JP4639425B2 - Variable focal length lens system - Google Patents

Variable focal length lens system Download PDF

Info

Publication number
JP4639425B2
JP4639425B2 JP2000103808A JP2000103808A JP4639425B2 JP 4639425 B2 JP4639425 B2 JP 4639425B2 JP 2000103808 A JP2000103808 A JP 2000103808A JP 2000103808 A JP2000103808 A JP 2000103808A JP 4639425 B2 JP4639425 B2 JP 4639425B2
Authority
JP
Japan
Prior art keywords
lens
lens group
focal length
component
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000103808A
Other languages
Japanese (ja)
Other versions
JP2001290076A (en
JP2001290076A5 (en
Inventor
基之 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000103808A priority Critical patent/JP4639425B2/en
Publication of JP2001290076A publication Critical patent/JP2001290076A/en
Publication of JP2001290076A5 publication Critical patent/JP2001290076A5/ja
Application granted granted Critical
Publication of JP4639425B2 publication Critical patent/JP4639425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、広角端状態において80度を超える画角を包括することが可能な可変焦点距離レンズ系に関し、特に、口径比3.5程度の大口径比化が可能な可変焦点距離レンズ系に関する。
【0002】
【従来の技術】
レンズシャッター式カメラの特徴は携帯性に優れることである。この携帯性は小型であること、軽量であることに分類される。撮影レンズの長さがカメラ本体の厚みに影響し、レンズ径がカメラ本体の高さと横幅に影響するので、撮影レンズ系を小さくすることが特にカメラの小型化に影響を与えてきた。
【0003】
ズームレンズは被写体により近づいた撮影が可能であり、撮影者に自由度を与えるため、ズームレンズ付カメラが主流になってきた。そして、望遠端状態の焦点距離が大きいほど被写体に近付いた撮影が可能になるので、望遠端状態での焦点距離が長くなるように変倍比が高まる傾向だった。
【0004】
ところで、レンズシャッター式カメラは携帯性に優れる点から旅行等に出掛ける際に使われる機会が多いが、一眼レフカメラのユーザー層がレンズシャッター式カメラを携行する場合、口径比の明るい単焦点レンズ付カメラが多かった。
【0005】
【発明が解決しようとする課題】
しかしながら、従来のレンズシャッター式カメラ用ズームレンズは、望遠端状態での焦点距離が長くなるに従って、望遠端状態での開放Fナンバーが大きくなる傾向であり、ピンぼけが目立たず、遠近感に乏しい写真に仕上がる傾向であった。
【0006】
一眼レフカメラのユーザー層が旅行時に携行する場合、口径比が大きく、画角が広い撮影系が好まれる。前者はストロボなしで自然な発色での撮影ができるからであり、後者は撮影者と被写体との距離が離れずに撮影できるからである。
【0007】
本発明は上記問題に鑑みてさなれたものであり、広角端状態で80度を超える画角を包括しながらも、明るく小型の可変焦点距離レンズ系を提供することを目的とする。
【0008】
上記目的を達成するために本発明は、物体側より順に、負屈折力を有する第1レンズ群と、正屈折力を有する第2レンズ群と、負屈折力を有する第3レンズ群とを有し、広角端状態から望遠端状態までレンズ位置状態が変化する際に、前記第1レンズ群と前記第2レンズ群との間隔が減少し、前記第2レンズ群と前記第3レンズ群との間隔が減少するように、少なくとも前記第2レンズ群と前記第3レンズ群がそれぞれ物体側へ移動して、前記第2レンズ群は、物体側より順に、第1の正レンズ成分L21と、負レンズ成分L22と、第2の正レンズ成分L23との3つのレンズ成分を含み、開口絞りSが前記負レンズ成分L22に隣接して配置され、前記負レンズ成分L22は該開口絞りSに対して凹面を向けたメニスカス形状であり、以下の条件式(1)を満足することを特徴とする可変焦点距離レンズ系を提供する。
(1)0.15<Da/fw<0.40
但し、Daは前記開口絞りを挟んだ物体側と像側の空気間隔の長さ,fwは広角端状態での前記可変焦点距離レンズ系の焦点距離である
【0009】
【発明の実施の形態】
従来より可変焦点距離レンズ系は、レンズ系のもっとも物体側に正屈折力を有するレンズ群を配置する正先行型と負屈折力を有するレンズ群を配置する負先行型とに大別される。
【0010】
正先行型ズームレンズは主に画角が狭く、画面対角長と比較して焦点距離が長いレンズ系に用いられ、レンズ全長の短縮に適している。また、負先行型ズームレンズは主に画角が広いレンズ系に用いられている。
【0011】
負先行型ズームレンズは広角端状態で(もっとも物体側に配置される)第1レンズ群を通過する軸外光束が光軸に近い高さを通過するのでレンズ径の小型化が図れる。しかし、変倍比を高めると望遠端状態において、(第1レンズ群の像側に配置される)第2レンズ群を軸上光束が広がって通過するので、画面中心部で所定の光学性能を確保するのが困難である。
【0012】
また、レンズシャッター式カメラに用いられるレンズ系は、レンズ系のもっとも像側に負レンズ群を配置することで、レンズ全長の短縮化とレンズ径の小型化を実現している。
【0013】
本発明においては、ズーム比よりも大口径比と広い画角を優先し、レンズ系のもっとも像側に負屈折力を有する第1レンズ群を配置して、その像側に正屈折力を有する第2レンズ群を配置して、さらにその像側に負屈折力を有する第3レンズ群を配置している。また、広角端状態では第1レンズ群と第2レンズ群との間隔が広がった状態、第2レンズ群と第3レンズ群との間隔が広がった状態に配置して、望遠端状態に向かってレンズ位置状態が変化するに従って、各レンズ群同士の間隔が狭まるように、少なくとも第2レンズ群と第3レンズ群とを物体側へ移動させている。
【0014】
また、画角の広い光学系では、開口絞りを配置する位置が重要であり、本発明では、第2レンズ群の内部に開口絞りを配置している。
【0015】
広角端状態では各レンズ群同士の間隔を充分広げることで、第1レンズ群及び第3レンズ群を通過する軸外光束が光軸から離れるので、軸外収差の補正が充分良好に行える。また、望遠端状態へ向かってレンズ位置状態が変化するに従って、各レンズ群同士の間隔を狭めることで、第1レンズ群と第3レンズ群を通過する軸外光束の高さを積極的に変化させて、レンズ位置状態の変化に伴って発生する軸外収差の変動を良好に補正している。
【0016】
本発明では第2レンズ群の物体側と像側に負屈折力の第1レンズ群と第3レンズ群をそれぞれ配置することにより、光学系全体での屈折力配置を対称型に近づけて、歪曲収差及び倍率色収差を良好に補正している。
【0017】
第2レンズ群は主に軸上収差の補正を担う。第2レンズ群を物体側から順に、第1の正レンズ成分、負レンズ成分、第2の正レンズ成分の3レンズ成分で構成することで、軸上収差を特に良好に補正し、軸外収差の発生も抑えることができる。
【0018】
特に、負レンズ成分を開口絞りに対して凹面を向けたメニスカス形状のレンズとすることで、軸外収差の発生を抑えている。
【0019】
従来より、物体側より順に、負屈折力を有する第1レンズ群、正屈折力を有する第2レンズ群、負屈折力を有する第3レンズ群を配置した負正負3群型のズームレンズが知られている。例えば、特開昭64−72114号公報では広角端状態で72度程度の画角を有するズームレンズが提案されている。しかし、このズームレンズは、第2レンズ群の像側に開口絞りが配置されているため、80度を超える画角を包括すると、第1レンズ群のレンズ径が非常に大きくなってしまった。
【0020】
本発明では、以上の構成から、広角端状態での画角が80度を超える広い画角と、F3.5程度の大口径比化との両立化が達成できている。
【0021】
以下、各条件式について説明する。
【0022】
条件式(1)は第2レンズ群中に配置される開口絞りの物体側と像側の空気間隔の長さを規定する条件式であり、小型化を図るための条件である。
【0023】
本発明においては、第2レンズ群が第1の正レンズ成分、負レンズ成分、第2の正レンズ成分の3つのレンズ成分で構成され、負レンズ成分に隣接して開口絞りが配置される。この開口絞りの前後に充分なスペースが確保できないと、シャッタースペースが確保できない。
【0024】
また、本発明では、以下の条件式(1)と(2)のうち、少なくともいずれか一方を満足することが望ましい。
(1)0.15<Da/fw<0.40
(2)0.4<D1W/D3W<1.2
但し、
Da:前記開口絞りを挟んだ物体側と像側の空気間隔の長さ,
fw:広角端状態での前記可変焦点距離レンズ系の焦点距離,
D1W:広角端状態での前記第1レンズ群と前記第2レンズ群との軸上間隔,
D3W:広角端状態での前記第2レンズ群と前記第3レンズ群との軸上間隔.
条件式(1)の下限値を下回った場合、充分なシャッタースペースが確保できない。逆に、条件式(1)の上限値を上回った場合、レンズ厚が大きくなるので、各レンズ群を通過する軸外光束が光軸から離れて、レンズ径の大型化を引き起こしてしまう。
【0025】
条件式(2)はレンズ径とレンズ全長のバランス化を図るための条件である。
【0026】
条件式(2)の上限値を上回った場合、第1レンズ群を通過する軸外光束が光軸から離れるので、レンズ径の小型化充分図れない。また、画面周縁部においてコマ収差が多量に発生するので高性能化も図れない。逆に、条件式(2)の下限値を下回った場合、第3レンズ群を通過する軸外光束が光軸から離れるので、レンズ径が大型化してしまう。また、バックフォーカスが短くなってしまうので、もっともフィルム面側のレンズ面上に付着したゴミの影がフィルム上に記録され、画質が劣化してしまう。
【0027】
ところで、本発明においてより高性能化を図るには、各レンズ群毎に発生する収差量をできるだけ抑えることが肝要である。
【0028】
そこで、第1レンズ群と第3レンズ群をそれぞれ2枚以上のレンズ枚数で構成することが望ましく、特に、第1レンズ群は像側に凹面を向けた負レンズとその像側に配置され、物体側に凸面を向けた正レンズ、第3レンズ群は像側に凸面を向けた正レンズとその像側に配置され、物体側に凹面を向けた負レンズをそれぞれ有することが望ましい。これは、レンズ径を小型化にすると同時に軸外収差の発生を抑えるためである。
【0029】
さらに、本発明では、以下の条件式(3)と(4)のうち、少なくともいずれか一方を満足することにより、小型化を図りながら、より優れた性能が得られる。
(3)0.3<f3/f1<0.7 (f3<0,f1<0)
(4)0.7<f2/fw<0.85
但し、
f1:前記第1レンズ群の焦点距離,
f2:前記第2レンズ群の焦点距離,
f3:前記第3レンズ群の焦点距離,
fw:広角端状態での前記可変焦点距離レンズ系の焦点距離.
条件式(3)は第1レンズ群と第3レンズ群との焦点距離比を規定する条件式である。条件式(3)の上限値を上回った場合、望遠端状態で第2レンズ群を通過する軸上光束が広がってしまうので、軸上収差の補正が不足してしまう。逆に、条件式(3)の下限値を下回った場合、第3レンズ群を通過する軸外光束が光軸に近づき、画角によるコマ収差の変動を良好に補正できない。
【0030】
条件式(4)は第2レンズ群の焦点距離を規定する条件式である。条件式(4)の上限値を上回った場合、レンズ全長の大型化を引き起こしてしまう。逆に、条件式(4)の下限値を下回った場合、第1レンズ群と第3レンズ群の屈折力も強まり、第1レンズ群と第3レンズ群を通過する軸外光束が光軸に近づくので、広角端状態で発生する画角によるコマ収差の変動が補正できない。
【0031】
また、本発明においては、レンズ全長を短縮するために、開口絞りを第2レンズ群中の第1の正レンズ成分L21と負レンズ成分L22との間に配置することが望ましく、より高性能化を図るには開口絞りから離れて配置され、軸外光束が光軸からやや離れる第2の正レンズ成分L23のもっとも像側のレンズ面を非球面とすることが望ましい。さらに好ましくは、以下の条件式(5)を満足するように構成することが望ましい。
(5)0.15<Db/fw<0.35
但し、
Db: 前記開口絞りから前記第2の正レンズ成分のもっとも像側のレンズ面までの光軸に沿った長さ.
条件式(5)は、第2の正レンズ成分L23のもっとも像側のレンズ面と開口絞りとの間隔を規定する条件式である。条件式(5)の上限値を上回った場合、第3レンズ群を通過する軸外光束が光軸から大きく離れてレンズ径が大型化してしまい、携帯性を損ねてしまう。逆に、条件式(5)の下限値を下回った場合、第2の正レンズ成分L23のもっとも像側のレンズ面を通過する軸外光束と軸上光束との高さの差が少なくなり、画角によるコマ収差の変動をより良く補正できなくなってしまう。
【0032】
また、本発明においては、製造時に安定した品質を維持するため、以下の条件式(6)及び(7)を満足することが望ましい。
(6)−0.1<(r22a−r23b)/(r22a+r23b)<0.1
(7)fw/│r23a│<0.55
但し、r22a:前記第2レンズ群中の前記負レンズ成分の物体側レンズ面の曲率半径,r23b:前記第2レンズ群中の前記第2の正レンズ成分の像側レンズ面の曲率半径,r23a:前記第2レンズ群中の前記第2の正レンズ成分の物体側レンズ面の曲率半径である。
【0033】
本発明においては、第2の正レンズ成分L23を通過する軸外光束を光軸から離すために、負レンズ成分L22の物体側のレンズ面で光束を強く発散させることが望ましく、これに伴って第2の正レンズ成分L23の像側のレンズ面で光束を強く収斂させる。
【0034】
更なる高性能化を図るにはこのように構成することが望ましいが、レンズ室にレンズを組込んだ際の相互偏心による性能劣化が著しく大きくなるため、組込み時に負レンズ成分L22の物体側のレンズ面と第2の正レンズ成分L23の像側のレンズ面との芯ズレを少なくすることが重要である。
【0035】
本発明では、条件式(6)を満足するように負レンズ成分L22の物体側のレンズ面と第2の正レンズ成分L23の像側のレンズ面のそれぞれの曲率半径を設定することで、偏心調整が比較的容易に行える。
【0036】
また、レンズ室を構成する際に、(開口絞りから離れて)レンズ径の大きな第2の正レンズ成分L23を偏心調整時に動かす方が作業上好ましく、特に条件式(7)を満足するように第2の正レンズ成分L23の物体側のレンズ面の曲率半径を設定することで、作業効率が高められる。これは偏心調整時に第2の正レンズ成分L23の物体側レンズ面の曲率中心を回転中心にレンズが回転するため、回転中心位置が第2の正レンズ成分L23の像側のレンズ面から離れないと調整量が多量に必要になるからである。
【0037】
以下の各実施例では、近距離合焦時に第2レンズ群を物体側へ移動させているが、第1レンズ群や第3レンズ群を移動させること、または複数のレンズ群を移動させることでも近距離合焦が行える。また、各実施例では、第1レンズ群に非球面レンズを配置しているが、例えば、さらに第3レンズ群中に非球面レンズを配置することで更なる高性能化が実現できるのは言うまでもない。
【0038】
さらに、以下の各実施例は3つのレンズ群で構成されるが、第3レンズ群の側に屈折力が弱い他のレンズ群を付加することも容易である。
【0039】
本発明においては、別の観点によれば、撮影を行う際に、発生しがちな手ブレ等が原因の像ブレによる失敗を防ぐために、ブレを検出するブレ検出系と駆動手段とをレンズ系に組み合わせ、レンズ系を構成するレンズ群のうち、1つのレンズ群を全体か、あるいはその一部を偏心レンズ群として偏心させることにより、ブレをブレ検出系により検出し、検出されたブレを補正するように駆動手段により偏心レンズ群を偏心させ像をシフトさせて、像ブレを補正することで防振光学系とすることが可能である。
【0040】
【実施例】
以下に、本発明にかかる数値実施例について説明する。
【0041】
なお、各実施例において、非球面は以下の式で表される。
【0042】
【数1】
x=cy2/{1+(1−κc221/2}+C44+C66+…
【0043】
但し、yは光軸からの高さ、xはサグ量、cは曲率、κは円錐定数、C4,C6,…は非球面係数である。
【0044】
図1は、本発明の各実施例による可変焦点距離レンズ系の屈折力配分を示す図である。物体側より順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2と、負屈折力を有する第3レンズ群G3とで構成される。そして、広角端状態より望遠端状態まで焦点距離が変化する際に、第1レンズ群G1と第2レンズ群G2との間隔が減少し、第2レンズ群G2と第3レンズ群G3との間隔が減少するように、少なくとも第2レンズ群G2と第3レンズ群G3が物体側へ移動する。
【0045】
(第1実施例)
図2は、本発明の第1実施例にかかる可変焦点距離レンズ系のレンズ構成を示す図である。第1レンズ群G1は両凹レンズL11と物体側に凸面を向けた正メニスカスレンズL12とで構成され、第2レンズ群G2は物体側より順に、両凸レンズL21と、物体側に凹面を向けたメニスカス形状のL22と、両凸レンズL23とで構成され、第3レンズ群G3は像側に凸面を向けたメニスカス形状の正レンズL31と物体側に凹面を向けたメニスカス形状の負レンズL32とで構成される。
【0046】
本実施例では、開口絞りSが両凸レンズL21と負レンズL22との間に配置され、レンズ位置状態が変化する際に、第2レンズ群G2と一緒に移動する。
【0047】
以下の表1に、本実施例の諸元の値を掲げる。実施例の諸元表中のfは焦点距離、FNOはFナンバー、2ωは画角を表し、屈折率はd線(λ=587.6nm)に対する値である。また、表1中で曲率半径0とは平面を示す。なお、以下全ての実施例の諸元値において、本実施例の諸元値と同じ符号を用いる。
【0048】
【表1】

Figure 0004639425
Figure 0004639425
【0049】
図3(a)より図3(c)は、本実施例の無限遠合焦状態での諸収差図をそれぞれ示し、それぞれ広角端状態(f=25.20)、中間焦点距離状態(f=28.00)、望遠端状態(f=34.00)における諸収差図を示す。
【0050】
各収差図において、球面収差図中の実線は球面収差、点線はサイン・コンディションを示し、yは像高を示し、非点収差図中の実線はサジタル像面、破線はメリディオナル像面を示す。コマ収差図は、像高y=0,10.8,15.12,18.34,21.6でのコマ収差を表し、Aは画角を示す。
【0051】
各収差図から、本実施例は諸収差が良好に補正され、優れた結像性能を有していることは明らかである。
【0052】
(第2実施例)
図4は、本発明の第2実施例にかかる可変焦点距離レンズ系のレンズ構成を示す図である。第1レンズ群G1は両凹レンズL11と物体側に凸面を向けた正メニスカスレンズL12とで構成され、第2レンズ群G2は物体側より順に、物体側に凸面を向けたメニスカス形状の正レンズL21と、物体側に凹面を向けたメニスカス形状のL22と、両凸レンズL23とで構成され、第3レンズ群G3は像側に凸面を向けたメニスカス形状の正レンズL31と物体側に凹面を向けたメニスカス形状の負レンズL32とで構成される。
【0053】
本実施例では、開口絞りSが正レンズL21と負レンズL22との間に配置され、レンズ位置状態が変化する際に、第2レンズ群G2と一緒に移動する。
【0054】
以下の表2に、本実施例の諸元の値を掲げる。
【0055】
【表2】
Figure 0004639425
Figure 0004639425
【0056】
図5(a)より図5(c)は本実施例の無限遠合焦状態での諸収差図をそれぞれ示し、それぞれ広角端状態(f=25.20)、中間焦点距離状態(f=28 .00)、望遠端状態(f=34.00)における諸収差図を示す。
【0057】
各収差図から、本実施例は諸収差が良好に補正され、優れた結像性能を有していることは明らかである。
【0058】
(第3実施例)
図6は、本発明の第3実施例にかかる可変焦点距離レンズ系のレンズ構成を示す図である。第1レンズ群G1は両凹レンズL11と物体側に凸面を向けた正メニスカスレンズL12とで構成され、第2レンズ群G2は物体側より順に、両凸レンズと物体側に凹面を向けた負メニスカスレンズとの接合正レンズL21と、物体側に凹面を向けたメニスカス形状のL22と、両凸レンズL23とで構成され、第3レンズ群G3は像側に凸面を向けたメニスカス形状の正レンズL31と物体側に凹面を向けたメニスカス形状の負レンズL32とで構成される。
【0059】
本実施例では、開口絞りSが接合正レンズL21と負レンズL22との間に配置され、レンズ位置状態が変化する際に、第2レンズ群G2と一緒に移動する。
【0060】
以下の表3に、本実施例の諸元の値を掲げる。
【0061】
【表3】
Figure 0004639425
Figure 0004639425
【0062】
図7(a)より図7(c)は本実施例の無限遠合焦状態での諸収差図をそれぞれ示し、それぞれ広角端状態(f=25.20)、中間焦点距離状態(f=28.00)、望遠端状態(f=34.00)における諸収差図を示す。
【0063】
各収差図から、本実施例は諸収差が良好に補正され、優れた結像性能を有していることは明らかである。
【0064】
(第4実施例)
図8は、本発明の第4実施例にかかる可変焦点距離レンズ系のレンズ構成を示す図である。第1レンズ群G1は両凹レンズL11と物体側に凸面を向けた正メニスカスレンズL12とで構成され、第2レンズ群G2は物体側より順に、両凸レンズと物体側に凹面を向けた負メニスカスレンズとの接合正レンズL21と、物体側に凹面を向けたメニスカス形状のL22と、両凸レンズL23とで構成され、第3レンズ群G3は像側に凸面を向けたメニスカス形状の正レンズL31と物体側に凹面を向けたメニスカス形状の負レンズL32とで構成される。
【0065】
本実施例では、開口絞りSが接合正レンズL21と負レンズL22との間に配置され、レンズ位置状態が変化する際に、第2レンズ群G2と一緒に移動する。
【0066】
以下の表4に、本実施例の諸元の値を掲げる。
【0067】
【表4】
Figure 0004639425
Figure 0004639425
【0068】
図9(a)より図9(c)は本実施例の無限遠合焦状態での諸収差図をそれぞれ示し、それぞれ広角端状態(f=25.20)、中間焦点距離状態(f=28.00)、望遠端状態(f=34.00)における諸収差図を示す。
【0069】
各収差図から、本実施例は諸収差が良好に補正され、優れた結像性能を有していることは明らかである。
【0070】
【発明の効果】
以上説明したように、本発明によれば、広角端状態での画角が80度を超え、F3.5程度の明るく、小型の可変焦点距離レンズ系が達成できる。
【図面の簡単な説明】
【図1】本発明による可変焦点距離レンズ系の屈折力配置図
【図2】第1実施例にかかる可変焦点距離レンズ系の構成を示す断面図
【図3】第1実施例の、(a)は広角端状態における収差図(無限遠合焦状態)(b)は中間焦点距離状態における収差図(無限遠合焦状態)、(c)は望遠端状態における収差図(無限遠合焦状態)
【図4】第2実施例にかかる可変焦点距離レンズ系の構成を示す断面図
【図5】第2実施例の、(a)は広角端状態における収差図(無限遠合焦状態)(b)は中間焦点距離状態における収差図(無限遠合焦状態)、(c)は望遠端状態における収差図(無限遠合焦状態)
【図6】第3実施例にかかる可変焦点距離レンズ系の構成を示す断面図
【図7】第3実施例の、(a)は広角端状態における収差図(無限遠合焦状態)(b)は中間焦点距離状態における収差図(無限遠合焦状態)、(c)は望遠端状態における収差図(無限遠合焦状態)
【図8】第4実施例にかかる可変焦点距離レンズ系の構成を示す断面図
【図9】第4実施例の、(a)は広角端状態における収差図(無限遠合焦状態)(b)は中間焦点距離状態における収差図(無限遠合焦状態)、(c)は望遠端状態における収差図(無限遠合焦状態)
【符号の説明】
G1:第1レンズ群
G2:第2レンズ群
G3:第3レンズ群
S:開口絞り
L11〜L32 各レンズ成分[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable focal length lens system that can include an angle of view exceeding 80 degrees in a wide-angle end state, and more particularly, to a variable focal length lens system that can have a large aperture ratio of about 3.5. .
[0002]
[Prior art]
The feature of the lens shutter type camera is that it is excellent in portability. This portability is classified as being small and lightweight. Since the length of the photographic lens affects the thickness of the camera body, and the lens diameter affects the height and width of the camera body, reducing the photographic lens system has particularly affected the miniaturization of the camera.
[0003]
Zoom lenses can be taken closer to the subject, and cameras with zoom lenses have become mainstream in order to give the photographer freedom. And as the focal length in the telephoto end state increases, it becomes possible to shoot closer to the subject, so the zoom ratio tends to increase so that the focal length in the telephoto end state becomes longer.
[0004]
By the way, lens shutter cameras are often used when going on a trip because of their excellent portability. However, when single-lens reflex camera users carry lens shutter cameras, they have a single aperture lens with a bright aperture ratio. There were many cameras.
[0005]
[Problems to be solved by the invention]
However, conventional zoom lenses for shutter-type cameras tend to have a wide open F-number in the telephoto end state as the focal length in the telephoto end state becomes long, blurring is not noticeable, and the perspective is poor. It was a tendency to be finished.
[0006]
When users of single-lens reflex cameras carry around when traveling, an imaging system with a large aperture ratio and a wide angle of view is preferred. This is because the former allows photographing with natural color without a strobe, and the latter allows photographing without leaving the distance between the photographer and the subject.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a bright and small variable focal length lens system that covers a field angle exceeding 80 degrees in the wide-angle end state.
[0008]
In order to achieve the above object, the present invention includes, in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens group having negative refractive power. When the lens position changes from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group decreases, and the second lens group and the third lens group At least the second lens group and the third lens group are moved to the object side so that the distance is decreased, and the second lens group, in order from the object side, has a first positive lens component L21 and a negative value. It includes three lens components, a lens component L22 and a second positive lens component L23, and an aperture stop S is disposed adjacent to the negative lens component L22, and the negative lens component L22 is in relation to the aperture stop S. It is a meniscus shape with a concave surface, and the following conditional expression (1 And a variable focal length lens system satisfying the above.
(1) 0.15 <Da / fw <0.40
Where Da is the length of the air gap between the object side and the image side across the aperture stop, and fw is the focal length of the variable focal length lens system in the wide-angle end state .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Conventionally, the variable focal length lens system is roughly classified into a positive leading type in which a lens group having positive refractive power is arranged on the most object side of the lens system and a negative leading type in which a lens group having negative refractive power is arranged.
[0010]
The front-first zoom lens has a narrow angle of view and is used in a lens system having a long focal length compared to the diagonal length of the screen, and is suitable for shortening the total lens length. The negative leading zoom lens is mainly used in a lens system having a wide angle of view.
[0011]
In the negative leading zoom lens, the off-axis light beam passing through the first lens group in the wide-angle end state (mostly arranged on the object side) passes through a height close to the optical axis, so that the lens diameter can be reduced. However, when the zoom ratio is increased, in the telephoto end state, the axial light beam spreads and passes through the second lens group (arranged on the image side of the first lens group), so that a predetermined optical performance is obtained at the center of the screen. It is difficult to secure.
[0012]
In addition, the lens system used in the lens shutter type camera realizes a reduction in the overall lens length and a reduction in the lens diameter by disposing the negative lens group on the most image side of the lens system.
[0013]
In the present invention, priority is given to a large aperture ratio and a wide angle of view over a zoom ratio, and a first lens group having negative refractive power is arranged closest to the image side of the lens system and has positive refractive power on the image side. A second lens group is arranged, and a third lens group having negative refractive power is arranged on the image side. Further, in the wide-angle end state, the first lens group and the second lens group are spaced apart from each other, and the second lens group and the third lens group are spaced apart from each other toward the telephoto end state. As the lens position changes, at least the second lens group and the third lens group are moved to the object side so that the distance between the lens groups is narrowed.
[0014]
Further, in an optical system having a wide angle of view, the position where the aperture stop is disposed is important. In the present invention, the aperture stop is disposed inside the second lens group.
[0015]
In the wide-angle end state, by sufficiently widening the distance between the lens groups, the off-axis light beam passing through the first lens group and the third lens group is separated from the optical axis, so that the off-axis aberration can be corrected sufficiently satisfactorily. In addition, as the lens position state changes toward the telephoto end state, the height of the off-axis light beam passing through the first lens group and the third lens group is positively changed by narrowing the distance between the lens groups. Thus, the fluctuation of the off-axis aberration that occurs with the change in the lens position state is corrected well.
[0016]
In the present invention, the first lens unit and the third lens unit having negative refractive power are arranged on the object side and the image side of the second lens unit, respectively, so that the refractive power arrangement in the entire optical system becomes close to a symmetric type and is distorted. Aberration and lateral chromatic aberration are corrected well.
[0017]
The second lens group is mainly responsible for correcting axial aberrations. By constructing the second lens group in order from the object side with three lens components including a first positive lens component, a negative lens component, and a second positive lens component, axial aberrations are corrected particularly well, and off-axis aberrations are achieved. Can also be suppressed.
[0018]
In particular, the negative lens component is a meniscus lens having a concave surface facing the aperture stop, thereby suppressing the occurrence of off-axis aberrations.
[0019]
Conventionally, in order from the object side, there is known a negative positive / negative three group type zoom lens in which a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens group having negative refractive power are arranged. It has been. For example, JP-A-64-72114 proposes a zoom lens having a field angle of about 72 degrees in the wide-angle end state. However, since this aperture lens has an aperture stop on the image side of the second lens group, the lens diameter of the first lens group becomes very large when an angle of view exceeding 80 degrees is included.
[0020]
In the present invention, from the above configuration, it is possible to achieve both a wide angle of view in which the angle of view in the wide-angle end state exceeds 80 degrees and a large aperture ratio of about F3.5.
[0021]
Hereinafter, each conditional expression will be described.
[0022]
Conditional expression (1) is a conditional expression that defines the length of the air gap between the object side and the image side of the aperture stop arranged in the second lens group, and is a condition for reducing the size.
[0023]
In the present invention, the second lens group includes three lens components, a first positive lens component, a negative lens component, and a second positive lens component, and an aperture stop is disposed adjacent to the negative lens component. If there is not enough space before and after the aperture stop, the shutter space cannot be secured.
[0024]
In the present invention, it is desirable that at least one of the following conditional expressions (1) and (2) is satisfied.
(1) 0.15 <Da / fw <0.40
(2) 0.4 <D1W / D3W <1.2
However,
Da: the length of the air gap between the object side and the image side across the aperture stop,
fw: focal length of the variable focal length lens system in the wide-angle end state,
D1W: axial distance between the first lens group and the second lens group in the wide-angle end state,
D3W: On-axis distance between the second lens group and the third lens group in the wide-angle end state.
If the lower limit of conditional expression (1) is not reached, sufficient shutter space cannot be secured. On the other hand, when the upper limit value of conditional expression (1) is exceeded, the lens thickness increases, so that the off-axis light beam passing through each lens group is separated from the optical axis, causing an increase in the lens diameter.
[0025]
Conditional expression (2) is a condition for balancing the lens diameter and the total lens length.
[0026]
When the upper limit value of conditional expression (2) is exceeded, the off-axis light beam passing through the first lens group is separated from the optical axis, so that the lens diameter cannot be sufficiently reduced. In addition, since a large amount of coma occurs at the peripheral edge of the screen, high performance cannot be achieved. Conversely, when the lower limit value of conditional expression (2) is not reached, the off-axis light beam passing through the third lens group is separated from the optical axis, and the lens diameter is increased. Also, since the back focus is shortened, the shadow of dust adhering to the lens surface closest to the film surface is recorded on the film, and the image quality deteriorates.
[0027]
By the way, in order to achieve higher performance in the present invention, it is important to suppress the aberration amount generated for each lens group as much as possible.
[0028]
Therefore, it is desirable that each of the first lens group and the third lens group is composed of two or more lenses. In particular, the first lens group is disposed on the image side with a negative lens having a concave surface on the image side, It is desirable that the positive lens with the convex surface facing the object side and the third lens group have a positive lens with the convex surface facing the image side and a negative lens with the concave surface facing the object side. This is to reduce the lens diameter and suppress the occurrence of off-axis aberrations.
[0029]
Furthermore, in the present invention, by satisfying at least one of the following conditional expressions (3) and (4), more excellent performance can be obtained while reducing the size.
(3) 0.3 <f3 / f1 <0.7 (f3 <0, f1 <0)
(4) 0.7 <f2 / fw <0.85
However,
f1: the focal length of the first lens group,
f2: focal length of the second lens group,
f3: focal length of the third lens group,
fw: focal length of the variable focal length lens system in the wide-angle end state.
Conditional expression (3) is a conditional expression that defines the focal length ratio between the first lens group and the third lens group. If the upper limit value of conditional expression (3) is exceeded, the axial light beam that passes through the second lens group in the telephoto end state spreads, so that correction of axial aberration is insufficient. On the other hand, when the lower limit value of conditional expression (3) is not reached, the off-axis light beam passing through the third lens group approaches the optical axis, and the coma variation due to the angle of view cannot be corrected well.
[0030]
Conditional expression (4) is a conditional expression that defines the focal length of the second lens group. If the upper limit of conditional expression (4) is exceeded, the overall length of the lens will be increased. Conversely, when the lower limit value of conditional expression (4) is not reached, the refractive power of the first lens group and the third lens group also increases, and the off-axis light beam passing through the first lens group and the third lens group approaches the optical axis. Therefore, fluctuations in coma due to the angle of view that occurs in the wide-angle end state cannot be corrected.
[0031]
In the present invention, in order to shorten the overall length of the lens, it is desirable to dispose the aperture stop between the first positive lens component L21 and the negative lens component L22 in the second lens group, thereby improving performance. In order to achieve this, it is desirable that the lens surface closest to the image side of the second positive lens component L23, which is arranged away from the aperture stop and whose off-axis light beam is slightly away from the optical axis, is an aspherical surface. More preferably, it is desirable to configure so as to satisfy the following conditional expression (5).
(5) 0.15 <Db / fw <0.35
However,
Db: a length along the optical axis from the aperture stop to the lens surface closest to the image side of the second positive lens component.
Conditional expression (5) is a conditional expression that defines the distance between the lens surface closest to the image side of the second positive lens component L23 and the aperture stop. If the upper limit value of conditional expression (5) is exceeded, the off-axis light beam passing through the third lens group will be far away from the optical axis and the lens diameter will increase, impairing portability. Conversely, if the lower limit of conditional expression (5) is not reached, the difference in height between the off-axis light beam passing through the lens surface closest to the image side of the second positive lens component L23 and the on-axis light beam is reduced. The fluctuation of coma due to the angle of view cannot be corrected better.
[0032]
In the present invention, it is desirable to satisfy the following conditional expressions (6) and (7) in order to maintain stable quality during production.
(6) -0.1 <(r22a-r23b) / (r22a + r23b) <0.1
(7) fw / | r23a | <0.55
Where r22a: radius of curvature of the object side lens surface of the negative lens component in the second lens group, r23b : radius of curvature of the image side lens surface of the second positive lens component in the second lens group, r23a : The radius of curvature of the object-side lens surface of the second positive lens component in the second lens group.
[0033]
In the present invention, in order to separate the off-axis light beam passing through the second positive lens component L23 from the optical axis, it is desirable to strongly diverge the light beam on the object side lens surface of the negative lens component L22. The light beam is strongly converged on the image side lens surface of the second positive lens component L23.
[0034]
Such a configuration is desirable for further improvement in performance, but the performance deterioration due to mutual eccentricity when the lens is incorporated into the lens chamber is significantly increased. It is important to reduce the misalignment between the lens surface and the image-side lens surface of the second positive lens component L23.
[0035]
In the present invention, by setting the respective curvature radii of the object-side lens surface of the negative lens component L22 and the image-side lens surface of the second positive lens component L23 so as to satisfy the conditional expression (6), decentration is achieved. Adjustment is relatively easy.
[0036]
Further, when constructing the lens chamber, it is preferable in terms of work to move the second positive lens component L23 having a large lens diameter (away from the aperture stop) at the time of decentering adjustment, and in particular, the conditional expression (7) is satisfied. By setting the radius of curvature of the object-side lens surface of the second positive lens component L23, the working efficiency can be improved. This is because the lens rotates around the center of curvature of the object-side lens surface of the second positive lens component L23 during the decentering adjustment, so that the position of the rotation center does not move away from the image-side lens surface of the second positive lens component L23. This is because a large amount of adjustment is required.
[0037]
In each of the following embodiments, the second lens group is moved to the object side when focusing at a short distance, but it is also possible to move the first lens group or the third lens group, or to move a plurality of lens groups. Can focus at close range. In each embodiment, an aspheric lens is disposed in the first lens group. Needless to say, further performance enhancement can be realized by further disposing an aspheric lens in the third lens group, for example. Yes.
[0038]
Further, each of the following embodiments is configured by three lens groups, but it is easy to add another lens group having a weak refractive power to the image side of the third lens group .
[0039]
According to another aspect of the present invention, in order to prevent a failure due to an image blur caused by a camera shake or the like that is likely to occur when taking a picture, a blur detection system that detects a blur and a driving unit are provided in the lens system. In combination with the lens group, one lens group is made entirely or partly decentered as an eccentric lens group, and blur is detected by the blur detection system, and the detected blur is corrected. As described above, it is possible to obtain an image stabilizing optical system by correcting the image blur by decentering the decentering lens group by the driving means and shifting the image.
[0040]
【Example】
Hereinafter, numerical examples according to the present invention will be described.
[0041]
In each embodiment, the aspherical surface is expressed by the following equation.
[0042]
[Expression 1]
x = cy 2 / {1+ (1-κc 2 y 2 ) 1/2 } + C 4 y 4 + C 6 y 6 +...
[0043]
Where y is the height from the optical axis, x is the sag amount, c is the curvature, κ is the conic constant, and C 4 , C 6 ,... Are aspherical coefficients.
[0044]
FIG. 1 is a diagram showing refractive power distribution of a variable focal length lens system according to each embodiment of the present invention. In order from the object side, the lens unit includes a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power. When the focal length changes from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 decreases, and the distance between the second lens group G2 and the third lens group G3. At least the second lens group G2 and the third lens group G3 move toward the object side.
[0045]
(First embodiment)
FIG. 2 is a diagram showing a lens configuration of the variable focal length lens system according to the first embodiment of the present invention. The first lens group G1 is composed of a biconcave lens L11 and a positive meniscus lens L12 having a convex surface facing the object side, and the second lens group G2 is arranged in order from the object side, the biconvex lens L21 and the meniscus having a concave surface facing the object side. The third lens group G3 is composed of a meniscus positive lens L31 having a convex surface facing the image side and a meniscus negative lens L32 having a concave surface facing the object side. The
[0046]
In this embodiment, the aperture stop S is disposed between the biconvex lens L21 and the negative lens L22, and moves together with the second lens group G2 when the lens position state changes.
[0047]
Table 1 below lists values of specifications of the present example. In the specification table of the embodiment, f represents the focal length, FNO represents the F number, 2ω represents the angle of view, and the refractive index is a value with respect to the d-line (λ = 587.6 nm). In Table 1, the curvature radius 0 indicates a plane. In addition, in the following, the same sign as the specification value of a present Example is used in the specification value of all Examples.
[0048]
[Table 1]
Figure 0004639425
Figure 0004639425
[0049]
FIGS. 3 (a) to 3 (c) show various aberration diagrams in the infinitely focused state according to the present embodiment, respectively, and are in the wide-angle end state (f = 25.20) and the intermediate focal length state (f = 28.00). The aberration diagrams in the telephoto end state (f = 34.00) are shown.
[0050]
In each aberration diagram, the solid line in the spherical aberration diagram indicates the spherical aberration, the dotted line indicates the sine condition, y indicates the image height, the solid line in the astigmatism diagram indicates the sagittal image plane, and the broken line indicates the meridional image plane. The coma aberration diagram shows coma aberration at image heights y = 0, 10.8, 15.12, 18.34, and 21.6, and A indicates an angle of view.
[0051]
From each aberration diagram, it is clear that the present example has excellent image forming performance with various aberrations corrected well.
[0052]
(Second embodiment)
FIG. 4 is a diagram showing a lens configuration of a variable focal length lens system according to the second embodiment of the present invention. The first lens group G1 includes a biconcave lens L11 and a positive meniscus lens L12 having a convex surface facing the object side. The second lens group G2 is a meniscus positive lens L21 having a convex surface facing the object side in order from the object side. A meniscus L22 having a concave surface facing the object side, and a biconvex lens L23. The third lens group G3 has a meniscus positive lens L31 having a convex surface facing the image side and a concave surface facing the object side. It is composed of a meniscus negative lens L32.
[0053]
In this embodiment, the aperture stop S is disposed between the positive lens L21 and the negative lens L22, and moves together with the second lens group G2 when the lens position state changes.
[0054]
Table 2 below lists values of specifications of this example.
[0055]
[Table 2]
Figure 0004639425
Figure 0004639425
[0056]
FIGS. 5 (a) to 5 (c) show various aberration diagrams in the infinite focus state according to the present embodiment, respectively, and are in the wide-angle end state (f = 25.20) and the intermediate focal length state (f = 28.00), respectively. ) Shows various aberration diagrams in the telephoto end state (f = 34.00).
[0057]
From each aberration diagram, it is clear that the present example has excellent image forming performance with various aberrations corrected well.
[0058]
(Third embodiment)
FIG. 6 is a diagram showing a lens configuration of a variable focal length lens system according to the third example of the present invention. The first lens group G1 includes a biconcave lens L11 and a positive meniscus lens L12 having a convex surface facing the object side. The second lens group G2 is a negative meniscus lens having a biconvex lens and a concave surface facing the object side in order from the object side. Positive lens L21 having a concave surface facing the object side, a biconvex lens L23, and a third lens group G3 having a meniscus positive lens L31 having a convex surface facing the image side and the object And a negative meniscus lens L32 having a concave surface on the side.
[0059]
In the present embodiment, the aperture stop S is disposed between the cemented positive lens L21 and the negative lens L22, and moves together with the second lens group G2 when the lens position state changes.
[0060]
Table 3 below lists values of specifications of the present example.
[0061]
[Table 3]
Figure 0004639425
Figure 0004639425
[0062]
7 (a) to 7 (c) show various aberration diagrams in the infinite focus state of the present embodiment, respectively, and are respectively at the wide-angle end state (f = 25.20), the intermediate focal length state (f = 28.00), The aberration diagrams in the telephoto end state (f = 34.00) are shown.
[0063]
From each aberration diagram, it is clear that the present example has excellent image forming performance with various aberrations corrected well.
[0064]
(Fourth embodiment)
FIG. 8 is a diagram showing a lens configuration of a variable focal length lens system according to the fourth example of the present invention. The first lens group G1 includes a biconcave lens L11 and a positive meniscus lens L12 having a convex surface facing the object side. The second lens group G2 is a negative meniscus lens having a biconvex lens and a concave surface facing the object side in order from the object side. Positive lens L21 having a concave surface facing the object side, a biconvex lens L23, and a third lens group G3 having a meniscus positive lens L31 having a convex surface facing the image side and the object And a negative meniscus lens L32 having a concave surface on the side.
[0065]
In the present embodiment, the aperture stop S is disposed between the cemented positive lens L21 and the negative lens L22, and moves together with the second lens group G2 when the lens position state changes.
[0066]
Table 4 below lists values of specifications of the present example.
[0067]
[Table 4]
Figure 0004639425
Figure 0004639425
[0068]
9 (a) to 9 (c) show various aberration diagrams in the infinitely focused state according to the present embodiment, respectively. The wide-angle end state (f = 25.20), the intermediate focal length state (f = 28.00), respectively. The aberration diagrams in the telephoto end state (f = 34.00) are shown.
[0069]
From each aberration diagram, it is clear that the present example has excellent image forming performance with various aberrations corrected well.
[0070]
【The invention's effect】
As described above, according to the present invention, it is possible to achieve a bright and compact variable focal length lens system in which the angle of view in the wide-angle end state exceeds 80 degrees and is approximately F3.5.
[Brief description of the drawings]
FIG. 1 is a refractive power arrangement diagram of a variable focal length lens system according to the present invention. FIG. 2 is a cross-sectional view showing a configuration of a variable focal length lens system according to a first embodiment. (B) is an aberration diagram in the intermediate focal length state (infinite focus state), and (c) is an aberration diagram in the telephoto end state (infinite focus state). )
4 is a cross-sectional view showing a configuration of a variable focal length lens system according to a second embodiment. FIG. 5A is an aberration diagram in the wide-angle end state (infinite focus state) (b). ) Is an aberration diagram in the intermediate focal length state (infinitely focused state), and (c) is an aberration diagram in the telephoto end state (infinitely focused state).
FIG. 6 is a cross-sectional view showing the configuration of a variable focal length lens system according to a third example. FIG. 7A is an aberration diagram in the wide-angle end state (infinite focus state) (b). ) Is an aberration diagram in the intermediate focal length state (infinitely focused state), and (c) is an aberration diagram in the telephoto end state (infinitely focused state).
FIG. 8 is a cross-sectional view showing the configuration of a variable focal length lens system according to a fourth example. FIG. 9A is an aberration diagram in the wide-angle end state (infinite focus state) (b). ) Is an aberration diagram in the intermediate focal length state (infinitely focused state), and (c) is an aberration diagram in the telephoto end state (infinitely focused state).
[Explanation of symbols]
G1: 1st lens group G2: 2nd lens group G3: 3rd lens group S: Aperture stop L11-L32 Each lens component

Claims (8)

物体側より順に、負屈折力を有する第1レンズ群と、正屈折力を有する第2レンズ群と、負屈折力を有する第3レンズ群とを有し、
広角端状態から望遠端状態までレンズ位置状態が変化する際に、前記第1レンズ群と前記第2レンズ群との間隔が減少し、前記第2レンズ群と前記第3レンズ群との間隔が減少するように、少なくとも前記第2レンズ群と前記第3レンズ群がぞれぞれ物体側へ移動して、
前記第2レンズ群は、物体側より順に、第1の正レンズ成分と負レンズ成分と第2の正レンズ成分との3つのレンズ成分を含み、
開口絞りが前記負レンズ成分に隣接して配置され、前記負レンズ成分は該開口絞りに対して凹面を向けたメニスカス形状であり、以下の条件式(1)を満足することを特徴とする可変焦点距離レンズ系。
(1)0.15<Da/fw<0.40
但し、
Da:前記開口絞りを挟んだ物体側と像側の空気間隔の長さ,
fw:広角端状態での前記可変焦点距離レンズ系の焦点距離.
In order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens group having negative refractive power,
When the lens position changes from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group decreases, and the distance between the second lens group and the third lens group decreases. So that at least the second lens group and the third lens group move toward the object side, respectively, so as to decrease,
The second lens group includes three lens components of a first positive lens component, a negative lens component, and a second positive lens component in order from the object side,
An aperture stop is disposed adjacent to the negative lens component, and the negative lens component has a meniscus shape with a concave surface facing the aperture stop, and satisfies the following conditional expression (1): Focal length lens system.
(1) 0.15 <Da / fw <0.40
However,
Da: the length of the air gap between the object side and the image side across the aperture stop,
fw: focal length of the variable focal length lens system in the wide-angle end state.
以下の条件式(2)を満足することを特徴とする請求項1に記載の可変焦点距離レンズ系。
(2)0.4<D1W/D3W<1.2
但し、
D1W:広角端状態での前記第1レンズ群と前記第2レンズ群との軸上間隔,
D3W:広角端状態での前記第2レンズ群と前記第3レンズ群との軸上間隔.
The variable focal length lens system according to claim 1, wherein the following conditional expression (2) is satisfied.
(2) 0.4 <D1W / D3W <1.2
However,
D1W: axial distance between the first lens group and the second lens group in the wide-angle end state,
D3W: On-axis distance between the second lens group and the third lens group in the wide-angle end state.
前記第1レンズ群は像側に凹面を向けた負レンズ成分と、該負レンズ成分の像側に空気間隔を隔てて配置され、物体側に凸面を向けた正レンズ成分とを有し、
前記第3レンズ群は像側に凸面を向けた正レンズ成分と、該正レンズ成分の像側に空気間隔を隔てて配置され、物体側に凹面を向けた負レンズ成分とを有することを特徴とする請求項1又は2に記載の可変焦点距離レンズ系。
The first lens group includes a negative lens component having a concave surface directed to the image side, and a positive lens component disposed with an air gap on the image side of the negative lens component and having a convex surface directed to the object side,
The third lens group includes a positive lens component having a convex surface directed toward the image side, and a negative lens component disposed with an air gap on the image side of the positive lens component and having a concave surface directed toward the object side. The variable focal length lens system according to claim 1 or 2 .
以下の条件式(3)と(4)のうち、少なくともいずれか一方を満足することを特徴とする請求項1からのいずれか一項に記載の可変焦点距離レンズ系。
(3)0.3<f3/f1<0.7 (f3<0,f1<0)
(4)0.7<f2/fw<0.85
但し、
f1:前記第1レンズ群の焦点距離,
f2:前記第2レンズ群の焦点距離,
f3:前記第3レンズ群の焦点距離,
fw:広角端状態での前記可変焦点距離レンズ系の焦点距離.
The variable focal length lens system according to any one of claims 1 to 3 , wherein at least one of the following conditional expressions (3) and (4) is satisfied.
(3) 0.3 <f3 / f1 <0.7 (f3 <0, f1 <0)
(4) 0.7 <f2 / fw <0.85
However,
f1: the focal length of the first lens group,
f2: focal length of the second lens group,
f3: focal length of the third lens group,
fw: focal length of the variable focal length lens system in the wide-angle end state.
前記開口絞りは前記第1の正レンズ成分と前記負レンズ成分との間に配置され、
前記第2の正レンズ成分のもっとも像側のレンズ面が非球面形状であり、かつ以下の条件式(5)を満足することを特徴とする請求項1からのいずれか一項に記載の可変焦点距離レンズ系。
(5)0.15<Db/fw<0.35
但し、
fw:広角端状態での前記可変焦点距離レンズ系の焦点距離,
Db:前記開口絞りから前記第2の正レンズ成分のもっとも像側のレンズ面までの光軸に沿った長さ.
The aperture stop is disposed between the first positive lens component and the negative lens component;
The second most image side lens surface of the positive lens component is a non-spherical shape, and according to claims 1 to any one of 4, characterized by satisfying the following conditional expression (5) Variable focal length lens system.
(5) 0.15 <Db / fw <0.35
However,
fw: focal length of the variable focal length lens system in the wide-angle end state,
Db: Length along the optical axis from the aperture stop to the lens surface closest to the image side of the second positive lens component.
以下の条件式(6)及び(7)を満足することを特徴とする請求項1からのいずれか一項に記載の可変焦点距離レンズ系。
(6)−0.1<(r22a−r23b)/(r22a+r23b)<0.1
(7)fw/│r23a│<0.55
但し、
r22a:前記第2レンズ群中の前記負レンズ成分の物体側レンズ面の曲率半径,
r23b:前記第2レンズ群中の前記第2の正レンズ成分の像側レンズ面の曲率半径,
r23a:前記第2レンズ群中の前記第2の正レンズ成分の物体側レンズ面の曲率半径.
The variable focal length lens system according to any one of claims 1 to 5 , wherein the following conditional expressions (6) and (7) are satisfied.
(6) -0.1 <(r22a-r23b) / (r22a + r23b) <0.1
(7) fw / | r23a | <0.55
However,
r22a: radius of curvature of the object side lens surface of the negative lens component in the second lens group,
r23b: radius of curvature of the image side lens surface of the second positive lens component in the second lens group,
r23a: radius of curvature of the object-side lens surface of the second positive lens component in the second lens group.
前記第1レンズ群は、非球面を有することを特徴とする請求項1からのいずれか一項に記載の可変焦点距離レンズ系。The first lens group, the variable focal length lens system according to any one of claims 1 6, characterized in that it has an aspherical surface. 前記第2レンズ群は、非球面を有することを特徴とする請求項1からのいずれか一項に記載の可変焦点距離レンズ系。The variable focal length lens system according to any one of claims 1 to 7 , wherein the second lens group has an aspherical surface.
JP2000103808A 2000-04-05 2000-04-05 Variable focal length lens system Expired - Lifetime JP4639425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000103808A JP4639425B2 (en) 2000-04-05 2000-04-05 Variable focal length lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000103808A JP4639425B2 (en) 2000-04-05 2000-04-05 Variable focal length lens system

Publications (3)

Publication Number Publication Date
JP2001290076A JP2001290076A (en) 2001-10-19
JP2001290076A5 JP2001290076A5 (en) 2008-04-10
JP4639425B2 true JP4639425B2 (en) 2011-02-23

Family

ID=18617448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000103808A Expired - Lifetime JP4639425B2 (en) 2000-04-05 2000-04-05 Variable focal length lens system

Country Status (1)

Country Link
JP (1) JP4639425B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252099A (en) * 2003-02-19 2004-09-09 Nikon Corp Zoom lens equipped with vibration-proofing function
JP2006091430A (en) * 2004-09-24 2006-04-06 Casio Comput Co Ltd Lens unit
JP4690052B2 (en) * 2005-01-11 2011-06-01 オリンパスイメージング株式会社 Zoom lens and imaging apparatus using the same
JP2012108306A (en) * 2010-11-17 2012-06-07 Hoya Corp Zoom lens system and electronic imaging apparatus using the same
JP5615674B2 (en) 2010-11-17 2014-10-29 Hoya株式会社 Zoom lens system and electronic imaging apparatus using the same
JP6830645B2 (en) * 2016-09-16 2021-02-17 株式会社nittoh Optical system and imaging device for imaging
CN108693627B (en) * 2017-04-06 2020-11-13 广州长步道光电科技有限公司 Small-size high-resolution short-focal-length line scanning lens
US11092789B2 (en) * 2018-04-18 2021-08-17 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
JP7291533B2 (en) * 2019-05-10 2023-06-15 株式会社タムロン Imaging optical system and imaging device
CN113267877B (en) * 2021-04-14 2022-08-19 浙江舜宇光学有限公司 Imaging system
CN113267880B (en) * 2021-06-03 2022-09-09 浙江舜宇光学有限公司 Optical imaging lens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163715A (en) * 1987-12-19 1989-06-28 Minolta Camera Co Ltd Zoom lens system for projecting microfilm with small distortion aberration
JPH02136811A (en) * 1988-11-18 1990-05-25 Canon Inc Small-sized zoom lens
JPH06160716A (en) * 1992-11-20 1994-06-07 Olympus Optical Co Ltd Zoom lens for scarcely causing short distance aberration fluctuation
JPH06175027A (en) * 1992-12-10 1994-06-24 Olympus Optical Co Ltd Small zoom lens of rear-focusing type
JPH07151974A (en) * 1993-11-29 1995-06-16 Canon Inc Zoom lens
JPH07253541A (en) * 1994-03-14 1995-10-03 Canon Inc Zoom lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163715A (en) * 1987-12-19 1989-06-28 Minolta Camera Co Ltd Zoom lens system for projecting microfilm with small distortion aberration
JPH02136811A (en) * 1988-11-18 1990-05-25 Canon Inc Small-sized zoom lens
JPH06160716A (en) * 1992-11-20 1994-06-07 Olympus Optical Co Ltd Zoom lens for scarcely causing short distance aberration fluctuation
JPH06175027A (en) * 1992-12-10 1994-06-24 Olympus Optical Co Ltd Small zoom lens of rear-focusing type
JPH07151974A (en) * 1993-11-29 1995-06-16 Canon Inc Zoom lens
JPH07253541A (en) * 1994-03-14 1995-10-03 Canon Inc Zoom lens

Also Published As

Publication number Publication date
JP2001290076A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
JP3584107B2 (en) Zoom lens
EP2362259B1 (en) Macro lens of the telephoto type having three lens groups and front focusing, method for its manufacture
JP5448574B2 (en) Zoom lens and imaging apparatus having the same
JP3646717B2 (en) Fisheye lens that can be switched to multiple screen sizes
JP2003241097A (en) High variable power ratio zoom lens
JP2002287031A (en) Zoom lens and optical equipment using the same
JP4639425B2 (en) Variable focal length lens system
JPH11223772A (en) Zoom lens
JPH11223771A (en) Vari-focal lens system
JP2004252196A (en) Zoom lens capable of shifting image
JP3536128B2 (en) Zoom lens with anti-vibration function
JP4550970B2 (en) Floating photography lens
JP3184581B2 (en) Zoom lens
JP4004579B2 (en) Super wide-angle zoom finder
JP4630451B2 (en) Zoom lens and optical apparatus using the same
JPH0727979A (en) Zoom lens
JP2007271752A (en) Macro lens, optical device and focusing method for macro lens
JP4817551B2 (en) Zoom lens
JP2007017532A (en) Image-shiftable zoom lens
JP3706827B2 (en) Zoom lens and optical apparatus having the same
JP2001330778A (en) Variable focal distance lens system
JPH10104519A (en) Small variable power optical system
JP6816370B2 (en) Optical system and optical equipment
JPH1090600A (en) Variable magnification optical system
JP4955875B2 (en) Zoom lens and optical apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Ref document number: 4639425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term