.7040 d 5 = 4.120 n d3 = 1.80518 ν d3 = 25.43 r 6 = 51.1930 d 6 = 5.130 n d4 = 1.65830 ν d4 = 57.33 r 7 = -16.5940 d 7 = 1.000 r 8 = ∞ (aperture) d 8 = (Variable) r 9 = -44.4300 d 9 = 3.900 n d5 = 1.62606 ν d5 = 39.21 r 10 = -19.3240 d 10 = 4.000 r 11 = -13.1620 (aspherical surface) d 11 = 1.800 n d6 = 1.69680 ν d6 = 55.52 r 12 = 342.7680 Aspheric coefficient Coefficient 1st surface P = -2.5291 A 4 = -0.53535 × 10 -4 A 6 = -0.36823 × 10 -6 A 8 = 0.18007 × 10 -8 A 10 = -0.39 220 × 10 -10 4th surface P = 1.0000 A 4 = 0.16946 × 10 -4 A 6 = 0.44124 × 10 -6 A 8 = -0.10783 × 10 -7 A 10 = 0.11085 × 10 -9 11th surface P = -0.3296 A 4 = -0.39311 × 10 -4 A 6 = -0.763 313 x 10 -7 A 8 = 0.11467 x 10 -8 A 10 = -0.75329 x 10 -11
.

【0041】上記実施例1〜7の広角端(a)、中間焦
点距離(b)、望遠端(c)における球面収差、非点収
差、歪曲収差、倍率色収差を表す収差図をそれぞれ図8
〜図14に示す。また、各実施例の前記条件式(1)、
(1')、(2)、(3)、(4)の値を次の表に示す
(EX. は、実施例を示し、L1、L2はそれぞれ第1群
G1内の物体側のレンズ、像側のレンズを示す。)。
FIG. 8 is an aberration diagram showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration at the wide-angle end (a), the intermediate focal length (b), and the telephoto end (c) of Examples 1 to 7, respectively.
~ Shown in FIG. Further, the conditional expression (1) of each embodiment,
The values of (1 '), (2), (3), and (4) are shown in the following table (EX. Indicates an example, L1 and L2 are lenses on the object side in the first group G1, respectively. Shows the lens on the image side).

【0042】 [0042] .

【0043】[0043]

【発明の効果】以上の説明から明らかなように、本発明
の3群ズームレンズによれば、変倍比が2倍を越えなが
ら、構成レンズ枚数が少なく、小型・低コストで、性能
も良好なズームレンズが得られる。
As is apparent from the above description, according to the three-group zoom lens of the present invention, the zoom ratio exceeds 2, the number of constituent lenses is small, the size and cost are low, and the performance is good. You can get a nice zoom lens.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のズームレンズの実施例1の広角端
(a)と望遠端(b)のレンズ断面図である。
FIG. 1 is a lens cross-sectional view of a zoom lens according to a first exemplary embodiment of the present invention at a wide-angle end (a) and a telephoto end (b).

【図2】実施例2の図1と同様なレンズ断面図である。2 is a lens cross-sectional view similar to FIG. 1 of Example 2. FIG.

【図3】実施例3の図1と同様なレンズ断面図である。FIG. 3 is a lens cross-sectional view similar to FIG. 1 of Example 3.

【図4】実施例4の図1と同様なレンズ断面図である。FIG. 4 is a lens cross-sectional view similar to FIG. 1 of Example 4.

【図5】実施例5の図1と同様なレンズ断面図である。5 is a lens cross-sectional view similar to FIG. 1 of Example 5. FIG.

【図6】実施例6の図1と同様なレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of Example 6;

【図7】実施例7の図1と同様なレンズ断面図である。7 is a lens cross-sectional view similar to FIG. 1 of Example 7. FIG.

【図8】実施例1の広角端(a)、中間焦点距離
(b)、望遠端(c)における球面収差、非点収差、歪
曲収差、倍率色収差を表す収差図である。
FIG. 8 is an aberration diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification at the wide-angle end (a), the intermediate focal length (b), and the telephoto end (c) in the first example.

【図9】実施例2の図8と同様な収差図である。FIG. 9 is an aberration diagram similar to FIG. 8 of Example 2.

【図10】実施例3の図8と同様な収差図である。FIG. 10 is an aberration diagram similar to FIG. 8 of Example 3.

【図11】実施例4の図8と同様な収差図である。FIG. 11 is an aberration diagram similar to FIG. 8 of Example 4.

【図12】実施例5の図8と同様な収差図である。FIG. 12 is an aberration diagram similar to FIG. 8 of Example 5.

【図13】実施例6の図8と同様な収差図である。FIG. 13 is an aberration diagram similar to FIG. 8 of Example 6.

【図14】実施例7の図8と同様な収差図である。FIG. 14 is an aberration diagram similar to FIG. 8 of Example 7.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G1 ... First lens group G2: Second lens group G3 ... Third lens group

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−10307(JP,A) 特開 平2−48622(JP,A) 特開 平3−127010(JP,A) 特開 平3−150518(JP,A) 特開 平4−78814(JP,A) 特開 平4−153613(JP,A) 特開 平5−134180(JP,A) 特開 平6−67092(JP,A) 国際公開92/21048(WO,A1) (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-10307 (JP, A) JP-A-2-48622 (JP, A) JP-A-3-127010 (JP, A) JP-A-3- 150518 (JP, A) JP 4-78814 (JP, A) JP 4-153613 (JP, A) JP 5-134180 (JP, A) JP 6-67092 (JP, A) International Publication 92/21048 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体側から順に、第1レンズ群、正屈折
力の第2レンズ群、負屈折力の第3レンズ群からなり、
各レンズ群間隔を変化させて変倍を行うズームレンズに
おいて、 第1レンズ群は、非球面を少なくとも1面含み、かつ、
第1レンズ群の有するレンズは全て以下の条件式(3)
を満足するレンズからなり、かつ、下記条件式(1)
満たすことを特徴とするコンパクトな3群ズームレン
ズ。 1.65<nN <1.90 ・・・(1) |f T /f 1 |<0.1 ・・・(3) ただし、nN は第3レンズ群の負レンズの屈折率の平均
、f T は望遠端での全系の焦点距離、f 1 は第1レン
ズ群内の各レンズの焦点距離である。
From 1. A object side, a first lens group, a positive refractive power second lens group, a third lens unit having a negative refractive power,
In a zoom lens that performs zooming by changing the distance between each lens group, the first lens group includes at least one aspherical surface, and
All the lenses of the first lens group have the following conditional expression (3).
Consists lens that satisfies a and compact zoom lens, characterized by satisfying the following conditional expression (1). 1.65 <n N <1.90 (1) | f T / f 1 | <0.1 (3) where n N is the average refractive index of the negative lenses of the third lens group. Value , f T is the focal length of the entire system at the telephoto end, f 1 is the first lens
The focal length of each lens in the lens group .
【請求項2】 前記第1レンズ群は単レンズからなるこ
とを特徴とする請求項1記載のコンパクトな3群ズーム
レンズ。
2. The compact three-group zoom lens according to claim 1, wherein the first lens group comprises a single lens.
【請求項3】 前記第2レンズ群が少なくとも負レンズ
と正レンズを含み、下記条件式を満たす請求項1又は2
記載のコンパクトな3群ズームレンズ。 1.65<nN ' <1.90 ・・・(1') ただし、nN ' は第2レンズ群と第3レンズ群の負レン
ズの屈折率の平均値である。
3. The second lens group includes at least a negative lens and a positive lens, and satisfies the following conditional expression.
The compact 3-group zoom lens described. 1.65 <n N '<1.90 ··· (1') , however, n N 'is the average value of the refractive index of the negative lens in the second lens group and the third lens group.
【請求項4】 前記第2レンズ群と前記第3群レンズ群
の群間に絞りを設置したことを特徴とする請求項1記載
のコンパクトな3群ズームレンズ。
4. A compact three-group zoom lens according to claim 1, further comprising an aperture provided between the second lens group and the third lens group.
【請求項5】 前記第2レンズ群と前記第3レンズ群は
両群共、負レンズと正レンズを有することを特徴とする
請求項4記載のコンパクトな3群ズームレンズ。
5. The compact three-group zoom lens according to claim 4, wherein both the second lens group and the third lens group have a negative lens and a positive lens.
【請求項6】 下記条件式を満たすことを特徴とする請
求項5記載のコンパクトな3群ズームレンズ。 1.65<nN ' <1.90 ・・・(1') |νdP−νdN|>10 ・・・(2) ただし、nN ' は第2レンズ群と第3レンズ群の負レン
ズの屈折率の平均値、νdPは第2レンズ群又は第3レン
ズ群の正レンズのアッベ数の平均値、νdNは第2レンズ
群又は第3レンズ群の負レンズのアッベ数の平均値であ
る。
6. The compact three-group zoom lens according to claim 5, wherein the following conditional expression is satisfied. 1.65 <n N '<1.90 ··· (1') | ν dP -ν dN |> 10 ··· (2) However, n N 'is a negative second lens group and the third lens group Average refractive index of the lens, ν dP is the average Abbe number of the positive lens of the second lens group or the third lens group, ν dN is the average Abbe number of the negative lens of the second lens group or the third lens group It is a value.
【請求項7】 前記第1レンズ群をプラスチックレンズ
で構成したことを特徴とする請求項記載のコンパクト
な3群ズームレンズ。
7. A compact zoom lens of claim 1, wherein the said first lens group is constituted by a plastic lens.
【請求項8】 前記第1レンズ群をレンズ1枚で構成し
たことを特徴とする請求項1又は7記載のコンパクトな
3群ズームレンズ。
8. The compact three-group zoom lens according to claim 1, wherein the first lens group is composed of one lens.
【請求項9】 下記の条件式を満たすことを特徴とする
請求項1記載のコンパクトな3群ズームレンズ。 |ΔD1 /ΔD2 |<0.5 ・・・(4) ただし、ΔD1 は第1レンズ群・第2レンズ群間隔変化
量の最大値、ΔD2 は第2レンズ群・第3レンズ群間隔
変化量の最大値である。
9. The compact three-group zoom lens according to claim 1, wherein the following conditional expression is satisfied. | ΔD 1 / ΔD 2 | <0.5 (4) where ΔD 1 is the maximum value of the amount of change between the first lens group and the second lens group, and ΔD 2 is the second lens group and the third lens group. It is the maximum value of the interval change amount.
【請求項10】 変倍比が2倍を越えることを特徴とす
る請求項1からの何れか1項記載のコンパクトな3群
ズームレンズ。
10. A compact zoom lens according to any one of claims 1 zoom ratio is equal to or exceeds twice 9.
JP26482793A 1993-10-22 1993-10-22 Compact 3-group zoom lens Expired - Fee Related JP3365835B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26482793A JP3365835B2 (en) 1993-10-22 1993-10-22 Compact 3-group zoom lens
US08/327,323 US5850312A (en) 1993-10-22 1994-10-21 Three-unit zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26482793A JP3365835B2 (en) 1993-10-22 1993-10-22 Compact 3-group zoom lens

Publications (2)

Publication Number Publication Date
JPH07120677A JPH07120677A (en) 1995-05-12
JP3365835B2 true JP3365835B2 (en) 2003-01-14

Family

ID=17408763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26482793A Expired - Fee Related JP3365835B2 (en) 1993-10-22 1993-10-22 Compact 3-group zoom lens

Country Status (1)

Country Link
JP (1) JP3365835B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445909A (en) * 2014-08-29 2016-03-30 佳能企业股份有限公司 Optical lens
CN107783254A (en) * 2016-08-29 2018-03-09 株式会社光学逻辑 Pick-up lens
US10295800B2 (en) 2014-08-27 2019-05-21 Ability Enterprise Co., Ltd. Optical lens

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412939B2 (en) * 1994-12-22 2003-06-03 キヤノン株式会社 Zoom lens
JPH08262325A (en) * 1995-03-20 1996-10-11 Minolta Co Ltd Zoom lens
JP4048904B2 (en) * 2002-10-08 2008-02-20 ソニー株式会社 Imaging lens
JP4827454B2 (en) 2005-07-22 2011-11-30 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5095443B2 (en) * 2008-02-28 2012-12-12 富士フイルム株式会社 Image reading lens and image reading apparatus
TWI416198B (en) 2010-11-19 2013-11-21 Largan Precision Co Ltd Optical imaging system
CN103748496B (en) 2011-08-25 2016-10-19 富士胶片株式会社 Imaging lens and the imaging device including this imaging lens
CN103765279B (en) 2011-08-25 2016-03-02 富士胶片株式会社 Imaging lens and the imaging device comprising this imaging lens
WO2013027350A1 (en) * 2011-08-25 2013-02-28 富士フイルム株式会社 Image pickup lens and image pickup apparatus using same
JP5975386B2 (en) * 2012-08-17 2016-08-23 株式会社オプトロジック Imaging lens
TWI454729B (en) 2013-06-28 2014-10-01 玉晶光電股份有限公司 Optical imaging lens and the application of the lens of the electronic device
WO2016084117A1 (en) * 2014-11-28 2016-06-02 株式会社ニコン Imaging lens and imaging device
WO2016110883A1 (en) 2015-01-09 2016-07-14 株式会社ニコン Image pickup lens and image pickup device
CN106371196B (en) * 2016-12-01 2019-01-08 广东弘景光电科技股份有限公司 The short overall length optical system of the high pixel of large aperture ultra-wide angle and its camera lens of application
CN108089298B (en) * 2017-12-18 2020-04-17 瑞声科技(新加坡)有限公司 Image pickup optical lens
CN108089310B (en) * 2017-12-29 2020-06-16 瑞声光学解决方案私人有限公司 Image pickup optical lens
JP6646128B2 (en) * 2018-12-05 2020-02-14 カンタツ株式会社 Imaging lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295800B2 (en) 2014-08-27 2019-05-21 Ability Enterprise Co., Ltd. Optical lens
CN105445909A (en) * 2014-08-29 2016-03-30 佳能企业股份有限公司 Optical lens
CN107783254A (en) * 2016-08-29 2018-03-09 株式会社光学逻辑 Pick-up lens
CN107783254B (en) * 2016-08-29 2021-05-25 康达智株式会社 Camera lens

Also Published As

Publication number Publication date
JPH07120677A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
JP3365835B2 (en) Compact 3-group zoom lens
JPH10221601A (en) Zoom lens
JPH083580B2 (en) Compact high-magnification zoom lens
JPH05113537A (en) Zoom lens using plastic lens
JP3200925B2 (en) Zoom lens with wide angle of view
JPH07253542A (en) Zoom lens
JP3018723B2 (en) Zoom lens
US5483380A (en) Compact zoom lens system having high zoom ratio and wide view angle
JPH0527167A (en) Zoom lens
JPH11167061A (en) Photographic optical system
JP3365837B2 (en) Focusing method of 3-group zoom lens
JPH0519165A (en) Small-sized zoom lens
JP2903482B2 (en) Zoom lens
JP2000121942A (en) Zoom lens
JP3331011B2 (en) Small two-group zoom lens
JPH06294932A (en) Zoom lens
JPH085920A (en) Zoom lens
JPH11142737A (en) Variable power lens system
JP2901066B2 (en) Zoom lens
JPH08334693A (en) Variable power lens
JPH05188296A (en) Small-sized three-group zoom lens
JP3392881B2 (en) Zoom lens
JPH06230284A (en) Focusing system for zoom lens
JPH10197793A (en) Zoom lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees