JPH05241073A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH05241073A
JPH05241073A JP4078433A JP7843392A JPH05241073A JP H05241073 A JPH05241073 A JP H05241073A JP 4078433 A JP4078433 A JP 4078433A JP 7843392 A JP7843392 A JP 7843392A JP H05241073 A JPH05241073 A JP H05241073A
Authority
JP
Japan
Prior art keywords
lens
group
positive
negative
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4078433A
Other languages
Japanese (ja)
Other versions
JP3018723B2 (en
Inventor
Tsunefumi Tanaka
常文 田中
Hiroshi Endo
宏志 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4078433A priority Critical patent/JP3018723B2/en
Publication of JPH05241073A publication Critical patent/JPH05241073A/en
Priority to US08/440,980 priority patent/US5576890A/en
Application granted granted Critical
Publication of JP3018723B2 publication Critical patent/JP3018723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain the zoom lens which has a wide view angle and a high power variation ratio by providing four lens groups on the whole and properly setting the refracting powers of the respective lens groups and the movement conditions of the respective lens groups accompanying power variation. CONSTITUTION:The zoom lens has the four lens groups which are a 1st group L1, a 2nd group L2, a 3rd group L3, and a 4th group L4 having a negative, a positive, a negative, and a positive refracting power in order from an object side; when the power is varied from the wide-angle end to the telephoto end, at least the 1st group L1, 2nd group L2, and 4th group L4 are moved so that the air interval between the 1st group L1 and 2nd group L3 decreases, the air interval between the 2nd group L2 and 3rd group L3 increases, and the air interval between the 3rd group Ls and 4th group L4 decreases. The lens constitution of each lens group and an aspherical surface shape when the aspherical surface is used are properly set.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一眼レフカメラやビデオ
カメラ等に好適なズームレンズに関し、特に負の屈折力
のレンズ群が先行する所謂ネガティブリード型の全体と
して4つのレンズ群を有する比較的広画角で高変倍の大
口径のズームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens suitable for a single-lens reflex camera, a video camera, etc., and more particularly, a so-called negative lead type lens group preceded by a lens group having a negative refractive power. The present invention relates to a large-angle zoom lens having a wide angle of view and a high zoom ratio.

【0002】[0002]

【従来の技術】負の屈折力のレンズ群が先行するネガテ
ィブリード型のズームレンズは比較的広画角化が容易
で、かつ近接撮影距離が短くなる等の特長を有している
が、反面、絞り径が増大し、又高変倍化が難しい等の欠
点を有している。
2. Description of the Related Art Negative lead type zoom lenses, which are preceded by a lens unit having a negative refracting power, are characterized in that a wide angle of view is relatively easy and a close-up shooting distance is shortened. However, it has drawbacks such as an increased aperture diameter and difficulty in achieving a high zoom ratio.

【0003】これらの欠点を改善し、レンズ系全体の小
型化及び高変倍化を図ったズームレンズが例えば特公昭
49−23912号公報、特開昭53−34539号公
報、特開昭57−163213号公報、特開昭58−4
113号公報、特開昭63−241511号公報、そし
て特開平2−201310号公報等で提案されている。
A zoom lens which has been improved in view of these drawbacks, and which is downsized and has a high zoom ratio, is disclosed in, for example, Japanese Patent Publication No. 49-23912, Japanese Patent Publication No. 53-34539, and Japanese Patent Publication No. 57-. 163213, JP-A-58-4
113, JP-A-63-241511, and JP-A-2-201310.

【0004】これらの各公報ではズームレンズを物体側
より順に負、正、負、そして正の屈折力のレンズ群の全
体として4つのレンズ群より構成し、このうち所定のレ
ンズ群を適切に移動させて変倍を行っている。
In each of these publications, a zoom lens is composed of four lens groups as a whole of a lens group having negative, positive, negative, and positive refractive powers in order from the object side, and a predetermined lens group among them is appropriately moved. I am changing the magnification.

【0005】[0005]

【発明が解決しようとする課題】近年、一眼レフカメラ
やビデオカメラ等に用いる標準用のズームレンズとして
は広画角を含み、かつ高変倍比のものが要望されてい
る。例えば既に35mmフィルム用の一眼レフカメラで
は焦点距離35mm〜70mmや焦点距離28mm〜7
0mm程度の広画角のズームレンズが標準用のズームレ
ンズとして用いられている。
In recent years, a standard zoom lens used in a single-lens reflex camera, a video camera or the like is required to have a wide field angle and a high zoom ratio. For example, in a single-lens reflex camera for 35 mm film, the focal length is 35 mm to 70 mm and the focal length is 28 mm to 7 mm.
A wide-angle zoom lens of about 0 mm is used as a standard zoom lens.

【0006】更に最近では焦点距離28mm〜80m
m、若しくは焦点距離28mm〜85mm程度の望遠側
に変倍範囲を拡大し、高変倍化を図った大口径比のズー
ムレンズが標準用のズームレンズとして要望されてい
る。
More recently, the focal length is 28 mm to 80 m.
There is a demand for a standard zoom lens having a large aperture ratio, in which the zooming range is widened to the telephoto side having a focal length of 28 mm to 85 mm to achieve high zooming.

【0007】しかしながら一般にこの程度の撮影画角で
しかも高変倍比になるとレンズ全長が長くなり、又変倍
においては複雑なズーム移動が必要となり、この結果レ
ンズ鏡筒が多重の構成となり、レンズ鏡筒が大型化及び
複雑化してくるという問題点が生じてくる。
However, in general, at such a shooting angle of view and a high zoom ratio, the total lens length becomes long, and complicated zoom movement is required for zooming. As a result, the lens barrel has a multiple structure, and the lens The problem arises that the lens barrel becomes large and complicated.

【0008】本発明はズームレンズを全体として4つの
レンズ群より構成し、各レンズ群の屈折力や変倍に伴う
各レンズ群の移動条件等を適切に設定することにより、
レンズ全長を短縮し、かつレンズ鏡筒の大型化及び複雑
化を防止した比較的広画角でしかも高変倍比の全変倍範
囲にわたり高い光学性能を有したズームレンズの提供を
目的とする。
According to the present invention, the zoom lens is composed of four lens groups as a whole, and by appropriately setting the refracting power of each lens group and the moving condition of each lens group due to zooming,
An object of the present invention is to provide a zoom lens which has a relatively wide angle of view and which has a high optical performance over the entire zoom range of a high zoom ratio, which shortens the entire lens length and prevents the lens barrel from becoming large and complicated. ..

【0009】特に本発明はFナンバー2.8と大口径比
で、かつ広角端での撮影画角が80度以上の広画角でし
かも変倍比3程度の高変倍比の全変倍範囲にわたり高い
光学性能を有したズームレンズの提供を目的とする。
In particular, the present invention has a large aperture ratio of F number 2.8, a wide field angle of 80 degrees or more at the wide angle end, and a high zoom ratio of about 3 and a total zoom ratio of about 3. An object of the present invention is to provide a zoom lens having high optical performance over a range.

【0010】[0010]

【課題を解決するための手段】本発明のズームレンズ
は、物体側から順に負の屈折力の第1群、正の屈折力の
第2群、負の屈折力の第3群、そして正の屈折力の第4
群の4つのレンズ群を有し、広角端から望遠端への変倍
を該第1群と第2群との空気間隔が減少し、該第2群と
第3群との空気間隔が増加し、該第3群と第4群との空
気間隔が減少するように少なくとも該第1、第2、第4
群を移動させて行い、各レンズ群のレンズ構成や非球面
を用いるときは、その非球面形状を適切に設定したこと
を特徴としている。この他、本発明の特徴は実施例にお
いて開示している。
A zoom lens according to the present invention comprises, in order from the object side, a first group having a negative refractive power, a second group having a positive refractive power, a third group having a negative refractive power, and a positive group. The fourth of power
The zoom lens has four lens groups, and the air distance between the first and second groups decreases and the air distance between the second and third groups increases when zooming from the wide-angle end to the telephoto end. However, at least the first, second and fourth groups are arranged so that the air gap between the third group and the fourth group is reduced.
When the lens groups are moved and the lens configuration or aspherical surface of each lens group is used, the aspherical surface shape is set appropriately. Besides, the features of the present invention are disclosed in the embodiments.

【0011】[0011]

【実施例】図1〜図9は各々本発明の数値実施例1〜9
のレンズ断面図である。レンズ断面図においてL1は負
の屈折力の第1群、L2は正の屈折力の第2群、L3は
負の屈折力の第3群、L4は正の屈折力の第4群、SP
は絞りである。
1 to 9 are numerical examples 1 to 9 of the present invention.
3 is a lens cross-sectional view of FIG. In the lens cross-sectional view, L1 is the first group of negative refractive power, L2 is the second group of positive refractive power, L3 is the third group of negative refractive power, L4 is the fourth group of positive refractive power, SP
Is the aperture.

【0012】本発明では各レンズ群の空気間隔が変化す
るように所定のレンズ群を移動させて変倍を行ってい
る。
In the present invention, zooming is performed by moving a predetermined lens group so that the air space between the lens groups changes.

【0013】特に広角端から望遠端への変倍を第1群と
第2群との空気間隔が減少し、第2群と第3群との空気
間隔が増大し、第3群と第4群との空気間隔が減少する
ように少なくとも第1、第2、第4群を移動させて行っ
ている。具体的には広角端から望遠端への変倍を第1群
を像面側へ、第2群を物体側へ、第4群を物体側へ移動
させて変倍を行っている。
In particular, when changing the magnification from the wide-angle end to the telephoto end, the air gap between the first and second groups decreases, the air gap between the second and third groups increases, and the third and fourth groups change. At least the first, second, and fourth groups are moved so that the air space between the groups is reduced. Specifically, the zooming from the wide-angle end to the telephoto end is performed by moving the first group to the image side, the second group to the object side, and the fourth group to the object side.

【0014】このとき第2群と第4群は各々独立に物体
側へ移動させても良く、又レンズ鏡筒の簡素化を図る為
に一体的に移動させても良い。又焦点合わせは第1群全
体を移動させて行う他に、第1群を物体側より第11群
と第12群の2つのレンズ群に分け、第12群を移動さ
せて行うようにしている。
At this time, the second lens unit and the fourth lens unit may be independently moved to the object side, or may be moved integrally to simplify the lens barrel. Focusing is performed by moving the entire first group, or by dividing the first group into two lens groups, an 11th group and a 12th group, from the object side, and moving the 12th group. ..

【0015】次に図1〜図9に示す各数値実施例の特徴
について順に説明する。
Next, the features of each numerical example shown in FIGS. 1 to 9 will be described in order.

【0016】(1−1) 図1、図2、図3に示す数値
実施例1,2,3では広角端から望遠端への変倍を該第
1群と第2群との空気間隔が減少し、該第2群と第3群
との空気間隔が増加し、該第3群と第4群との空気間隔
が減少するように少なくとも該第1、第2、第4群を移
動させて行い、該第3群は正レンズと負レンズの独立又
は貼合わせレンズを有し、該第4群は負レンズと正レン
ズの独立又は貼合わせレンズを有するように構成してい
る。これによりレンズ全長の短縮化を図りつつ、広画角
でしかも全変倍範囲にわたり収差変動が少ない高い光学
性能を得ている。
(1-1) In Numerical Embodiments 1, 2, and 3 shown in FIGS. 1, 2, and 3, the zooming from the wide-angle end to the telephoto end is performed by changing the air distance between the first group and the second group. At least the first, second, and fourth groups are moved so that the air spacing between the second group and the third group increases and the air spacing between the third group and the fourth group decreases. The third group has independent or cemented lenses of a positive lens and a negative lens, and the fourth group has independent or cemented lenses of a negative lens and a positive lens. As a result, while shortening the total lens length, a wide angle of view and high optical performance with little aberration variation over the entire zoom range are obtained.

【0017】第2群は物体側より順に像面側に強い負の
屈折面を向けたメニスカス状の負レンズ、正レンズ、そ
して物体側に凸面を向けた正レンズの3つのレンズを有
するように構成している。これにより第2群の比較的強
い正の屈折力を持たせつつ、良好なる収差補正を行って
いる。特に望遠側で第2群から射出する光束径を小さく
し、絞り径の短縮化を図り、レンズ鏡筒径を小さくして
いる。
The second lens group has three lenses, in order from the object side, a meniscus-shaped negative lens having a strong negative refracting surface facing the image side, a positive lens, and a positive lens having a convex surface facing the object side. I am configuring. As a result, good aberration correction is performed while the second lens group has a relatively strong positive refractive power. Especially on the telephoto side, the diameter of the light beam emitted from the second lens unit is reduced, the aperture diameter is shortened, and the lens barrel diameter is reduced.

【0018】第1群は物体側より順に像面側に凹面を向
けたメニスカス状の負レンズ、負レンズ、そして物体側
に凸面を向けたメニスカス状の正レンズを有するように
している。一般に最も物体側に正レンズを配置すれば広
角側での歪曲収差を良好に補正することができるがレン
ズ外径が増大してくる。
The first lens group has, in order from the object side, a meniscus negative lens having a concave surface facing the image side, a negative lens, and a meniscus positive lens having a convex surface facing the object side. Generally, if the positive lens is arranged closest to the object side, the distortion aberration on the wide angle side can be corrected well, but the outer diameter of the lens increases.

【0019】そこで本発明では前述の如く最も物体側に
負レンズが位置するように第1群を構成し、歪曲収差を
他のレンズ群で補正し、レンズ外径を小さくし、又近接
撮影距離の短縮化を図っている。
Therefore, in the present invention, as described above, the first lens unit is constructed so that the negative lens is located closest to the object side, the distortion aberration is corrected by the other lens unit, the lens outer diameter is reduced, and the close-up distance is set. Is being shortened.

【0020】第3群は変倍中固定であるようにしてレン
ズ鏡筒構造の簡素化を図っている。又広角端から望遠端
への変倍を前記第2群と第4群を一体的に物体側へ移動
させても良く、これによれば前述と同様にレンズ鏡筒構
造の簡素化を図ることができる。
The third lens group is designed to be fixed during zooming to simplify the lens barrel structure. Further, the zooming from the wide-angle end to the telephoto end may be performed by moving the second and fourth groups integrally to the object side, which simplifies the lens barrel structure as described above. You can

【0021】第2群と第3群の焦点距離を各々F2,F
3としたとき F2<|F3| ‥‥‥(1−a) としている。
The focal lengths of the second and third lens units are F2 and F, respectively.
When set to 3, F2 <| F3 | ... (1-a).

【0022】第2群に強い正の屈折力を持たせることに
より前述と同様に絞り径を小さくして、レンズ鏡筒径を
小さくしている。又第3群を第2群に比べて比較的弱い
屈折力を持たせるようにして第3群を2枚のレンズで構
成しても良好なる収差補正ができるようにしている。
By giving the second lens unit a strong positive refracting power, the aperture diameter is made small and the lens barrel diameter is made small in the same manner as described above. Further, the third lens group is made to have a relatively weaker refractive power than the second lens group, and even if the third lens group is composed of two lenses, good aberration correction can be performed.

【0023】第4群の焦点距離をF4、望遠端における
全系の焦点距離をFTとしたとき 0.5<F4/FT<2 ‥‥‥(1−b) としている。これによりレンズ系全体の小型化を図りつ
つ良好なる収差補正を行っている。
When the focal length of the fourth lens unit is F4 and the focal length of the entire system at the telephoto end is FT, 0.5 <F4 / FT <2 ... (1-b). As a result, good aberration correction is performed while the overall size of the lens system is reduced.

【0024】条件式(1−b)の下限値を越えて第4群
の屈折力が強くなりすぎると、第4群を負レンズと正レ
ンズの2枚のレンズで良好なる収差補正をするのが難し
くなってくる。又上限値を越えて第4群の屈折力が弱く
なりすぎると変倍の際の各レンズ群の移動量が増大し、
レンズ全長が長くなってくるので良くない。
If the lower limit of conditional expression (1-b) is exceeded and the refracting power of the fourth lens unit becomes too strong, the fourth lens unit will be corrected for aberrations favorably with two lenses, a negative lens and a positive lens. Becomes difficult. If the upper limit is exceeded and the refractive power of the fourth lens unit becomes too weak, the amount of movement of each lens unit during zooming increases,
It is not good because the total lens length becomes longer.

【0025】(1−2) 図4、図5に示す数値実施例
4,5では、各レンズ群の空気間隔を変えて変倍を行
い、該第2群は物体側に凸面を向けたメニスカス状の負
の第21レンズと両レンズ面が凸面の正の第22レンズ
とを接合した貼合わせレンズ、そして物体側に強い正の
屈折面を向けた正の第23レンズを有しており、該第2
1レンズないしは該第23レンズの物体側の面を非球面
としている該貼合わせレンズの接合レンズ面の曲率半径
をR2,2、該非球面の非球面係数をB,C、該第23
レンズのレンズ外径をDE、該第2群の焦点距離をF2
としたとき 0.6<R2,2/F2<1.0 ‥‥‥(2−a) B<0 ‥‥‥(2−b) B+C×(DE/2)2 <0 ‥‥‥(2−c) なる条件を満足するようにしている。これによりレンズ
全長の短縮化を図りつつ、変倍に伴う諸収差を良好に補
正し、全変倍範囲にわたり高い光学性能を得ている。
(1-2) In Numerical Embodiments 4 and 5 shown in FIGS. 4 and 5, zooming is performed by changing the air spacing of each lens unit, and the second unit is a meniscus whose convex surface faces the object side. A cemented lens in which a negative negative 21st lens and a positive 22nd lens whose both lens surfaces are convex surfaces are cemented together, and a positive 23rd lens with a strong positive refractive surface facing the object side, The second
The radius of curvature of the cemented lens surface of the cemented lens in which the object side surface of the first lens or the 23rd lens is an aspherical surface is R2, 2, the aspherical surface coefficient of the aspherical surface is B, C, and the 23rd
The lens outer diameter is DE, and the focal length of the second lens group is F2.
0.6 <R2,2 / F2 <1.0 ... (2-a) B <0 ... (2-b) B + Cx (DE / 2) 2 <0 ... (2 -C) The following condition is satisfied. As a result, while shortening the total lens length, various aberrations associated with zooming are corrected well, and high optical performance is obtained over the entire zoom range.

【0026】本実施例では負の屈折力の第1群からは発
散光束が第2群に入射する。この為Fナンバーを明るく
すると第2群の光軸上から高い位置に光束が入射し、こ
の結果第2群の周辺部で著しく大きな収差が発生し、光
学性能が低下してくる。
In this embodiment, a divergent light beam enters the second lens unit from the first lens unit having a negative refractive power. For this reason, when the F-number is made bright, a light beam is incident on the optical axis of the second lens unit at a high position, and as a result, a remarkably large aberration occurs in the peripheral portion of the second lens unit, deteriorating the optical performance.

【0027】これに対して第2群のレンズ枚数を増加さ
せたり、第2群の屈折力を弱めたりする方法がある。し
かしながらこれらの方法はレンズ全長が長くなり、又第
1群のレンズ外径が増大してくるので良くない。
On the other hand, there are methods of increasing the number of lenses in the second lens group and weakening the refractive power of the second lens group. However, these methods are not preferable because the total lens length becomes long and the lens outer diameter of the first group increases.

【0028】そこで本実施例では第2群で多く発生する
諸収差、特に球面収差とコマ収差を前述の条件式(2−
a),(2−b),(2−c)を満足する3枚のレンズ
と非球面とにより良好に補正し、高い光学性能を得てい
る。
Therefore, in the present embodiment, various aberrations frequently generated in the second lens group, particularly spherical aberration and coma aberration, are corrected by the conditional expression (2-
The three lenses satisfying the requirements a), (2-b) and (2-c) and the aspherical surface satisfactorily correct the light to obtain high optical performance.

【0029】条件式(2−a)は主にコマ収差を補正す
る為のものである。条件式(2−a)の下限値を越える
とコマ収差が補正過剰となり、逆に上限値を越えると残
存するコマ収差を他のレンズ面で補正し、かつ球面収差
や非点収差等と共に良好に補正するのが難しくなってく
る。更に全系の諸収差をバランス良く補正するのが難し
くなってくる。
Conditional expression (2-a) is mainly for correcting coma aberration. If the lower limit of conditional expression (2-a) is exceeded, coma will be overcorrected, and if the upper limit is exceeded, the remaining coma will be corrected by another lens surface, and it will be good with spherical aberration and astigmatism. It becomes difficult to correct it. Furthermore, it becomes difficult to correct various aberrations of the entire system in a well-balanced manner.

【0030】条件式(2−b),(2−c)は非球面形
状を適切に設定し、特に球面収差とコマ収差を良好に補
正する為のものである。このうち条件式(2−b)は3
次収差成分を表わし、これを負、即ち周辺部で正の屈折
力を弱める作用を有するようにして、球面収差とコマ収
差を補正過剰方向にして、条件式(2−a)と合わせて
球面収差とコマ収差を良好に補正している。
The conditional expressions (2-b) and (2-c) are for properly setting the aspherical shape, and particularly for favorably correcting spherical aberration and coma. Of these, conditional expression (2-b) is 3
It represents the secondary aberration component, which has a negative effect, that is, a function of weakening the positive refracting power in the peripheral portion, so that spherical aberration and coma are overcorrected, and combined with conditional expression (2-a), Corrects aberrations and coma.

【0031】条件式(2−c)は5次収差成分まで含め
て非球面形状を適切に定め、特にレンズ外径DEの位置
での非球面量が周辺部で屈折力を弱める方向となるよう
にしている。これにより第2群に比較的強い正の屈折力
を持たせつつ、諸収差の発生を低減させている。又これ
により第1群に強い負の屈折力を持たせることができる
ようにしてレンズ全長の短縮化を図っている。
Conditional expression (2-c) appropriately defines the aspherical surface shape including the fifth-order aberration component, and in particular, the aspherical surface amount at the position of the lens outer diameter DE tends to weaken the refractive power at the peripheral portion. I have to. As a result, the occurrence of various aberrations is reduced while the second lens group has a relatively strong positive refractive power. In addition, this makes it possible to give the first lens unit a strong negative refracting power to shorten the total lens length.

【0032】この他、第5実施例5では第1群は少なく
とも2枚の負レンズと正レンズとを有するようにしてい
る。これにより主に非点収差と歪曲収差を良好に補正し
ている。
In addition to the above, in the fifth embodiment 5, the first group has at least two negative lenses and positive lenses. As a result, mainly astigmatism and distortion are satisfactorily corrected.

【0033】第1群は物体側より順に第11群と第12
群の2つのレンズ群を有し、該第12群を光軸上移動さ
せて焦点合わせを行っている。これにより焦点合わせを
行ってもレンズ全長が一定となるようにし、レンズが外
部に突出しないようにし、又比較的軽量小型の第12レ
ンズ群を移動させることにより、例えば自動焦点合わせ
をする際の駆動制御を容易にしている。
The first group consists of the eleventh group and the twelfth group in order from the object side.
It has two lens groups, and the 12th group is moved on the optical axis for focusing. As a result, the total lens length is kept constant even if focusing is performed, the lens does not project to the outside, and the relatively lightweight and small twelfth lens group is moved, for example, when performing automatic focusing. Drive control is easy.

【0034】(1−3) 図6、図7に示す数値実施例
6,7では、各レンズ群の空気間隔を変えて変倍を行
い、該第2群は物体側に凸面を向けたメニスカス状の負
の第21レンズと両レンズ面が凸面の正の第22レンズ
とを接合した貼合わせレンズ、そして物体側に強い正の
屈折面を向けた正の第23レンズを有しており、該第2
2レンズないしは該第23レンズの像側の面を非球面と
し、該貼合わせレンズの接合レンズ面の曲率半径をR
2,2、該非球面の非球面係数をB,C、該第23レン
ズのレンズ外径をDE、該第2群の焦点距離をF2とし
たとき 0.6<R2,2/F2<1.0 ‥‥‥(3−a) B>0 ‥‥‥(3−b) B+C×(DE/2)2 >0 ‥‥‥(3−c) なる条件を満足するようにしている。これにより前述し
た数値実施例3,4と同様にレンズ全長の短縮化を図り
つつ、変倍に伴う諸収差を良好に補正し、全変倍範囲に
わたり高い光学性能を得ている。
(1-3) In Numerical Examples 6 and 7 shown in FIGS. 6 and 7, zooming is performed by changing the air spacing of each lens group, and the second group is a meniscus whose convex surface faces the object side. A cemented lens in which a negative negative 21st lens and a positive 22nd lens whose both lens surfaces are convex surfaces are cemented together, and a positive 23rd lens with a strong positive refractive surface facing the object side, The second
The image side surface of the second lens or the 23rd lens is an aspherical surface, and the radius of curvature of the cemented lens surface of the cemented lens is R
2, 2, the aspherical surface coefficients of the aspherical surface are B and C, the lens outer diameter of the 23rd lens is DE, and the focal length of the second group is F2. 0.6 <R2,2 / F2 <1. 0 ... (3-a) B> 0 ... (3-b) B + C × (DE / 2) 2 > 0 ... (3-c). As a result, similar to Numerical Examples 3 and 4, the overall lens length is shortened, various aberrations associated with zooming are satisfactorily corrected, and high optical performance is obtained over the entire zooming range.

【0035】本実施例では負の屈折力の第1群からは発
散光束が第2群に入射する。この為Fナンバーを明るく
すると第2群の光軸から高い位置に光束が入射し、この
結果第2群の周辺部で著しく大きな収差が発生し、光学
性能が低下してくる。
In this embodiment, a divergent light beam enters the second lens unit from the first lens unit having a negative refractive power. For this reason, when the F number is increased, a light beam is incident at a high position from the optical axis of the second lens unit, and as a result, a significantly large aberration occurs at the peripheral portion of the second lens unit, deteriorating the optical performance.

【0036】これに対して第2群のレンズ枚数を増加さ
せたり、第2群の屈折力を弱めたりする方法がある。し
かしながらこれらの方法はレンズ全長が長くなり、又第
1群のレンズ外径が増大してくるので良くない。
On the other hand, there are methods of increasing the number of lenses in the second lens group and weakening the refractive power of the second lens group. However, these methods are not preferable because the total lens length becomes long and the lens outer diameter of the first group increases.

【0037】そこで本実施例では第2群で多く発生する
諸収差、特に球面収差とコマ収差を前述の条件式(3−
a),(3−b),(3−c)を満足する3枚のレンズ
と非球面とにより良好に補正し、高い光学性能を得てい
る。
Therefore, in the present embodiment, various aberrations frequently generated in the second lens group, particularly spherical aberration and coma aberration, are corrected by the conditional expression (3-
The three lenses satisfying a), (3-b), and (3-c) and the aspherical surface satisfactorily correct the light to obtain high optical performance.

【0038】条件式(3−a)は主にコマ収差を補正す
る為のものである。条件式(3−a)の下限値を越える
とコマ収差が補正過剰となり、逆に上限値を越えると残
存するコマ収差を他のレンズ面で補正し、かつ球面収差
や非点収差等と共に良好に補正するのが難しくなってく
る。更に全系の諸収差をバランス良く補正するのが難し
くなってくる。
Conditional expression (3-a) is mainly for correcting coma aberration. If the lower limit of conditional expression (3-a) is exceeded, coma will be overcorrected, and if the upper limit is exceeded, the remaining coma will be corrected by another lens surface, and it will be good with spherical aberration and astigmatism. It becomes difficult to correct it. Furthermore, it becomes difficult to correct various aberrations of the entire system in a well-balanced manner.

【0039】条件式(3−b),(3−c)は非球面形
状を適切に設定し、特に球面収差とコマ収差を良好に補
正する為のものである。このうち条件式(3−b)は3
次収差成分を表わし、これを負、即ち周辺部で正の屈折
力を弱める作用を有するようにして、球面収差とコマ収
差を補正過剰方向にして、条件式(3−a)と合わせて
球面収差とコマ収差を良好に補正している。
Conditional expressions (3-b) and (3-c) are for properly setting the aspherical surface shape, and particularly for favorably correcting spherical aberration and coma. Of these, conditional expression (3-b) is 3
It represents a secondary aberration component, which has a negative effect, that is, a function of weakening the positive refracting power in the peripheral portion, to make the spherical aberration and the coma aberration overcorrected, and combine them with the conditional expression (3-a) to obtain a spherical surface. Corrects aberrations and coma.

【0040】条件式(3−c)は5次収差成分まで含め
て非球面形状を適切に定め、特にレンズ外径DEの位置
での非球面量が周辺部で屈折力を弱める方向となるよう
にしている。これにより第2群に比較的強い正の屈折力
を持たせつつ、諸収差の発生を低減させている。又これ
により第1群に強い負の屈折力を持たせることができる
ようにしてレンズ全長の短縮化を図っている。
Conditional expression (3-c) appropriately defines the aspherical surface shape including the fifth-order aberration component, and in particular, the aspherical surface amount at the position of the lens outer diameter DE is such that the refractive power is weakened in the peripheral portion. I have to. As a result, the occurrence of various aberrations is reduced while the second lens group has a relatively strong positive refractive power. In addition, this makes it possible to give the first lens unit a strong negative refracting power to shorten the total lens length.

【0041】この他、第7実施例7では前述した数値実
施例4,5と同様に、第1群は少なくとも2枚の負レン
ズと正レンズとを有するようにしている。これにより主
に非点収差と歪曲収差を良好に補正している。
In addition to this, in the seventh embodiment 7, the first group has at least two negative lenses and positive lenses as in the case of the numerical embodiments 4 and 5 described above. As a result, mainly astigmatism and distortion are satisfactorily corrected.

【0042】又、第1群は物体側より順に第11群と第
12群の2つのレンズ群を有し、該第12群を光軸上移
動させて焦点合わせを行っている。これにより焦点合わ
せを行ってもレンズ全長が一定となるようにし、レンズ
が外部に突出しないようにし、又比較的軽量小型の第1
2レンズ群を移動させることにより、例えば自動焦点合
わせをする際の駆動制御を容易にしている。
Further, the first group has two lens groups of the 11th group and the 12th group in order from the object side, and the 12th group is moved on the optical axis for focusing. This keeps the total lens length constant even after focusing, prevents the lens from protruding to the outside, and is relatively lightweight and compact.
By moving the two lens groups, drive control is facilitated when, for example, automatic focusing is performed.

【0043】(1−4) 図8、図9に示す数値実施例
8,9では、広角端から望遠端への変倍を該第1群と第
2群との空気間隔を減少させ、該第2群と第3群との空
気間隔を増加させ、該第3群と第4群との空気間隔を減
少させて行い、該第4群は少なくとも1枚の負レンズと
少なくとも1枚の正レンズと少なくとも1つの非球面を
有しており、該非球面の屈折力をφ4a、光軸と該非球
面の交点及び非球面の最大径位置とで形成される曲率半
径をRmax、光軸と該非球面の交点及び光軸から高さ
Hでの非球面位置とで形成される曲率半径をRHとした
とき (|Rmax|−|RH|)・φ4a<0 ‥‥‥(4−a) なる条件を満足するようにしている。これにより高変倍
化及び大口径比化を図りつつ全変倍範囲にわたり高い光
学性能を確保している。
(1-4) In Numerical Embodiments 8 and 9 shown in FIGS. 8 and 9, the zooming from the wide-angle end to the telephoto end is performed by reducing the air gap between the first group and the second group. The air gap between the second group and the third group is increased, and the air gap between the third group and the fourth group is decreased, and the fourth group includes at least one negative lens and at least one positive lens. The lens has at least one aspherical surface, the refractive power of the aspherical surface is φ4a, the radius of curvature formed by the intersection of the optical axis and the aspherical surface and the maximum diameter position of the aspherical surface is Rmax, the optical axis and the aspherical surface. When the radius of curvature formed by the intersection point of and the aspherical surface at a height H from the optical axis is RH, (| Rmax |-| RH |) .phi.4a <0 ... (4-a) I am satisfied. As a result, high optical performance is ensured over the entire zoom range while achieving high zoom ratio and large aperture ratio.

【0044】本実施例では第1群を負の屈折力とし、広
画角化に有利なレンズ構成とし、かつ第1群、第2群の
他に第3群、第4群にも変倍を分担させ、高変倍化を容
易にしている。
In this embodiment, the first lens unit has a negative refracting power and has a lens structure advantageous for widening the angle of view, and in addition to the first lens unit and the second lens unit, the third lens unit and the fourth lens unit have variable magnifications. To facilitate high zooming.

【0045】又、一般に高変倍化及び大口径比化を図り
つつ、レンズ系全体の小型化を図るには各レンズ群の屈
折力を強くする必要がある。この結果収差の発生が多く
なりレンズ枚数を増加させて補正する必要がある。
In general, it is necessary to increase the refractive power of each lens group in order to reduce the size of the entire lens system while achieving a high zoom ratio and a large aperture ratio. As a result, aberrations are often generated, and it is necessary to correct the number of lenses by increasing the number of lenses.

【0046】そこで本実施例では第4群のレンズ構成を
前述の如く適切に設定し、特に非球面を用いることによ
り、少ないレンズ枚数で球面収差と非点収差等の諸収差
を良好に補正している。
Therefore, in the present embodiment, by appropriately setting the lens configuration of the fourth lens group as described above, and particularly by using an aspherical surface, various aberrations such as spherical aberration and astigmatism can be satisfactorily corrected with a small number of lenses. ing.

【0047】条件式(4−a)は第4群中に用いる非球
面形状を正の屈折力が光軸中心から離れるに従い、弱く
なる形状となるようにして主に球面収差と非点収差を良
好に補正している。条件式(4−a)を外れると球面収
差と非点収差が増大し、これらを補正するには第4群の
レンズ枚数を増加させねばならなく、この結果レンズ全
長が長くなってくるので良くない。
Conditional expression (4-a) is such that the aspherical shape used in the fourth lens unit becomes weaker as the positive refractive power moves away from the center of the optical axis. Corrected well. If conditional expression (4-a) is not satisfied, spherical aberration and astigmatism will increase, and in order to correct these, the number of lenses in the fourth group must be increased, and as a result, the total lens length becomes longer, which is all that is required. Absent.

【0048】この他、本実施例では第1群は少なくとも
2枚の負レンズと正レンズとを有するようにしている。
これにより広角側の焦点距離を短くし、広画角化を図
り、かつ第1群のレンズ外径を小さくしている。又非点
収差と歪曲収差を良好に補正している。
In addition, in the present embodiment, the first group has at least two negative lenses and positive lenses.
This shortens the focal length on the wide-angle side, widens the angle of view, and reduces the lens outer diameter of the first group. Also, astigmatism and distortion are well corrected.

【0049】第2群は物体側に凸面を向けたメニスカス
状の負の第21レンズと両レンズ面が凸面の正の第22
レンズとを接合した貼合わせレンズ、そして物体側に強
い正の屈折面を向けた正の第23レンズとを有してお
り、該貼合わせレンズの接合レンズ面の曲率半径をR
2,2、該第2群の焦点距離をF2としたとき 0.6<R2,2/F2<1.0 ‥‥‥(4−b) なる条件を満足するようにしている。
The second lens unit has a negative meniscus 21st lens element having a convex surface directed toward the object side, and a positive 22nd lens element having convex lens surfaces on both sides.
The cemented lens has a cemented lens and a positive 23rd lens having a strong positive refracting surface facing the object side. The radius of curvature of the cemented lens surface of the cemented lens is R.
2, 2 and the focal length of the second lens unit is F2, the condition of 0.6 <R2,2 / F2 <1.0 ... (4-b) is satisfied.

【0050】本実施例では第1群は負の屈折力を有して
いる為、第2群に入射する軸上光束は第1群よりも光軸
上高い位置に入射する。この為諸収差が発生しやすくな
る。そこで第2群を前述の如く構成し、諸収差を良好に
補正している。
In this embodiment, since the first lens unit has a negative refractive power, the on-axis light beam incident on the second lens unit is incident on a position higher on the optical axis than the first lens unit. Therefore, various aberrations are likely to occur. Therefore, the second lens group is configured as described above to satisfactorily correct various aberrations.

【0051】条件式(4−b)は貼合わせレンズの接合
レンズ面の曲率半径を適切に設定し主にコマ収差を良好
に補正する為のものである。条件式(4−b)の下限値
を越えて曲率半径R2,2が小さくなるとコマ収差が補
正過剰となり、逆に上限値を越えて曲率半径R2,2が
大きくなると残存するコマ収差を他のレンズ面で補正す
るのが難しくなってくる。
Conditional expression (4-b) is mainly used to properly set the radius of curvature of the cemented lens surface of the cemented lens and correct the coma aberration favorably. When the radius of curvature R2,2 becomes smaller than the lower limit of the conditional expression (4-b), the coma aberration becomes overcorrected, and conversely, when the radius of curvature R2,2 becomes larger than the upper limit, the remaining coma aberration becomes other. It becomes difficult to correct on the lens surface.

【0052】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air gap from the object side, and Ni and νi are the values of the i-th lens in order from the object side, respectively. The refractive index of glass and the Abbe number.

【0053】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
A,B,C,D,Eを各々非球面係数としたとき
The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the traveling direction of light is positive, and R is the paraxial radius of curvature,
When A, B, C, D, and E are aspherical coefficients, respectively

【0054】[0054]

【数1】 なる式で表わしている。 数値実施例 1 F= 28.8 〜77.3 FNO=1:3.5 〜4.5 2ω= 73.8°〜31.3° R 1= 57.039 D 1= 1.80 N 1=1.77250 ν 1= 49.6 R 2= 23.561 D 2= 6.90 R 3=-13365.018 D 3= 1.60 N 2=1.77250 ν 2= 49.6 R 4= 40.913 D 4= 0.10 R 5= 30.586 D 5= 3.90 N 3=1.80518 ν 3= 25.4 R 6= 65.175 D 6= 可変 R 7= 61.327 D 7= 1.50 N 4=1.84666 ν 4= 23.9 R 8= 25.956 D 8= 0.07 R 9= 27.135 D 9= 4.00 N 5=1.69680 ν 5= 55.5 R10= -157.956 D10= 0.10 R11= 35.052 D11= 3.15 N 6=1.69680 ν 6= 55.5 R12= -166.755 D12= 可変 R13=(絞り) D13= 1.75 R14= -51.650 D14= 2.10 N 7=1.80518 ν 7= 25.4 R15= -25.090 D15= 1.30 N 8=1.60311 ν 8= 60.7 R16= 46.084 D16= 可変 R17= 122.517 D17= 1.30 N 9=1.80518 ν 9= 25.4 R18= 31.966 D18= 0.42 R19= 35.150 D19= 5.00 N10=1.58313 ν10= 59.4 R20= -37.015 非球面 R21= 0.0 [Equation 1] It is expressed by Numerical Example 1 F = 28.8 to 77.3 FNO = 1: 3.5 to 4.5 2ω = 73.8 ° to 31.3 ° R 1 = 57.039 D 1 = 1.80 N 1 = 1.77250 ν 1 = 49.6 R 2 = 23.561 D 2 = 6.90 R 3 = -13365.018 D 3 = 1.60 N 2 = 1.77250 ν 2 = 49.6 R 4 = 40.913 D 4 = 0.10 R 5 = 30.586 D 5 = 3.90 N 3 = 1.80518 ν 3 = 25.4 R 6 = 65.175 D 6 = variable R 7 = 61.327 D 7 = 1.50 N 4 = 1.84666 ν 4 = 23.9 R 8 = 25.956 D 8 = 0.07 R 9 = 27.135 D 9 = 4.00 N 5 = 1.69680 ν 5 = 55.5 R10 = -157.956 D10 = 0.10 R11 = 35.052 D11 = 3.15 N 6 = 1.69680 ν 6 = 55.5 R12 = -166.755 D12 = Variable R13 = (Aperture) D13 = 1.75 R14 = -51.650 D14 = 2.10 N 7 = 1.80518 ν 7 = 25.4 R15 = -25.090 D15 = 1.30 N 8 = 1.60311 ν 8 = 60.7 R16 = 46.084 D16 = Variable R17 = 122.517 D17 = 1.30 N 9 = 1.80518 ν 9 = 25.4 R18 = 31.966 D18 = 0.42 R19 = 35.150 D19 = 5.00 N10 = 1.58313 ν10 = 59.4 R20 = -37.015 Aspheric R21 = 0.0

【0055】[0055]

【表1】 R20:非球面係数 A= 0 B= 4.88934×10-6 C=-6.38115×10-9 D= 1.53483×10-10 E=-5.17930×10-13 数値実施例 2 F= 28.8 〜77.01 FNO=1:3.5 〜4.5 2ω= 73.8°〜31.4° R 1= 69.290 D 1= 1.80 N 1=1.77250 ν 1= 49.6 R 2= 26.715 D 2= 6.90 R 3= 3674.837 D 3= 1.60 N 2=1.77250 ν 2= 49.6 R 4= 37.386 D 4= 0.10 R 5= 31.958 D 5= 3.90 N 3=1.80518 ν 3= 25.4 R 6= 69.851 D 6= 可変 R 7= 62.034 D 7= 1.50 N 4=1.84666 ν 4= 23.9 R 8= 25.952 D 8= 0.07 R 9= 26.641 D 9= 4.00 N 5=1.69680 ν 5= 55.5 R10= -110.081 D10= 0.10 R11= 31.365 D11= 3.15 N 6=1.69680 ν 6= 55.5 R12= -395.214 D12= 可変 R13=(絞り) D13= 1.75 R14= -55.195 D14= 2.10 N 7=1.80518 ν 7= 25.4 R15= -25.214 D15= 1.30 N 8=1.60311 ν 8= 60.7 R16= 38.462 D16= 可変 R17= 78.946 D17= 1.30 N 9=1.80518 ν 9= 25.4 R18= 26.654 D18= 0.42 R19= 29.350 D19= 5.00 N10=1.58313 ν10= 59.4 R20= -44.797 非球面 R21= 0.0 [Table 1] R20: Aspherical surface coefficient A = 0 B = 4.88834 × 10 −6 C = −6.838115 × 10 −9 D = 1.53483 × 10 −10 E = −5.17930 × 10 −13 Numerical example 2 F = 28.8 to 77.01 FNO = 1 : 3.5 to 4.5 2 ω = 73.8 ° to 31.4 ° R 1 = 69.290 D 1 = 1.80 N 1 = 1.77250 ν 1 = 49.6 R 2 = 26.715 D 2 = 6.90 R 3 = 3674.837 D 3 = 1.60 N 2 = 1.77250 ν 2 = 49.6 R 4 = 37.386 D 4 = 0.10 R 5 = 31.958 D 5 = 3.90 N 3 = 1.80518 ν 3 = 25.4 R 6 = 69.851 D 6 = variable R 7 = 62.034 D 7 = 1.50 N 4 = 1.84666 ν 4 = 23.9 R 8 = 25.952 D 8 = 0.07 R 9 = 26.641 D 9 = 4.00 N 5 = 1.69680 ν 5 = 55.5 R10 = -110.081 D10 = 0.10 R11 = 31.365 D11 = 3.15 N 6 = 1.69680 ν 6 = 55.5 R12 = -395.214 D12 = Variable R13 = (Aperture) D13 = 1.75 R14 = -55.195 D14 = 2.10 N 7 = 1.80518 ν 7 = 25.4 R15 = -25.214 D15 = 1.30 N 8 = 1.60311 ν 8 = 60.7 R16 = 38.462 D16 = Variable R17 = 78.946 D17 = 1.30 N 9 = 1.80518 ν 9 = 25.4 R18 = 26.654 D18 = 0.42 R19 = 29.350 D19 = 5.00 N10 = 1.58313 ν10 = 59.4 R20 = -44.797 Aspheric R21 = 0.0

【0056】[0056]

【表2】 R20:非球面係数 A= 0 B= 4.54988×10-6 C= 3.91367×10-9 D= 1.11697×10-10 E=-6.30557×10-13 数値実施例 3 F= 28.8 〜77.38 FNO=1:3.5 〜4.5 2ω= 73.8°〜31.2° R 1= 67.090 D 1= 1.80 N 1=1.77250 ν 1= 49.6 R 2= 27.602 D 2= 6.80 R 3= -912.555 D 3= 1.60 N 2=1.77250 ν 2= 49.6 R 4= 36.134 D 4= 0.10 R 5= 31.918 D 5= 3.90 N 3=1.80518 ν 3= 25.4 R 6= 73.004 D 6= 可変 R 7= 48.711 D 7= 1.50 N 4=1.84666 ν 4= 23.9 R 8= 22.792 D 8= 4.00 N 5=1.69680 ν 5= 55.5 R 9= -89.964 D 9= 0.10 R10= 31.729 D10= 3.10 N 6=1.69680 ν 6= 55.5 R11= 248.913 D11= 可変 R12=(絞り) D12= 1.75 R13= -51.342 D13= 2.10 N 7=1.80518 ν 7= 25.4 R14= -23.117 D14= 1.30 N 8=1.60311 ν 8= 60.7 R15= 38.796 D15= 可変 R16= 76.641 D16= 1.30 N 9=1.84666 ν 9= 23.9 R17= 29.240 D17= 0.45 R18= 32.398 D18= 5.00 N10=1.58313 ν10= 59.4 R19= -45.125 非球面 [Table 2] R20: Aspherical coefficient A = 0 B = 4.54988 × 10 −6 C = 3.91367 × 10 −9 D = 1.11697 × 10 −10 E = −6.30557 × 10 −13 Numerical example 3 F = 28.8 to 77.38 FNO = 1: 3.5 to 4.5 2ω = 73.8 ° to 31.2 ° R 1 = 67.090 D 1 = 1.80 N 1 = 1.77250 ν 1 = 49.6 R 2 = 27.602 D 2 = 6.80 R 3 = -912.555 D 3 = 1.60 N 2 = 1.77250 ν 2 = 49.6 R 4 = 36.134 D 4 = 0.10 R 5 = 31.918 D 5 = 3.90 N 3 = 1.80518 ν 3 = 25.4 R 6 = 73.004 D 6 = Variable R 7 = 48.711 D 7 = 1.50 N 4 = 1.84666 ν 4 = 23.9 R 8 = 22.792 D 8 = 4.00 N 5 = 1.69680 ν 5 = 55.5 R 9 = -89.964 D 9 = 0.10 R10 = 31.729 D10 = 3.10 N 6 = 1.69680 ν 6 = 55.5 R11 = 248.913 D11 = Variable R12 = (Aperture) D12 = 1.75 R13 = -51.342 D13 = 2.10 N 7 = 1.80518 ν 7 = 25.4 R14 = -23.117 D14 = 1.30 N 8 = 1.60311 ν 8 = 60.7 R15 = 38.796 D15 = Variable R16 = 76.641 D16 = 1.30 N 9 = 1.84666 ν 9 = 23.9 R17 = 29.240 D17 = 0.45 R18 = 32.398 D18 = 5.00 N10 = 1.58313 ν10 = 59.4 R19 = -45.125 Aspheric surface

【0057】[0057]

【表3】 R19:非球面係数 A= 0 B= 4.7416 ×10-6 C= 3.16871×10-8 D=-1.19894×10-10 E= 2.29582×10-13 数値実施例 4 F= 28.8 〜77.49 FNO=1:2.8 2ω= 73.8°〜31.2° R 1= 90.266 D 1= 2.00 N 1=1.77250 ν 1= 49.6 R 2= 38.296 D 2= 9.00 R 3= -461.888 D 3= 4.50 N 2=1.69895 ν 2= 30.1 R 4= -96.235 D 4= 0.12 R 5= -179.098 D 5= 1.80 N 3=1.77250 ν 3= 49.6 R 6= 59.711 D 6= 1.70 R 7= 39.696 D 7= 2.90 N 4=1.84666 ν 4= 23.9 R 8= 48.254 D 8= 可変 R 9= 61.886 D 9= 1.50 N 5=1.84666 ν 5= 23.8 R10= 36.536 D10= 7.00 N 6=1.71300 ν 6= 53.8 R11= -92.015 D11= 0.10 R12= 43.139 非球面 D12= 5.50 N 7=1.77250 ν 7= 49.6 R13= -469.393 D13= 1.50 N 8=1.84666 ν 8= 23.8 R14= 129.333 D14= 可変 R15=(絞り) D15= 1.00 R16= 805.385 D16= 4.10 N 9=1.84666 ν 9= 23.8 R17= -23.912 D17= 1.10 N10=1.77250 ν10= 49.6 R18= 56.787 D18= 2.80 R19= -32.304 D19= 1.10 N11=1.83481 ν11= 42.7 R20= -279.112 D20= 可変 R21= -61.974 D21= 1.20 N12=1.84666 ν12= 23.8 R22= 82.543 D22= 3.80 N13=1.71300 ν13= 53.8 R23= -34.909 D23= 0.10 R24= 49.546 D24= 1.80 N14=1.76182 ν14= 26.5 R25= 39.572 D25= 3.50 R26= -706.308 D26= 2.80 N15=1.69680 ν15= 55.5 R27= -64.519 D27= 0.10 R28= 77.104 D28= 4.80 N16=1.71300 ν16= 53.8 R29= -104.361 D29= 1.40 N17=1.84666 ν10= 23.8 R30= -193.661[Table 3] R19: Aspherical surface coefficient A = 0 B = 4.7416 × 10 −6 C = 3.16871 × 10 −8 D = −1.19894 × 10 −10 E = 2.29582 × 10 −13 Numerical example 4 F = 28.8 to 77.49 FNO = 1: 2.8 2 ω = 73.8 ° ~ 31.2 ° R 1 = 90.266 D 1 = 2.00 N 1 = 1.77250 ν 1 = 49.6 R 2 = 38.296 D 2 = 9.00 R 3 = -461.888 D 3 = 4.50 N 2 = 1.69895 ν 2 = 30.1 R 4 = -96.235 D 4 = 0.12 R 5 = -179.098 D 5 = 1.80 N 3 = 1.77250 ν 3 = 49.6 R 6 = 59.711 D 6 = 1.70 R 7 = 39.696 D 7 = 2.90 N 4 = 1.84666 ν 4 = 23.9 R 8 = 48.254 D 8 = Variable R 9 = 61.886 D 9 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R10 = 36.536 D10 = 7.00 N 6 = 1.71300 ν 6 = 53.8 R11 = -92.015 D11 = 0.10 R12 = 43.139 Aspheric D12 = 5.50 N 7 = 1.77250 ν 7 = 49.6 R13 = -469.393 D13 = 1.50 N 8 = 1.84666 ν 8 = 23.8 R14 = 129.333 D14 = Variable R15 = (Aperture) D15 = 1.00 R16 = 805.385 D16 = 4.10 N 9 = 1.84666 ν 9 = 23.8 R17 = -23.912 D17 = 1.10 N10 = 1.77250 ν10 = 49.6 R18 = 56.787 D18 = 2.80 R19 = -32.304 D19 = 1.10 N11 = 1.83481 ν11 = 42.7 R20 = -279.112 D20 = variable R21 = -61.974 D21 = 1.20 N12 = 1.84666 ν12 = 23.8 R22 = 82.543 D22 = 3.80 N13 = 1.7130 0 ν13 = 53.8 R23 = -34.909 D23 = 0.10 R24 = 49.546 D24 = 1.80 N14 = 1.76182 ν14 = 26.5 R25 = 39.572 D25 = 3.50 R26 = -706.308 D26 = 2.80 N15 = 1.69680 ν15 = 55.5 R27 = -64.519 D27 = 0.10 R28 = 77.104 D28 = 4.80 N16 = 1.71300 ν16 = 53.8 R29 = -104.361 D29 = 1.40 N17 = 1.84666 ν10 = 23.8 R30 = -193.661

【0058】[0058]

【表4】 R12:非球面係数 A= 0 B=-1.67796×10-7 C=-1.68935×10-9 D=-1.43301×10-12 数値実施例 5 F= 28.8 〜77.63 FNO=1:2.8 2ω= 73.8°〜31.1° R 1= 107.701 非球面 D 1= 2.20 N 1=1.83481 ν 1= 42.7 R 2= 43.329 D 2= 16.00 R 3= -663.644 D 3= 2.00 N 2=1.83481 ν 2= 42.7 R 4= 35.965 D 4= 5.00 N 3=1.84666 ν 3= 23.8 R 5= 96.556 D 5= 1.50 R 6= 56.255 D 6= 2.50 N 4=1.84666 ν 4= 23.8 R 7= 62.609 D 7= 可変 R 8= 78.988 非球面 D 8= 1.50 N 5=1.84666 ν 5= 23.8 R 9= 39.104 D 9= 7.50 N 6=1.71300 ν 6= 53.8 R10= -85.722 D10= 0.10 R11= 41.699 D11= 7.00 N 7=1.77250 ν 7= 49.6 R12= -136.277 D12= 1.50 N 8=1.84666 ν 8= 23.8 R13= 183.298 D13= 可変 R14=(絞り) D14= 1.00 R15= 413.138 D15= 4.10 N 9=1.84666 ν 9= 23.8 R16= -27.684 D16= 1.10 N10=1.77250 ν10= 49.6 R17= 53.170 D17= 2.80 R18= -32.983 D18= 1.10 N11=1.83481 ν11= 42.7 R19=-4847.456 D19= 可変 R20= -80.792 D20= 1.20 N12=1.84666 ν12= 23.8 R21= -461.613 D21= 3.50 N13=1.71300 ν13= 53.8 R22= -36.396 D22= 0.10 R23= 45.586 D23= 1.80 N14=1.76182 ν14= 26.5 R24= 37.053 D24= 3.50 R25= -159.162 D25= 2.50 N15=1.69680 ν15= 55.5 R26= -56.467 D26= 0.10 R27= 95.167 D27= 5.00 N16=1.71300 ν16= 53.8 R28= -47.606 D28= 1.40 N17=1.84666 ν17= 23.8 R29= -121.554 [Table 4] R12: Aspherical coefficient A = 0 B = -1.67796 × 10 -7 C = -1.68935 × 10 -9 D = -1.43301 × 10 -12 Numerical Example 5 F = 28.8 to 77.63 FNO = 1: 2.8 2ω = 73.8 ° ~ 31.1 ° R 1 = 107.701 Aspheric D 1 = 2.20 N 1 = 1.83481 ν 1 = 42.7 R 2 = 43.329 D 2 = 16.00 R 3 = -663.644 D 3 = 2.00 N 2 = 1.83481 ν 2 = 42.7 R 4 = 35.965 D 4 = 5.00 N 3 = 1.84666 ν 3 = 23.8 R 5 = 96.556 D 5 = 1.50 R 6 = 56.255 D 6 = 2.50 N 4 = 1.84666 ν 4 = 23.8 R 7 = 62.609 D 7 = Variable R 8 = 78.988 Aspheric surface D 8 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R 9 = 39.104 D 9 = 7.50 N 6 = 1.71300 ν 6 = 53.8 R10 = -85.722 D10 = 0.10 R11 = 41.699 D11 = 7.00 N 7 = 1.77250 ν 7 = 49.6 R12 = -136.277 D12 = 1.50 N 8 = 1.84666 ν 8 = 23.8 R13 = 183.298 D13 = Variable R14 = (Aperture) D14 = 1.00 R15 = 413.138 D15 = 4.10 N 9 = 1.84666 ν 9 = 23.8 R16 = -27.684 D16 = 1.10 N10 = 1.77250 ν10 = 49.6 R17 = 53.170 D17 = 2.80 R18 = -32.983 D18 = 1.10 N11 = 1.83481 ν11 = 42.7 R19 = -4847.456 D19 = variable R20 = -80.792 D20 = 1.20 N12 = 1.84666 ν12 = 23.8 R21 = -461.613 D21 = 3.50 N13 = 1.71300 ν13 = 53.8 R22 = -36.396 D22 = 0.1 0 R23 = 45.586 D23 = 1.80 N14 = 1.76182 ν14 = 26.5 R24 = 37.053 D24 = 3.50 R25 = -159.162 D25 = 2.50 N15 = 1.69680 ν15 = 55.5 R26 = -56.467 D26 = 0.10 R27 = 95.167 D27 = 5.00 N16 = 1.71300 ν16 = 53.8 R28 = -47.606 D28 = 1.40 N17 = 1.84666 ν17 = 23.8 R29 = -121.554

【0059】[0059]

【表5】 R1:非球面係数 A= 0 B= 7.15543×10-7 C=-2.45904×10-10 D=-1.41751×10-13 R8:非球面係数 A= 0 B= 3.12771×10-7 C= 9.59892×10-11 数値実施例 6 F= 28.8 〜77.43 FNO=1:2.8 2ω= 73.8°〜31.2° R 1= 72.775 D 1= 2.00 N 1=1.77250 ν 1= 49.6 R 2= 37.706 D 2= 9.00 R 3= -474.784 D 3= 4.50 N 2=1.69895 ν 2= 30.1 R 4= -94.031 D 4= 0.12 R 5= -151.662 D 5= 1.80 N 3=1.77250 ν 3= 49.6 R 6= 60.031 D 6= 1.70 R 7= 40.187 D 7= 2.90 N 4=1.84666 ν 4= 23.9 R 8= 46.071 D 8= 可変 R 9= 77.426 D 9= 1.50 N 5=1.84666 ν 5= 23.8 R10= 35.026 D10= 7.00 N 6=1.71300 ν 6= 53.8 R11= -89.434 非球面 D11= 0.10 R12= 39.339 D12= 5.50 N 7=1.77250 ν 7= 49.6 R13= 244.065 D13= 1.50 N 8=1.84666 ν 8= 23.8 R14= 139.168 D14= 可変 R15=(絞り) D15= 1.00 R16= 289.330 D16= 4.10 N 9=1.84666 ν 9= 23.8 R17= -24.625 D17= 1.10 N10=1.77250 ν10= 49.6 R18= 54.408 D18= 2.80 R19= -31.708 D19= 1.10 N11=1.83481 ν11= 42.7 R20= -632.173 D20= 可変 R21= -58.935 D21= 1.20 N12=1.84666 ν12= 23.8 R22= 83.573 D22= 3.80 N13=1.71300 ν13= 53.8 R23= -33.512 D23= 0.10 R24= 48.387 D24= 1.80 N14=1.76182 ν14= 26.5 R25= 39.391 D25= 3.50 R26= 263.616 D26= 2.80 N15=1.69680 ν15= 55.5 R27= -73.712 D27= 0.10 R28= 79.107 D28= 4.80 N16=1.71300 ν16= 53.8 R29= -103.977 D29= 1.40 N17=1.84666 ν17= 23.8 R30= -302.891[Table 5] R1: Aspherical coefficient A = 0 B = 7.15543 × 10 -7 C = -2.45904 × 10 -10 D = -1.41751 × 10 -13 R8: Aspherical coefficient A = 0 B = 3.12771 × 10 -7 C = 9.559892 × 10 -11 Numerical Example 6 F = 28.8 to 77.43 FNO = 1: 2.8 2ω = 73.8 ° to 31.2 ° R 1 = 72.775 D 1 = 2.00 N 1 = 1.77250 ν 1 = 49.6 R 2 = 37.706 D 2 = 9.00 R 3 = -474.784 D 3 = 4.50 N 2 = 1.69895 ν 2 = 30.1 R 4 = -94.031 D 4 = 0.12 R 5 = -151.662 D 5 = 1.80 N 3 = 1.77250 ν 3 = 49.6 R 6 = 60.031 D 6 = 1.70 R 7 = 40.187 D 7 = 2.90 N 4 = 1.84666 ν 4 = 23.9 R 8 = 46.071 D 8 = Variable R 9 = 77.426 D 9 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R10 = 35.026 D10 = 7.00 N 6 = 1.71300 ν 6 = 53.8 R11 = -89.434 Aspheric surface D11 = 0.10 R12 = 39.339 D12 = 5.50 N 7 = 1.77250 ν 7 = 49.6 R13 = 244.065 D13 = 1.50 N 8 = 1.84666 ν 8 = 23.8 R14 = 139.168 D14 = variable R15 = (aperture ) D15 = 1.00 R16 = 289.330 D16 = 4.10 N 9 = 1.84666 ν 9 = 23.8 R17 = -24.625 D17 = 1.10 N10 = 1.77250 ν10 = 49.6 R18 = 54.408 D18 = 2.80 R19 = -31.708 D19 = 1.10 N11 = 1.83481 ν11 = 42.7 R20 = -632.173 D20 = Variable R21 = -58.935 D21 = 1.20 N1 2 = 1.84666 ν12 = 23.8 R22 = 83.573 D22 = 3.80 N13 = 1.71300 ν13 = 53.8 R23 = -33.512 D23 = 0.10 R24 = 48.387 D24 = 1.80 N14 = 1.76182 ν14 = 26.5 R25 = 39.391 D25 = 3.50 R26 = 263.616 D26 = 2.80 N15 = 1.69680 ν15 = 55.5 R27 = -73.712 D27 = 0.10 R28 = 79.107 D28 = 4.80 N16 = 1.71300 ν16 = 53.8 R29 = -103.977 D29 = 1.40 N17 = 1.84666 ν17 = 23.8 R30 = -302.891

【0060】[0060]

【表6】 R11:非球面係数 A= 0 B=-3.75089×10-7 C= 2.89669×10-10 D= 6.62424×10-13 数値実施例 7 F= 28.8 〜77.4 FNO=1:2.8 2ω= 73.8°〜31.2° R 1= 112.318 非球面 D 1= 2.20 N 1=1.83481 ν 1= 42.7 R 2= 43.560 D 2= 16.00 R 3=-1512.328 D 3= 2.00 N 2=1.83481 ν 2= 42.7 R 4= 35.617 D 4= 5.00 N 3=1.84666 ν 3= 23.8 R 5= 88.280 D 5= 1.50 R 6= 53.563 D 6= 2.50 N 4=1.84666 ν 4= 23.8 R 7= 60.304 D 7= 可変 R 8= 79.550 D 8= 1.50 N 5=1.84666 ν 5= 23.8 R 9= 39.269 D 9= 7.50 N 6=1.71300 ν 6= 53.8 R10= -88.346 D10= 0.10 R11= 41.335 D11= 7.00 N 7=1.77250 ν 7= 49.6 R12= -147.232 D12= 1.50 N 8=1.84666 ν 8= 23.8 R13= 188.635 非球面 D13= 可変 R14=(絞り) D14= 1.00 R15= 662.981 D15= 4.10 N 9=1.84666 ν 9= 23.8 R16= -26.757 D16= 1.10 N10=1.77250 ν10= 49.6 R17= 55.441 D17= 2.80 R18= -33.069 D18= 1.10 N11=1.83481 ν11= 42.7 R19=-7905.451 D19= 可変 R20= -83.147 D20= 1.20 N12=1.84666 ν12= 23.8 R21= 833.745 D21= 3.50 N13=1.71300 ν13= 53.8 R22= -36.241 D22= 0.10 R23= 45.804 D23= 1.80 N14=1.76182 ν14= 26.5 R24= 37.229 D24= 3.50 R25= -182.280 D25= 2.50 N15=1.69680 ν15= 55.5 R26= -57.812 D26= 0.10 R27= 87.431 D27= 5.00 N16=1.71300 ν16= 53.8 R28= -56.322 D28= 1.40 N17=1.84666 ν17= 23.8 R29= -149.333 [Table 6] R11: Aspherical surface coefficient A = 0 B = -3.75089 × 10 −7 C = 2.89669 × 10 −10 D = 6.62424 × 10 −13 Numerical example 7 F = 28.8 to 77.4 FNO = 1: 2.8 2ω = 73.8 ° to 31.2 ° R 1 = 112.318 Aspheric D 1 = 2.20 N 1 = 1.83481 ν 1 = 42.7 R 2 = 43.560 D 2 = 16.00 R 3 = -1512.328 D 3 = 2.00 N 2 = 1.83481 ν 2 = 42.7 R 4 = 35.617 D 4 = 5.00 N 3 = 1.84666 ν 3 = 23.8 R 5 = 88.280 D 5 = 1.50 R 6 = 53.563 D 6 = 2.50 N 4 = 1.84666 ν 4 = 23.8 R 7 = 60.304 D 7 = Variable R 8 = 79.550 D 8 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R 9 = 39.269 D 9 = 7.50 N 6 = 1.71300 ν 6 = 53.8 R10 = -88.346 D10 = 0.10 R11 = 41.335 D11 = 7.00 N 7 = 1.77250 ν 7 = 49.6 R12 = -147.232 D12 = 1.50 N 8 = 1.84666 ν 8 = 23.8 R13 = 188.635 Aspherical D13 = Variable R14 = (Aperture) D14 = 1.00 R15 = 662.981 D15 = 4.10 N 9 = 1.84666 ν 9 = 23.8 R16 = -26.757 D16 = 1.10 N10 = 1.77250 ν10 = 49.6 R17 = 55.441 D17 = 2.80 R18 = -33.069 D18 = 1.10 N11 = 1.83481 ν11 = 42.7 R19 = -7905.451 D19 = variable R20 = -83.147 D20 = 1.20 N12 = 1.84666 ν12 = 23.8 R21 = 833.745 D21 = 3.50 N13 = 1.71300 ν13 = 53.8 R22 = -36.241 D22 = 0.10 R23 = 45.804 D23 = 1.80 N14 = 1.76182 ν14 = 26.5 R24 = 37.229 D24 = 3.50 R25 = -182.280 D25 = 2.50 N15 = 1.69680 ν15 = 55.5 R26 = -57.812 D26 = 0.10 R27 = 87.431 D27 = 5.00 N16 = 1.71300 ν16 = 53.8 R28 = -56.322 D28 = 1.40 N17 = 1.84666 ν17 = 23.8 R29 = -149.333

【0061】[0061]

【表7】 R1:非球面係数 A= 0 B= 5.78991×10-7 C=-4.62210×10-11 D= 1.60066×10-14 R13:非球面係数 A= 0 B= 3.56175×10-7 C=-1.61754×10-11 D= 1.481666 ×10-13 数値実施例 8 F= 28.8 〜77.46 FNO=1:2.8 2ω= 73.8°〜31.2° R 1= 75.223 非球面 D 1= 2.20 N 1=1.83481 ν 1= 42.7 R 2= 37.278 D 2= 16.00 R 3=-1600.958 D 3= 2.00 N 2=1.83481 ν 2= 42.7 R 4= 32.493 D 4= 5.50 N 3=1.84666 ν 3= 23.8 R 5= 71.677 D 5= 1.50 R 6= 50.112 D 6= 3.00 N 4=1.84666 ν 4= 23.8 R 7= 61.032 D 7= 可変 R 8= 74.083 D 8= 1.50 N 5=1.84666 ν 5= 23.8 R 9= 32.486 D 9= 7.50 N 6=1.71300 ν 6= 53.8 R10= -289.769 D10= 0.10 R11= 76.844 D11= 5.50 N 7=1.77250 ν 7= 49.6 R12= -151.673 D12= 1.40 N 8=1.84666 ν 8= 23.8 R13= 340.344 D13= 0.10 R14= 54.698 D14= 4.50 N 9=1.77250 ν 9= 49.6 R15= 1076.398 D15= 可変 R16=(絞り) D16= 1.00 R17= 179.919 D17= 4.10 N10=1.84666 ν10= 23.8 R18= -29.320 D18= 1.10 N11=1.77250 ν11= 49.6 R19= 55.441 D19= 2.90 R20= -32.601 D20= 1.10 N12=1.83481 ν12= 42.7 R21= 199.184 D21= 可変 R22= -146.326 D22= 1.40 N13=1.84666 ν13= 23.8 R23= -238.520 D23= 3.80 N14=1.71300 ν14= 53.8 R24= -31.546 D24= 0.10 R25= -92.279 D25= 2.80 N15=1.69680 ν15= 55.5 R26= -56.757 D26= 0.10 R27= 125.405 非球面 D27= 5.00 N16=1.71300 ν16= 53.8 R28= -38.566 D28= 1.40 N17=1.84666 ν17= 23.8 R29= -373.726 [Table 7] R1: Aspherical coefficient A = 0 B = 5.78991 × 10 -7 C = -4.62210 × 10 -11 D = 1.60066 × 10 -14 R13: Aspherical coefficient A = 0 B = 3.56175 × 10 -7 C = -1.61754 × 10 -11 D = 1.481666 × 10 -13 numerical example 8 F = 28.8 ~77.46 FNO = 1 : 2.8 2ω = 73.8 ° ~31.2 ° R 1 = 75.223 aspheric D 1 = 2.20 N 1 = 1.83481 ν 1 = 42.7 R 2 = 37.278 D 2 = 16.00 R 3 = -1600.958 D 3 = 2.00 N 2 = 1.83481 ν 2 = 42.7 R 4 = 32.493 D 4 = 5.50 N 3 = 1.84666 ν 3 = 23.8 R 5 = 71.677 D 5 = 1.50 R 6 = 50.112 D 6 = 3.00 N 4 = 1.84666 ν 4 = 23.8 R 7 = 61.032 D 7 = Variable R 8 = 74.083 D 8 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R 9 = 32.486 D 9 = 7.50 N 6 = 1.71300 ν 6 = 53.8 R10 = -289.769 D10 = 0.10 R11 = 76.844 D11 = 5.50 N 7 = 1.77250 ν 7 = 49.6 R12 = -151.673 D12 = 1.40 N 8 = 1.84666 ν 8 = 23.8 R13 = 340.344 D13 = 0.10 R14 = 54.698 D14 = 4.50 N 9 = 1.77250 ν 9 = 49.6 R15 = 1076.398 D15 = Variable R16 = (Aperture) D16 = 1.00 R17 = 179.919 D17 = 4.10 N10 = 1.84666 ν10 = 23.8 R18 = -29.320 D18 = 1.10 N11 = 1.77250 ν11 = 49.6 R19 = 55.441 D19 = 2.90 R20 = -32.601 D20 = 1.10 N12 = 1.83481 ν12 = 42.7 R21 = 199.184 D21 = Variable R22 = -146.326 D22 = 1.40 N13 = 1.84666 ν13 = 23.8 R23 = -238.520 D23 = 3.80 N14 = 1.71300 ν14 = 53.8 R24 = -31.546 D24 = 0.10 R25 = -92.279 D25 = 2.80 N15 = 1.69680 ν15 = 55.5 R26 = -56.757 D26 = 0.10 R27 = 125.405 Aspherical D27 = 5.00 N16 = 1.71300 ν16 = 53.8 R28 = -38.566 D28 = 1.40 N17 = 1.84666 ν17 = 23.8 R29 = -373.726

【0062】[0062]

【表8】 R1:非球面係数 A= 0 B= 3.78122×10-7 C= 2.31162×10-10 D=-7.07093×10-14 R27:非球面係数 A= 0 B=-1.9333 ×10-6 C=-4.86862×10-9 D= 3.0832 ×10-12 数値実施例 9 F= 28.8 〜77.35 FNO=1:2.8 2ω= 73.8°〜31.2° R 1= 82.212 非球面 D 1= 2.20 N 1=1.83481 ν 1= 42.7 R 2= 40.145 D 2= 16.00 R 3= -734.079 D 3= 2.00 N 2=1.83481 ν 2= 42.7 R 4= 32.424 D 4= 5.50 N 3=1.84666 ν 3= 23.8 R 5= 65.788 D 5= 1.50 R 6= 49.287 D 6= 3.00 N 4=1.84666 ν 4= 23.8 R 7= 61.693 D 7= 可変 R 8= 77.960 D 8= 1.50 N 5=1.84666 ν 5= 23.8 R 9= 31.802 D 9= 7.50 N 6=1.71300 ν 6= 53.8 R10= -198.781 D10= 0.10 R11= 77.219 D11= 5.50 N 7=1.77250 ν 7= 49.6 R12= -168.989 D12= 1.40 N 8=1.84666 ν 8= 23.8 R13= 357.536 D13= 0.10 R14= 50.032 D14= 4.50 N 9=1.77250 ν 9= 49.6 R15= 1036.923 D15= 可変 R16=(絞り) D16= 1.00 R17= 159.183 D17= 4.10 N10=1.84666 ν10= 23.8 R18= -28.287 D18= 1.10 N11=1.77250 ν11= 49.6 R19= 53.088 D19= 2.90 R20= -34.394 D20= 1.10 N12=1.83481 ν12= 42.7 R21= 122.601 D21= 可変 R22= -152.863 D22= 1.40 N13=1.84666 ν13= 23.8 R23= -275.361 D23= 3.80 N14=1.71300 ν14= 53.8 R24= -31.874 D24= 0.10 R25= -92.992 D25= 2.80 N15=1.69680 ν15= 55.5 R26= -57.447 D26= 0.10 R27= 126.107 D27= 5.00 N16=1.71300 ν16= 53.8 R28= -38.422 D28= 1.40 N17=1.84666 ν17= 23.8 R29= -550.494 非球面 [Table 8] R1: Aspheric surface coefficient A = 0 B = 3.78122 × 10 -7 C = 2.31162 × 10 -10 D = -7.07093 × 10 -14 R27: Aspheric surface coefficient A = 0 B = -1.9333 × 10 -6 C = -4.86862 × 10 -9 D = 3.0832 × 10 -12 Numerical Example 9 F = 28.8 to 77.35 FNO = 1: 2.8 2ω = 73.8 ° to 31.2 ° R 1 = 82.212 Aspherical D 1 = 2.20 N 1 = 1.83481 ν 1 = 42.7 R 2 = 40.145 D 2 = 16.00 R 3 = -734.079 D 3 = 2.00 N 2 = 1.83481 ν 2 = 42.7 R 4 = 32.424 D 4 = 5.50 N 3 = 1.84666 ν 3 = 23.8 R 5 = 65.788 D 5 = 1.50 R 6 = 49.287 D 6 = 3.00 N 4 = 1.84666 ν 4 = 23.8 R 7 = 61.693 D 7 = Variable R 8 = 77.960 D 8 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R 9 = 31.802 D 9 = 7.50 N 6 = 1.71300 ν 6 = 53.8 R10 = -198.781 D10 = 0.10 R11 = 77.219 D11 = 5.50 N 7 = 1.77250 ν 7 = 49.6 R12 = -168.989 D12 = 1.40 N 8 = 1.84666 ν 8 = 23.8 R13 = 357.536 D13 = 0.10 R14 = 50.032 D14 = 4.50 N 9 = 1.77250 ν 9 = 49.6 R15 = 1036.923 D15 = Variable R16 = (Aperture) D16 = 1.00 R17 = 159.183 D17 = 4.10 N10 = 1.84666 ν10 = 23.8 R18 = -28.287 D18 = 1.10 N11 = 1.77250 ν11 = 49.6 R19 = 53.088 D19 = 2.90 R20 = -34.394 D20 = 1.10 N1 2 = 1.83481 ν12 = 42.7 R21 = 122.601 D21 = Variable R22 = -152.863 D22 = 1.40 N13 = 1.84666 ν13 = 23.8 R23 = -275.361 D23 = 3.80 N14 = 1.71300 ν14 = 53.8 R24 = -31.874 D24 = 0.10 R25 = -92.992 D25 = 2.80 N15 = 1.69680 ν15 = 55.5 R26 = -57.447 D26 = 0.10 R27 = 126.107 D27 = 5.00 N16 = 1.71300 ν16 = 53.8 R28 = -38.422 D28 = 1.40 N17 = 1.84666 ν17 = 23.8 R29 = -550.494 Aspheric surface

【0063】[0063]

【表9】 R1:非球面係数 A= 0 B= 1.90348×10-7 C= 2.99605×10-10 D=-1.28883×10-13 R29:非球面係数 A= 0 B= 1.86774×10-6 C= 6.79916×10-9 D=-7.60901×10-12 [Table 9] R1: Aspherical coefficient A = 0 B = 1.90348 × 10 -7 C = 2.99905 × 10 -10 D = -1.28883 × 10 -13 R29: Aspherical coefficient A = 0 B = 1.86774 × 10 -6 C = 6.79916 × 10 -9 D = -7.60901 x 10 -12

【0064】[0064]

【発明の効果】本発明によれば前述の如く4つのレンズ
群の屈折力や変倍に伴う各レンズ群の移動条件等を特定
することにより、レンズ全長を短縮し、かつレンズ鏡筒
構造を簡素にしつつ、比較的広画角でしかも高変倍比の
全変倍範囲にわたり高い光学性能を有したズームレンズ
を達成することができる。
As described above, according to the present invention, the total lens length can be shortened and the lens barrel structure can be realized by specifying the refracting powers of the four lens groups and the moving conditions of each lens group associated with zooming. It is possible to achieve a zoom lens having a relatively wide angle of view and a high optical performance over the entire zooming range with a high zooming ratio while being simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の数値実施例1のレンズ断面図FIG. 1 is a lens cross-sectional view of Numerical Example 1 of the present invention.

【図2】 本発明の数値実施例2のレンズ断面図FIG. 2 is a lens cross-sectional view of Numerical Example 2 of the present invention.

【図3】 本発明の数値実施例3のレンズ断面図FIG. 3 is a lens cross-sectional view of Numerical Example 3 of the present invention.

【図4】 本発明の数値実施例4のレンズ断面図FIG. 4 is a lens cross-sectional view of Numerical Example 4 of the present invention.

【図5】 本発明の数値実施例5のレンズ断面図FIG. 5 is a lens cross-sectional view of Numerical Example 5 of the present invention.

【図6】 本発明の数値実施例6のレンズ断面図FIG. 6 is a lens cross-sectional view of Numerical Example 6 of the present invention.

【図7】 本発明の数値実施例7のレンズ断面図FIG. 7 is a lens cross-sectional view of Numerical Example 7 of the present invention.

【図8】 本発明の数値実施例8のレンズ断面図FIG. 8 is a lens cross-sectional view of Numerical Example 8 of the present invention.

【図9】 本発明の数値実施例9のレンズ断面図FIG. 9 is a lens cross-sectional view of Numerical Example 9 of the present invention.

【図10】 本発明の数値実施例1の広角端のズーム位
置における収差図
FIG. 10 is an aberration diagram at a zoom position at the wide-angle end according to Numerical Example 1 of the present invention.

【図11】 本発明の数値実施例1の中 間のズーム位
置における収差図
FIG. 11 is an aberration diagram at a zoom position in the middle of Numerical Example 1 of the present invention.

【図12】 本発明の数値実施例1の望遠端のズーム位
置における収差図
FIG. 12 is an aberration diagram at a zoom position at a telephoto end according to Numerical Example 1 of the present invention.

【図13】 本発明の数値実施例2の広角端のズーム位
置における収差図
FIG. 13 is an aberration diagram at a zoom position at the wide-angle end according to Numerical Example 2 of the present invention.

【図14】 本発明の数値実施例2の中 間のズーム位
置における収差図
FIG. 14 is an aberration diagram at a zoom position in the middle of Numerical Example 2 of the present invention.

【図15】 本発明の数値実施例2の望遠端のズーム位
置における収差図
FIG. 15 is an aberration diagram at a zoom position at the telephoto end according to Numerical Example 2 of the present invention.

【図16】 本発明の数値実施例3の広角端のズーム位
置における収差図
FIG. 16 is an aberration diagram at a zoom position at the wide-angle end according to Numerical Example 3 of the present invention.

【図17】 本発明の数値実施例3の中 間のズーム位
置における収差図
FIG. 17 is an aberration diagram at a zoom position in the middle of Numerical Example 3 of the present invention.

【図18】 本発明の数値実施例3の望遠端のズーム位
置における収差図
FIG. 18 is an aberration diagram at a zoom position at a telephoto end according to Numerical Example 3 of the present invention.

【図19】 本発明の数値実施例4の広角端のズーム位
置における収差図
FIG. 19 is an aberration diagram at a zoom position at the wide-angle end according to Numerical Example 4 of the present invention.

【図20】 本発明の数値実施例4の中 間のズーム位
置における収差図
FIG. 20 is an aberration diagram at a zoom position in the middle of Numerical Example 4 of the present invention.

【図21】 本発明の数値実施例4の望遠端のズーム位
置における収差図
FIG. 21 is an aberration diagram at a zoom position at the telephoto end according to Numerical Example 4 of the present invention.

【図22】 本発明の数値実施例5の広角端のズーム位
置における収差図
FIG. 22 is an aberration diagram at a zoom position at the wide-angle end according to Numerical Example 5 of the present invention.

【図23】 本発明の数値実施例5の中 間のズーム位
置における収差図
FIG. 23 is an aberration diagram at a zoom position in the middle of Numerical Example 5 of the present invention.

【図24】 本発明の数値実施例5の望遠端のズーム位
置における収差図
FIG. 24 is an aberration diagram at a zoom position at a telephoto end according to Numerical Example 5 of the present invention.

【図25】 本発明の数値実施例6の広角端のズーム位
置における収差図
FIG. 25 is an aberration diagram at a zoom position at the wide-angle end according to Numerical Example 6 of the present invention.

【図26】 本発明の数値実施例6の中 間のズーム位
置における収差図
FIG. 26 is an aberration diagram at a zoom position in the middle of Numerical Example 6 of the present invention.

【図27】 本発明の数値実施例6の望遠端のズーム位
置における収差図
FIG. 27 is an aberration diagram at a zoom position at a telephoto end according to Numerical Example 6 of the present invention.

【図28】 本発明の数値実施例7の広角端のズーム位
置における収差図
FIG. 28 is an aberration diagram at a zoom position at the wide-angle end according to Numerical Example 7 of the present invention.

【図29】 本発明の数値実施例7の中 間のズーム位
置における収差図
FIG. 29 is an aberration diagram at a zoom position in the middle of Numerical Example 7 of the present invention.

【図30】 本発明の数値実施例7の望遠端のズーム位
置における収差図
FIG. 30 is an aberration diagram at a zoom position at the telephoto end according to Numerical Example 7 of the present invention.

【図31】 本発明の数値実施例8の広角端のズーム位
置における収差図
FIG. 31 is an aberration diagram at a zoom position at the wide-angle end according to Numerical Example 8 of the present invention.

【図32】 本発明の数値実施例8の中 間のズーム位
置における収差図
FIG. 32 is an aberration diagram at a zoom position in the middle of Numerical Example 8 of the present invention.

【図33】 本発明の数値実施例8の望遠端のズーム位
置における収差図
FIG. 33 is an aberration diagram at a zoom position at a telephoto end according to Numerical Example 8 of the present invention.

【図34】 本発明の数値実施例9の広角端のズーム位
置における収差図
FIG. 34 is an aberration diagram at a zoom position at the wide-angle end according to Numerical Example 9 of the present invention.

【図35】 本発明の数値実施例9の中 間のズーム位
置における収差図
FIG. 35 is an aberration diagram at a zoom position in the middle of Numerical Example 9 of the present invention.

【図36】 本発明の数値実施例9の望遠端のズーム位
置における収差図
FIG. 36 is an aberration diagram at a zoom position at the telephoto end according to Numerical Example 9 of the present invention.

【符号の説明】[Explanation of symbols]

L1 第1群 L2 第2群 L3 第3群 L4 第4群 SP 絞り d フラウンホーファーd線での球面収差 g フラウンホーファーg線での球面収差 S,C 正弦条件での不満足量 S サジタル断面での像面 M メリジオナル断面での像面 L1 1st group L2 2nd group L3 3rd group L4 4th group SP Aperture d Fraunhofer spherical aberration at d line g Fraunhofer spherical aberration at g line S, C Satisfaction amount under sine condition S Sagittal section Image plane M Image plane at meridional section

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に負の屈折力の第1群、正
の屈折力の第2群、負の屈折力の第3群、そして正の屈
折力の第4群の4つのレンズ群を有し、広角端から望遠
端への変倍を該第1群と第2群との空気間隔が減少し、
該第2群と第3群との空気間隔が増加し、該第3群と第
4群との空気間隔が減少するように少なくとも該第1、
第2、第4群を移動させて行い、該第3群は正レンズと
負レンズの独立又は貼合わせレンズを有し、該第4群は
負レンズと正レンズの独立又は貼合わせレンズを有して
いることを特徴とするズームレンズ。
1. Four lens groups, in order from the object side, a first group having a negative refractive power, a second group having a positive refractive power, a third group having a negative refractive power, and a fourth group having a positive refractive power. And changing the magnification from the wide-angle end to the telephoto end by reducing the air space between the first group and the second group,
At least the first, so that the air gap between the second group and the third group increases and the air gap between the third group and the fourth group decreases.
The second and fourth groups are moved, the third group has an independent or cemented lens of a positive lens and a negative lens, and the fourth group has an independent or cemented lens of a negative lens and a positive lens. A zoom lens that is characterized by
【請求項2】 前記第2群は物体側より順に像面側に強
い負の屈折面を向けたメニスカス状の負レンズ、正レン
ズ、そして物体側に凸面を向けた正レンズを有している
ことを特徴とする請求項1のズームレンズ。
2. The second group includes a meniscus-shaped negative lens having a strong negative refraction surface facing the image side in order from the object side, a positive lens, and a positive lens having a convex surface facing the object side. The zoom lens according to claim 1, wherein
【請求項3】 前記第1群は物体側より順に像面側に凹
面を向けたメニスカス状の負レンズ、負レンズ、そして
物体側に凸面を向けたメニスカス状の正レンズを有して
いることを特徴とする請求項1のズームレンズ。
3. The first lens group has, in order from the object side, a meniscus negative lens having a concave surface facing the image side, a negative lens, and a meniscus positive lens having a convex surface facing the object side. The zoom lens according to claim 1, wherein:
【請求項4】 前記第3群は変倍中固定であることを特
徴とする請求項1のズームレンズ。
4. The zoom lens according to claim 1, wherein the third lens unit is fixed during zooming.
【請求項5】 広角端から望遠端への変倍を前記第2群
と第4群を一体的に物体側へ移動させて行っていること
を特徴とする請求項1のズームレンズ。
5. The zoom lens according to claim 1, wherein zooming from the wide-angle end to the telephoto end is performed by moving the second group and the fourth group integrally to the object side.
【請求項6】 物体側より順に負の屈折力の第1群、正
の屈折力の第2群、負の屈折力の第3群、そして正の屈
折力の第4群の4つのレンズ群を有し、各レンズ群の空
気間隔を変えて変倍を行い、該第2群は物体側に凸面を
向けたメニスカス状の負の第21レンズと両レンズ面が
凸面の正の第22レンズとを接合した貼合わせレンズ、
そして物体側に強い正の屈折面を向けた正の第23レン
ズを有しており、該第21レンズないしは該第23レン
ズの物体側の面を非球面とし、該貼合わせレンズの接合
レンズ面の曲率半径をR2,2、該非球面の非球面係数
をB,C、該第23レンズのレンズ外径をDE、該第2
群の焦点距離をF2としたとき 0.6<R2,2/F2<1.0 B<0 B+C×(DE/2)2 <0 なる条件を満足することを特徴とするズームレンズ。
6. The four lens groups, in order from the object side, a first group having a negative refractive power, a second group having a positive refractive power, a third group having a negative refractive power, and a fourth group having a positive refractive power. The second lens unit has a negative meniscus lens 21 having a convex surface facing the object side, and a positive lens No. 22 having convex lens surfaces on both sides. A cemented lens with and
It has a positive 23rd lens having a strong positive refracting surface toward the object side, and the object side surface of the 21st lens or the 23rd lens is an aspherical surface, and the cemented lens surface of the cemented lens. The radius of curvature of R2, 2, the aspherical coefficient of the aspherical surface of B, C, the lens outer diameter of the 23rd lens of DE, the second
A zoom lens characterized by satisfying the condition of 0.6 <R2, 2 / F2 <1.0 B <0 B + C × (DE / 2) 2 <0 when the focal length of the group is F2.
【請求項7】 前記第1群は少なくとも2枚の負レンズ
と正レンズとを有していることを特徴とする請求項6の
ズームレンズ。
7. The zoom lens according to claim 6, wherein the first group includes at least two negative lenses and a positive lens.
【請求項8】 前記第1群は物体側より順に第11群と
第12群の2つのレンズ群を有し、該第12群を光軸上
移動させて焦点合わせを行っていることを特徴とする請
求項6のズームレンズ。
8. The first lens group has two lens groups, an 11th lens group and a 12th lens group, in order from the object side, and the 12th lens group is moved on the optical axis for focusing. The zoom lens according to claim 6.
【請求項9】 物体側より順に負の屈折力の第1群、正
の屈折力の第2群、負の屈折力の第3群、そして正の屈
折力の第4群の4つのレンズ群を有し、各レンズ群の空
気間隔を変えて変倍を行い、該第2群は物体側に凸面を
向けたメニスカス状の負の第21レンズと両レンズ面が
凸面の正の第22レンズとを接合した貼合わせレンズ、
そして物体側に強い正の屈折面を向けた正の第23レン
ズを有しており、該第22レンズないしは該第23レン
ズの像側の面を非球面とし、該貼合わせレンズの接合レ
ンズ面の曲率半径をR2,2、該非球面の非球面係数を
B,C、該第23レンズのレンズ外径をDE、該第2群
の焦点距離をF2としたとき 0.6<R2,2/F2<1.0 B>0 B+C×(DE/2)2 >0 なる条件を満足することを特徴とするズームレンズ。
9. The four lens groups, in order from the object side, a first group having a negative refractive power, a second group having a positive refractive power, a third group having a negative refractive power, and a fourth group having a positive refractive power. The second lens unit has a negative meniscus lens 21 having a convex surface facing the object side, and a positive lens No. 22 having convex lens surfaces on both sides. A cemented lens with and
It has a positive 23rd lens having a strong positive refracting surface facing the object side, and the image side surface of the 22nd lens or the 23rd lens is an aspherical surface, and the cemented lens surface of the cemented lens. Is R2,2, the aspherical coefficient of the aspherical surface is B, C, the lens outer diameter of the 23rd lens is DE, and the focal length of the second group is F2. 0.6 <R2,2 / A zoom lens characterized by satisfying a condition of F2 <1.0 B> 0 B + C × (DE / 2) 2 > 0.
【請求項10】 前記第1群は少なくとも2枚の負レン
ズと正レンズとを有していることを特徴とする請求項9
のズームレンズ。
10. The first lens group includes at least two negative lenses and a positive lens.
Zoom lens.
【請求項11】 前記第1群は物体側より順に第11群
と第12群の2つのレンズ群を有し、該第12群を光軸
上移動させて焦点合わせを行っていることを特徴とする
請求項9のズームレンズ。
11. The first lens group has two lens groups, an 11th lens group and a 12th lens group, in order from the object side, and the 12th lens group is moved on the optical axis for focusing. The zoom lens according to claim 9.
【請求項12】 物体側から順に負の屈折力の第1群、
正の屈折力の第2群、負の屈折力の第3群、そして正の
屈折力の第4群の4つのレンズ群を有し、広角端から望
遠端への変倍を該第1群と第2群との空気間隔を減少さ
せ、該第2群と第3群との空気間隔を増加させ、該第3
群と第4群との空気間隔を減少させて行い、該第4群は
少なくとも1枚の負レンズと少なくとも1枚の正レンズ
と少なくとも1つの非球面を有しており、該非球面の屈
折力をφ4a、光軸と該非球面の交点及び非球面の最大
径位置とで形成される曲率半径をRmax、光軸と該非
球面の交点及び光軸から高さHでの非球面位置とで形成
される曲率半径をRHとしたとき (|Rmax|−|RH|)・φ4a<0 なる条件を満足することを特徴とするズームレンズ。
12. A first group having a negative refractive power in order from the object side,
It has four lens groups, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power, and the zooming from the wide-angle end to the telephoto end is performed by the first lens group. The air gap between the second group and the second group, and the air gap between the second group and the third group is increased,
The fourth group has at least one negative lens, at least one positive lens, and at least one aspherical surface, and the refractive power of the aspherical surface is reduced. Is φ4a, the radius of curvature formed by the optical axis and the intersection of the aspherical surface and the maximum radial position of the aspherical surface is Rmax, and the radius of curvature is formed by the intersection of the optical axis and the aspherical surface and the aspherical surface position at a height H from the optical axis. A zoom lens characterized by satisfying a condition of (| Rmax | − | RH |) · φ4a <0 when the radius of curvature is RH.
【請求項13】 前記第1群は少なくとも2枚の負レン
ズと正レンズとを有していることを特徴とする請求項1
2のズームレンズ。
13. The first lens group includes at least two negative lenses and one positive lens.
2 zoom lens.
【請求項14】 前記第2群は物体側に凸面を向けたメ
ニスカス状の負の第21レンズと両レンズ面が凸面の正
の第22レンズとを接合した貼合わせレンズ、そして物
体側に強い正の屈折面を向けた正の第23レンズとを有
しており、該貼合わせレンズの接合レンズ面の曲率半径
をR2,2、該第2群の焦点距離をF2としたとき 0.6<R2,2/F2<1.0 なる条件を満足することを特徴とする請求項12のズー
ムレンズ。
14. The cemented lens in which the second lens unit is constructed by cementing a negative meniscus 21st lens having a convex surface directed toward the object side and a positive 22nd lens having convex lens surfaces on both sides, and is strong on the object side. And a positive 23rd lens having a positive refracting surface, and a radius of curvature of the cemented lens surface of the cemented lens is R2, 2 and a focal length of the second group is F2. 13. The zoom lens according to claim 12, wherein the condition <R2,2 / F2 <1.0 is satisfied.
JP4078433A 1992-02-28 1992-02-28 Zoom lens Expired - Fee Related JP3018723B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4078433A JP3018723B2 (en) 1992-02-28 1992-02-28 Zoom lens
US08/440,980 US5576890A (en) 1992-02-28 1995-05-15 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4078433A JP3018723B2 (en) 1992-02-28 1992-02-28 Zoom lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27198999A Division JP3315671B2 (en) 1999-09-27 1999-09-27 Zoom lens

Publications (2)

Publication Number Publication Date
JPH05241073A true JPH05241073A (en) 1993-09-21
JP3018723B2 JP3018723B2 (en) 2000-03-13

Family

ID=13661912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4078433A Expired - Fee Related JP3018723B2 (en) 1992-02-28 1992-02-28 Zoom lens

Country Status (1)

Country Link
JP (1) JP3018723B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152558A (en) * 1993-11-25 1996-06-11 Asahi Optical Co Ltd Zoom lens
JP2000221399A (en) * 1999-02-01 2000-08-11 Nikon Corp Zoom lens
JP2001117002A (en) * 1999-10-21 2001-04-27 Mamiya Op Co Ltd Zoom lens
US6639721B2 (en) 2001-02-19 2003-10-28 Canon Kabushiki Kaisha Zoom lens system and optical apparatus using the same
US6710931B1 (en) 1999-05-26 2004-03-23 Canon Kabushiki Kaisha Zoom lens, and image pickup apparatus and image projection apparatus using the same
JP2005107036A (en) * 2003-09-29 2005-04-21 Nikon Corp Zoom lens
JP2007010913A (en) * 2005-06-29 2007-01-18 Pentax Corp Wide-angle zoom lens system
JP2007279077A (en) * 2006-04-03 2007-10-25 Konica Minolta Opto Inc Variable power optical system and imaging apparatus
US7307794B2 (en) 2004-09-17 2007-12-11 Pentax Corporation Zoom lens system
JP2009282554A (en) * 2009-09-03 2009-12-03 Canon Inc Zoom lens
JP2010249957A (en) * 2009-04-13 2010-11-04 Tamron Co Ltd Wide-angle zoom lens
JP2010282230A (en) * 2010-09-10 2010-12-16 Hoya Corp Wide-angle zoom lens system
CN103744170A (en) * 2009-04-13 2014-04-23 株式会社腾龙 Wide-angle zoom lens
JP2019105696A (en) * 2017-12-11 2019-06-27 キヤノン株式会社 Zoom lens and imaging apparatus
US10551601B2 (en) 2013-11-21 2020-02-04 Nikon Corporation Zoom lens, optical apparatus, and a manufacturing method of the zoom lens
CN116299962A (en) * 2022-12-25 2023-06-23 福建福光股份有限公司 Wide spectrum optical system with large aperture and high uniformity

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152558A (en) * 1993-11-25 1996-06-11 Asahi Optical Co Ltd Zoom lens
JP2000221399A (en) * 1999-02-01 2000-08-11 Nikon Corp Zoom lens
US6710931B1 (en) 1999-05-26 2004-03-23 Canon Kabushiki Kaisha Zoom lens, and image pickup apparatus and image projection apparatus using the same
JP2001117002A (en) * 1999-10-21 2001-04-27 Mamiya Op Co Ltd Zoom lens
US6639721B2 (en) 2001-02-19 2003-10-28 Canon Kabushiki Kaisha Zoom lens system and optical apparatus using the same
JP2005107036A (en) * 2003-09-29 2005-04-21 Nikon Corp Zoom lens
US7307794B2 (en) 2004-09-17 2007-12-11 Pentax Corporation Zoom lens system
JP2007010913A (en) * 2005-06-29 2007-01-18 Pentax Corp Wide-angle zoom lens system
JP4612485B2 (en) * 2005-06-29 2011-01-12 Hoya株式会社 Wide-angle zoom lens system
JP2007279077A (en) * 2006-04-03 2007-10-25 Konica Minolta Opto Inc Variable power optical system and imaging apparatus
JP2010249957A (en) * 2009-04-13 2010-11-04 Tamron Co Ltd Wide-angle zoom lens
CN103744170A (en) * 2009-04-13 2014-04-23 株式会社腾龙 Wide-angle zoom lens
JP4586102B2 (en) * 2009-09-03 2010-11-24 キヤノン株式会社 Zoom lens
JP2009282554A (en) * 2009-09-03 2009-12-03 Canon Inc Zoom lens
JP2010282230A (en) * 2010-09-10 2010-12-16 Hoya Corp Wide-angle zoom lens system
US10551601B2 (en) 2013-11-21 2020-02-04 Nikon Corporation Zoom lens, optical apparatus, and a manufacturing method of the zoom lens
US11079574B2 (en) 2013-11-21 2021-08-03 Nikon Corporation Zoom lens, optical apparatus, and a manufacturing method of the zoom lens
US11822063B2 (en) 2013-11-21 2023-11-21 Nikon Corporation Zoom lens, optical apparatus, and a manufacturing method of the zoom lens
JP2019105696A (en) * 2017-12-11 2019-06-27 キヤノン株式会社 Zoom lens and imaging apparatus
CN116299962A (en) * 2022-12-25 2023-06-23 福建福光股份有限公司 Wide spectrum optical system with large aperture and high uniformity
CN116299962B (en) * 2022-12-25 2024-04-05 福建福光股份有限公司 Wide spectrum optical system with large aperture and high uniformity

Also Published As

Publication number Publication date
JP3018723B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
US5576890A (en) Zoom lens
US5585969A (en) Zoom lens
US5253113A (en) Wide-angle zoom lens having five lens units
US5000550A (en) Wide-angle type zoom lens having inner-focus lens
JP2988164B2 (en) Rear focus zoom lens
JP3067481B2 (en) Zoom lens
JPH10206736A (en) Zoom lens
JPH05241073A (en) Zoom lens
JP3102200B2 (en) Zoom lens
JP2001116992A (en) Zoom lens
JP2629904B2 (en) Rear focus zoom lens
JP3018742B2 (en) Zoom lens
JP3144193B2 (en) Zoom lens
JPH07151971A (en) Zoom lens
JP2001042217A (en) Zoom lens
JP3147492B2 (en) Zoom lens
JPH07151974A (en) Zoom lens
JP4533437B2 (en) Zoom lens
JP3376143B2 (en) Zoom lens
US4712883A (en) Rear focus zoom lens
JP3315671B2 (en) Zoom lens
JPH06230285A (en) Zoom lens
JPH0743613A (en) Zoom lens
JP3183047B2 (en) Zoom lens
JP2006184430A (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees