JPH07151974A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH07151974A
JPH07151974A JP5325844A JP32584493A JPH07151974A JP H07151974 A JPH07151974 A JP H07151974A JP 5325844 A JP5325844 A JP 5325844A JP 32584493 A JP32584493 A JP 32584493A JP H07151974 A JPH07151974 A JP H07151974A
Authority
JP
Japan
Prior art keywords
lens
group
refractive power
wide
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5325844A
Other languages
Japanese (ja)
Inventor
Takashi Kato
隆志 加藤
Teruhiro Nishio
彰宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5325844A priority Critical patent/JPH07151974A/en
Publication of JPH07151974A publication Critical patent/JPH07151974A/en
Priority to US08/892,878 priority patent/US6028716A/en
Priority to US09/286,305 priority patent/US6236517B1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-

Abstract

PURPOSE:To provide a zoom lens having a wide angle of view and high variable power ratio while miniaturizing the size over the entire part of the lens by constituting the zoom lens of three lens groups as a whole and forming an adequate aspherical lens at a prescribed lens face. CONSTITUTION:This zoom lens has, successively from an object side, three lens groups; a first group having a negative refracting power, a second group having a positive refracting power and a third group having a negative refracting power. Variable magnification is executed by changing the spacings between the respective lens groups. The zoom lens is so constituted with the object side as to satisfy Hiw>¦(Hbiw¦, Hit>¦Hbit¦ when the incident angles of axial rays on the i-th face at the wide angle end and telephoto end in the case of an infinite object are respectively defined as Hiw(Hiw>0), Hit(Hit>0) and the incident angles of the off-axial main rays of the max. angle of view on the i-th face at the wide angle end and telephoto end as Hbiw, Hbit, respectively. The aspherical face of the shape to intensify the negative refracting power increasingly from the lens center toward the lens periphery is formed on the lens face Ra of the negative refracting power of which the concave face is directed to the object side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は35mmフィルム用の写
真用カメラやビデオカメラそしてSVカメラ等に好適な
ズームレンズに関し、特に複数のレンズ群、例えば全体
として3つのグループのレンズ群より構成して、これら
3つのグループの各レンズ群のレンズ構成を適切に設定
すると共に所定のレンズ面に適切なる形状の非球面を施
すことによりレンズ系全体の小型化を図りつつ高い光学
性能が容易に得られるようにした広画角で高変倍比のズ
ームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens suitable for a 35 mm film photographic camera, a video camera, an SV camera and the like, and in particular, it comprises a plurality of lens groups, for example, a total of three lens groups. By appropriately setting the lens configuration of each lens group of these three groups and providing an aspherical surface of an appropriate shape on a predetermined lens surface, it is possible to easily obtain high optical performance while downsizing the entire lens system. The present invention relates to a zoom lens having a wide angle of view and a high zoom ratio.

【0002】[0002]

【従来の技術】従来よりズームタイプとして負の屈折力
のレンズ群が先行する所謂ネガティブリード型のズーム
レンズは広画角化が比較的容易であるため、撮影画角7
0°以上を有するズームレンズには多く用いられてい
る。
2. Description of the Related Art Conventionally, a so-called negative lead type zoom lens in which a zoom type lens group having a negative refracting power precedes is relatively easy to have a wide angle of view.
It is often used for zoom lenses having an angle of 0 ° or more.

【0003】例えば、特開昭59−16248号公報で
は負の屈折力の第1群と正の屈折力の第2群の2つのレ
ンズ群を有し、両レンズ群の間隔を変えて変倍を行った
所謂ショートズームレンズを提案している。
For example, Japanese Laid-Open Patent Publication No. 59-16248 has two lens groups, a first lens group having a negative refractive power and a second lens group having a positive refractive power, and the zooming is performed by changing the distance between the two lens groups. The so-called short zoom lens is proposed.

【0004】又、特開平2−72316号公報や特開平
3−233422号公報では物体側より順に負の屈折力
の第1群と正の屈折力の第2群、そして負の屈折力の第
3群の3つのレンズ群を有し、各レンズ群を移動させて
変倍を行った広画角の3群ズームレンズを提案してい
る。
Further, in JP-A-2-73216 and JP-A-3-233422, a first group having a negative refractive power, a second group having a positive refractive power, and a second group having a negative refractive power are sequentially arranged from the object side. It proposes a three-group zoom lens having a wide angle of view, which has three lens groups of three groups, and each lens group is moved for zooming.

【0005】又、特開平2−72316号公報では物体
側より順に負の屈折力の第1群と正の屈折力の第2群、
正の屈折力の第3群、そして負の屈折力の第4群より成
り、各レンズ群を移動させて変倍を行った4群ズームレ
ンズを提案している。
Further, in Japanese Patent Application Laid-Open No. 2-73216, a first group having a negative refractive power and a second group having a positive refractive power are arranged in order from the object side.
It proposes a four-group zoom lens composed of a third group having a positive refractive power and a fourth group having a negative refractive power, in which each lens group is moved to perform zooming.

【0006】一方、ズームタイプとして物体側より順に
正の屈折力の第1群と負の屈折力の第2群の2つのレン
ズ群を有し、双方を移動させて変倍を行う所謂2群ズー
ムレンズはレンズ系全体の小型化が容易なためにレンズ
シャッターカメラ等の小型カメラに多く用いられてい
る。2群ズームレンズは変倍作用を一つのレンズ群(第
2群)のみで行っているために、その変倍比が1.6〜
2倍程度のものが多い。2群ズームレンズにおいて無理
に変倍比を拡大しようとするとレンズ系の大型化を招く
とともに、高い光学性能を保つことが困難になってく
る。
On the other hand, as a zoom type, it has two lens groups, a first lens group having a positive refractive power and a second lens group having a negative refractive power in order from the object side. Zoom lenses are often used in small cameras such as lens shutter cameras because it is easy to downsize the entire lens system. The zoom ratio of the two-group zoom lens is 1.6 to 1.6 because only one lens group (second group) performs zooming.
Many are about twice as many. If the zoom ratio of the two-group zoom lens is forcibly increased, the size of the lens system becomes large and it becomes difficult to maintain high optical performance.

【0007】又、2群ズームレンズにおいて第1群を2
つの正の屈折力のレンズ群に分割し、全体として正、
正、負の屈折力の3つのレンズ群より成る高変倍化を狙
った3群ズームレンズが、例えば特開平3−73907
号公報、特開平3−282409号公報、特開平4−3
7810号公報、特開平4−76511号公報等で提案
されている。
In the second group zoom lens, the first group is
Divided into two positive refractive power lens groups, positive overall,
A three-group zoom lens composed of three lens groups having positive and negative refracting power and aiming for high zooming is disclosed in, for example, Japanese Patent Laid-Open No. 3-73907.
Japanese Patent Laid-Open No. 3-282409, Japanese Patent Laid-Open No. 4-3
It is proposed in Japanese Patent No. 7810, Japanese Patent Laid-Open No. 4-76511, and the like.

【0008】これらの3群ズームレンズで例えば半画角
35°以上の広角のズームレンズ系を達成しようとする
と変倍時の入射瞳位置の変化が大きくなり、高変倍化を
図る際の収差変動を抑えることが困難になってくる。
When an attempt is made to achieve a wide-angle zoom lens system having a half field angle of 35 ° or more with these three-group zoom lenses, the position of the entrance pupil at the time of zooming becomes large, and aberrations at the time of achieving high zooming become large. It becomes difficult to control fluctuations.

【0009】[0009]

【発明が解決しようとする課題】一般にネガティブリー
ド型のズームレンズは広画角化が比較的容易である。し
かしながら、撮影画角70°以上の広画角化を図り、全
画面にわたり良好なる光学性能を得るには各レンズ群の
屈折力配置やレンズ構成を適切に設定する必要がある。
各レンズ群の屈折力配置やレンズ構成が不適切であると
レンズ枚数を増加させても変倍に伴う収差変動が大きく
なり、全変倍範囲にわたり高い光学性能を得るのが難し
くなってくる。
Generally, a negative lead type zoom lens is relatively easy to have a wide angle of view. However, in order to achieve a wide field angle of 70 ° or more and obtain good optical performance over the entire screen, it is necessary to properly set the refractive power arrangement and lens configuration of each lens group.
If the refractive power arrangement or lens configuration of each lens group is improper, even if the number of lenses is increased, the aberration variation due to zooming becomes large, and it becomes difficult to obtain high optical performance over the entire zoom range.

【0010】又、広画角でかつ高変倍なズームレンズに
おいて、レンズ系全体の小型化及び高性能化を達成する
ために非球面を用いることが非常に効果的である。しか
しながら、このときどのようなレンズ面に導入するかが
大変重要であって、それによって非球面の収差補正効果
が大きく異なってくる。適切なレンズ面に非球面を導入
しないと、効果的な収差補正が難しくなってくる。
Further, in a zoom lens having a wide angle of view and a high zoom ratio, it is very effective to use an aspherical surface in order to achieve downsizing and high performance of the entire lens system. However, what kind of lens surface should be introduced at this time is very important, and the aberration correction effect of the aspherical surface greatly differs depending on this. Effective aberration correction becomes difficult unless an aspherical surface is introduced into the appropriate lens surface.

【0011】例えば前述の特開平3−282409号公
報、特開平4−37810号公報、特開平4−7651
1号公報においては、第2レンズ群中の正レンズに光軸
から離れるに従って正の屈折力が弱まるような非球面を
導入している。何れもその非球面導入面は絞りからある
程度光軸上の間隔をもって配置されており、変倍に伴っ
て非球面導入面における軸上光線高或いは軸外光線高が
異なることを利用して収差変動の補正を行っている。し
かしながら、広角化、更には高変倍化を行うとすると、
例えばそれに伴う球面収差と軸外収差の変動が大きくな
り、この非球面によって同時に補正することが困難にな
ってくる。
For example, the above-mentioned JP-A-3-282409, JP-A-4-37810, and JP-A-4-7651.
According to Japanese Patent Laid-Open No. 1-58, an aspherical surface is introduced into the positive lens in the second lens group so that the positive refracting power becomes weaker as the distance from the optical axis increases. In both cases, the aspherical introduction surface is arranged with a certain distance from the stop on the optical axis, and the variation of aberrations is made by utilizing the fact that the axial ray height or off-axis ray height on the aspherical introduction surface differs due to zooming. Is being corrected. However, if widening the angle and further increasing the magnification,
For example, variations in spherical aberration and off-axis aberrations accompanying this increase, and it becomes difficult to simultaneously correct by this aspherical surface.

【0012】米国特許5009536号では、正、正そ
して負の屈折力の3つのレンズ群より成る3群ズームレ
ンズにおいて、正の屈折力を有する第2レンズ群中の絞
り付近の物体側に凹面を向けた負の屈折作用を持つレン
ズ面に非球面を導入している。しかしながら、このズー
ムレンズにおいて広画角及び高変倍化を達成しようとす
ると、各レンズ群の移動量が大きくなり、又第1群の前
玉径も大きくなるためレンズ系が大きくなり、又各レン
ズ群の屈折力を強くすることにより発生する収差変動を
該非球面で良好に補正するのが難しくなってくる。
In US Pat. No. 5,095,536, in a three-group zoom lens consisting of three lens groups having positive, positive and negative refracting powers, a concave surface is provided on the object side near the stop in the second lens group having positive refracting power. Introducing an aspherical surface on the lens surface with a negative refraction effect. However, if an attempt is made to achieve a wide angle of view and a high zoom ratio in this zoom lens, the amount of movement of each lens group increases and the front lens diameter of the first group also increases, so that the lens system becomes large, and It becomes difficult to satisfactorily correct the aberration variation generated by increasing the refracting power of the lens group with the aspherical surface.

【0013】特開平3−249614号公報において
は、正、正、正の負の屈折力の4つのレンズ群、或いは
正、負、正、負の屈折力の4つのレンズ群で構成された
広画角、高変倍なズームレンズが示されているが、構成
レンズ枚数が多く、非球面の効果が十分に発揮されてい
ない。
In Japanese Laid-Open Patent Publication No. 3-249614, a wide lens group composed of four lens groups having positive, positive, and negative refractive powers, or four lens groups having positive, negative, positive, and negative refractive powers. Although a zoom lens with a wide angle of view and a high zoom ratio is shown, the number of constituent lenses is large and the effect of the aspherical surface is not sufficiently exerted.

【0014】又、特開平3−73907号公報において
は、正、正、負の屈折力の3つのレンズ群で構成され、
少なくとも正の屈折力を有する第2レンズ群中の絞り近
傍の正レンズに光軸から離れるに従って正の屈折力が弱
まるような非球面を導入している。これにより広画角な
ズームレンズを達成しているが、第2レンズ群のレンズ
枚数が多く、同群中の非球面は小型化には効果的に十分
寄与していない。
Further, in Japanese Patent Laid-Open No. 3-73907, it is composed of three lens groups having positive, positive and negative refracting powers.
An aspherical surface is introduced into the positive lens near the stop in the second lens unit having at least positive refractive power so that the positive refractive power weakens as the distance from the optical axis increases. This achieves a zoom lens with a wide angle of view, but the number of lenses in the second lens group is large, and the aspherical surface in the same lens group does not effectively contribute to size reduction.

【0015】又、特開平3−233422号公報におい
ては、負、正、負の屈折力の3つのレンズ群で構成さ
れ、第3レンズ群中において非球面を複数枚導入してい
る。しかしながら、光学全長が広角端において約66m
m程度であり、レンズ全長が短いとは言い難く、また更
なる広角化を行った場合、全変倍域にわたり良好な収差
補正を行うことは難しい。
Further, in Japanese Patent Laid-Open No. 3-233422, it is composed of three lens groups having negative, positive and negative refracting powers, and a plurality of aspherical surfaces are introduced in the third lens group. However, the total optical length is about 66 m at the wide-angle end.
It is difficult to say that the total lens length is short, and it is difficult to perform good aberration correction over the entire zooming range when the wide angle is further increased.

【0016】本発明は複数のレンズ群を有するズームレ
ンズにおいて、例えば全体として3つのグループのレン
ズ群に分けたズームレンズにおいて非球面を適切なレン
ズ群のレンズ面に適用することにより、広画角化及び高
変倍時に問題となってくる諸収差を良好に補正しつつレ
ンズ系全体の小型化を図った全変倍範囲にわたり高い光
学性能を有したズームレンズの提供を目的とする。
According to the present invention, in a zoom lens having a plurality of lens groups, for example, in a zoom lens divided into three groups as a whole, an aspherical surface is applied to a lens surface of an appropriate lens group to obtain a wide angle of view. It is an object of the present invention to provide a zoom lens having high optical performance over the entire zoom range in which various aberrations that become a problem at the time of zooming and high zooming are favorably corrected and the overall lens system is downsized.

【0017】[0017]

【課題を解決するための手段】本発明のズームレンズ
は、物体側より順に負の屈折力の第1群、正の屈折力の
第2群そして負の屈折力の第3群の3つのレンズ群を有
し、各レンズ群間隔を変えて変倍を行い、無限遠物体の
ときの軸上光線の第i面への広角端と望遠端での入射高
を各々Hiw(Hiw>0),Hit(Hit>0)、
最大画角の軸外主光線の第i面への広角端と望遠端での
入射高を各々Hbiw,Hbitとしたとき、 Hiw>|Hbiw| ・・・・・・・・(1) Hit>|Hbit| ・・・・・・・・(2) を満足する物体側に凹面を向けた負の屈折力のレンズ面
Raにレンズ中心からレンズ周辺にいくに従い負の屈折
力が強くなる形状の非球面を施したことを特徴としてい
る。
The zoom lens according to the present invention comprises three lenses, in order from the object side, a first group having a negative refractive power, a second group having a positive refractive power, and a third group having a negative refractive power. The zoom lens has a group, and the distance between each lens group is changed to perform zooming. When an object at infinity is used, the incident heights of the axial ray on the i-th surface at the wide-angle end and the telephoto end are respectively Hiw (Hiw> 0), Hit (Hit> 0),
Letting Hbiw and Hbit be the incident heights of the off-axis chief ray with the maximum angle of view at the wide-angle end and the telephoto end, respectively, Hiw> | Hbiw | ... (1) Hit> | Hbit | ··························································· (2) It is characterized by having an aspherical surface.

【0018】[0018]

【実施例】図1〜図5は本発明のズームレンズの実施例
1〜5の近軸屈折力配置を示す模式図である。図6〜図
10は本発明のズームレンズの後述する数値実施例1〜
5の広角端のレンズ断面図である。図1〜図5において
(A)は広角端、(B)は望遠端を示している。図11
〜図13は本発明の数値実施例1の広角端、中間、望遠
端の収差図、図14〜図16は本発明の数値実施例2の
広角端、中間、望遠端の収差図、図17〜図19は本発
明の数値実施例3の広角端、中間、望遠端の収差図、図
20〜図22は本発明の数値実施例4の広角端、中間、
望遠端の収差図、図23〜図25は本発明の数値実施例
5の広角端、中間、望遠端の収差図である。
1 to 5 are schematic views showing the paraxial refractive power arrangements of Examples 1 to 5 of the zoom lens of the present invention. 6 to 10 are numerical examples 1 to be described later of the zoom lens of the present invention.
5 is a lens cross-sectional view at the wide-angle end of FIG. 1 to 5, (A) shows the wide-angle end and (B) shows the telephoto end. Figure 11
To FIG. 13 are aberration diagrams of the numerical example 1 of the present invention at the wide-angle end, the middle, and the telephoto end, and FIGS. 14 to 16 are aberration diagrams of the wide-angle end, the middle, and the telephoto end of the numerical example 2 of the present invention. 19 is an aberration diagram at the wide-angle end, the middle, and the telephoto end of Numerical Embodiment 3 of the present invention, and FIGS.
23 to 25 are aberration diagrams at the telephoto end, and FIGS. 23 to 25 are aberration diagrams at the wide-angle end, the middle, and the telephoto end of Numerical Example 5 of the present invention.

【0019】図中、L1は負の屈折力の第1群、L2は
正の屈折力の第2群、L3は負の屈折力の第3群、SP
は開口絞り、IPは像面である。
In the figure, L1 is the first group of negative refracting power, L2 is the second group of positive refracting power, L3 is the third group of negative refracting power, SP
Is an aperture stop, and IP is an image plane.

【0020】本発明のズームレンズは複数のレンズ群よ
り成るが、図1〜図5の各実施例では複数のレンズ群を
便宜上全体として負の屈折力の第1群L1、正の屈折力
の第2群L2、そして負の屈折力の第3群の3つのグル
ープに分けている。そして基本的に第1群L1と第2群
L2のレンズ群間隔と第2群L2と第3群のレンズ群間
隔が変化するように、各レンズ群を矢印の如く移動させ
て広角端から望遠端への変倍を行っている。
The zoom lens according to the present invention comprises a plurality of lens groups. In each of the embodiments shown in FIGS. 1 to 5, the plurality of lens groups are used for convenience as a whole with the first lens unit L1 having a negative refracting power and the lens unit having a positive refracting power. It is divided into three groups, a second group L2 and a third group having negative refractive power. Then, basically, each lens group is moved as indicated by an arrow so that the distance between the first lens unit L1 and the second lens unit L2 and the lens unit distance between the second lens unit L2 and the third lens unit are changed so as to change from the wide angle end to the telephoto end. We are scaling to the edge.

【0021】また、このような複数のレンズ群より構成
したとき、前述の条件式(1),(2)を満足するレン
ズ面に所定形状の非球面を施すことにより広画角及び高
変倍化を図る際の収差変動を良好に補正し、全変倍範囲
にわたり高い光学性能を得ている。
Further, in the case of being constituted by such a plurality of lens groups, a wide angle of view and high zooming can be achieved by providing an aspherical surface of a predetermined shape on the lens surface which satisfies the above-mentioned conditional expressions (1) and (2). Aberration fluctuations at the time of improvement are satisfactorily corrected, and high optical performance is obtained over the entire zoom range.

【0022】次に本発明のズームレンズのレンズ構成の
特徴について説明する。
Next, the features of the lens configuration of the zoom lens of the present invention will be described.

【0023】本発明のズームレンズは広角端において、
物体側から合成屈折力が負の屈折力の第1群L1と、あ
る程度間隔を隔てて合成屈折力が正の屈折力の第2群L
2、更にある程度間隔を隔てて合成屈折力が負の屈折力
の第3群L3を配置している。このような負、正、負の
屈折力の対称型的な光学配置を広角端でとることによ
り、第2群L2の屈折力を強めることができ、これによ
り広画角化及び小型化を達成する際の諸収差の補正を良
好に行えるようにしている。
At the wide-angle end, the zoom lens of the present invention is
From the object side, the first lens unit L1 having negative refracting power and the second lens unit L1 having positive refracting power with a certain distance from each other.
2. The third lens unit L3 having a negative refractive power is arranged with a certain distance. By taking such a symmetrical optical arrangement of negative, positive, and negative refracting powers at the wide-angle end, it is possible to strengthen the refracting power of the second lens unit L2, thereby achieving a wide angle of view and downsizing. When this is done, it is possible to favorably correct various aberrations.

【0024】又、合成屈折力が負の第1群L1と合成屈
折力が正の第2群L2とが、ある程度間隔を隔てて配置
することにより、レトロフォーカスタイプの形態をとっ
ており、これにより広画角化の際に問題となるバックフ
ォーカスの確保を容易にしている。又第2群L2は物体
側から正の屈折力を有する第2a群L2a、負の屈折力
を有する第2b群L2b、正の屈折力を有する第2c群
L2cより構成し、このとき広角端においては互いに接
近するように配置して対称型をとることにより第2群L
2で発生する諸収差を効果的に補正している。
Further, the first lens unit L1 having a negative composite refractive power and the second lens unit L2 having a positive composite refractive power are arranged with a certain distance therebetween to form a retrofocus type. This makes it easy to secure the back focus, which is a problem when widening the angle of view. The second lens unit L2 is composed of a second lens unit L2a having a positive refractive power, a second lens unit L2b having a negative refractive power, and a second lens unit L2c having a positive refractive power from the object side. Are arranged so that they are close to each other, and the second group L
The various aberrations generated in 2 are effectively corrected.

【0025】一般に、レンズ系の小型化及び高変倍化を
達成するには、各レンズ群の屈折力を強めると共に各レ
ンズ群の構成レンズ枚数をできるかぎり削減することが
必要である。この小型化、高変倍化を進めていくと、正
レンズ群による負方向の球面収差の補正が難しくなって
くる。本発明ではこのときの球面収差の補正のために広
角端及び望遠端において、軸上光線高に対し軸外主光線
高が絶対値で小さくなり、かつ物体側に凹面を向けた負
の屈折力のレンズ面に非球面を導入している。
In general, in order to achieve downsizing and high zooming of a lens system, it is necessary to strengthen the refractive power of each lens group and reduce the number of constituent lenses of each lens group as much as possible. As this size reduction and higher zooming are promoted, it becomes difficult to correct negative spherical aberration by the positive lens group. In the present invention, in order to correct spherical aberration at this time, the off-axis chief ray height becomes smaller in absolute value with respect to the on-axis ray height at the wide-angle end and the telephoto end, and the negative refracting power with the concave surface facing the object side. Introducing an aspherical surface into the lens surface of.

【0026】即ち、条件式(1),(2)を同時に満た
すレンズ面に光軸から離れるに従って負の屈折力作用を
強めるような形状の非球面を導入することにより、主に
負方向の球面収差を正方向に補正している。
That is, by introducing an aspherical surface having a shape that strengthens the negative refracting power action with increasing distance from the optical axis into the lens surface that simultaneously satisfies the conditional expressions (1) and (2), a spherical surface mainly in the negative direction is introduced. Aberration is corrected in the positive direction.

【0027】この他、条件式(1),(2)を満たすよ
うな範囲のレンズ面に所定形状の非球面を設けることに
より変倍域全域において、非点収差の変動にはあまり影
響を及ぼさず、球面収差とコマ収差を良好に補正してい
る。この条件式を満たさない場合には、変倍域全域にお
いて軸外の収差に大きな影響を及ぼさずに効果的に軸上
収差を補正することが難しくなる。又、負レンズの物体
側の凹レンズ面に前記形状の非球面を導入するのがより
強い球面収差の補正作用を持つことができるため望まし
い。
In addition to this, by providing an aspherical surface of a predetermined shape on the lens surface in a range that satisfies the conditional expressions (1) and (2), the variation of astigmatism is not greatly affected in the entire variable power range. Instead, spherical aberration and coma are well corrected. If this conditional expression is not satisfied, it becomes difficult to effectively correct the on-axis aberration without affecting the off-axis aberration in the entire zoom range. Further, it is desirable to introduce an aspherical surface having the above-mentioned shape into the concave lens surface on the object side of the negative lens because it can have a stronger spherical aberration correcting action.

【0028】図26(A),(B)は広角端と望遠端に
おいて軸上光線と軸外光線の条件式(1),(2)を満
足するレンズ面への入射状態を示した説明図である。
FIGS. 26 (A) and 26 (B) are explanatory views showing incident states of the axial ray and the off-axis ray on the lens surface satisfying the conditional expressions (1) and (2) at the wide-angle end and the telephoto end. Is.

【0029】又、条件式(1),(2)を満たすレンズ
面に非球面を施す際に全体として正の屈折力を有する第
2群L2の第2b群L2b中の負レンズに施すのが変倍
における軸外の収差変動にあまり影響なく、効果的に球
面収差の変動を補正することができるので好ましい。
Further, when an aspherical surface is applied to the lens surface satisfying the conditional expressions (1) and (2), it is applied to the negative lens in the second group L2b of the second group L2 having a positive refractive power as a whole. This is preferable because the fluctuation of the spherical aberration can be effectively corrected without much influence on the fluctuation of the off-axis aberration during zooming.

【0030】このように本発明では、前記の条件式を満
たす物体側に凹面を向けた負の屈折作用を持ったレンズ
面に少なくとも1つの非球面を導入することにより、軸
上収差と軸外収差をバランスよく補正すると共に高変倍
化及び広画角化を達成している。
As described above, according to the present invention, at least one aspherical surface is introduced into the lens surface having the negative refraction action with the concave surface facing the object side, which satisfies the above-mentioned conditional expression. Aberrations are well-balanced and high zoom ratio and wide angle of view are achieved.

【0031】本発明におけるズームレンズにおいて、フ
ォーカシングはズーミング中、フォーカス群の横倍率が
等倍にならない任意のレンズ群で行っている。第1群L
1中の1つのレンズ群がある程度強い屈折力を有してい
る場合、このレンズ群によってフォーカスすればズーム
全域中任意の物体距離におけるフォーカシング量を一定
にできるため、機構の簡略化が期待できる。
In the zoom lens according to the present invention, focusing is performed by an arbitrary lens group in which the lateral magnification of the focus group does not become equal during zooming. First group L
When one lens group in 1 has a certain degree of strong refractive power, focusing by this lens group can make the focusing amount constant at an arbitrary object distance throughout the zoom range, so that simplification of the mechanism can be expected.

【0032】広角端において、バックフォーカスが十分
にあり、最終レンズ群が負の屈折力を持ち、その屈折力
がある程度強い場合には、最終レンズ群を像面側に移動
させても良い。この際、第1群のレンズ外径の小型化が
期待できる。又、第1群から最終レンズ群中の2つ以上
のレンズ群を同時に移動させても良い。又フォーカス群
が絞りを含む場合、絞りを光軸上固定状態にしてフォー
カス群を移動させることはフォーカス時に絞り機構を移
動させるための駆動トルクの低減を行うことができるの
で好ましい。
At the wide-angle end, when the back focus is sufficient, the final lens unit has a negative refracting power, and the refracting power is strong to some extent, the final lens unit may be moved to the image plane side. At this time, it is expected that the outer diameter of the lens of the first lens group will be reduced. Also, two or more lens groups in the first lens group to the last lens group may be moved simultaneously. When the focus group includes a diaphragm, it is preferable to move the focus group while keeping the diaphragm fixed on the optical axis because the driving torque for moving the diaphragm mechanism during focusing can be reduced.

【0033】次に図1〜図5に示す各ズームレンズの特
徴について説明する。
Next, the features of each zoom lens shown in FIGS. 1 to 5 will be described.

【0034】図1は本発明の数値実施例1の近軸的屈折
力配置図を示している。図1においては第1群L1を物
体側より負の屈折力を有する1つのレンズ群(L1群)
より構成し、又第2群L2を物体側より正の屈折力の第
2a群(L2a群)、負の屈折力の第2b群(L2b
群)、正の屈折力の第2c群(L2c群)の3つのレン
ズ群で構成し、第3群を負の屈折力を持つ1つのレンズ
群(L3群)により構成している。
FIG. 1 shows a paraxial refractive power arrangement diagram of Numerical Embodiment 1 of the present invention. In FIG. 1, the first lens unit L1 is a lens unit (L1 lens unit) having a negative refractive power from the object side.
The second lens unit L2 includes a second lens unit L2a having a positive refractive power (L2a lens) and a second lens subunit L2b having a negative refractive power (L2b) from the object side.
Lens group) and a second lens group (L2c group) having a positive refractive power, and the third lens group is composed of one lens group (L3 group) having a negative refractive power.

【0035】広角端より望遠端ではL1群とL2a群の
群間隔を小さくすることにより、後述する(9)式より
理解されるように、互いのL1群とL2a群との合成屈
折力が各々小(合成焦点距離は長く)になり、結果とし
てL2a群及びL3群の増倍作用により、望遠化が効率
よく行え高変倍化に有効となるようにしている。又、L
2b群とL2c群との群間隔を大きくすることにより、
軸外光線がL2c群の光軸より離れた位置を通過し軸上
収差と軸外収差の補正をバランス良く行っている。
By reducing the group spacing between the L1 group and the L2a group from the wide-angle end to the telephoto end, as will be understood from the equation (9) described later, the combined refractive powers of the L1 group and the L2a group are different from each other. The focal length becomes small (composite focal length is long), and as a result, by the multiplication effect of the L2a group and the L3 group, it becomes possible to efficiently perform telephoto, and it is effective for high zooming. Also, L
By increasing the group interval between the 2b group and the L2c group,
The off-axis ray passes through a position away from the optical axis of the L2c group, and the axial aberration and the off-axis aberration are well balanced.

【0036】図2は本発明の数値実施例2の近軸的屈折
力配置図を示している。図2においては第1群L1を物
体側より正の屈折力の第1a群(L1a)、負の屈折力
の第1b群(L1b)の2つのレンズ群より構成し、第
2群L2を物体側より正の屈折力の第2a群(L2
a)、負の屈折力の第2b群(L2b)、正の屈折力の
第2c群(L2c)の3つのレンズ群より構成し、第3
群を負の屈折力を有する1つのレンズ群(L3群)によ
り構成している。
FIG. 2 shows a paraxial refractive power arrangement of Numerical Embodiment 2 of the present invention. In FIG. 2, the first lens unit L1 is composed of two lens units, a first lens unit (L1a) having a positive refractive power and a first lens group 1b (L1b) having a negative refractive power from the object side, and the second lens unit L2 is an object. The second group a (L2
a), a second lens group (L2b) having a negative refractive power, and a second lens group (L2c) having a positive refractive power.
The group is composed of one lens group (L3 group) having a negative refractive power.

【0037】広角端においてL1群とL2群とが、ある
程度間隔を持って配置されているため、結果としてL1
群とL2群はレトロフォーカスタイプの形態をとる。こ
れにより、広角化の際に問題となるバックフォーカスの
確保を容易にしている。又、広角端より望遠端におい
て、L1a,L2a群及びL2c,L3群の間隔を小と
することにより、(9)式により理解されるように互い
の群との合成屈折力が各々小となり(合成焦点距離は長
く)、結果としてL2b群及びL3群の増倍効果により
望遠化が効率よく行え、高変倍化を容易にしている。広
角端においてL1aとL1b群の群間隔を小さくするこ
とにより、特に広角化した際にL1b群で発生する負の
歪曲収差を良好に補正している。
At the wide-angle end, the L1 group and the L2 group are arranged with a certain distance, and as a result, L1 group and L2 group are arranged.
The group and the L2 group have a retrofocus type form. This facilitates ensuring a back focus, which is a problem when widening the angle. Further, by reducing the distance between the L1a, L2a group and the L2c, L3 group from the wide-angle end to the telephoto end, the composite refractive power with each other becomes smaller as understood from the expression (9) ( (The combined focal length is long), and as a result, the zooming effect of the L2b group and the L3 group makes it possible to efficiently perform a telephoto operation and facilitate a high zoom ratio. By reducing the group distance between the L1a and L1b groups at the wide-angle end, the negative distortion aberration occurring in the L1b group when the angle of view is widened is favorably corrected.

【0038】図3は本発明の数値実施例3の近軸的屈折
力配置図を示している。図3においては第1群L1を物
体側より正の屈折力の第1a群(L1a)、負の屈折力
の第1b群(L1b)の2つのレンズ群より構成し、第
2群L2を物体側より正の屈折力の第2a群(L2
a)、負の屈折力の第2b群(L2b)、正の屈折力の
第2c群(L2c)の3つのレンズ群により構成し、第
3群を負の屈折力を有する1つのレンズ群L3群により
構成している。
FIG. 3 shows a paraxial refractive power arrangement diagram of Numerical Embodiment 3 of the present invention. In FIG. 3, the first lens unit L1 is composed of two lens units, a first lens unit (L1a) having a positive refractive power and a first lens group 1b (L1b) having a negative refractive power from the object side, and the second lens unit L2 is an object. The second group a (L2
a), a second lens unit L2b having a negative refractive power, and a second lens unit L2c having a positive refractive power (L2c), and the third lens unit L3 having a negative refractive power. It is composed of groups.

【0039】但しL2b群とL2c群とは変倍に際し一
体的に移動を行い、図3において合成焦点距離が正のL
2bc群として表わしている。ここで広角端より望遠端
ではL1a群とL1群の群間隔を大きくし、L1b群と
L2a群の群間隔を小さくすることにより広角端では負
の歪曲収差を補正し、望遠端ではテレフォトタイプを構
成することにより、レンズ全長の短縮を行っている。
However, the L2b group and the L2c group move integrally during zooming, and in FIG.
It is represented as a 2 bc group. Here, at the telephoto end rather than at the wide-angle end, the group distance between the L1a group and the L1 group is increased, and the group distance between the L1b group and the L2a group is decreased to correct negative distortion at the wide-angle end and at the telephoto end. By configuring the above, the total lens length is shortened.

【0040】図4は本発明の数値実施例4の近軸的屈折
力配置図を示している。図4においては第1群L1を物
体側より負の屈折力を有する1つのレンズ群(L1)よ
り構成し、第2群L2を物体側より正の屈折力の第2a
群(L2a)、負の屈折力の第2b群(L2b)、正の
屈折力の第2c群(L2c)の3つのレンズ群により構
成し、第3群を負の屈折力を有する1つのレンズ群L3
群により構成している。
FIG. 4 shows a paraxial refractive power arrangement diagram of Numerical Embodiment 4 of the present invention. In FIG. 4, the first group L1 is composed of one lens group (L1) having a negative refractive power from the object side, and the second group L2 is a second lens group having a positive refractive power from the object side.
One lens having a negative refractive power, which is composed of three lens groups, a group (L2a), a second group b having a negative refractive power (L2b), and a second group c having a positive refractive power (L2c). Group L3
It is composed of groups.

【0041】但し第2b群L2b群と第2c群L2c群
とは変倍に際し一体的に移動を行い、図4において合成
焦点距離が正のL2bc群として表わしている。広角端
より望遠端ではL1群とL2a群の群間隔、そしてL2
群(L2bc群)とL3群の群間隔を小さくし、変倍中
レンズ系が全体として対称型を維持するようにして良好
なる光学性能が得やすくしており、又広角端においてレ
ンズ全長を小さくしている。
However, the second group L2b and the second group C2c move together during zooming, and are shown as a group L2bc having a positive combined focal length in FIG. From the wide-angle end to the telephoto end, the distance between the L1 group and the L2a group, and L2
The group distance between the group (L2bc group) and the L3 group is made small so that the lens system during zooming maintains a symmetric type as a whole so that good optical performance is easily obtained, and the total lens length at the wide-angle end is made small. is doing.

【0042】図5は本発明の数値実施例5の近軸的屈折
力配置図を示している。図5においては第1群L1群を
物体側より負の屈折力を有する1つのレンズ群(L1)
より構成し、第2群L2群を物体側より正の屈折力の第
2a群(L2a)、負の屈折力の第2b群(L2b)、
正の屈折力の第2c群(L2c)の3つのレンズ群によ
り構成し、第3群を負の屈折力を有する1つのレンズ群
L3群により構成している。
FIG. 5 shows a paraxial refractive power arrangement diagram of Numerical Embodiment 5 of the present invention. In FIG. 5, the first lens unit L1 is a single lens unit (L1) having a negative refractive power from the object side.
The second lens unit L2 includes a second lens unit L2a having a positive refractive power, a second lens unit L2b having a negative refractive power, and a second lens unit L2b having a negative refractive power from the object side.
It is composed of three lens groups of the second c group (L2c) having a positive refractive power, and the third group is composed of one lens group L3 group having a negative refractive power.

【0043】但し、L2b群とL2c群とは変倍に際し
一体的に移動を行い、図5において合成焦点距離が正の
L2bc群として表わしている。広角端より望遠端では
L1群とL2群及びL2群とL3群の群間隔を小さくす
ると同時に各群が物体側へ移動を行い、変倍中レンズ系
が全体として対称型を維持するようにして良好なる光学
性能を得やすくしつつ効果的に変倍を行っている。
However, the L2b group and the L2c group move integrally during zooming, and are shown as the L2bc group having a positive combined focal length in FIG. From the wide-angle end to the telephoto end, the distance between the L1 group and the L2 group and the L2 group and the L3 group is reduced, and at the same time, each group moves toward the object side so that the lens system during zooming maintains a symmetrical shape as a whole. Zooming is effectively performed while making it easy to obtain good optical performance.

【0044】本発明の目的とするズームレンズは以上の
諸条件を満足することにより達成されるが、更にレンズ
系全体の小型化を図りつつ、広画角化及び高変倍化そし
て高い光学性能を得るには次の諸条件を満足させるのが
良い。
The zoom lens which is the object of the present invention can be achieved by satisfying the above-mentioned various conditions. However, while further downsizing the entire lens system, a wide angle of view, high zoom ratio and high optical performance are achieved. To obtain, it is good to satisfy the following conditions.

【0045】(1−1)前記第3群の焦点距離をf3、
広角端における全系の焦点距離をFwとしたとき、 0.7≦|Fw/f3|≦2.5 ・・・・・・・・(3) なる条件を満足することである。
(1-1) The focal length of the third lens unit is f3,
When the focal length of the entire system at the wide-angle end is Fw, the condition of 0.7 ≦ | Fw / f3 | ≦ 2.5 (3) is satisfied.

【0046】条件式(3)は第3群L3の負の屈折力に
関するものであり、上限値を越えて第3群L3の屈折力
が強くなると、広角端においてバックフォーカスが短く
なりすぎてしまい、一定の周辺光量を確保するために第
3群L3の外径の大型化を招き良くない。又下限値を越
えて第3群L3の屈折力が弱くなると、変倍時に第3群
による変倍効果が弱くなるため、結果として一定の変倍
比を確保するためには各レンズ群の移動量を大きくしな
ければならず、この結果レンズ全長が増大してしまうの
で良くない。
Conditional expression (3) relates to the negative refracting power of the third lens unit L3. If the refracting power of the third lens unit L3 is increased beyond the upper limit, the back focus becomes too short at the wide-angle end. However, it is not good because the outer diameter of the third lens unit L3 is increased in order to secure a constant amount of peripheral light. If the lower limit is exceeded and the refractive power of the third lens unit L3 becomes weak, the zooming effect of the third lens unit becomes weak during zooming. As a result, in order to ensure a constant zoom ratio, each lens unit must move. The amount must be increased, which results in an increase in the total lens length, which is not good.

【0047】(1−2)絞りは第2群中に配置するのが
良い。そして絞りを変倍時に他のレンズ群と一体に移動
し、又は独立に移動させるのが良い。尚、絞りは第2群
L2中の他に第1群L1と第2群L2の空気間隔中に配
置しても良く、これによればレンズ径の小型化及び収差
補正上のバランスの面から見ても望ましい。
(1-2) It is preferable to arrange the diaphragm in the second lens group. Then, it is preferable that the diaphragm is moved integrally with the other lens groups when the magnification is changed or independently. The diaphragm may be arranged in the air space between the first lens unit L1 and the second lens unit L2 in addition to the second lens unit L2. According to this, from the viewpoint of downsizing of the lens diameter and balance in aberration correction. Good to see.

【0048】(1−3)本発明において、更により良く
収差補正を行うには上記条件式(1),(2)を満足す
るレンズ面以外に非球面を導入することが良い。例え
ば、第3群L3の少なくとも1枚の負レンズ中に少なく
とも1面の非球面を導入すれば主に軸外収差の変動をよ
り良く補正することが可能になる。又、更には第2群L
2中に前述の非球面以外のレンズ面に非球面を導入すれ
ば軸外の収差補正を良好に行える。例えばL2c群中の
増面側に凸面を向けたレンズ面に光軸より離れるに従っ
て正の屈折力が弱まるような形状の非球面を導入するの
が良い。又第1群L1に非球面を導入すれば主にディス
トーションの補正が容易になる。
(1-3) In the present invention, in order to perform even better aberration correction, it is preferable to introduce an aspherical surface in addition to the lens surfaces that satisfy the above conditional expressions (1) and (2). For example, if at least one aspherical surface is introduced into at least one negative lens of the third lens unit L3, it becomes possible to mainly correct better the fluctuation of the off-axis aberration. In addition, the second group L
If an aspherical surface is introduced into lens surface 2 other than the aspherical surface described above, off-axis aberration correction can be favorably performed. For example, it is preferable to introduce an aspherical surface having a shape in which the positive refracting power is weakened as the distance from the optical axis is increased, to the lens surface having the convex surface facing the increasing surface in the L2c group. Further, if an aspherical surface is introduced into the first lens unit L1, mainly distortion can be easily corrected.

【0049】(1−4)前記第1群と第2群の広角端に
おける焦点距離を各々f1,f2としたとき、 0.2≦|Fw/f1|≦1.0 ・・・・・・・・(4) 1.0≦ Fw/f2 ≦2.5 ・・・・・・・・(5) なる条件を満足することである。
(1-4) When the focal lengths at the wide-angle end of the first group and the second group are f1 and f2, respectively, 0.2 ≦ | Fw / f1 | ≦ 1.0 · (4) 1.0 ≦ Fw / f2 ≦ 2.5 (5) The condition is satisfied.

【0050】条件式(4)の上限値を越えると、広角端
において第1群L1の負の屈折力が強くなりすぎレトロ
フォーカス系の作用が強くなり、レンズ全長が大きくな
ってきて良くない。又第1群L1において球面収差が強
くオーバーに発生し、これを他のレンズ群で補正するこ
とが困難となってくる。又、下限値を越えるとバックフ
ォーカスを所定量確保することが困難になる。
If the upper limit of conditional expression (4) is exceeded, the negative refracting power of the first lens unit L1 at the wide-angle end becomes too strong, and the action of the retrofocus system becomes too strong. In addition, spherical aberration is strongly generated in the first lens unit L1 and it is difficult to correct this with another lens unit. On the other hand, if the lower limit is exceeded, it becomes difficult to secure a predetermined amount of back focus.

【0051】条件式(5)は第2群L2の正の屈折力に
関するものであり、条件式(5)の上限値を越えると第
2群L2の屈折力が強くなりすぎ、第2群L2と第3群
L3によるテレフォトタイプの作用が強くなりすぎてし
まい所定量のバックフォーカスが確保しにくくなる。一
方、条件式(5)の下限値を越えると第2群L2の屈折
力が弱くなり、広角端において一定の焦点距離を得るた
めに負レンズ群の屈折力を弱めることになり、結果とし
てレンズ全長が増大してしまうので良くない。
Conditional expression (5) relates to the positive refractive power of the second lens unit L2. If the upper limit of conditional expression (5) is exceeded, the refractive power of the second lens unit L2 becomes too strong, and the second lens unit L2. As a result, the telephoto type action of the third lens unit L3 becomes too strong, and it becomes difficult to secure a predetermined amount of back focus. On the other hand, if the lower limit of conditional expression (5) is exceeded, the refracting power of the second lens unit L2 will become weak, and the refracting power of the negative lens unit will be weakened in order to obtain a fixed focal length at the wide-angle end. It is not good because the total length will increase.

【0052】(1−5)前記第3群の広角端における結
像倍率をβ3wとするとき、 0.1≦f3×(1−β3w)/Fw≦0.5 ・・・・・・・・(6) なる条件を満足することである。
(1-5) When the imaging magnification at the wide-angle end of the third lens unit is β3w, 0.1 ≦ f3 × (1−β3w) /Fw≦0.5 ... (6) To satisfy the following condition.

【0053】条件式(6)は広角端におけるバックフォ
ーカスを適切に設定するための条件に関するものであ
る。条件式(6)の上限値を越えると広角端で必要以上
にバックフォーカスが長くなりすぎてしまいレンズ系全
体の小型化を達成するのが難しくなる。又、下限値を越
えると広角端で所定量のバックフォーカスを確保するの
が難しくなり、結果として第3群L3のレンズ径の増大
を招いてしまうので良くない。
Conditional expression (6) relates to a condition for properly setting the back focus at the wide-angle end. If the upper limit of conditional expression (6) is exceeded, the back focus becomes unnecessarily long at the wide-angle end, making it difficult to achieve miniaturization of the entire lens system. On the other hand, when the value goes below the lower limit, it becomes difficult to secure a predetermined amount of back focus at the wide-angle end, resulting in an increase in the lens diameter of the third lens unit L3, which is not preferable.

【0054】(1−6)広角端における第3群の横倍率
をβ3wとするとき、 1.1<β3w<1.8 ・・・・・・・・(7) なる条件を満足することである。
(1-6) When the lateral magnification of the third lens unit at the wide-angle end is β3w, by satisfying the condition of 1.1 <β3w <1.8 (7) is there.

【0055】条件式(7)は第3群L3の横倍率に関す
るものである。上限値を越えて第3群L3の横倍率が大
きくなり過ぎるとバックフォーカスは長くなるが、それ
以前のレンズ群のパワーが強くなりすぎ収差補正が困難
になる。又、下限値を越えて第3群L3の横倍率が小さ
くなり過ぎるとレンズ系全体の小型化が難しくなってく
る。
Conditional expression (7) relates to the lateral magnification of the third lens unit L3. When the lateral magnification of the third lens unit L3 becomes too large beyond the upper limit value, the back focus becomes long, but the power of the lens unit before that becomes too strong and aberration correction becomes difficult. If the lateral magnification of the third lens unit L3 becomes too small below the lower limit, it becomes difficult to downsize the entire lens system.

【0056】(1−7)広角端における第2群の横倍率
をβ2w(β2w<0)とするとき、 0.1<|β2w|<0.6 ・・・・・・・・(8) なる条件を満足することである。
(1-7) When the lateral magnification of the second lens unit at the wide-angle end is β2w (β2w <0), 0.1 <| β2w | <0.6 (8) To satisfy the condition.

【0057】ここで、2つの隣接するレンズ群(第k
群,第j群)における合成屈折力φkjを示す式は以下
のとおりになる。
Here, two adjacent lens groups (kth
The formula showing the combined refractive power φkj in the (group, j-th group) is as follows.

【0058】 φkj=φk+φj−φk*φj*e ・・・・・・・・(9) 但し、φk:第kレンズ群の屈折力 φj:第jレンズ群の屈折力 e:第kレンズ群と第jレンズ群間の主点間隔 第2群L2と第3群L3は互いに屈折力は逆符号をとる
ため、(9)式でわかるように、広角端より望遠端では
空気間隔を小とすることで合成屈折力を小とすることが
できる。
Φkj = φk + φj−φk * φj * e (9) where φk: refractive power of the kth lens group φj: refractive power of the jth lens group e: kth lens group Principal point spacing between the j-th lens group Since the second lens unit L2 and the third lens unit L3 have mutually opposite refracting powers, the air distance is made smaller at the telephoto end than at the wide-angle end, as can be seen from equation (9). As a result, the combined refractive power can be reduced.

【0059】条件式(8)は広角端における第2群L2
の横倍率に関するものであり、(9)式を参照して規制
したものである。条件式(8)の上限値を越えると広角
端においてバックフォーカスがとりずらくなり、結果と
して第3群L3のレンズ径の増大を招いてしまう。又、
下限値を越えると一定の焦点距離を得るために他のレン
ズ群の屈折力が限度を越えて強くなってしまい、諸収差
が多く発生してくるため良くない。
Conditional expression (8) is the second lens unit L2 at the wide-angle end.
The lateral magnification of the above is regulated by referring to the equation (9). If the upper limit of conditional expression (8) is exceeded, the back focus becomes difficult at the wide-angle end, resulting in an increase in the lens diameter of the third lens unit L3. or,
When the value goes below the lower limit, the refracting power of the other lens units exceeds the limit and becomes strong in order to obtain a constant focal length, which causes many aberrations, which is not good.

【0060】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air gap from the object side, and Ni and νi are respectively from the object side of the i-th lens. The refractive index of glass and the Abbe number.

【0061】又前述の各条件式と数値実施例における諸
数値との関係を表−1に示す。
Table 1 shows the relationship between the above-mentioned conditional expressions and various numerical values in the numerical examples.

【0062】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
K,A,B,C,D,Eを各々非球面係数としたとき、
The aspherical shape has an X axis in the optical axis direction, an H axis in the direction perpendicular to the optical axis, a positive light traveling direction, and R as a paraxial radius of curvature.
When K, A, B, C, D and E are aspherical coefficients,

【0063】[0063]

【数1】 なる式で表わしている。 (数値実施例1) F= 28.84〜101.45 FNO= 3.5〜9 2ω= 73.8°〜24.1° R 1= -129.95 D 1= 1.30 N 1=1.48749 ν 1= 70.2 R 2= 29.51 D 2= 1.99 R 3= 29.12 D 3= 2.20 N 2=1.84666 ν 2= 23.8 R 4= 39.39 D 4=可変 R 5= 14.00 D 5= 1.10 N 3=1.84666 ν 3= 23.8 R 6= 11.92 D 6= 3.00 N 4=1.48749 ν 4= 70.2 R 7= -234.68 D 7=可変 R 8=∞(絞り) D 8= 2.50 R 9= -19.70 D 9= 1.50 N 5=1.69320 ν 5= 33.7 R10= -21.42 D10= 2.00 N 6=1.84666 ν 6= 23.8 R11= -62.22 D11=可変 R12=25202.75 D12= 4.10 N 7=1.77250 ν 7= 49.6 R13= -15.62 D13=可変 R14= -18.26 D14= 1.50 N 8=1.69680 ν 8= 55.5 R15= 73.66 D15= 2.30 N 9=1.84666 ν 9= 23.8 R16= 218.48 非球面係数 9面 K= 5.081 A= 0 B= 2.434×10-6 C= 6.462×10-7 D= 0 E= 0 13面 K=-2.521 A= 0 B=-5.677×10-5 C= 1.319×10-7 D= 0 E= 0 14面 K= 4.719×10-1 A= 0 B= 2.780×10-5 C= 8.034×10-8 D= 0 E= 0[Equation 1] It is expressed by (Numerical Example 1) F = 28.84 to 101.45 FNO = 3.5 to 92 ω = 73.8 ° to 24.1 ° R 1 = -129.95 D 1 = 1.30 N 1 = 1.48749 ν 1 = 70.2 R 2 = 29.51 D 2 = 1.99 R 3 = 29.12 D 3 = 2.20 N 2 = 1.84666 ν 2 = 23.8 R 4 = 39.39 D 4 = Variable R 5 = 14.00 D 5 = 1.10 N 3 = 1.84666 ν 3 = 23.8 R 6 = 11.92 D 6 = 3.00 N 4 = 1.48749 ν 4 = 70.2 R 7 = -234.68 D 7 = Variable R 8 = ∞ (Aperture) D 8 = 2.50 R 9 = -19.70 D 9 = 1.50 N 5 = 1.69320 ν 5 = 33.7 R10 = -21.42 D10 = 2.00 N 6 = 1.84666 ν 6 = 23.8 R11 = -62.22 D11 = variable R12 = 25202.75 D12 = 4.10 N 7 = 1.77250 ν 7 = 49.6 R13 = -15.62 D13 = variable R14 = -18.26 D14 = 1.50 N 8 = 1.69680 ν 8 = 55.5 R15 = 73.66 D15 = 2.30 N 9 = 1.84666 ν 9 = 23.8 R16 = 218.48 Aspheric surface coefficient 9 faces K = 5.081 A = 0 B = 2.434 × 10 -6 C = 6.462 × 10 -7 D = 0 E = 0 13 faces K = -2.521 A = 0 B = -5.677 × 10 -5 C = 1.319 × 10 -7 D = 0 E = 0 14 faces K = 4.719 × 10 -1 A = 0 B = 2.780 × 10 -5 C = 8.034 × 10 -8 D = 0 E = 0

【0064】[0064]

【表1】 (数値実施例2) F= 28.83〜102.38 FNO= 3.71〜10.00 2ω= 73.8°〜23.9° R 1= 519.61 D 1= 1.60 N 1=1.80518 ν 1= 25.4 R 2= -351.51 D 2=可変 R 3= -112.82 D 3= 1.30 N 2=1.49699 ν 2= 81.6 R 4= 28.78 D 4=可変 R 5= 13.78 D 5= 2.50 N 3=1.49699 ν 3= 81.6 R 6= 2684.81 D 6=可変 R 7=∞(絞り) D 7= 1.00 R 8= -35.81 D 8= 2.80 N 4=1.84665 ν 4= 23.8 R 9= 1454.82 D 9=可変 R10= -317.50 D10= 4.50 N 5=1.77249 ν 5= 49.6 R11= -16.39 D11=可変 R12= -15.81 D12= 1.80 N 6=1.63999 ν 6= 60.1 R13= -425.93 非球面係数 8面 K=-2.282×10+1 A= 0 B=-1.474×10-4 C= 1.145×10-8 D=-5.666×10-9 E= 0 11面 K=-2.726×10-2 A= 0 B= 6.307×10-6 C= 3.236×10-8 D=-5.515×10-11 E= 0 12面 K=-1.579×10-1 A= 0 B= 1.052×10-5 C= 3.604×10-8 D=-9.831×10-11 E= 0[Table 1] (Numerical Example 2) F = 28.83 to 102.38 FNO = 3.71 to 10.00 2 ω = 73.8 ° to 23.9 ° R 1 = 519.61 D 1 = 1.60 N 1 = 1.80518 ν 1 = 25.4 R 2 = -351.51 D 2 = variable R 3 = -112.82 D 3 = 1.30 N 2 = 1.49699 ν 2 = 81.6 R 4 = 28.78 D 4 = variable R 5 = 13.78 D 5 = 2.50 N 3 = 1.49699 ν 3 = 81.6 R 6 = 2684.81 D 6 = variable R 7 = ∞ (Aperture) D 7 = 1.00 R 8 = -35.81 D 8 = 2.80 N 4 = 1.84665 ν 4 = 23.8 R 9 = 1454.82 D 9 = Variable R10 = -317.50 D10 = 4.50 N 5 = 1.77249 ν 5 = 49.6 R11 = -16.39 D11 = Variable R12 = -15.81 D12 = 1.80 N 6 = 1.63999 ν 6 = 60.1 R13 = -425.93 Aspheric coefficient 8 faces K = -2.282 × 10 +1 A = 0 B = -1.474 × 10 -4 C = 1.145 × 10 -8 D = -5.666 × 10 -9 E = 0 11 surface K = -2.726 × 10 -2 A = 0 B = 6.307 × 10 -6 C = 3.236 × 10 -8 D = -5.515 × 10 - 11 E = 0 12 sides K = -1.579 × 10 -1 A = 0 B = 1.052 × 10 -5 C = 3.60 4 × 10 -8 D = -9.831 × 10 -11 E = 0

【0065】[0065]

【表2】 (数値実施例3) F= 28.85〜101.00 FNO= 3.30〜9.00 2ω= 73.7°〜24.2° R 1= 424.11 D 1= 2.40 N 1=1.51633 ν 1= 64.2 R 2= -60.06 D 2=可変 R 3= -38.54 D 3= 1.20 N 2=1.80400 ν 2= 46.6 R 4= 19.56 D 4= 1.35 R 5= 21.49 D 5= 2.90 N 3=1.84665 ν 3= 23.8 R 6= 176.01 D 6=可変 R 7= 15.65 D 7= 0.90 N 4=1.84665 ν 4= 23.8 R 8= 11.27 D 8= 4.50 N 5=1.48749 ν 5= 70.2 R 9= -21.44 D 9= 0.90 N 6=1.84665 ν 6= 23.8 R10= -29.88 D10=可変 R11=∞ (絞り) D11= 3.00 R12= -24.67 D12= 2.55 N 7=1.80518 ν 7= 25.4 R13= -47.29 D13= 0.50 R14= -36.54 D14= 1.00 N 8=1.65159 ν 8= 58.5 R15= 155.75 D15= 5.80 N 9=1.77249 ν 9= 49.6 R16= -14.23 D16=可変 R17= -28.76 D17= 2.30 N10=1.84665 ν10= 23.8 R18= -20.20 D18= 0.30 R19= -25.76 D19= 1.30 N11=1.69679 ν11= 55.5 R20= -80.69 D20= 3.51 R21= -18.83 D21= 1.50 N12=1.77249 ν12= 49.6 R22= 431.90 非球面係数 12面 K= 4.963 A= 0 B=-6.074×10-5 C=-3.607×10-7 D= 3.331×10-9 E= 0 16面 K=-2.664 A= 0 B=-1.127×10-4 C= 1.634×10-7 D=-1.376×10-9 E= 0[Table 2] (Numerical Example 3) F = 28.85 to 101.00 FNO = 3.30 to 9.00 2 ω = 73.7 ° to 24.2 ° R 1 = 424.11 D 1 = 2.40 N 1 = 1.51633 ν 1 = 64.2 R 2 = -60.06 D 2 = variable R 3 = -38.54 D 3 = 1.20 N 2 = 1.80400 ν 2 = 46.6 R 4 = 19.56 D 4 = 1.35 R 5 = 21.49 D 5 = 2.90 N 3 = 1.84665 ν 3 = 23.8 R 6 = 176.01 D 6 = variable R 7 = 15.65 D 7 = 0.90 N 4 = 1.84665 ν 4 = 23.8 R 8 = 11.27 D 8 = 4.50 N 5 = 1.48749 ν 5 = 70.2 R 9 = -21.44 D 9 = 0.90 N 6 = 1.84665 ν 6 = 23.8 R10 = -29.88 D10 = Variable R11 = ∞ (Aperture) D11 = 3.00 R12 = -24.67 D12 = 2.55 N 7 = 1.80518 ν 7 = 25.4 R13 = -47.29 D13 = 0.50 R14 = -36.54 D14 = 1.00 N 8 = 1.65159 ν 8 = 58.5 R15 = 155.75 D15 = 5.80 N 9 = 1.77249 ν 9 = 49.6 R16 = -14.23 D16 = variable R17 = -28.76 D17 = 2.30 N10 = 1.84665 ν10 = 23.8 R18 = -20.20 D18 = 0.30 R19 = -25.76 D19 = 1.30 N11 = 1.69679 ν11 = 55.5 R20 = -80.69 D20 = 3.51 R21 = -18.83 D21 = 1.50 N12 = 1.77249 ν12 = 49.6 R22 = 431.90 Aspherical surface 12 faces K = 4.963 A = 0 B = -6.074 × 10 -5 C = -3.607 × 10 -7 D = 3.331 × 10 -9 E = 0 16 faces K = -2.664 A = 0 B = -1.127 × 10 -4 C = 1.634 × 10 -7 D = -1.376 × 10 -9 E = 0

【0066】[0066]

【表3】 (数値実施例4) F= 28.86〜101.58 FNO= 3.06〜9.00 2ω= 73.7°〜24.1° R 1= 101.89 D 1= 2.85 N 1=1.51633 ν 1= 64.2 R 2= -61.28 D 2= 0.84 R 3= -39.42 D 3= 1.20 N 2=1.80400 ν 2= 46.6 R 4= 17.90 D 4= 1.07 R 5= 19.60 D 5= 3.35 N 3=1.84665 ν 3= 23.8 R 6= 95.82 D 6=可変 R 7= 16.21 D 7= 0.90 N 4=1.84665 ν 4= 23.8 R 8= 11.92 D 8= 4.80 N 5=1.48749 ν 5= 70.2 R 9= -19.85 D 9= 0.90 N 6=1.84665 ν 6= 23.8 R10= -27.78 D10=可変 R11=∞ (絞り) D11= 3.50 R12= -26.05 D12= 2.42 N 7=1.80518 ν 7= 25.4 R13= -45.55 D13= 0.56 R14= -34.59 D14= 1.00 N 8=1.65159 ν 8= 58.5 R15= 310.25 D15= 5.80 N 9=1.77249 ν 9= 49.6 R16= -13.79 D16=可変 R17= -28.83 D17= 2.30 N10=1.84665 ν10= 23.8 R18= -20.42 D18= 0.24 R19= -25.56 D19= 1.30 N11=1.69679 ν11= 55.5 R20= -131.56 D20= 3.53 R21= -20.55 D21= 1.50 N12=1.77249 ν12= 49.6 R22= 204.29 非球面係数 12面 K= 6.017 A= 0 B=-6.890×10-5 C=-6.114×10-7 D=-4.934×10-9 E= 0 16面 K=-2.445 A= 0 B=-1.158×10-4 C= 1.246×10-7 D=-1.894×10-9 E= 0[Table 3] (Numerical Example 4) F = 28.86 to 101.58 FNO = 3.06 to 9.00 2 ω = 73.7 ° to 24.1 ° R 1 = 101.89 D 1 = 2.85 N 1 = 1.51633 ν 1 = 64.2 R 2 = -61.28 D 2 = 0.84 R 3 = -39.42 D 3 = 1.20 N 2 = 1.80400 ν 2 = 46.6 R 4 = 17.90 D 4 = 1.07 R 5 = 19.60 D 5 = 3.35 N 3 = 1.84665 ν 3 = 23.8 R 6 = 95.82 D 6 = variable R 7 = 16.21 D 7 = 0.90 N 4 = 1.84665 ν 4 = 23.8 R 8 = 11.92 D 8 = 4.80 N 5 = 1.48749 ν 5 = 70.2 R 9 = -19.85 D 9 = 0.90 N 6 = 1.84665 ν 6 = 23.8 R10 = -27.78 D10 = Variable R11 = ∞ (Aperture) D11 = 3.50 R12 = -26.05 D12 = 2.42 N 7 = 1.80518 ν 7 = 25.4 R13 = -45.55 D13 = 0.56 R14 = -34.59 D14 = 1.00 N 8 = 1.65159 ν 8 = 58.5 R15 = 310.25 D15 = 5.80 N 9 = 1.77249 ν 9 = 49.6 R16 = -13.79 D16 = variable R17 = -28.83 D17 = 2.30 N10 = 1.84665 ν10 = 23.8 R18 = -20.42 D18 = 0.24 R19 = -25.56 D19 = 1.30 N11 = 1.69679 ν11 = 55.5 R20 = -131.56 D20 = 3.53 R21 = -20.55 D21 = 1.50 N12 = 1.77249 ν12 = 49.6 R22 = 204.29 Aspherical coefficient 12 surfaces K = 6.017 A = 0 B = -6.890 × 10 -5 C = -6.114 × 10 -7 D = -4.934 × 10 -9 E = 0 16 faces K = -2.445 A = 0 B = -1.158 × 10 -4 C = 1.246 × 10 -7 D = -1.894 × 10 -9 E = 0

【0067】[0067]

【表4】 (数値実施例5) F= 29.47〜80.02 FNO= 3.80〜8.79 2ω= 72.6°〜30.3° R 1= 104.99 D 1= 2.85 N 1=1.51633 ν 1= 64.2 R 2= -79.20 D 2= 0.84 R 3= -58.17 D 3= 1.20 N 2=1.88299 ν 2= 40.8 R 4= 18.99 D 4= 1.07 R 5= 19.98 D 5= 3.35 N 3=1.80518 ν 3= 25.4 R 6= 81.43 D 6=可変 R 7= 14.33 D 7= 0.90 N 4=1.84665 ν 4= 23.8 R 8= 15.71 D 8= 4.80 N 5=1.48749 ν 5= 70.2 R 9= -16.46 D 9= 0.90 N 6=1.84665 ν 6= 23.8 R10= -25.87 D10= 2.36 R11=∞ (絞り) D11= 2.70 R12= -26.70 D12= 2.42 N 7=1.80518 ν 7= 25.4 R13= 65.44 D13= 1.00 R14= -59.75 D14= 1.00 N 8=1.65159 ν 8= 58.5 R15= 27.74 D15= 5.80 N 9=1.80400 ν 9= 46.6 R16= -14.65 D16=可変 R17= -25.00 D17= 2.49 N10=1.84665 ν10= 23.8 R18= -17.35 D18= 0.40 R19= -23.62 D19= 1.30 N11=1.69679 ν11= 55.5 R20= -62.18 D20= 4.00 R21= -16.00 D21= 1.99 N12=1.77249 ν12= 49.6 R22= -170.60 非球面係数 12面 K=-6.839×10-1 A= 0 B=-1.773×10-4 C= 2.030×10-7 D=-4.488×10-8 E= 0 16面 K=-2.383 A= 0 B=-1.044×10-4 C= 1.158×10-7 D=-1.694×10-9 E= 0[Table 4] (Numerical Example 5) F = 29.47 to 80.02 FNO = 3.80 to 8.79 2 ω = 72.6 ° to 30.3 ° R 1 = 104.99 D 1 = 2.85 N 1 = 1.51633 ν 1 = 64.2 R 2 = -79.20 D 2 = 0.84 R 3 = -58.17 D 3 = 1.20 N 2 = 1.88299 ν 2 = 40.8 R 4 = 18.99 D 4 = 1.07 R 5 = 19.98 D 5 = 3.35 N 3 = 1.80518 ν 3 = 25.4 R 6 = 81.43 D 6 = variable R 7 = 14.33 D 7 = 0.90 N 4 = 1.84665 ν 4 = 23.8 R 8 = 15.71 D 8 = 4.80 N 5 = 1.48749 ν 5 = 70.2 R 9 = -16.46 D 9 = 0.90 N 6 = 1.84665 ν 6 = 23.8 R10 = -25.87 D10 = 2.36 R11 = ∞ (Aperture) D11 = 2.70 R12 = -26.70 D12 = 2.42 N 7 = 1.80518 ν 7 = 25.4 R13 = 65.44 D13 = 1.00 R14 = -59.75 D14 = 1.00 N 8 = 1.65159 ν 8 = 58.5 R15 = 27.74 D15 = 5.80 N 9 = 1.80 400 ν 9 = 46.6 R16 = -14.65 D16 = Variable R17 = -25.00 D17 = 2.49 N10 = 1.84665 ν10 = 23.8 R18 = -17.35 D18 = 0.40 R19 = -23.62 D19 = 1.30 N11 = 1.69679 ν11 = 55.5 R20 = -62.18 D20 = 4.00 R21 = -16.00 D21 = 1.99 N12 = 1.77249 ν12 = 49.6 R22 = -170.60 Aspheric coefficient 12 faces K = -6.839 × 10 -1 A = 0 B = -1.773 × 10 -4 C = 2.030 × 10 -7 D = -4.48 8 × 10 -8 E = 0 16 faces K = -2.383 A = 0 B = -1.044 × 10 -4 C = 1.158 × 10 -7 D = -1.694 × 10 -9 E = 0

【0068】[0068]

【表5】 [Table 5]

【0069】[0069]

【発明の効果】本発明によれば以上のように、複数のレ
ンズ群を有するズームレンズにおいて、例えば全体とし
て3つのグループのレンズ群に分けたズームレンズにお
いて非球面を適切なレンズ群のレンズ面に適用すること
により、広画角化及び高変倍時に問題となってくる諸収
差を良好に補正しつつレンズ系全体の小型化を図った全
変倍範囲にわたり高い光学性能を有したズームレンズを
達成することができる。
As described above, according to the present invention, in the zoom lens having a plurality of lens groups, for example, in the zoom lens divided into three lens groups as a whole, the aspherical surface of the lens group is appropriate. The zoom lens has a high optical performance over the entire zoom range, which is suitable for wide angle of view and various aberrations that become a problem at high zooming, and the size of the entire lens system is reduced. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の近軸屈折力配置の説明図FIG. 1 is an explanatory diagram of a paraxial refractive power arrangement according to a first embodiment of the present invention.

【図2】 本発明の実施例2の近軸屈折力配置の説明図FIG. 2 is an explanatory diagram of a paraxial refractive power arrangement according to a second embodiment of the present invention.

【図3】 本発明の実施例3の近軸屈折力配置の説明図FIG. 3 is an explanatory diagram of a paraxial refractive power arrangement according to a third embodiment of the present invention.

【図4】 本発明の実施例4の近軸屈折力配置の説明図FIG. 4 is an explanatory diagram of a paraxial refractive power arrangement according to Example 4 of the present invention.

【図5】 本発明の実施例5の近軸屈折力配置の説明図FIG. 5 is an explanatory diagram of a paraxial refractive power arrangement according to Example 5 of the present invention.

【図6】 本発明の数値実施例1の広角端のレンズ断面
FIG. 6 is a lens cross-sectional view at a wide-angle end according to Numerical Example 1 of the present invention.

【図7】 本発明の数値実施例2の広角端のレンズ断面
FIG. 7 is a lens cross-sectional view at a wide-angle end according to Numerical Example 2 of the present invention.

【図8】 本発明の数値実施例3の広角端のレンズ断面
FIG. 8 is a lens cross-sectional view at a wide-angle end according to Numerical Example 3 of the present invention.

【図9】 本発明の数値実施例4の広角端のレンズ断面
FIG. 9 is a lens cross-sectional view at a wide-angle end according to Numerical Example 4 of the present invention.

【図10】 本発明の数値実施例5の広角端のレンズ断
面図
FIG. 10 is a lens cross-sectional view at a wide-angle end according to Numerical Example 5 of the present invention.

【図11】 本発明の数値実施例1の広角端の収差図FIG. 11 is an aberration diagram at the wide-angle end according to Numerical Example 1 of the present invention.

【図12】 本発明の数値実施例1の中間の収差図FIG. 12 is an intermediate aberration diagram of Numerical example 1 of the present invention.

【図13】 本発明の数値実施例1の望遠端の収差図FIG. 13 is an aberration diagram at a telephoto end according to Numerical Example 1 of the present invention.

【図14】 本発明の数値実施例2の広角端の収差図FIG. 14 is an aberration diagram at the wide-angle end according to Numerical Example 2 of the present invention.

【図15】 本発明の数値実施例2の中間の収差図FIG. 15 is an intermediate aberration diagram of Numerical example 2 of the present invention.

【図16】 本発明の数値実施例2の望遠端の収差図FIG. 16 is an aberration diagram at a telephoto end according to Numerical Example 2 of the present invention.

【図17】 本発明の数値実施例3の広角端の収差図FIG. 17 is an aberration diagram at a wide-angle end according to Numerical Example 3 of the present invention.

【図18】 本発明の数値実施例3の中間の収差図FIG. 18 is an intermediate aberration diagram of Numerical example 3 of the present invention.

【図19】 本発明の数値実施例3の望遠端の収差図FIG. 19 is an aberration diagram at a telephoto end according to Numerical Example 3 of the present invention.

【図20】 本発明の数値実施例4の広角端の収差図FIG. 20 is an aberration diagram at a wide-angle end according to Numerical Example 4 of the present invention.

【図21】 本発明の数値実施例4の中間の収差図FIG. 21 is an intermediate aberration diagram of Numerical Example 4 of the present invention.

【図22】 本発明の数値実施例4の望遠端の収差図FIG. 22 is an aberration diagram at a telephoto end according to Numerical Example 4 of the present invention.

【図23】 本発明の数値実施例5の広角端の収差図FIG. 23 is an aberration diagram at a wide-angle end according to Numerical Example 5 of the present invention.

【図24】 本発明の数値実施例5の中間の収差図FIG. 24 is an intermediate aberration diagram of Numerical Example 5 of the present invention.

【図25】 本発明の数値実施例5の望遠端の収差図FIG. 25 is an aberration diagram at a telephoto end according to Numerical Example 5 of the present invention.

【図26】 本発明のズームレンズに係る非球面の説明
FIG. 26 is an explanatory diagram of an aspherical surface according to the zoom lens of the present invention.

【符号の説明】[Explanation of symbols]

L1 第1群 L1a 第1a群 L1b 第1b群 L2 第2群 L2a 第2a群 L2b 第2b群 L2c 第2c群 L3 第3群 SP 絞り IP 像面 d d線 g g線 S.C 正弦条件 ΔS サジタル像面 ΔM メリディオナル像面 L1 1st group L1a 1a group L1b 1b group L2 2nd group L2a 2a group L2b 2b group L2c 2c group L3 3rd group SP aperture IP image surface d d line g g line S. C Sine condition ΔS Sagittal image plane ΔM Meridional image plane

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に負の屈折力の第1群、正
の屈折力の第2群そして負の屈折力の第3群の3つのレ
ンズ群を有し、各レンズ群間隔を変えて変倍を行い、無
限遠物体のときの軸上光線の第i面への広角端と望遠端
での入射高を各々Hiw(Hiw>0),Hit(Hi
t>0)、最大画角の軸外主光線の第i面への広角端と
望遠端での入射高を各々Hbiw,Hbitとしたと
き、 Hiw>|Hbiw| Hit>|Hbit| を満足する物体側に凹面を向けた負の屈折力のレンズ面
Raにレンズ中心からレンズ周辺にいくに従い負の屈折
力が強くなる形状の非球面を施したことを特徴とするズ
ームレンズ。
1. A three-lens group having, in order from the object side, a negative refractive power first group, a positive refractive power second group, and a negative refractive power third group, and the distance between each lens group is changed. When the object is at infinity, the incident heights of the axial ray on the i-th surface at the wide-angle end and the telephoto end are Hiw (Hiw> 0) and Hit (Hii, respectively.
t> 0), and when the incident heights of the off-axis chief ray with the maximum angle of view to the i-th surface at the wide-angle end and the telephoto end are Hbiw and Hbit, respectively, Hiw> | Hbiw | Hit> | Hbit | is satisfied. A zoom lens having a negative refractive power lens surface Ra having a concave surface facing the object side, and an aspherical surface having a shape in which the negative refractive power increases from the lens center to the lens periphery.
【請求項2】 前記第2群は物体側より順に正の屈折力
の第2a群、負の屈折力の第2b群、そして正の屈折力
の第2c群を有していることを特徴とする請求項1のズ
ームレンズ。
2. The second lens group has, in order from the object side, a second lens group having a positive refractive power, a second lens group having a negative refractive power, and a second lens group having a positive refractive power. The zoom lens according to claim 1.
【請求項3】 前記第3群の焦点距離をf3、広角端に
おける全系の焦点距離をFwとしたとき、 0.7≦|Fw/f3|≦2.5 なる条件を満足することを特徴とする請求項2のズーム
レンズ。
3. When the focal length of the third lens unit is f3 and the focal length of the entire system at the wide angle end is Fw, the condition of 0.7 ≦ | Fw / f3 | ≦ 2.5 is satisfied. The zoom lens according to claim 2.
【請求項4】 前記第1群と第2群の広角端における焦
点距離を各々f1,f2としたとき、 0.2≦|Fw/f1|≦1.0 1.0≦ Fw/f2 ≦2.5 なる条件を満足することを特徴とする請求項3のズーム
レンズ。
4. When the focal lengths at the wide-angle end of the first lens unit and the second lens unit are f1 and f2, respectively, 0.2 ≦ | Fw / f1 | ≦ 1.0 1.0 ≦ Fw / f2 ≦ 2 The zoom lens according to claim 3, wherein the condition (5) is satisfied.
【請求項5】 前記第3群の広角端における結像倍率を
β3wとするとき、 0.1≦f3×(1−β3w)/Fw≦0.5 なる条件を満足することを特徴とする請求項4のズーム
レンズ。
5. When the imaging magnification at the wide-angle end of the third lens unit is β3w, the condition of 0.1 ≦ f3 × (1−β3w) /Fw≦0.5 is satisfied. Item 4 zoom lens.
【請求項6】 前記レンズ面Raが前記第2b群に含ま
れていることを特徴とする請求項2のズームレンズ。
6. The zoom lens according to claim 2, wherein the lens surface Ra is included in the second group b.
【請求項7】 前記レンズ面Raが前記第2b群の負レ
ンズに含まれていることを特徴とする請求項2のズーム
レンズ。
7. The zoom lens according to claim 2, wherein the lens surface Ra is included in the negative lens of the second group b.
【請求項8】 前記レンズ面Raが負の単一レンズに含
まれていることを特徴とする請求項1又は2のズームレ
ンズ。
8. The zoom lens according to claim 1, wherein the lens surface Ra is included in a single negative lens.
JP5325844A 1993-11-29 1993-11-29 Zoom lens Pending JPH07151974A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5325844A JPH07151974A (en) 1993-11-29 1993-11-29 Zoom lens
US08/892,878 US6028716A (en) 1993-11-29 1997-07-15 Zoom lens
US09/286,305 US6236517B1 (en) 1993-11-29 1999-04-06 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5325844A JPH07151974A (en) 1993-11-29 1993-11-29 Zoom lens

Publications (1)

Publication Number Publication Date
JPH07151974A true JPH07151974A (en) 1995-06-16

Family

ID=18181253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5325844A Pending JPH07151974A (en) 1993-11-29 1993-11-29 Zoom lens

Country Status (1)

Country Link
JP (1) JPH07151974A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115107A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
JP2009139917A (en) * 2007-11-12 2009-06-25 Ricoh Co Ltd Zoom lens and imaging apparatus
JP4639425B2 (en) * 2000-04-05 2011-02-23 株式会社ニコン Variable focal length lens system
JP4654482B2 (en) * 2000-04-05 2011-03-23 株式会社ニコン Variable focal length lens system
JP2015125385A (en) * 2013-12-27 2015-07-06 リコーイメージング株式会社 Zoom lens system
WO2016017725A1 (en) * 2014-07-30 2016-02-04 株式会社ニコン Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JP2016075965A (en) * 2016-02-10 2016-05-12 オリンパス株式会社 Image formation optical system and imaging device employing the same
CN108089290A (en) * 2017-11-18 2018-05-29 瑞声科技(新加坡)有限公司 Camera optical camera lens
JP6400239B1 (en) * 2017-11-18 2018-10-03 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP2019095749A (en) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
JP2019095756A (en) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
US10598904B2 (en) 2014-12-30 2020-03-24 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
US11156808B2 (en) 2013-02-04 2021-10-26 Largan Precision Co., Ltd. Optical image capturing system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639425B2 (en) * 2000-04-05 2011-02-23 株式会社ニコン Variable focal length lens system
JP4654482B2 (en) * 2000-04-05 2011-03-23 株式会社ニコン Variable focal length lens system
WO2006115107A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
EP1881356A1 (en) * 2005-04-22 2008-01-23 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
EP1881356A4 (en) * 2005-04-22 2008-07-09 Konica Minolta Opto Inc Variable power optical system, imaging lens system and digital apparatus
EP2209035A3 (en) * 2005-04-22 2010-08-04 Konica Minolta Opto, Inc. Optical zoom of the retrofocus type having four lens groups
US7869134B2 (en) 2005-04-22 2011-01-11 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
JP4894754B2 (en) * 2005-04-22 2012-03-14 コニカミノルタオプト株式会社 Magnification optical system, imaging lens device, and digital device
JP2009139917A (en) * 2007-11-12 2009-06-25 Ricoh Co Ltd Zoom lens and imaging apparatus
US11656439B2 (en) 2013-02-04 2023-05-23 Largan Precision Co., Ltd. Optical image capturing system
US11156808B2 (en) 2013-02-04 2021-10-26 Largan Precision Co., Ltd. Optical image capturing system
JP2015125385A (en) * 2013-12-27 2015-07-06 リコーイメージング株式会社 Zoom lens system
CN106687848A (en) * 2014-07-30 2017-05-17 株式会社尼康 Variable-power optical system, optical device, and method for manufacturing variable-power optical system
CN106687848B (en) * 2014-07-30 2019-11-01 株式会社尼康 Variable-power optical system and Optical devices
WO2016017725A1 (en) * 2014-07-30 2016-02-04 株式会社ニコン Variable-power optical system, optical device, and method for manufacturing variable-power optical system
US10254519B2 (en) 2014-07-30 2019-04-09 Nikon Corporation Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JPWO2016017725A1 (en) * 2014-07-30 2017-05-18 株式会社ニコン Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
US11656441B2 (en) 2014-12-30 2023-05-23 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
US11231563B2 (en) 2014-12-30 2022-01-25 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
US10598904B2 (en) 2014-12-30 2020-03-24 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
JP2016075965A (en) * 2016-02-10 2016-05-12 オリンパス株式会社 Image formation optical system and imaging device employing the same
JP2019095755A (en) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
JP2019095756A (en) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
JP2019095749A (en) * 2017-11-18 2019-06-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
JP6400239B1 (en) * 2017-11-18 2018-10-03 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
CN108089290A (en) * 2017-11-18 2018-05-29 瑞声科技(新加坡)有限公司 Camera optical camera lens

Similar Documents

Publication Publication Date Title
JP3352240B2 (en) High zoom ratio zoom lens
US5574599A (en) Zoom lens and zooming method
JP3067481B2 (en) Zoom lens
JPH02201310A (en) Zoom lens with internal focus lens
JPH09184982A (en) Zoom lens
JPH06281860A (en) Two-group zoom lens
JP3173277B2 (en) Zoom lens
JP3352227B2 (en) Zoom lens
JP3144191B2 (en) Zoom lens
JPH07151974A (en) Zoom lens
JPH05241073A (en) Zoom lens
JP3144193B2 (en) Zoom lens
JP2000121942A (en) Zoom lens
JP3363688B2 (en) Zoom lens
JP3018742B2 (en) Zoom lens
JP3175484B2 (en) Zoom lens
JPH06294932A (en) Zoom lens
JP3376143B2 (en) Zoom lens
JPH0850245A (en) Zoom lens
JP3183047B2 (en) Zoom lens
JP3008711B2 (en) Small zoom lens
JPH06300972A (en) Zoom lens with wide field angle
JP3144192B2 (en) Zoom lens
JP3063459B2 (en) Rear focus type zoom lens and camera using the same
JPH0829688A (en) Zoom lens