JPS6031110A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPS6031110A
JPS6031110A JP58140002A JP14000283A JPS6031110A JP S6031110 A JPS6031110 A JP S6031110A JP 58140002 A JP58140002 A JP 58140002A JP 14000283 A JP14000283 A JP 14000283A JP S6031110 A JPS6031110 A JP S6031110A
Authority
JP
Japan
Prior art keywords
lens group
lens
refractive power
zoom
zooming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58140002A
Other languages
Japanese (ja)
Other versions
JPH0414764B2 (en
Inventor
Keiji Ikemori
敬二 池森
Tsunefumi Tanaka
常文 田中
Masatake Katou
正猛 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58140002A priority Critical patent/JPS6031110A/en
Publication of JPS6031110A publication Critical patent/JPS6031110A/en
Priority to US06/903,901 priority patent/US4687302A/en
Publication of JPH0414764B2 publication Critical patent/JPH0414764B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144515Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+++

Abstract

PURPOSE:To make a titled zoom lens compact, and also to convert a photographing view angle at a zoom position of a wide angle end, to a wide angle, by moving independently the first lens group - the third lens group, in case of zooming. CONSTITUTION:The fourth lens group of a positive refractive power which is fixed in the course of zooming is place. Accordingly, the first lens group through the third lens group have a positive refractive power, therefore, its refractive power becomes weaker than a positive refractive power of the whole system. Also, when the refractive power of the third lens group is made the same as a conventional one, the refractive power of the first lens group and the second lens group can be made weaker than a conventional one, and an aberration variation due to zooming is reduced. Also, when zooming to a telephoto end from a wide angle end, the second lens group moves to the direction of an object side, and in this case, the third lens group is moved to the direction of the same object side as the second lens group. It is executed easily to make it compatible to make a zoom lens compact and have a high performance, by controlling a ratio of a moving extent of the third lens group against this second lens group.

Description

【発明の詳細な説明】 本発明はズームレンズに関し、特に負の屈折力のレンズ
群が先行するTTL 35 ミリ一眼レフカメラ用の標
準レンズの焦点距離もしくはそれより短かい焦点距離か
ら始まる、ズーム倍率が2〜3程度のズームレンズに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zoom lens, in particular a zoom magnification starting from the focal length of a standard lens for a TTL 35 mm single-lens reflex camera or a shorter focal length, preceded by a lens group of negative refractive power. This relates to a zoom lens with a diameter of about 2 to 3.

従来、物体側より順に、負の屈折力の第ルンズ群、正の
屈折力の第2レンズ群そして負の屈折力の第3レンズ群
の3つのレンズ群で構成され、それらのレンズ群が独立
に移動してズーミングを行うものが英国特許39830
7. 特開昭54−26754 、特開昭57−502
3 、特公昭57−13850 などで提案されている
。これらのズームタイプは負の屈折力と正の屈折力の2
つのしンズ群で構成されるズームレンズに比べ高倍率に
出来、しかもある程度コンパクト化もしくは高性能化に
することが容易となる。しかしながう、サラにズームレ
ンズのコンパクト化を図りもしくは広角端のズーム位置
で画角の広角化を図った場合、各レンズ群の屈折力を強
くしなければならずズーミングやフォーカシング(第ル
ンズ群でフォーカシングを行う場合)による諸収差の変
動が大きくなり、高性能化や大口径化を実現することが
極めて困難であった。特に第ルンズ群の屈折力が強くな
るとフォーカシングとズーミングによる収差変動が多く
、又第2レンズ群の屈折力を強くするとズーミングによ
る収差変動が大きくなる傾向があった。
Conventionally, it is composed of three lens groups, in order from the object side: the first lens group with negative refractive power, the second lens group with positive refractive power, and the third lens group with negative refractive power, and these lens groups are independent. British patent 39830 allows you to zoom by moving to
7. JP-A-54-26754, JP-A-57-502
3, proposed in Japanese Patent Publication No. 57-13850, etc. These zoom types have two types: negative refractive power and positive refractive power.
Compared to a zoom lens composed of two lens groups, it can achieve higher magnification, and can also be made more compact or higher in performance to some extent. However, when trying to make a zoom lens more compact or widening the angle of view at the wide-angle end zoom position, the refractive power of each lens group must be strengthened, and zooming and focusing (the first lens When focusing is performed in groups), variations in various aberrations become large, making it extremely difficult to achieve high performance and large apertures. In particular, as the refractive power of the second lens group increases, aberration fluctuations due to focusing and zooming tend to increase, and as the refractive power of the second lens group increases, aberration fluctuations due to zooming tend to increase.

もう1つの従来例として、物体側よシ順に。Another conventional example is from the object side.

負の屈折力の第ルンズ群、正の屈折力の第2レンズ群お
よび正の屈折力の第3レンズ群の3つのレンズ群で構成
されそれらのレンズ群が独立に移動してズーミングを行
うものが、例えば特開昭56−158316で提案され
ている。これは第2レンズ群と第3レンズ群が広角端の
ズーム位置で近接しており、広角端の撮影画角が比較的
広いにもかかわらすF 、4が明るく、シかも収差補正
が良好となる特徴を備えている。しかし、ズームレンズ
のコンパクト化を進め、もしくは広角端のズーム位置で
撮影画角の広角化を図った場合、前記、従来例と同様に
各レンズ群の屈折力を強くしなければならないため、ズ
ーミングもしくはフォーカシングによる諸収差の変動が
大きくなってしまう傾向があった。
It is composed of three lens groups: the first lens group with negative refractive power, the second lens group with positive refractive power, and the third lens group with positive refractive power, and these lens groups move independently to perform zooming. has been proposed, for example, in Japanese Patent Laid-Open No. 56-158316. This is because the second and third lens groups are close to each other at the wide-angle end zoom position, and although the shooting angle of view at the wide-angle end is relatively wide, F/4 is bright and the aberration correction is good. It has certain characteristics. However, if zoom lenses are made more compact, or if the angle of view is widened at the wide-angle end zoom position, the refractive power of each lens group must be strengthened, as in the conventional example, so zooming Alternatively, there was a tendency for fluctuations in various aberrations due to focusing to become large.

本発明はコンパクトでしかも広角端のズーム位置での撮
影画角の広角化を達成した広画角のズームレンズの提供
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a compact, wide-angle zoom lens that achieves wide-angle imaging at a zoom position at the wide-angle end.

本発明の目的を達成する為のレンズ構成の主な特徴は物
体側よシ順に、負の屈折力の第ルンズ群、正の屈折力の
第2レンズ群、正の屈折力の第3レンズ群そして正の屈
折力の第4レンズ群の4つのレンズ群を有し、ズーミン
グに際し、前記第ルンズ群、第2レンズ群および第3レ
ンズ群をそれぞれ独立に移動させたことである。
The main features of the lens configuration for achieving the purpose of the present invention are, in order from the object side, the first lens group with negative refractive power, the second lens group with positive refractive power, and the third lens group with positive refractive power. It has four lens groups, including a fourth lens group with positive refractive power, and the fourth lens group, second lens group, and third lens group are moved independently during zooming.

そして更に好ましくは前記第ルンズ群と前記第2レンズ
群は望遠端のズーム位置で最も接近し、前記第3レンズ
群は広角端のズーム位置で前記第4レンズ群に最も接近
させるレンズ構成としたことである。
More preferably, the lens configuration is such that the lens group and the second lens group are closest to each other at a telephoto end zoom position, and the third lens group is closest to the fourth lens group at a wide-angle end zoom position. That's true.

本発明の特徴は、従来例に比ベズーミング中固定の正の
屈折力の第4レンズ群が配されていることである。従っ
て第ルンズ群から第3レンズ群までは正の屈折力を持つ
ため、その屈折力は第ルンズ群から第4レンズ群(全系
)の正の屈折力より弱くなっている。このことは第ルン
ズ群から第3レンズ群までの屈折力を従来のズームレン
ズに比べ弱くすることが出来、この結果、高性能化が可
能となる。また、第3レンズ群の屈折力を従来(後者の
例)と同じにした場合、第ルンズ群、第2レンズ群の屈
折力は従来よシ弱くすることが出来、フォーカシング、
およびズーミングによる収差変動がさらに少なくなり、
高性能化及び大口径化の実現が容易トなる。又ズームレ
ンズのコンパクト化を図る為に広角端と望遠端での各レ
ンズ群の配置を上記構成にしている。つまり、広角端か
ら望遠端へズーミングする時、第2レンズ群が物体側方
向へ移動し、この時第3レンズ群は第2レンズ群と同じ
物体側方向へ移動させる。この第2レンズ群に対する第
3レンズ群の移動量の比を制御することによりズームレ
ンズのコンパクト化と高性能化を両立させることが容易
となる。
A feature of the present invention is that, compared to the conventional example, a fourth lens group having a positive refractive power that is fixed during bezooming is provided. Therefore, since the lens group from the lens group to the third lens group has positive refractive power, the refractive power is weaker than the positive refractive power of the lens group from the lens group to the fourth lens group (the entire system). This allows the refractive power from the first lens group to the third lens group to be weaker than that of conventional zoom lenses, and as a result, higher performance is possible. Furthermore, when the refractive power of the third lens group is made the same as the conventional one (the latter example), the refractive power of the third lens group and the second lens group can be made weaker than the conventional one, and focusing,
and aberration fluctuations due to zooming are further reduced,
It becomes easier to realize higher performance and larger diameter. Furthermore, in order to make the zoom lens more compact, the arrangement of each lens group at the wide-angle end and the telephoto end is configured as described above. That is, when zooming from the wide-angle end to the telephoto end, the second lens group moves in the object side direction, and at this time, the third lens group moves in the same direction as the second lens group. By controlling the ratio of the amount of movement of the third lens group to the second lens group, it becomes easy to make the zoom lens both compact and high-performance.

この移動量の比を小さくして行くとズーミングによる収
差変動は減る傾向になるが、望遠端でのレンズ全長(第
1面からフィルム面までの距離)が長くなり、さらに進
めると広角端でのレンズ全長より長くなってしまう。ま
た移動量の比を大きくして行くと上記と逆の傾向となる
ので好ましくない。ここで第2レンズ群に対する第3レ
ンズ群の移動量の比は0.4よp大きく1.5よ如小さ
い事が望ましく、さらに本実施例に近イ0.7より大き
く1.3より小さいとコンパクトと高性能化の両立が極
めて容易となる。つまり望遠端のレンズ全長が、広角端
のレンズ全長より長くならない範囲(コンパクト化の限
界)で高性能化を図るのが好ましい。この時、移動によ
シ倍率を最も多く得ているのは第2レンズ群のため、コ
ンパクト化を保つには、第2レンズ群を効率良く移動さ
せる必要があシ、少なくとも望遠端において第ルンズ群
と第2レンズ群は最も接近させるのが好ましい。また第
3レンズ群と第4レンズ群はそれ程屈折カが強くないの
で、広角端においてレンズ全長の短縮およびバックフォ
ーカスの必要量確保のため第3レンズ群と第4レンズ群
は広角端で最も接近させるレンズ構成が良い。
As the ratio of the amount of movement is decreased, aberration fluctuations due to zooming tend to decrease, but the total lens length (distance from the first surface to the film surface) at the telephoto end becomes longer, and if the ratio is further increased, the aberration fluctuations due to zooming tend to decrease. It becomes longer than the total length of the lens. Furthermore, increasing the ratio of the moving amounts causes a tendency opposite to the above, which is not preferable. Here, the ratio of the amount of movement of the third lens group to the second lens group is desirably larger than 0.4 and smaller than 1.5, and furthermore, it is close to this embodiment, i.e., larger than 0.7 and smaller than 1.3. This makes it extremely easy to achieve both compactness and high performance. In other words, it is preferable to achieve high performance within a range where the total length of the lens at the telephoto end is not longer than the total length of the lens at the wide-angle end (the limit of compactness). At this time, it is the second lens group that obtains the most magnification through movement, so in order to maintain compactness, it is necessary to move the second lens group efficiently, at least at the telephoto end. It is preferable that the lens group and the second lens group are placed closest to each other. In addition, the 3rd and 4th lens groups do not have very strong refractive power, so in order to shorten the overall lens length and secure the necessary amount of back focus at the wide-angle end, the 3rd and 4th lens groups are closest to each other at the wide-angle end. The lens configuration is good.

以上のレンズ構成で本発明の目的は達成されるが更によ
り良好なる収差補正を達成し、コンパクト化を図ったズ
ームレンズを達成するには次の諸条件を満足させるのが
良い。
Although the objective of the present invention is achieved with the above lens configuration, in order to achieve even better aberration correction and to achieve a compact zoom lens, it is preferable to satisfy the following conditions.

前記第1.第2.第3そして第4レンズ群の焦点距離を
各々f、、 f、、 f、そしてf、とし、望遠端のズ
ーム位置における全系の焦点距離をfTとしたとき (1) i<ra/fT< 5 (2) 0.5 < lfl l/fT< 1.2(3
) ’t < I fr l <らなる条件を満足する
ことである。
Said 1st. Second. When the focal lengths of the third and fourth lens groups are respectively f, , f, , f, and f, and the focal length of the entire system at the telephoto end zoom position is fT, (1) i<ra/fT< 5 (2) 0.5 < lfl l/fT < 1.2 (3
) 't < I fr l <.

条件■、■、■は各レンズ群の屈折力を制限するもので
あり特にTTL35ミリ−眼レフカメラ用ズームレンズ
を実現する時にコンパクト化と高性能化を両立させるの
に必要なものである。条件■の下限値以下では第4レン
ズ群を単純なレンズ構成にすることが困難となり、ズー
ムレンズが大型化してしまう。上限値以上では第4レン
ズ群の屈折力が弱く成り過ぎコンパクトと高性能化の効
果がうすれて来る。条件■の下限値以下では、広角端よ
り望遠端の方がレンズ全長が長くなる傾向となり、さら
に望遠端で大口径化もしくは球面収差を良好に補正する
ことが困難となる。上限値以上では広角端のレンズ全長
の短縮化がもの足りなくなる。また、第2レンズ群は倍
率をかせぐ働きをするため最も屈折力を強くする必要が
あり、第ルンズ群は前玉レンズ径、もしくはフォーカシ
ングによる繰出量を制御するため第2レンズ群の次に屈
折力を強くする必要があり、第3レンズ群は倍率とズー
ミングによる収差変動を除去するため第ルンズ群、第2
レンズ群よ如弱い屈折力にするのが好ましい。一方第4
レンズ群は主にズーミングによる収差変動を除去する為
に第1.第2レンズ群より弱い屈折力であることが好ま
しい。
Conditions (1), (2), and (2) limit the refractive power of each lens group, and are especially necessary to achieve both compactness and high performance when realizing a zoom lens for a TTL 35 mm reflex camera. Below the lower limit of condition (2), it becomes difficult to form the fourth lens group into a simple lens structure, resulting in an increase in the size of the zoom lens. Above the upper limit, the refractive power of the fourth lens group becomes too weak, and the effects of compactness and high performance are diminished. Below the lower limit of condition (2), the total lens length tends to be longer at the telephoto end than at the wide-angle end, and furthermore, it becomes difficult to increase the aperture or to satisfactorily correct spherical aberration at the telephoto end. If the value exceeds the upper limit, the overall length of the lens at the wide-angle end will not be shortened enough. In addition, the second lens group has the function of increasing magnification, so it needs to have the strongest refractive power, and the second lens group is the next lens group to refract because it controls the front lens diameter or the amount of focusing. It is necessary to make the power stronger, and the third lens group uses the third lens group and the second lens group to eliminate aberration fluctuations due to magnification and zooming.
It is preferable that the refractive power is weaker than that of the lens group. On the other hand, the fourth
The first lens group is mainly used to eliminate aberration fluctuations caused by zooming. It is preferable that the refractive power is weaker than that of the second lens group.

次に本発明の特徴である正の屈折力の第4レンズ群の収
差論的作用効果について述べる。表1は本発明の数値実
施例103次収差係数であり、第4レンズ群はズーミン
グ中固定であ如、球面収差(Sム)は一定である。しか
しながらズーミング中一定でない収差もあり、コマ収差
(CM)は広角端で最も多く外向性のコマを発生してい
る。一般に負の屈折力が先行するズームタイプで広角端
を大画角でしかもコンパクトにして行くと、広角端付近
の軸外光束の主光線近傍では内向性のコマが出やすい傾
向を持っている。第4レンズ群はこの内向性のコマを打
ち消すのに有効に作用している。また望遠側では小さい
値になっており悪影響は少ない。この結果、本発明にお
いては、第4レンズ群によって第1〜第3レンズ群から
発生する交流成分の収差(ズーミングにより異なる量)
を効率良く打ち消すことが出来、性能向上を図ることが
容易となる。従って従来の3つのレンズ群よりなる構成
のズームレンズ(全系で収差が除去されている)に像面
との間に、いわゆるリア・アタッチメントレンズ(これ
のみで収差が除去されている)を装着したレンズ系に比
べて本発明の第4レンズ群による作用効果は全く異にす
るものである。
Next, the aberrational effect of the fourth lens group having positive refractive power, which is a feature of the present invention, will be described. Table 1 shows the third-order aberration coefficients of a numerical example of the present invention, and since the fourth lens group is fixed during zooming, the spherical aberration (Sum) is constant. However, there are some aberrations that are not constant during zooming, and coma aberration (CM) causes extroverted coma most often at the wide-angle end. In general, if you use a zoom type lens that has negative refractive power and the wide-angle end has a large angle of view and is compact, there is a tendency for inward coma to appear near the principal ray of the off-axis beam near the wide-angle end. The fourth lens group is effective in canceling out this introverted coma. Also, on the telephoto side, the value is small and there is little negative effect. As a result, in the present invention, the aberration of the AC component generated from the first to third lens groups by the fourth lens group (an amount that varies depending on zooming)
can be effectively canceled out, making it easy to improve performance. Therefore, a so-called rear attachment lens (which alone eliminates aberrations) is attached between the conventional zoom lens consisting of three lens groups (aberrations are eliminated in the entire system) and the image plane. The effects of the fourth lens group of the present invention are completely different from those of the above lens system.

尚本発明に係るズームレンズにおいては通常は第ルンズ
群を繰出すことにより異なる物体距離に対しフォーカシ
ングを行うが、自動焦点合せ機構を備えたレンズもしく
けカメラに対してtds tg3vンX群もしくは第4
レンズ群テフオーカシングを行うことも可能であり、こ
のような構成をとれば機構的に簡単になり好ましい。
In the zoom lens according to the present invention, focusing is normally performed for different object distances by extending the first lens group. 4
It is also possible to perform lens group focusing, and such a configuration is preferable because it is mechanically simple.

次に本発明の数値実施例を示す。数値実施例において川
は物体側よシ順に第1番目のレンズ面の曲率半径、Di
は物体側より順に第五番目のレンズ厚及び空気間隔、N
iとνiは夫々物体側よ如順に第1番目のレンズのガラ
スの屈折率とアツベ数である。
Next, numerical examples of the present invention will be shown. In the numerical example, the radius of curvature of the first lens surface, Di
are the fifth lens thickness and air spacing in order from the object side, N
i and νi are the refractive index and Abbe number of the glass of the first lens, respectively, in order from the object side.

数値実施例1 F=100−195 FA=1:4.2−4.7 2ω
=34〜63.4R1= 490.01 D I= 1
2.67 N l=1.72916 ν1= 54.7
82= −3024,79D 2= 0.43R3=・
−261,89D 3= 7.19 N 2=1.80
610 シ2=40.9B、6= −190,22D 
6= 10.17R7= −155,72D 7= 4
.39 N 4=1.80610 ν4=40.988
= 166.54 D 8= 8.13R9= 98.
48 1) 9= 11.08 N 5=1.8466
6 ν5= 23.9R1O= 157.00 D10
= 可変PLlt= 111.23 D11= 9.4
7 N 6=l、72916 シロ=54.7R12=
 3040.15 DI2= 0.29R13= 94
.23 D13= 10.26 N 7=1.6204
1 シフ=60.3R14= 557.28 D14=
 2.23R15= 絞り D15= 5.76 R16= −198,81D16= 12.66 N8
=1.64769 ν8= 33.8R17= 69.
61 D17= 10.04R18= 780.47 
D18= 11.11 N 9=1.60729 ν9
=49.2R19= −102,76D19= 可変R
20= 170.66 D20= 11.76 N10
=1.71300 ν10=53.8B21= −92
,94D21= 5.82 N11=1.59551 
ν11= 39.2R22= 171.64 D22=
 可変fu3= 216.84 D23= 12.33
 N12=1.48749 ν12= 70.1R24
= 409.60 数値実施例2 F=100.0〜204.9 F應=l:4〜4.52
ω=40.6°−74,3゜R1= 311.49 D
I= 8.05 N1=1.72000 シ1=43.
7R,2= 88,65 D 2= 23.54R3=
 −680,58D 3= 13.30 N 2=1.
61293 シ2=37.0R4= −159,47D
4= 1.47R5= −385,75D 5= 6.
58 N 3=1.77250 シ3=49.6R8=
 131.36 D8= 14.01 N5=1.64
769 ν5= 33.8R9= 838.07 D9
= 可変 1(10= 185.27 DIO= 10.50 N
6=1.69350 シロ=53.2all=−122
8,02D11= 5.60R12= 絞り DI2=
 1.75 Rta= 86.16 D13= 8.50 N 7=
1.60729 シフ=49.2R1’4= 214.
69 D14= 3.54115= 102.55 D
15= 19.49 N8=1.61484 シ8=5
1.2R16= 235.12 D16= 2゜87R
17=−1196,75D17= 15.78 N 9
=l、84666 ν9=23.9R18= 65.5
0 D18= 5.11819= −340,73D1
9= 5.97 N10=1.63636 plO=3
5.4B、20= −98,55D20= 可変R21
= 371.07 D21.= 7.00 N11=1
.62588 シ11=35.7R22= 509.0
8 D22= 7.00 N12=1.53113 シ
12=62.4R23= 3500.11 D23= 
可変R25= −260,79
Numerical Example 1 F=100-195 FA=1:4.2-4.7 2ω
=34~63.4R1=490.01 DI=1
2.67 N l=1.72916 ν1= 54.7
82=-3024,79D 2=0.43R3=・
−261,89D 3= 7.19 N 2=1.80
610 C2=40.9B, 6=-190,22D
6= 10.17R7= -155,72D 7= 4
.. 39 N 4=1.80610 ν4=40.988
= 166.54 D 8 = 8.13 R9 = 98.
48 1) 9=11.08 N 5=1.8466
6 ν5= 23.9R1O= 157.00 D10
= Variable PLlt= 111.23 D11= 9.4
7 N 6=l, 72916 Shiro=54.7R12=
3040.15 DI2= 0.29R13= 94
.. 23 D13=10.26 N7=1.6204
1 Schiff=60.3R14=557.28 D14=
2.23R15= Aperture D15= 5.76 R16= -198,81D16= 12.66 N8
=1.64769 ν8= 33.8R17= 69.
61 D17= 10.04R18= 780.47
D18= 11.11 N 9=1.60729 ν9
=49.2R19= -102,76D19= Variable R
20= 170.66 D20= 11.76 N10
=1.71300 ν10=53.8B21=-92
,94D21=5.82 N11=1.59551
ν11= 39.2R22= 171.64 D22=
Variable fu3 = 216.84 D23 = 12.33
N12=1.48749 ν12=70.1R24
= 409.60 Numerical Example 2 F=100.0~204.9 F=l:4~4.52
ω=40.6°-74,3°R1= 311.49 D
I=8.05 N1=1.72000 Si1=43.
7R,2= 88,65 D 2= 23.54R3=
-680,58D 3= 13.30 N 2=1.
61293 Shi2=37.0R4=-159,47D
4=1.47R5=-385,75D 5=6.
58 N3=1.77250 C3=49.6R8=
131.36 D8= 14.01 N5=1.64
769 ν5= 33.8R9= 838.07 D9
= variable 1 (10 = 185.27 DIO = 10.50 N
6=1.69350 Shiro=53.2all=-122
8,02D11= 5.60R12= Aperture DI2=
1.75 Rta= 86.16 D13= 8.50 N 7=
1.60729 Schiff=49.2R1'4=214.
69 D14= 3.54115= 102.55 D
15=19.49 N8=1.61484 C8=5
1.2R16= 235.12 D16= 2°87R
17=-1196,75D17=15.78 N 9
=l, 84666 ν9=23.9R18=65.5
0 D18= 5.11819= -340,73D1
9=5.97 N10=1.63636 plO=3
5.4B, 20=-98,55D20= variable R21
= 371.07 D21. = 7.00 N11=1
.. 62588 Shi11=35.7R22=509.0
8 D22= 7.00 N12=1.53113 C12=62.4R23= 3500.11 D23=
Variable R25=-260,79

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の数値実施例1. 2のレンズ
断面図、第3図、第4図は本発明の数値実施例1.2の
諸収差図である。 図中、矢印はズーミングによる移動状態を示す。Mはメ
リデイオナル像面、Sはサジタル像面である。I、 1
. III、 IVは各々第1.第2゜第3.第4レン
ズ群である。 工 f、−15y、24− チ=/6 犯
FIGS. 1 and 2 show numerical example 1 of the present invention. 2, FIG. 3, and FIG. 4 are various aberration diagrams of Numerical Example 1.2 of the present invention. In the figure, arrows indicate movement states due to zooming. M is a meridional image surface, and S is a sagittal image surface. I, 1
.. III and IV are respectively No. 1. 2nd゜3rd. This is the fourth lens group. F, -15y, 24- CH=/6 crime

Claims (1)

【特許請求の範囲】 (1)物体側より順に、負の屈折力の第ルンズ群、正の
屈折力の第2レンズ群、正の屈折力の第3レンズ群そし
て正の屈折力の第4レンズ群の4つのレンズ群を有し、
ズーミングに際し、前記第ルンズ群、第2レンズ群およ
び第3レンズ群をそれぞれ独立に移動させたことを特徴
とするズームレンズ。 (2) 前記第ルンズ群と前記第2レンズ群は望遠端の
ズーム位置で最も接近し、前記第3レンズ群は広角端の
ズーム位置で前記第4レンズ群に最も接近していること
を特徴とする特許請求の範囲第1項記載のズームレンズ
。 (3)前記第1.第2.第3そして第4レンズ群の焦点
距離を各々fIsftsらそしてf4とし、望遠端のズ
ーム位置における全系の焦点距離をf丁としたとき 1 < f+/’T< 8 0.5 < 1 ’+1/fT < 1.2ft < 
1fll < ts なる条件を満足することを特徴とする特許請求の範囲第
1項若しくは第2項記載のズームレンズ。
[Claims] (1) In order from the object side, the first lens group has a negative refractive power, the second lens group has a positive refractive power, the third lens group has a positive refractive power, and the fourth lens group has a positive refractive power. It has four lens groups,
A zoom lens characterized in that the first lens group, the second lens group, and the third lens group are each independently moved during zooming. (2) The lens group and the second lens group are closest to each other at a telephoto end zoom position, and the third lens group is closest to the fourth lens group at a wide-angle end zoom position. A zoom lens according to claim 1. (3) Above 1. Second. Let the focal lengths of the third and fourth lens groups be fIsfts and f4, respectively, and let the focal length of the entire system at the telephoto end zoom position be fth, then 1 <f+/'T< 8 0.5 <1'+1 /fT < 1.2ft <
A zoom lens according to claim 1 or 2, characterized in that the zoom lens satisfies the following condition: 1fll<ts.
JP58140002A 1983-06-01 1983-07-29 Zoom lens Granted JPS6031110A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58140002A JPS6031110A (en) 1983-07-29 1983-07-29 Zoom lens
US06/903,901 US4687302A (en) 1983-06-01 1986-09-04 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140002A JPS6031110A (en) 1983-07-29 1983-07-29 Zoom lens

Publications (2)

Publication Number Publication Date
JPS6031110A true JPS6031110A (en) 1985-02-16
JPH0414764B2 JPH0414764B2 (en) 1992-03-13

Family

ID=15258644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140002A Granted JPS6031110A (en) 1983-06-01 1983-07-29 Zoom lens

Country Status (1)

Country Link
JP (1) JPS6031110A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248312A (en) * 1995-03-08 1996-09-27 Nikon Corp Zoom lens
US6191896B1 (en) 1997-09-04 2001-02-20 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
EP1220002A2 (en) * 2000-12-27 2002-07-03 Canon Kabushiki Kaisha Zoom lens and optical apparatus using the same
US6888683B2 (en) 2001-05-17 2005-05-03 Canon Kabushiki Kaisha Zoom lens and camera
US6924939B2 (en) 2002-08-19 2005-08-02 Canon Kabushiki Kaisha Zoom lens system, and image pick-up apparatus incorporating such zoom lens system
US6970298B1 (en) 2004-05-07 2005-11-29 Canon Kabushiki Kaisha Zoom lens system and image capture apparatus having the same
US6989943B2 (en) 2003-08-11 2006-01-24 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus having zoom lens system
US7031072B2 (en) 2004-05-31 2006-04-18 Canon Kabushiki Kaisha Zoom lens system and an image pickup apparatus including the same
US7589906B2 (en) 2004-05-28 2009-09-15 Canon Kabushiki Kaisha Zoom lens system and an image pickup apparatus including the same
WO2018235881A1 (en) * 2017-06-21 2018-12-27 株式会社ニコン Variable-power optical system, optical device, and production method for variable-power optical system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248312A (en) * 1995-03-08 1996-09-27 Nikon Corp Zoom lens
US6191896B1 (en) 1997-09-04 2001-02-20 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6233099B1 (en) 1997-09-04 2001-05-15 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
EP1220002A2 (en) * 2000-12-27 2002-07-03 Canon Kabushiki Kaisha Zoom lens and optical apparatus using the same
EP1220002A3 (en) * 2000-12-27 2004-01-28 Canon Kabushiki Kaisha Zoom lens and optical apparatus using the same
US6888683B2 (en) 2001-05-17 2005-05-03 Canon Kabushiki Kaisha Zoom lens and camera
US6924939B2 (en) 2002-08-19 2005-08-02 Canon Kabushiki Kaisha Zoom lens system, and image pick-up apparatus incorporating such zoom lens system
US6989943B2 (en) 2003-08-11 2006-01-24 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus having zoom lens system
US6970298B1 (en) 2004-05-07 2005-11-29 Canon Kabushiki Kaisha Zoom lens system and image capture apparatus having the same
US7589906B2 (en) 2004-05-28 2009-09-15 Canon Kabushiki Kaisha Zoom lens system and an image pickup apparatus including the same
US7031072B2 (en) 2004-05-31 2006-04-18 Canon Kabushiki Kaisha Zoom lens system and an image pickup apparatus including the same
WO2018235881A1 (en) * 2017-06-21 2018-12-27 株式会社ニコン Variable-power optical system, optical device, and production method for variable-power optical system
JP2019008031A (en) * 2017-06-21 2019-01-17 株式会社ニコン Variable power optical system, optical device and method for manufacturing variable power optical system
US11592651B2 (en) 2017-06-21 2023-02-28 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system

Also Published As

Publication number Publication date
JPH0414764B2 (en) 1992-03-13

Similar Documents

Publication Publication Date Title
US5253113A (en) Wide-angle zoom lens having five lens units
JPH05173071A (en) Wide angle zoom lens
JPH09184982A (en) Zoom lens
US4687302A (en) Zoom lens
JP2000298236A (en) Variable focusing lens system
JPH05173073A (en) Three-group zoom lens
JP2006058584A (en) Zoom lens and imaging device incorporating it
JP3018723B2 (en) Zoom lens
JPH1020193A (en) Zoom lens
JP3144191B2 (en) Zoom lens
JPH06265788A (en) Zoom lens with high variable power ratio
JPH03139607A (en) Power varying lens
JPS6031110A (en) Zoom lens
JPH07151974A (en) Zoom lens
JP3003226B2 (en) Zoom lens
JP3387687B2 (en) Zoom lens
JP3723643B2 (en) High zoom ratio zoom lens system
US4712883A (en) Rear focus zoom lens
JPH06308389A (en) Zoom lens
JP3260836B2 (en) Wide-angle high zoom lens
JP3412939B2 (en) Zoom lens
JPH05346542A (en) Small-sized two-group zoom lens
JP3063459B2 (en) Rear focus type zoom lens and camera using the same
JPS59222806A (en) Zoom lens
JP2629940B2 (en) Rear focus zoom lens