JPH0829688A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH0829688A
JPH0829688A JP18281494A JP18281494A JPH0829688A JP H0829688 A JPH0829688 A JP H0829688A JP 18281494 A JP18281494 A JP 18281494A JP 18281494 A JP18281494 A JP 18281494A JP H0829688 A JPH0829688 A JP H0829688A
Authority
JP
Japan
Prior art keywords
group
lens
negative
wide
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18281494A
Other languages
Japanese (ja)
Inventor
Teruhiro Nishio
彰宏 西尾
Takashi Kato
隆志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18281494A priority Critical patent/JPH0829688A/en
Publication of JPH0829688A publication Critical patent/JPH0829688A/en
Priority to US08/892,878 priority patent/US6028716A/en
Priority to US09/286,305 priority patent/US6236517B1/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the rear focus zoom lens which has high optical performance over the entire power variation range by providing two lens groups on the whole and properly setting the movement conditions, refracting power, etc., of the respective lens groups as to power variation and focusing. CONSTITUTION:The zoom lens which has plural lens groups in order from the object side, has a group L1 having positive composite refracting power at the wide-angle end and a group L2 having negative refracting power, and varies in power by varying the gap between the groups L1 and L2; and the group L2 has two lens groups that are a group L21 with negative refracting power and a group L22 with negative refracting power, and the zoom lens is put in focus by varying the gap between the groups L21 and L22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレンズシャッターカメ
ラ、ビデオカメラ等に好適なズームレンズに関し、特に
物体側の第1群以外のレンズ群でフォーカスを行った所
謂リヤーフォーカスを採用し、レンズ系全体が小型で、
しかも物体距離全般にわたり高い光学性能を有した変倍
比2.5〜3.5程度のズームレンズに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens suitable for a lens shutter camera, a video camera, etc., and particularly adopts a so-called rear focus in which focusing is performed by a lens group other than the first lens group on the object side, and the whole lens system. Is small,
Moreover, the present invention relates to a zoom lens having a variable power ratio of about 2.5 to 3.5, which has high optical performance over the entire object distance.

【0002】[0002]

【従来の技術】最近レンズシャッターカメラ、ビデオカ
メラ等においては、カメラの小型化に伴いレンズ全長の
短い小型のズームレンズが要求されている。特にレンズ
シャッターカメラは、ズーム駆動用の電気回路などの周
辺技術の発達などにより、ますますカメラの小型化が進
んでおり、それに備わる撮影レンズも高変倍でかつコン
パクトなズームレンズが要求されている。
2. Description of the Related Art Recently, in a lens shutter camera, a video camera, etc., a compact zoom lens having a short total lens length has been demanded as the camera becomes smaller. In particular, lens shutter cameras are becoming smaller and smaller due to the development of peripheral technologies such as zoom driving electric circuits. There is.

【0003】これらの目的を達成する一つの手段とし
て、物体側の第1群以外のレンズ群を移動させてフォー
カスを行う、所謂リヤーフォーカス式のズームレンズが
知られている。
As one means for achieving these objects, there is known a so-called rear focus type zoom lens in which a lens unit other than the first lens unit on the object side is moved for focusing.

【0004】一般にリヤーフォーカス式のズームレンズ
は第1群を移動させてフォーカスを行うズームレンズに
比べて第1群の有効径が小さくなり、レンズ系全体の小
型化が容易になり、又近接撮影、特に極近接撮影が容易
となり、更に比較的小型軽量のレンズ群を移動させて行
っているので、レンズ群の駆動力が小さくてすみ迅速な
焦点合わせができる等の特長がある。
Generally, in a rear focus type zoom lens, the effective diameter of the first lens group is smaller than that of a zoom lens in which the first lens group is moved to perform focusing, which facilitates downsizing of the entire lens system and close-up photography. In particular, since extremely close-up photography is facilitated and the relatively small and lightweight lens group is moved, the driving force of the lens group is small, and quick focusing is possible.

【0005】このようなリヤーフォーカス式を用いた一
眼レフ用やVTR用のズームレンズが、例えば特開昭6
3−66523号公報や特開昭64−68709号公
報、そして特開昭58−179810号公報で提案され
ている。又、特開平1−204013号公報では物体側
より順に正、正、そして負の屈折力の3つのレンズ群よ
り成る3群ズームレンズにおいて、第2群又は第3群で
フォーカスを行ったズームレンズを提案している。
A zoom lens for a single-lens reflex camera or a VTR using such a rear focus type is disclosed in, for example, Japanese Patent Laid-Open No.
It is proposed in JP-A-3-66523, JP-A-64-68709, and JP-A-58-179810. Further, in Japanese Patent Application Laid-Open No. 1-204013, a zoom lens in which a second lens group or a third lens group is focused in a three-group zoom lens including three lens groups having positive, positive, and negative refractive powers in order from the object side. Is proposed.

【0006】又、特開昭62−24213号公報や、特
開昭63−247316号公報そして特開平4−433
11号公報では、物体側より順に正の屈折力の第1群、
負の屈折力の第2群、正の屈折力の第3群、そして正の
屈折力の第4群の4つのレンズ群を有し、第2群を移動
させて変倍を行い、第4群を移動させて変倍に伴う像面
変動とフォーカスを行ったズームレンズを提案してい
る。
Further, JP-A-62-24213, JP-A-63-247316 and JP-A-4-433.
In the publication No. 11, the first group having positive refracting power in order from the object side,
It has four lens groups, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power, and the second lens group is moved to perform zooming. We have proposed a zoom lens that moves the lens group to focus and focus on the image plane due to zooming.

【0007】[0007]

【発明が解決しようとする課題】一般にリヤーフォーカ
ス式のズームレンズは第1群全体を移動させてフォーカ
スを行うズームレンズに比べて第1群の有効径が小さく
なり、レンズ系全体の小型化が容易となり、又近接撮影
が容易となり、更に比較的小型軽量のレンズ群を移動さ
せて行っているのでレンズ群の駆動力が小さくてすみ、
迅速な焦点合わせができるなどの特長を有している。
Generally, in a rear focus type zoom lens, the effective diameter of the first lens group is smaller than that of a zoom lens in which the entire first lens group is moved for focusing. It becomes easier and close-up photography becomes easier. Furthermore, since the relatively small and lightweight lens group is moved, the driving force of the lens group can be small,
It has features such as quick focusing.

【0008】しかしながら反面、フォーカスの際の収差
変動が大きくなり、無限遠物体から近距離物体に至る物
体距離全般にわたり高い光学性能を得るのが大変難しく
なってくるという問題点が生じてくる。
On the other hand, however, the aberration variation at the time of focusing becomes large, and it becomes very difficult to obtain high optical performance over the entire object distance from an object at infinity to a near object.

【0009】特に広画角で高変倍のズームレンズでは全
変倍範囲にわたり、又物体距離全般にわたり高い光学性
能を得るのが大変難しくなってくるという問題点が生じ
てくる。
Particularly, in a zoom lens having a wide angle of view and a high zoom ratio, it becomes very difficult to obtain high optical performance over the entire zoom range and over the entire object distance.

【0010】本発明はリヤーフォーカス方式を採用し、
変倍に伴う各レンズ群の移動や近軸屈折力配置等を適切
に行い、広角端から望遠端に至る全変倍範囲にわたり、
又無限遠物体から至近物体に至る物体距離全般にわた
り、良好なる光学性能を有した広画角で高変倍比のズー
ムレンズの提供を目的とする。
The present invention adopts a rear focus system,
By appropriately moving each lens group along with zooming and arranging paraxial refractive power, etc., over the entire zoom range from the wide-angle end to the telephoto end,
Another object of the present invention is to provide a zoom lens having a wide angle of view and a high zoom ratio, which has good optical performance over the entire object distance from an infinite object to a close object.

【0011】[0011]

【課題を解決するための手段】本発明のズームレンズ
は、物体側より順に複数のレンズ群を有し、広角端にお
ける合成屈折力が正のL1群と負の屈折力のL2群を有
し、該L1群とL2群との間隔を変えて変倍を行うズー
ムレンズにおいて、該L2群は負の屈折力のL21群と
負の屈折力のL22群の2つのレンズ群を有し、該L2
1群とL22群との間隔を変化させてフォーカスを行っ
ていることを特徴としている。
A zoom lens according to the present invention comprises a plurality of lens groups in order from the object side, and has a positive refractive power L1 group and a negative refractive power L2 group at the wide-angle end. In the zoom lens which performs zooming by changing the distance between the L1 group and the L2 group, the L2 group includes two lens groups, an L21 group having a negative refractive power and an L22 group having a negative refractive power, L2
It is characterized in that the distance between the first lens group and the L22 lens group is changed to perform focusing.

【0012】[0012]

【実施例】図1〜図5は各々本発明の数値実施例1〜5
の広角端のレンズ断面図である。図6〜図38は本発明
の数値実施例1〜5の諸収差図である。図39は本発明
におけるズームレンズのフォーカスにおける近軸屈折力
配置の説明図である。
1 to 5 are numerical examples 1 to 5 of the present invention.
2 is a lens cross-sectional view at the wide-angle end of FIG. 6 to 38 are various aberration diagrams of Numerical Examples 1 to 5 of the present invention. FIG. 39 is an explanatory diagram of the paraxial refractive power arrangement in the focus of the zoom lens according to the present invention.

【0013】図中、L1は複数のレンズ群(L1i,i
=1〜5)を有し、合成屈折力が正の屈折力のL1群、
L2は合成屈折力が負のL2群である。L2群は負の屈
折力のL21群と負の屈折力のL22群の2つのレンズ
群を有している。SPは絞り、IPは像面である。矢印
は広角側から望遠側への変倍を行う際の各レンズ群の移
動方法を示している。即ちL1群中の各レンズ群の間隔
とL1群とL2群の間隔を変えて変倍を行っている。
In the figure, L1 is a plurality of lens groups (L1i, i
= 1 to 5), and the combined refractive power is a positive refractive power L1 group,
L2 is an L2 group having a negative combined refractive power. The L2 group has two lens groups, an L21 group having a negative refractive power and an L22 group having a negative refractive power. SP is an aperture and IP is an image plane. The arrows indicate the method of moving each lens group when performing zooming from the wide-angle side to the telephoto side. That is, zooming is performed by changing the distance between the lens groups in the L1 group and the distance between the L1 group and the L2 group.

【0014】本実施例では図39(A),(B)に示す
ように、フォーカスはL21群とL22群の間隔を変化
させて行っている。具体的には図39(B)に示すよう
にL22群を固定としL21群を像面側へ移動させて行
う方法と、図39(A)に示すようにL21群とL22
群を共に像面側へ双方の間隔を変化させつつ移動させて
行う方法とを用いている。
In this embodiment, as shown in FIGS. 39A and 39B, focusing is performed by changing the distance between the L21 group and the L22 group. Specifically, as shown in FIG. 39 (B), the L22 group is fixed and the L21 group is moved to the image side, and as shown in FIG. 39 (A), the L21 group and L22 group are moved.
A method of moving both groups to the image plane side while changing the distance between the two groups is used.

【0015】一般に写真用カメラやビデオカメラ等のズ
ームレンズでは、射出瞳が結像面(フィルム面)よりも
物体側に位置している。このためL21群に比べてL2
2群の有効径が大きくなってくる。L2群の焦点距離f
L2はL21群とL22群の焦点距離を各々fL21,
fL22とし、L21群とL22群の主点間隔をeとす
ると
Generally, in a zoom lens such as a photographic camera or a video camera, the exit pupil is located closer to the object side than the image plane (film surface). Therefore, compared with the L21 group, L2
The effective diameter of the second group becomes larger. Focal length f of L2 group
L2 represents the focal lengths of the L21 group and the L22 group by fL21,
Let fL22 and e be the principal point spacing between the L21 group and the L22 group.

【0016】[0016]

【数1】 となる。[Equation 1] Becomes

【0017】そこで本実施例ではフォーカスの際、L2
1群とL22群の間隔が小さくなるように移動させて、
L2群の負の屈折力を弱めて、フォーカス用のレンズ群
L21,L22の移動量がL2群単独で行う場合に比べ
て少なくなるようにしている。これによりレンズ全長の
短縮化を図りつつ、フォーカスの際の駆動トルクが小さ
くなるようにしている。特にフォーカスの際、L22群
を固定とし、L22群よりもレンズ外径の小さいL21
群を像面側へ移動させる方法は、フォーカス移動トルク
が低減し、又フォーカス機構が簡素になるという特長が
ある。
Therefore, in this embodiment, when focusing, L2
Move it so that the distance between the first group and the L22 group becomes smaller,
The negative refracting power of the L2 group is weakened so that the moving amount of the focusing lens groups L21 and L22 becomes smaller than that in the case of performing the L2 group alone. As a result, the total lens length is shortened and the driving torque during focusing is reduced. In particular, during focusing, the L22 group is fixed and the lens outer diameter is smaller than that of the L22 group.
The method of moving the group to the image plane side is characterized in that the focus moving torque is reduced and the focus mechanism is simplified.

【0018】本実施例ではこのようなズーム方式及びフ
ォーカス方式のレンズ構成を採ることにより、広角端で
の広画角化及びレンズ全長の短縮化を図りつつ変倍比
2.5〜3.5程度と変倍に伴う収差変動を良好に補正
し、全変倍範囲にわたり、又全物体距離にわたり高い光
学性能を得ている。
In this embodiment, by adopting such a zoom type and focus type lens configuration, a zoom ratio of 2.5 to 3.5 is achieved while achieving a wide angle of view at the wide angle end and a reduction of the total lens length. Aberration variation due to the degree of magnification and zooming is corrected well, and high optical performance is obtained over the entire zoom range and over the entire object distance.

【0019】尚、本発明において更に全変倍範囲にわた
り、又全物体距離にわたり、収差変動を補正し高い光学
性能を得るには、又はレンズ鏡筒構造を適切に構成する
には、次の諸条件のうち少なくとも1つを満足するのが
良い。
In the present invention, in order to correct aberration variation and obtain high optical performance over the entire range of zooming and over the entire object distance, or to properly configure the lens barrel structure, It is better to satisfy at least one of the conditions.

【0020】(1−1)広角端における前記L1群と全
系の焦点距離を各々fL1W,fW、前記L21群とL
2群の焦点距離を各々fL21,fL2、広角端におけ
る該L2群の横倍率をβL2Wとするとき、 0.5 <|fL2/fW| < 0.95 ・・・・・・(1) 0.25< fL2/fL21< 0.9 ・・・・・・・・(2) 1.2 < βL2W < 1.85 ・・・・・・(3) 0.5 < fL1W/fW < 0.95 ・・・・・・(4) なる条件を満足することである。
(1-1) The focal lengths of the L1 group and the entire system at the wide-angle end are fL1W and fW, respectively, and the L21 group and the L21 group are L, respectively.
When the focal lengths of the two groups are fL21 and fL2 and the lateral magnification of the L2 group at the wide-angle end is βL2W, 0.5 <| fL2 / fW | <0.95 (1) 0. 25 <fL2 / fL21 <0.9 (2) 1.2 <βL2W <1.85 (3) 0.5 <fL1W / fW <0.95 (4) To satisfy the following condition.

【0021】条件式(1)はレンズ全系の広角端におけ
る焦点距離とフォーカスレンズ群を含む負の屈折力のL
2群の屈折力との比に関し、主にレンズ全長の短縮化を
図りつつ、所定の変倍比を効果的に得る為のものであ
る。条件式(1)の上限値を越えると、L2群の負の屈
折力が弱くなりすぎて、一定の変倍比を得る為にL2群
を含め各レンズ群の移動量が大きくなってくる為レンズ
系の全長が増大してしまう。
Conditional expression (1) is the negative refractive power L including the focal length and the focus lens group at the wide-angle end of the entire lens system.
With respect to the ratio of the refracting powers of the two groups, it is intended to effectively obtain a predetermined zoom ratio while shortening the overall lens length. If the upper limit of conditional expression (1) is exceeded, the negative refractive power of the L2 group becomes too weak, and the amount of movement of each lens group including the L2 group becomes large in order to obtain a constant zoom ratio. The total length of the lens system increases.

【0022】一方、条件式(1)の下限値を越えると、
L2群の負の屈折力が強くなりすぎてくる為、レンズ系
全体が強いテレフォトタイプとなり、正のバックフォー
カスを得るのが難しくなってくると同時に軸外収差が多
く発生して、これを良好に補正することが困難となって
くる。
On the other hand, if the lower limit of conditional expression (1) is exceeded,
Since the negative refracting power of the L2 group becomes too strong, the entire lens system becomes a strong telephoto type, and it becomes difficult to obtain a positive back focus, and at the same time a lot of off-axis aberrations occur, which It becomes difficult to correct it well.

【0023】条件式(2)はフォーカスレンズ群である
負の屈折力のL21群とそれを含む負の屈折力のL2群
との屈折力の比に関し、主にフォーカシング時における
収差変動を良好に抑えつつ、レンズ系の小型化を行う為
の条件である。
Conditional expression (2) relates to the ratio of the refractive powers of the negative refractive power L21 group, which is the focus lens group, and the negative refractive power L2 group including the negative refractive power L2 group. This is a condition for reducing the size of the lens system while suppressing it.

【0024】条件式(2)の上限値を越えてフォーカス
レンズ群であるL21群の負の屈折力が弱まってくる
と、フォーカシング時におけるL21群のフォーカス移
動量が大きくなってくる。この為L2群中の他方のL2
2群との干渉を防ぐ為、L21群とL22群との空気間
隔を予め広くとらねばならなくなり、結果としてレンズ
系の大型化を招いてしまう。
When the negative refracting power of the L21 lens unit, which is the focus lens unit, is weakened beyond the upper limit of conditional expression (2), the focus movement amount of the L21 lens unit during focusing becomes large. Therefore, the other L2 in the L2 group
In order to prevent interference with the second group, the air space between the L21 group and the L22 group must be widened in advance, resulting in an increase in the size of the lens system.

【0025】又、条件式(2)の下限値を越えるとフォ
ーカスレンズ群であるL21群の屈折力が強くなりすぎ
フォーカシング時における軸外収差の収差変動が大きく
なってくると同時に、軸外光線がL21群にて強く発散
する為にL22群のレンズ外径が大型化してくるので良
くない。
If the lower limit of conditional expression (2) is exceeded, the refractive power of the L21 lens unit, which is the focus lens unit, becomes too strong, and the aberration variation of the off-axis aberration during focusing becomes large. However, since the lens has a large divergence in the L21 group, the lens outer diameter of the L22 group becomes large, which is not good.

【0026】条件式(3)はL2群の広角端における横
倍率に関し、主にレンズ全長の短縮化と光学性能をバラ
ンス良く維持する為のものである。今、広角端の焦点距
離をfW、前記L1群の広角端における焦点距離をfL
1Wとすると、焦点距離fWは次式 fW=fL1W・βL2W ・・・・・・(b) となる。
Conditional expression (3) relates to the lateral magnification at the wide-angle end of the L2 group, and is mainly for shortening the total lens length and maintaining a good balance of optical performance. Now, the focal length at the wide-angle end is fW, and the focal length at the wide-angle end of the L1 group is fL.
Assuming 1 W, the focal length fW is given by the following equation: fW = fL1W.βL2W (b)

【0027】この為条件式(3)の上限値を越えてL2
群の横倍率が大きくなってくると、(b)式より理解さ
れるように広角化に際してはL1群の正の屈折力を強く
せねばならない為、球面収差がアンダーに大きく発生し
てこれをL2群で補正することが困難となってくる。
Therefore, the upper limit of conditional expression (3) is exceeded and L2 is exceeded.
As the lateral magnification of the group becomes large, the positive refracting power of the L1 group must be made strong in widening the angle, as understood from the expression (b), so that a large spherical aberration is generated under and this is caused. It becomes difficult to correct with the L2 group.

【0028】又条件式(3)の下限値を越えてL2群の
横倍率が小さくなってくるとレンズ系の広角端における
近軸バックフォーカスβfWは次式 βfW=fL2・(1−βL2W) より導かれるように、バックフォーカスを正に保つこと
が難しくなってくると同時に、一定の周辺光量比を保つ
ためにL2群のレンズ外径が大型化してしまい良くな
い。
When the lateral magnification of the L2 unit becomes smaller than the lower limit value of the conditional expression (3), the paraxial back focus βfW at the wide angle end of the lens system is given by the following expression βfW = fL2 (1-βL2W) As is guided, it becomes difficult to keep the back focus positive, and at the same time, the lens outer diameter of the L2 group becomes large in order to keep a constant peripheral light amount ratio, which is not good.

【0029】条件式(4)は広角端における複数のレン
ズ群を有するL1群の合成焦点距離とレンズ全系の焦点
距離の比に関し、主に収差補正を良好に行いつつレンズ
系全体の小型化を図る為のものである。
Conditional expression (4) relates to the ratio of the combined focal length of the L1 group having a plurality of lens units at the wide-angle end to the focal length of the entire lens system, and mainly makes good aberration correction while reducing the size of the entire lens system. It is for the purpose of

【0030】条件式(4)の上限値を越えるとL1群の
屈折力が弱まりすぎて、広角端で一定の焦点距離を得る
為にL1群とL2群との空気間隔を予め広くとる必要が
ある為、レンズ系全体が大型化してしまい良くない。
If the upper limit of conditional expression (4) is exceeded, the refracting power of the L1 group becomes too weak, and it is necessary to widen the air distance between the L1 group and the L2 group in advance in order to obtain a constant focal length at the wide angle end. Therefore, it is not good because the entire lens system becomes large.

【0031】又、条件式(4)の下限値を越えるとL1
群の正の屈折力が強くなりすぎてしまい、レンズ系全体
の望遠タイプの作用が強くなってくる為バックフォーカ
スを正に保つことが困難となると同時に球面収差が強く
アンダーに発生する為、これをL2群にて補正するのが
難しくなってくる。
If the lower limit of conditional expression (4) is exceeded, L1
Since the positive refracting power of the group becomes too strong and the action of the telephoto type of the entire lens system becomes strong, it becomes difficult to keep the back focus positive, and at the same time the spherical aberration is strongly under-produced. Becomes difficult to correct in the L2 group.

【0032】尚、本発明においてレンズ系全体の小型化
を図りつつ、諸収差の補正を更に良好に行うには条件式
(1)〜(4)の上限値と下限値を次の如く設定するの
が良い。
In the present invention, the upper limit and the lower limit of the conditional expressions (1) to (4) are set as follows in order to perform better correction of various aberrations while reducing the size of the entire lens system. Is good.

【0033】 0.6 <|fL2/fW| < 0.8 ・・・・・・(1a) 0.35< fL2/fL21< 0.7 ・・・・・・(2a) 1.3 < βL2W < 1.6 ・・・・・・(3a) 0.6 < fL1W/fW < 0.8 ・・・・(4a) (1−2)前記L21群は像面側に凹面を向けた負レン
ズを有し、前記L22群は物体側に凹面を向けた負レン
ズを有していることである。L2群の2つのレンズ群中
にこのような形状の負レンズを設けることによって、全
物体距離にわたり球面収差と軸外諸収差のバランスを良
好に保ち高性能な光学系を達成している。
0.6 <| fL2 / fW | <0.8 (1a) 0.35 <fL2 / fL21 <0.7 (2a) 1.3 <βL2W <1.6 ···· (3a) 0.6 <fL1W / fW <0.8 ··· (4a) (1-2) The L21 group is a negative lens whose concave surface faces the image plane side. And the L22 group has a negative lens with a concave surface facing the object side. By providing a negative lens having such a shape in the two lens units of the L2 group, a good balance is achieved between spherical aberration and various off-axis aberrations over the entire object distance, and a high-performance optical system is achieved.

【0034】(1−3)L2群中には1枚以上の正レン
ズを導入することが、ズーム全域における良好な色収差
補正を行う為に良い。又その場合、導入する正レンズの
材質のアッベ数νP は、 νP < 35 とするのが色収差の補正上望ましい。
(1-3) Introducing at least one positive lens element into the L2 group is preferable for good chromatic aberration correction in the entire zoom range. Further, in this case, it is desirable that the Abbe number ν P of the material of the positive lens to be introduced be ν P <35 in order to correct chromatic aberration.

【0035】(1−4)各レンズ群に非球面を導入する
のが収差補正上好ましい。
(1-4) Introducing an aspherical surface into each lens group is preferable for aberration correction.

【0036】(1−5)変倍に際して2つ以上のレンズ
群を一体的に移動させても良い。これによればレンズ鏡
筒構造が簡素化されるので好ましい。
(1-5) Two or more lens groups may be moved integrally during zooming. This is preferable because the lens barrel structure is simplified.

【0037】(1−6)絞りSPを変倍に際して独立
に、又は他のレンズ群と一体的に移動させるのが良い。
これによれば変倍に伴い移動する入射瞳位置近傍に絞り
を配置することができ、小絞りのときの像面弯曲の収差
変化を防止することができる。
(1-6) It is preferable to move the aperture stop SP independently during zooming or integrally with other lens groups.
According to this, it is possible to dispose the diaphragm near the position of the entrance pupil that moves with zooming, and it is possible to prevent the aberration change of the image plane curvature when the diaphragm is small.

【0038】次に各実施例のレンズ構成の特徴について
説明する。図1の数値実施例1は物体側より順に正の屈
折力のL1群は物体側に凸面を向けた単一の正レンズよ
り成る正の屈折力のL11群、両レンズ面が凹面の単一
の負レンズより成る負の屈折力のL12群、物体側に凸
面を向けた正レンズと両レンズ面が凸面の正レンズ、そ
して像面側に凸面を向けたメニスカス状の負レンズの3
つのレンズを接合した全体として正の屈折力のL13
群、絞りSP、像面側に凸面を向けたメニスカス状の単
一の負レンズより成る負の屈折力のL14群、像面側に
凸面を向けた単一の正レンズより成る正の屈折力のL1
5群の5つのレンズ群を有している。
Next, the features of the lens configuration of each embodiment will be described. In Numerical Embodiment 1 of FIG. 1, the L1 group having positive refracting power in order from the object side is the L11 group having positive refracting power composed of a single positive lens having a convex surface facing the object side, and both lens surfaces have a single concave surface L12 group of negative refractive power consisting of a negative lens, a positive lens having a convex surface directed to the object side, a positive lens having both convex lens surfaces, and a meniscus negative lens having a convex surface directed to the image side.
L13 with positive refractive power as a whole with two lenses cemented together
L14 group having a negative refracting power composed of a group, an aperture stop SP, and a single meniscus negative lens having a convex surface directed toward the image side, and a positive refracting power composed of a single positive lens having a convex surface directed toward the image side. L1
It has five lens groups of five groups.

【0039】又、負の屈折力のL2群は両レンズ面が凹
面の負レンズと物体側に凸面を向けたメニスカス状の正
レンズとを接合した全体として負の屈折力のL21群、
物体側に凹面を向けた単一の負レンズより成る負の屈折
力のL22群の2つのレンズ群を有している。
The L2 group having a negative refracting power has a negative refracting power as a whole in which a negative lens having both concave lens surfaces and a meniscus positive lens having a convex surface facing the object side are cemented together.
It has two lens groups of a negative refractive power L22 group consisting of a single negative lens having a concave surface facing the object side.

【0040】広角端から望遠端への変倍に際して、L1
1群とL12群との間隔、L13群とL14群との間
隔、そしてL14群とL15群との間隔が増大し、L1
2群とL13群との間隔、L1群とL2群との間隔が縮
小するように各レンズ群を矢印の如く移動させて行って
いる。L21群でフォーカスを行っている。
Upon zooming from the wide-angle end to the telephoto end, L1
The distance between the first group and the L12 group, the distance between the L13 group and the L14 group, and the distance between the L14 group and the L15 group increase,
Each lens group is moved as indicated by an arrow so that the distance between the second lens group and the L13 lens group and the distance between the L1 lens group and the L2 lens group are reduced. Focusing is performed with the L21 group.

【0041】図2の数値実施例2は物体側より順に正の
屈折力のL1群は物体側に凸面を向けた単一の正レンズ
より成る正の屈折力のL11群、両レンズ面が凹面の単
一の負レンズより成る負の屈折力のL12群、物体側に
凸面を向けた正レンズと両レンズ面が凸面の正レンズ、
そして像面側に凸面を向けたメニスカス状の負レンズの
3つのレンズを接合した全体として正の屈折力のL13
群、絞りSP、像面側に凸面を向けたメニスカス状の単
一の負レンズより成る負の屈折力のL14群、像面側に
凸面を向けた単一の正レンズより成る正の屈折力のL1
5群の5つのレンズ群を有している。
In Numerical Embodiment 2 of FIG. 2, the L1 group having positive refracting power in order from the object side is the L11 group having positive refracting power composed of a single positive lens having a convex surface facing the object side, and both lens surfaces are concave surfaces. Negative refractive power L12 group consisting of a single negative lens, a positive lens having a convex surface directed toward the object side and a positive lens having convex lens surfaces on both sides,
Then, L13 having a positive refracting power as a whole, which is obtained by cementing three meniscus negative lenses whose convex surface faces the image surface side, is cemented.
L14 group having a negative refracting power composed of a group, an aperture stop SP, and a single meniscus negative lens having a convex surface directed toward the image side, and a positive refracting power composed of a single positive lens having a convex surface directed toward the image side. L1
It has five lens groups of five groups.

【0042】又、負の屈折力のL2群は両レンズ面が凹
面の単一の負レンズより成る負の屈折力のL21群、物
体側に凸面を向けたメニスカス状の正レンズと、物体側
に凹面を向けた負レンズより成る負の屈折力のL22群
の2つのレンズ群を有している。
The L2 lens unit having a negative refracting power is a L21 lens unit having a negative refracting power composed of a single negative lens having concave lens surfaces, and a meniscus positive lens having a convex surface facing the object side and an object side. It has two lens units of the L22 unit having a negative refracting power, which is composed of a negative lens having a concave surface facing to.

【0043】広角端から望遠端への変倍に際して、L1
1群とL12群との間隔、L13群とL14群との間
隔、そしてL14群とL15群との間隔が増大し、L1
2群とL13群との間隔、L1群とL2群との間隔が縮
小するように各レンズ群を矢印の如く移動させて行って
いる。L21群でフォーカスを行っている。
Upon zooming from the wide-angle end to the telephoto end, L1
The distance between the first group and the L12 group, the distance between the L13 group and the L14 group, and the distance between the L14 group and the L15 group increase,
Each lens group is moved as indicated by an arrow so that the distance between the second lens group and the L13 lens group and the distance between the L1 lens group and the L2 lens group are reduced. Focusing is performed with the L21 group.

【0044】図3の数値実施例3は物体側より順に正の
屈折力のL1群は両レンズ面が凹面の負レンズと物体側
に凸面を向けた正レンズより成る負の屈折力のL11
群、物体側に凸面を向けた正レンズと両レンズ面が凸面
の正レンズ、そして像面側に凸面を向けたメニスカス状
の負レンズの3つのレンズを接合した全体として正の屈
折力のL12群、絞りSP、像面側に凸面を向けたメニ
スカス状の単一の負レンズより成る負の屈折力のL13
群、像面側に凸面を向けた単一の正レンズより成る正の
屈折力のL14群の4つのレンズ群を有している。
In Numerical Embodiment 3 of FIG. 3, the L1 group having positive refracting power in order from the object side has a negative refracting power L11 composed of a negative lens having both concave lens surfaces and a positive lens having a convex surface facing the object side.
L12 having a positive refractive power as a whole by cementing three lenses, a group, a positive lens having a convex surface directed to the object side, a positive lens having both convex lens surfaces, and a meniscus negative lens having a convex surface directed to the image side. L13 having a negative refracting power, which includes a group, an aperture stop SP, and a single meniscus negative lens having a convex surface directed toward the image plane side.
The lens unit has four lens units, the L14 unit having a positive refractive power, which is composed of a single positive lens having a convex surface directed toward the image plane side.

【0045】又、負の屈折力のL2群は両レンズ面が凹
面の単一の負レンズより成る負の屈折力のL21群、物
体側に凸面を向けたメニスカス状の正レンズと両レンズ
面が凹面の負レンズより成る負の屈折力のL22群の2
つのレンズ群を有している。
The L2 lens unit having a negative refracting power has a negative refracting power L21 unit composed of a single negative lens having concave lens surfaces, and the meniscus-shaped positive lens having a convex surface facing the object side and both lens surfaces. 2 of the L22 group of negative refracting power composed of a negative lens having a concave surface
It has two lens groups.

【0046】広角端から望遠端への変倍に際して、L1
2群とL13群との間隔、L13群とL14群との間隔
が増大し、L11群とL12群との間隔、L1群とL2
群との間隔が縮小するように各レンズ群を矢印の如く移
動させて行っている。L21群でフォーカスを行ってい
る。
Upon zooming from the wide-angle end to the telephoto end, L1
The distance between the second group and the L13 group, the distance between the L13 group and the L14 group increases, the distance between the L11 group and the L12 group, the L1 group and the L2 group
Each lens group is moved as indicated by an arrow so that the distance between the lens group and the lens group is reduced. Focusing is performed with the L21 group.

【0047】図4の数値実施例4は物体側より順に正の
屈折力のL1群は像面側に凸面を向けた正レンズと両レ
ンズ面が凹面の負レンズとを接合した貼合わせレンズ、
そして物体側に凸面を向けた正レンズより成る負の屈折
力のL11群、物体側に凸面を向けたメニスカス状の負
レンズと両レンズ面が凸面の正レンズ、そして像面側に
凸面を向けたメニスカス状の負レンズの3つのレンズを
接合した全体として正の屈折力のL12群、絞りSP、
像面側に凸面を向けたメニスカス状の負レンズ、両レン
ズ面が凹面の負レンズと両レンズ面が凸面の正レンズと
を接合した貼合わせレンズより成る正の屈折力のL13
群の3つのレンズ群を有している。
Numerical embodiment 4 of FIG. 4 is a cemented lens in which a positive lens having a positive refractive power in order from the object side is a positive lens having a convex surface facing the image side and a negative lens having a concave surface on both surfaces.
Then, the L11 lens unit having a negative refractive power and composed of a positive lens having a convex surface directed toward the object side, a meniscus negative lens having a convex surface directed toward the object side, a positive lens having convex lens surfaces on both sides, and a convex surface directed toward the image surface side. The L12 lens unit having a positive refracting power as a whole in which three meniscus-shaped negative lenses are cemented, an aperture stop SP,
A meniscus negative lens having a convex surface directed toward the image side, a cemented lens in which a negative lens having a concave surface on both lens surfaces and a positive lens having a convex surface on both lens surfaces are cemented together, and has a positive refractive power L13.
It has three lens groups of groups.

【0048】又、負の屈折力のL2群は両レンズ面が凹
面の単一の負レンズより成る負の屈折力のL21群、物
体側に凸面を向けたメニスカス状の正レンズと物体側に
凹面を向けた負レンズより成る負の屈折力のL22群の
2つのレンズ群を有している。
The L2 group having a negative refractive power is composed of a single negative lens having concave surfaces on both sides, and the L21 group having a negative refractive power, and a meniscus-shaped positive lens having a convex surface facing the object side and an object side. It has two lens units of the L22 unit having a negative refracting power and composed of a negative lens having a concave surface.

【0049】広角端から望遠端への変倍に際して、L1
2群とL13群との間隔が増大し、L11群とL12群
との間隔、L1群とL2群との間隔が縮小するように各
レンズ群を矢印の如く移動させて行っている。L21群
でフォーカスを行っている。
Upon zooming from the wide-angle end to the telephoto end, L1
The lens groups are moved as indicated by the arrows so that the distance between the second lens group and the L13 lens group increases, the distance between the L11 lens group and the L12 lens group decreases, and the distance between the L1 lens group and the L2 lens group decreases. Focusing is performed with the L21 group.

【0050】図5の数値実施例5は物体側より順に正の
屈折力のL1群は物体側に凸面を向けたメニスカス状の
負レンズと物体側に凸面を向けた正レンズより成る正の
屈折力のL11群、絞りSP、物体側に凹面を向けた負
レンズと正レンズとを接合した貼合わせレンズ、物体側
に凸面を向けたメニスカス状の負レンズと両レンズ面が
凸面の正レンズとを接合した貼合わせレンズとから成る
正の屈折力のL12群の2つのレンズ群を有している。
In Numerical Embodiment 5 of FIG. 5, in order from the object side, the L1 lens unit having a positive refractive power is composed of a meniscus negative lens having a convex surface directed toward the object side and a positive lens having a convex surface directed toward the object side. L11 group of power, stop SP, a cemented lens in which a negative lens having a concave surface facing the object side and a positive lens are cemented, a meniscus-shaped negative lens having a convex surface facing the object side, and a positive lens having convex lens surfaces on both sides. It has two lens groups of L12 group having a positive refracting power, which is composed of a cemented lens in which is cemented.

【0051】又、負の屈折力のL2群は像面側に凸面を
向けたメニスカス状の正レンズと両レンズ面が凹面の負
レンズとを接合した全体として負の屈折力のL21群、
両レンズ面が凹面の単一の負レンズより成る負の屈折力
のL22群の2つのレンズ群を有している。
The negative refractive power L2 group is a negative refractive power L21 group in which a positive meniscus lens having a convex surface facing the image side and a negative lens having concave lens surfaces are cemented together.
It has two lens groups of a negative refractive power L22 group consisting of a single negative lens whose both lens surfaces are concave.

【0052】広角端から望遠端への変倍に際して、L1
1群とL12群との間隔が増大し、L1群とL2群との
間隔が縮小するように各レンズ群を矢印の如く移動させ
て行っている。L21群でフォーカスを行っている。
Upon zooming from the wide-angle end to the telephoto end, L1
The respective lens groups are moved as indicated by arrows so that the distance between the first lens group and the L12 lens group increases and the distance between the L1 lens group and the L2 lens group decreases. Focusing is performed with the L21 group.

【0053】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air gap from the object side, and Ni and νi are respectively from the object side of the i-th lens. The refractive index of glass and the Abbe number.

【0054】又、前述の各条件式と数値実施例における
諸数値との関係を表−1に示す。
Table 1 shows the relationship between the above-mentioned conditional expressions and various numerical values in the numerical examples.

【0055】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
K,A,B,C,D,Eを各々非球面係数としたとき、
The aspherical shape has an X axis in the optical axis direction, an H axis in the direction perpendicular to the optical axis, a positive light traveling direction, and R as a paraxial radius of curvature,
When K, A, B, C, D and E are aspherical coefficients,

【0056】[0056]

【数2】 なる式で表わしている。又、「e−0X」は「10-X
を意味している。 (数値実施例1) F= 28.86〜101.39 FNO= 4.33 〜 9.06 2ω= 73.7〜 24.1 R 1= 53.81 D 1= 2.40 N 1=1.84665 ν 1= 23.8 R 2= 1346.34 D 2=可変 R 3= -48.28 D 3= 1.20 N 2=1.67790 ν 2= 54.9 R 4= 20.69 D 4=可変 R 5= 14.96 D 5= 1.80 N 3=1.80609 ν 3= 41.0 R 6= 17.17 D 6= 3.30 N 4=1.58913 ν 4= 61.2 R 7= -20.02 D 7= 1.00 N 5=1.84665 ν 5= 23.8 R 8= -48.60 D 8=可変 R 9= 絞り D 9= 2.00 R10= -20.16 D10= 1.20 N 6=1.80518 ν 6= 25.4 R11= -63.02 D11=可変 R12= 283.18 D12= 4.90 N 7=1.73077 ν 7= 40.6 R13= -14.50 D13=可変 R14= -86.38 D14= 1.20 N 8=1.77249 ν 8= 49.6 R15= 69.98 D15= 2.20 N 9=1.69894 ν 9= 30.1 R16= 86.43 D16= 6.74 R17= -27.85 D17= 1.50 N10=1.74319 ν10= 49.3 R18=-4518.62
[Equation 2] It is expressed by Also, "e-0X" is "10 -X "
Means (Numerical Example 1) F = 28.86 to 101.39 FNO = 4.33 to 9.06 2ω = 73.7 to 24.1 R 1 = 53.81 D 1 = 2.40 N 1 = 1.84665 ν 1 = 23.8 R 2 = 1346.34 D 2 = variable R 3 = -48.28 D 3 = 1.20 N 2 = 1.67790 ν 2 = 54.9 R 4 = 20.69 D 4 = Variable R 5 = 14.96 D 5 = 1.80 N 3 = 1.80609 ν 3 = 41.0 R 6 = 17.17 D 6 = 3.30 N 4 = 1.58913 ν 4 = 61.2 R 7 = -20.02 D 7 = 1.00 N 5 = 1.84665 ν 5 = 23.8 R 8 = -48.60 D 8 = Variable R 9 = Aperture D 9 = 2.00 R10 = -20.16 D10 = 1.20 N 6 = 1.80518 ν 6 = 25.4 R11 = -63.02 D11 = Variable R12 = 283.18 D12 = 4.90 N 7 = 1.73077 ν 7 = 40.6 R13 = -14.50 D13 = Variable R14 = -86.38 D14 = 1.20 N 8 = 1.77249 ν 8 = 49.6 R15 = 69.98 D15 = 2.20 N 9 = 1.69894 ν 9 = 30.1 R16 = 86.43 D16 = 6.74 R17 = -27.85 D17 = 1.50 N10 = 1.74319 ν10 = 49.3 R18 = -4518.62

【0057】[0057]

【表1】 非球面係数 4面:K=2.482e-01 A= 0 B=-1.870e-05 C=-4.346e-08
D=-2.257e-10 E= 0 10面:K=4.04329 A= 0 B=-6.210e-05 C=-2.925e-07
D=-8.844e-09 E= 0 13面:K=-2.81235 A= 0 B=-8.961e-05 C= 2.350e-07
D=-6.170e-10 E= 0 (数値実施例2) F= 28.87〜100.96 FNO= 4.33 〜 9.06 2ω= 73.7〜 24.2 R 1= 53.62 D 1= 2.40 N 1=1.84665 ν 1= 23.8 R 2= 2359.07 D 2=可変 R 3= -47.19 D 3= 1.20 N 2=1.67790 ν 2= 54.9 R 4= 20.14 D 4=可変 R 5= 15.03 D 5= 1.80 N 3=1.80609 ν 3= 41.0 R 6= 17.51 D 6= 3.30 N 4=1.58913 ν 4= 61.2 R 7= -18.42 D 7= 1.00 N 5=1.84665 ν 5= 23.8 R 8= -37.77 D 8=可変 R 9= 絞り D 9= 2.00 R10= -19.59 D10= 1.20 N 6=1.80518 ν 6= 25.4 R11= -103.12 D11=可変 R12= 158.88 D12= 4.90 N 7=1.73077 ν 7= 40.6 R13= -14.29 D13=可変 R14= -74.61 D14= 1.20 N 8=1.77249 ν 8= 49.6 R15= 48.59 D15= 2.93 R16= 62.86 D16= 2.50 N 9=1.69894 ν 9= 30.1 R17= 155.09 D17= 4.03 R18= -30.71 D18= 1.50 N10=1.74319 ν10= 49.3 R19=-2469.17
[Table 1] Four aspherical coefficients: K = 2.482e-01 A = 0 B = -1.870e-05 C = -4.346e-08
D = -2.257e-10 E = 0 10 side: K = 4.04329 A = 0 B = -6.210e-05 C = -2.925e-07
D = -8.844e-09 E = 0 13 side: K = -2.81235 A = 0 B = -8.961e-05 C = 2.350e-07
D = -6.170e-10 E = 0 (Numerical example 2) F = 28.87 to 100.96 FNO = 4.33 to 9.06 2ω = 73.7 to 24.2 R 1 = 53.62 D 1 = 2.40 N 1 = 1.84665 ν 1 = 23.8 R 2 = 2359.07 D 2 = Variable R 3 = -47.19 D 3 = 1.20 N 2 = 1.67790 ν 2 = 54.9 R 4 = 20.14 D 4 = Variable R 5 = 15.03 D 5 = 1.80 N 3 = 1.80609 ν 3 = 41.0 R 6 = 17.51 D 6 = 3.30 N 4 = 1.58913 ν 4 = 61.2 R 7 = -18.42 D 7 = 1.00 N 5 = 1.84665 ν 5 = 23.8 R 8 = -37.77 D 8 = Variable R 9 = Aperture D 9 = 2.00 R10 = -19.59 D10 = 1.20 N 6 = 1.80518 ν 6 = 25.4 R11 = -103.12 D11 = variable R12 = 158.88 D12 = 4.90 N 7 = 1.73077 ν 7 = 40.6 R13 = -14.29 D13 = variable R14 = -74.61 D14 = 1.20 N 8 = 1.77249 ν 8 = 49.6 R15 = 48.59 D15 = 2.93 R16 = 62.86 D16 = 2.50 N 9 = 1.69894 ν 9 = 30.1 R17 = 155.09 D17 = 4.03 R18 = -30.71 D18 = 1.50 N10 = 1.74319 ν10 = 49.3 R19 = -2469.17

【0058】[0058]

【表2】 非球面係数 4面:K=2.354e-01 A= 0 B=-1.566e-05 C=-5.423e-08
D=-1.294e-10 E= 0 10面:K=3.68674 A= 0 B=-6.371e-05 C=-3.434e-07
D=-1.145e-08 E= 0 13面:K=-2.86420 A= 0 B=-9.380e-05 C= 2.964e-07
D=-8.088e-10 E= 0 (数値実施例3) F= 28.84〜102.90 FNO= 4.33 〜 9.06 2ω= 73.8〜 23.8 R 1= -74.16 D 1= 1.10 N 1=1.77249 ν 1= 49.6 R 2= 20.25 D 2= 1.12 R 3= 26.77 D 3= 2.20 N 2=1.84665 ν 2= 23.8 R 4= 62.61 D 4=可変 R 5= 14.84 D 5= 1.80 N 3=1.80609 ν 3= 41.0 R 6= 17.26 D 6= 4.10 N 4=1.58913 ν 4= 61.2 R 7= -19.94 D 7= 1.00 N 5=1.84665 ν 5= 23.8 R 8= -39.89 D 8=可変 R 9= 絞り D 9= 2.00 R10= -19.68 D10= 1.20 N 6=1.80518 ν 6= 25.4 R11= -75.03 D11=可変 R12=-5905.34 D12= 4.30 N 7=1.73077 ν 7= 40.6 R13= -15.04 D13=可変 R14= -55.39 D14= 1.20 N 8=1.77249 ν 8= 49.6 R15= 39.93 D15= 2.29 R16= 37.23 D16= 3.00 N 9=1.69894 ν 9= 30.1 R17= 152.45 D17= 3.00 R18= -41.23 D18= 1.50 N10=1.77249 ν10= 49.6 R19= 91.48
[Table 2] Four aspherical coefficients: K = 2.354e-01 A = 0 B = -1.566e-05 C = -5.423e-08
D = -1.294e-10 E = 0 10 side: K = 3.68674 A = 0 B = -6.371e-05 C = -3.434e-07
D = -1.145e-08 E = 0 13 side: K = -2.86420 A = 0 B = -9.380e-05 C = 2.964e-07
D = -8.088e-10 E = 0 (Numerical example 3) F = 28.84 to 102.90 FNO = 4.33 to 9.06 2ω = 73.8 to 23.8 R 1 = -74.16 D 1 = 1.10 N 1 = 1.77249 ν 1 = 49.6 R 2 = 20.25 D 2 = 1.12 R 3 = 26.77 D 3 = 2.20 N 2 = 1.84665 ν 2 = 23.8 R 4 = 62.61 D 4 = Variable R 5 = 14.84 D 5 = 1.80 N 3 = 1.80609 ν 3 = 41.0 R 6 = 17.26 D 6 = 4.10 N 4 = 1.58913 ν 4 = 61.2 R 7 = -19.94 D 7 = 1.00 N 5 = 1.84665 ν 5 = 23.8 R 8 = -39.89 D 8 = Variable R 9 = Aperture D 9 = 2.00 R10 = -19.68 D10 = 1.20 N 6 = 1.80518 ν 6 = 25.4 R11 = -75.03 D11 = Variable R12 = -5905.34 D12 = 4.30 N 7 = 1.73077 ν 7 = 40.6 R13 = -15.04 D13 = Variable R14 = -55.39 D14 = 1.20 N 8 = 1.77249 ν 8 = 49.6 R15 = 39.93 D15 = 2.29 R16 = 37.23 D16 = 3.00 N 9 = 1.69894 ν 9 = 30.1 R17 = 152.45 D17 = 3.00 R18 = -41.23 D18 = 1.50 N10 = 1.77249 ν10 = 49.6 R19 = 91.48

【0059】[0059]

【表3】 非球面係数 1面:K=-1.350e-01 A= 0 B=-3.125e-06 C=-2.570e-08
D=-3.970e-11 E= 0 10面:K= 3.77316 A= 0 B=-8.280e-05 C=-4.129e-07
D=-1.164e-08 E= 0 13面:K=-2.97836 A= 0 B=-1.000e-04 C= 2.620e-07
D=-1.139e-09 E= 0 (数値実施例4) F= 29.18〜88.82 FNO= 3.75 〜 9.00 2ω= 73.1〜 27.4 R 1= -205.07 D 1= 2.80 N 1=1.51633 ν 1= 64.2 R 2= -42.00 D 2= 1.20 N 2=1.80400 ν 2= 46.6 R 3= 16.58 D 3= 2.34 R 4= 20.25 D 4= 4.20 N 3=1.84665 ν 3= 23.8 R 5= 200.06 D 5=可変 R 6= 17.29 D 6= 0.90 N 4=1.84665 ν 4= 23.8 R 7= 11.68 D 7= 5.20 N 5=1.48749 ν 5= 70.2 R 8= -20.58 D 8= 0.90 N 6=1.84665 ν 6= 23.8 R 9= -29.72 D 9=可変 R10= 絞り D10= 2.00 R11= -24.06 D11= 2.00 N 7=1.80518 ν 7= 25.4 R12= -35.93 D12= 0.73 R13= -22.89 D13= 1.30 N 8=1.65159 ν 8= 58.5 R14= 73.08 D14= 4.00 N 9=1.77249 ν 9= 49.6 R15= -13.31 D15=可変 R16= -66.06 D16= 1.20 N10=1.77249 ν10= 49.6 R17= 50.01 D17= 2.26 R18= 41.36 D18= 2.90 N11=1.69894 ν11= 30.1 R19= 221.99 D19= 5.02 R20= -23.64 D20= 1.50 N12=1.77249 ν12= 49.6 R21= -173.10
[Table 3] One aspherical surface: K = -1.350e-01 A = 0 B = -3.125e-06 C = -2.570e-08
D = -3.970e-11 E = 0 10 side: K = 3.77316 A = 0 B = -8.280e-05 C = -4.129e-07
D = -1.164e-08 E = 0 13 side: K = -2.97836 A = 0 B = -1.000e-04 C = 2.620e-07
D = -1.139e-09 E = 0 (Numerical example 4) F = 29.18 to 88.82 FNO = 3.75 to 9.00 2ω = 73.1 to 27.4 R 1 = -205.07 D 1 = 2.80 N 1 = 1.51633 ν 1 = 64.2 R 2 = -42.00 D 2 = 1.20 N 2 = 1.80400 ν 2 = 46.6 R 3 = 16.58 D 3 = 2.34 R 4 = 20.25 D 4 = 4.20 N 3 = 1.84665 ν 3 = 23.8 R 5 = 200.06 D 5 = variable R 6 = 17.29 D 6 = 0.90 N 4 = 1.84665 ν 4 = 23.8 R 7 = 11.68 D 7 = 5.20 N 5 = 1.48749 ν 5 = 70.2 R 8 = -20.58 D 8 = 0.90 N 6 = 1.84665 ν 6 = 23.8 R 9 =- 29.72 D 9 = Variable R10 = Aperture D10 = 2.00 R11 = -24.06 D11 = 2.00 N 7 = 1.80518 ν 7 = 25.4 R12 = -35.93 D12 = 0.73 R13 = -22.89 D13 = 1.30 N 8 = 1.65159 ν 8 = 58.5 R14 = 73.08 D14 = 4.00 N 9 = 1.77249 ν 9 = 49.6 R15 = -13.31 D15 = Variable R16 = -66.06 D16 = 1.20 N10 = 1.77249 ν10 = 49.6 R17 = 50.01 D17 = 2.26 R18 = 41.36 D18 = 2.90 N11 = 1.69894 ν11 = 30.1 R19 = 221.99 D19 = 5.02 R20 = -23.64 D20 = 1.50 N12 = 1.77249 ν12 = 49.6 R21 = -173.10

【0060】[0060]

【表4】 非球面係数 3面:K=2.216e-01 A= 0 B=-1.254e-05 C= 2.253e-08
D=-5.639e-10 E= 0 11面:K=6.26902 A= 0 B=-6.294e-05 C=-3.412e-07
D=-9.389e-09 E= 0 15面:K=-2.72205 A= 0 B=-1.510e-04 C= 1.387e-07
D=-3.214e-09 E= 0 (数値実施例5) F= 39.67〜101.24 FNO= 4.00 〜 7.80 2ω= 57.2〜 24.1 R 1= 48.56 D 1= 1.20 N 1=1.84665 ν 1= 23.9 R 2= 35.12 D 2= 0.30 R 3= 24.35 D 3= 2.80 N 2=1.48749 ν 2= 70.2 R 4= 166.60 D 4=可変 R 5= 絞り D 5= 2.00 R 6= -17.23 D 6= 1.20 N 3=1.48749 ν 3= 70.2 R 7= -168.98 D 7= 8.49 N 4=1.80517 ν 4= 25.4 R 8= -33.56 D 8= 4.74 R 9= 36.00 D 9= 1.10 N 5=1.84665 ν 5= 23.9 R10= 17.05 D10= 5.30 N 6=1.58312 ν 6= 59.4 R11= -30.35 D11=可変 R12= -49.04 D12= 3.40 N 7=1.69894 ν 7= 30.1 R13= -25.21 D13= 1.10 N 8=1.58913 ν 8= 61.2 R14= 85.79 D14= 8.00 R15= -65.34 D15= 1.50 N 9=1.63853 ν 9= 55.4 R16= 169.94
[Table 4] Aspheric surface coefficient 3rd surface: K = 2.216e-01 A = 0 B = -1.254e-05 C = 2.253e-08
D = -5.639e-10 E = 0 11 side: K = 6.26902 A = 0 B = -6.294e-05 C = -3.412e-07
D = -9.389e-09 E = 0 15 side: K = -2.72205 A = 0 B = -1.510e-04 C = 1.387e-07
D = -3.214e-09 E = 0 (Numerical example 5) F = 39.67 to 101.24 FNO = 4.00 to 7.80 2ω = 57.2 to 24.1 R 1 = 48.56 D 1 = 1.20 N 1 = 1.84665 ν 1 = 23.9 R 2 = 35.12 D 2 = 0.30 R 3 = 24.35 D 3 = 2.80 N 2 = 1.48749 ν 2 = 70.2 R 4 = 166.60 D 4 = Variable R 5 = Aperture D 5 = 2.00 R 6 = -17.23 D 6 = 1.20 N 3 = 1.48749 ν 3 = 70.2 R 7 = -168.98 D 7 = 8.49 N 4 = 1.80517 ν 4 = 25.4 R 8 = -33.56 D 8 = 4.74 R 9 = 36.00 D 9 = 1.10 N 5 = 1.84665 ν 5 = 23.9 R10 = 17.05 D10 = 5.30 N 6 = 1.58312 ν 6 = 59.4 R11 = -30.35 D11 = Variable R12 = -49.04 D12 = 3.40 N 7 = 1.69894 ν 7 = 30.1 R13 = -25.21 D13 = 1.10 N 8 = 1.58913 ν 8 = 61.2 R14 = 85.79 D14 = 8.00 R15 = -65.34 D15 = 1.50 N 9 = 1.63853 ν 9 = 55.4 R16 = 169.94

【0061】[0061]

【表5】 非球面係数 11面:K=-3.015e-02 A= 0 B= 8.045e-06 C=-1.134e-
07 D= 1.843e-09 E=-1.305e-11
[Table 5] Aspherical surface coefficient 11 surfaces: K = -3.015e-02 A = 0 B = 8.045e-06 C = -1.134e-
07 D = 1.843e-09 E = -1.305e-11

【0062】[0062]

【表6】 [Table 6]

【0063】[0063]

【発明の効果】本発明によれば以上のように、リヤーフ
ォーカス方式を採用し、変倍に伴う各レンズ群の移動や
近軸屈折力配置等を適切に行い、広角端から望遠端に至
る全変倍範囲にわたり、又無限遠物体から至近物体に至
る物体距離全般にわたり、良好なる光学性能を有した広
画角で高変倍比のズームレンズを達成することができ
る。
As described above, according to the present invention, the rear focus system is adopted, and the movement of each lens unit and the paraxial refracting power arrangement are appropriately performed in accordance with the magnification change, and from the wide angle end to the telephoto end. It is possible to achieve a zoom lens with a wide field angle and a high zoom ratio, which has good optical performance over the entire zoom range and over the entire object distance from an object at infinity to a close object.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の数値実施例1の広角端のレンズ断面
FIG. 1 is a lens cross-sectional view at a wide-angle end according to Numerical Example 1 of the present invention.

【図2】 本発明の数値実施例2の広角端のレンズ断面
FIG. 2 is a lens cross-sectional view at a wide-angle end according to Numerical Example 2 of the present invention.

【図3】 本発明の数値実施例3の広角端のレンズ断面
FIG. 3 is a lens cross-sectional view at a wide-angle end according to Numerical Example 3 of the present invention.

【図4】 本発明の数値実施例4の広角端のレンズ断面
FIG. 4 is a lens cross-sectional view at a wide-angle end according to Numerical Example 4 of the present invention.

【図5】 本発明の数値実施例5の広角端のレンズ断面
FIG. 5 is a lens cross-sectional view at a wide-angle end according to Numerical Example 5 of the present invention.

【図6】 本発明の数値実施例1の無限遠物体のときの
広角端の収差図
FIG. 6 is an aberration diagram at the wide-angle end for an object at infinity according to Numerical Example 1 of the present invention.

【図7】 本発明の数値実施例1の無限遠物体のときの
中間の収差図
FIG. 7 is an intermediate aberration diagram for an object at infinity according to Numerical Example 1 of the present invention.

【図8】 本発明の数値実施例1の無限遠物体のときの
望遠端の収差図
FIG. 8 is an aberration diagram at a telephoto end when an object at infinity according to Numerical Example 1 of the present invention is used.

【図9】 本発明の数値実施例1の像面より 800のとき
の広角端の収差図
FIG. 9 is an aberration diagram at the wide-angle end at 800 from the image plane of Numerical Example 1 of the present invention.

【図10】 本発明の数値実施例1の像面より 800のと
きの中間の収差図
FIG. 10 is an intermediate aberration diagram of the numerical value example 1 of the present invention at 800 from the image plane.

【図11】 本発明の数値実施例1の像面より 800のと
きの望遠端の収差図
FIG. 11 is an aberration diagram at the telephoto end at 800 from the image plane of Numerical Example 1 of the present invention.

【図12】 本発明の数値実施例2の無限遠物体のとき
の広角端の収差図
FIG. 12 is an aberration diagram at the wide-angle end for an object at infinity according to Numerical Example 2 of the present invention.

【図13】 本発明の数値実施例2の無限遠物体のとき
の中間の収差図
FIG. 13 is an intermediate aberration diagram for an object at infinity according to Numerical Example 2 of the present invention.

【図14】 本発明の数値実施例2の無限遠物体のとき
の望遠端の収差図
FIG. 14 is an aberration diagram at the telephoto end for an object at infinity according to Numerical Example 2 of the present invention.

【図15】 本発明の数値実施例2の像面より 800のと
きの広角端の収差図
FIG. 15 is an aberration diagram at the wide-angle end when the image plane is 800 from Numerical Example 2 of the present invention.

【図16】 本発明の数値実施例2の像面より 800のと
きの中間の収差図
FIG. 16 is an intermediate aberration diagram of Numerical example 2 of the present invention when the image plane is 800.

【図17】 本発明の数値実施例2の像面より 800のと
きの望遠端の収差図
FIG. 17 is an aberration diagram at a telephoto end when the image plane is 800 from Numerical Example 2 of the present invention.

【図18】 本発明の数値実施例2の像面より 800のと
きのL21群とL22群の移動量を 1:0.5としたときの
広角端の収差図
FIG. 18 is an aberration diagram at the wide-angle end when the moving amount of the L21 group and the L22 group when the image surface is 800 in Numerical Example 2 of the present invention, and is 1: 0.5.

【図19】 本発明の数値実施例2の像面より 800のと
きのL21群とL22群の移動量を 1:0.5としたときの
中間の収差図
FIG. 19 is an intermediate aberration diagram when the moving amount of the L21 group and the L22 group when the image plane is 800 in Numerical Example 2 of the present invention is 1: 0.5.

【図20】 本発明の数値実施例2の像面より 800のと
きのL21群とL22群の移動量を 1:0.5としたときの
望遠端の収差図
20 is an aberration diagram at the telephoto end when the moving amount of the L21 group and the L22 group when the image plane is 800 in Numerical Example 2 of the present invention, and is 1: 0.5. FIG.

【図21】 本発明の数値実施例3の無限遠物体のとき
の広角端の収差図
FIG. 21 is an aberration diagram at the wide-angle end for an object at infinity according to Numerical Example 3 of the present invention.

【図22】 本発明の数値実施例3の無限遠物体のとき
の中間の収差図
FIG. 22 is an intermediate aberration diagram of an object at infinity according to Numerical Example 3 of the present invention.

【図23】 本発明の数値実施例3の無限遠物体のとき
の望遠端の収差図
FIG. 23 is an aberration diagram at the telephoto end for an infinitely distant object according to Numerical Example 3 of the present invention.

【図24】 本発明の数値実施例3の像面より 800のと
きの広角端の収差図
FIG. 24 is an aberration diagram at the wide-angle end at 800 from the image plane of Numerical Example 3 of the present invention.

【図25】 本発明の数値実施例3の像面より 800のと
きの中間の収差図
FIG. 25 is an intermediate aberration diagram at 800 from the image plane of Numerical Example 3 of the present invention.

【図26】 本発明の数値実施例3の像面より 800のと
きの望遠端の収差図
FIG. 26 is an aberration diagram at the telephoto end when the image plane is 800 from Numerical Example 3 of the present invention.

【図27】 本発明の数値実施例4の無限遠物体のとき
の広角端の収差図
FIG. 27 is an aberration diagram at a wide-angle end when an object at infinity according to Numerical Example 4 of the present invention.

【図28】 本発明の数値実施例4の無限遠物体のとき
の中間の収差図
FIG. 28 is an intermediate aberration diagram of an infinitely distant object according to Numerical Example 4 of the present invention.

【図29】 本発明の数値実施例4の無限遠物体のとき
の望遠端の収差図
FIG. 29 is an aberration diagram at the telephoto end for an infinitely distant object according to Numerical Example 4 of the present invention.

【図30】 本発明の数値実施例4の像面より 800のと
きの広角端の収差図
FIG. 30 is an aberration diagram at the wide-angle end at 800 from the image plane of Numerical Example 4 of the present invention.

【図31】 本発明の数値実施例4の像面より 800のと
きの中間の収差図
FIG. 31 is an intermediate aberration diagram of Numerical example 4 of the present invention when the image plane is 800.

【図32】 本発明の数値実施例4の像面より 800のと
きの望遠端の収差図
32 is an aberration diagram at the telephoto end when the image plane is 800 from Numerical Example 4 of the present invention. FIG.

【図33】 本発明の数値実施例5の無限遠物体のとき
の広角端の収差図
FIG. 33 is an aberration diagram at the wide-angle end for an object at infinity according to Numerical Example 5 of the present invention.

【図34】 本発明の数値実施例5の無限遠物体のとき
の中間の収差図
FIG. 34 is an intermediate aberration diagram of an infinitely distant object according to Numerical Example 5 of the present invention.

【図35】 本発明の数値実施例5の無限遠物体のとき
の望遠端の収差図
FIG. 35 is an aberration diagram at the telephoto end for an infinitely distant object according to Numerical Example 5 of the present invention.

【図36】 本発明の数値実施例5の像面より 800のと
きの広角端の収差図
FIG. 36 is an aberration diagram at the wide-angle end at 800 from the image plane of Numerical Example 5 of the present invention.

【図37】 本発明の数値実施例5の像面より 800のと
きの中間の収差図
FIG. 37 is an intermediate aberration diagram of Numerical example 5 of the present invention when the image plane is 800.

【図38】 本発明の数値実施例5の像面より 800のと
きの望遠端の収差図
FIG. 38 is an aberration diagram at the telephoto end when the image plane is 800 from Numerical Example 5 of the present invention.

【図39】 本発明の近軸屈折力配置の説明図FIG. 39 is an explanatory view of the paraxial refractive power arrangement of the present invention.

【符号の説明】[Explanation of symbols]

L1 L1群 L2 L2群 SP 絞り IP 像面 d d線 g g線 S.C 正弦条件 ΔS サジタル像面 ΔM メリディオナル像面 L1 L1 group L2 L2 group SP diaphragm IP image plane d d line g g line S. C Sine condition ΔS Sagittal image plane ΔM Meridional image plane

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に複数のレンズ群を有し、
広角端における合成屈折力が正のL1群と負の屈折力の
L2群を有し、該L1群とL2群との間隔を変えて変倍
を行うズームレンズにおいて、該L2群は負の屈折力の
L21群と負の屈折力のL22群の2つのレンズ群を有
し、該L21群とL22群との間隔を変化させてフォー
カスを行っていることを特徴とするズームレンズ。
1. A plurality of lens groups are arranged in order from the object side,
In a zoom lens including a L1 group having a positive combined refractive power and an L2 group having a negative combined refractive power at the wide-angle end, and varying the distance between the L1 group and the L2 group, the L2 group has a negative refractive power. A zoom lens comprising two lens groups, an L21 group having a power and an L22 group having a negative refractive power, and performing focusing by changing a distance between the L21 group and the L22 group.
【請求項2】 変倍に際して前記L1群の複数のレンズ
群の間隔を変えていることを特徴とする請求項1のズー
ムレンズ。
2. The zoom lens according to claim 1, wherein the distance between the plurality of lens groups of the L1 group is changed upon zooming.
【請求項3】 前記L21群を移動させてフォーカスを
行っていることを特徴とする請求項1のズームレンズ。
3. The zoom lens according to claim 1, wherein the L21 unit is moved for focusing.
【請求項4】 広角端における前記L1群と全系の焦点
距離を各々fL1W,fW、前記L21群とL2群の焦
点距離を各々fL21,fL2、広角端における該L2
群の横倍率をβL2Wとするとき、 0.5 <|fL2/fW| < 0.95 0.25< fL2/fL21< 0.9 1.2 < βL2W < 1.85 0.5 < fL1W/fW < 0.95 なる条件を満足することを特徴とする請求項1のズーム
レンズ。
4. The focal lengths of the L1 group and the entire system at the wide-angle end are fL1W and fW, the focal lengths of the L21 group and the L2 group are fL21 and fL2, respectively, and the L2 at the wide-angle end is L2.
When the lateral magnification of the group is βL2W, 0.5 <| fL2 / fW | <0.95 0.25 <fL2 / fL21 <0.9 1.2 <βL2W <1.85 0.5 <fL1W / fW The zoom lens according to claim 1, wherein the condition <0.95 is satisfied.
【請求項5】 前記L21群は像面側に凹面を向けた負
レンズを有し、前記L22群は物体側に凹面を向けた負
レンズを有していることを特徴とする請求項4のズーム
レンズ。
5. The L21 group has a negative lens having a concave surface facing the image side, and the L22 group has a negative lens having a concave surface facing the object side. Zoom lens.
JP18281494A 1993-11-29 1994-07-12 Zoom lens Pending JPH0829688A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18281494A JPH0829688A (en) 1994-07-12 1994-07-12 Zoom lens
US08/892,878 US6028716A (en) 1993-11-29 1997-07-15 Zoom lens
US09/286,305 US6236517B1 (en) 1993-11-29 1999-04-06 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18281494A JPH0829688A (en) 1994-07-12 1994-07-12 Zoom lens

Publications (1)

Publication Number Publication Date
JPH0829688A true JPH0829688A (en) 1996-02-02

Family

ID=16124915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18281494A Pending JPH0829688A (en) 1993-11-29 1994-07-12 Zoom lens

Country Status (1)

Country Link
JP (1) JPH0829688A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248314A (en) * 1995-03-08 1996-09-27 Nikon Corp Zoom lens
JP2000275518A (en) * 1999-03-24 2000-10-06 Asahi Optical Co Ltd Zoom lens system
JP2002107626A (en) * 2000-09-27 2002-04-10 Minolta Co Ltd Projection zoom lens
JP2015125385A (en) * 2013-12-27 2015-07-06 リコーイメージング株式会社 Zoom lens system
JP2016045491A (en) * 2014-08-20 2016-04-04 パナソニックIpマネジメント株式会社 Zoom lens system, image capturing device, and camera
JP2018045184A (en) * 2016-09-16 2018-03-22 株式会社nittoh Image capturing optical system and image capturing device
CN110494786A (en) * 2017-04-05 2019-11-22 株式会社尼康 Variable-power optical system, Optical devices and the method for manufacturing variable-power optical system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248314A (en) * 1995-03-08 1996-09-27 Nikon Corp Zoom lens
JP2000275518A (en) * 1999-03-24 2000-10-06 Asahi Optical Co Ltd Zoom lens system
JP2002107626A (en) * 2000-09-27 2002-04-10 Minolta Co Ltd Projection zoom lens
JP2015125385A (en) * 2013-12-27 2015-07-06 リコーイメージング株式会社 Zoom lens system
JP2016045491A (en) * 2014-08-20 2016-04-04 パナソニックIpマネジメント株式会社 Zoom lens system, image capturing device, and camera
JP2018045184A (en) * 2016-09-16 2018-03-22 株式会社nittoh Image capturing optical system and image capturing device
WO2018052113A1 (en) * 2016-09-16 2018-03-22 株式会社nittoh Optical system for image capturing and image capturing device
EP3514597A4 (en) * 2016-09-16 2020-04-29 Nittoh Inc. Optical system for image capturing and image capturing device
CN110494786A (en) * 2017-04-05 2019-11-22 株式会社尼康 Variable-power optical system, Optical devices and the method for manufacturing variable-power optical system
JPWO2018185868A1 (en) * 2017-04-05 2020-02-06 株式会社ニコン Magnification optical system, optical device, and method of manufacturing magnification optical system
US11347035B2 (en) 2017-04-05 2022-05-31 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system

Similar Documents

Publication Publication Date Title
US5574599A (en) Zoom lens and zooming method
JP3067481B2 (en) Zoom lens
JP2988164B2 (en) Rear focus zoom lens
JP3173277B2 (en) Zoom lens
JP2008152190A (en) Zoom lens and imaging apparatus with same
JPH0850244A (en) Zoom lens having high variable power ratio
JP3018723B2 (en) Zoom lens
JP3144191B2 (en) Zoom lens
JP3144193B2 (en) Zoom lens
JP3363688B2 (en) Zoom lens
JP3018742B2 (en) Zoom lens
JPH07151974A (en) Zoom lens
JP3387687B2 (en) Zoom lens
JPH04358108A (en) Rear focus type zoom lens
JPH0850245A (en) Zoom lens
JP2001091830A (en) Zoom lens
JPH0829688A (en) Zoom lens
JPH06300972A (en) Zoom lens with wide field angle
JP3183047B2 (en) Zoom lens
JP2629940B2 (en) Rear focus zoom lens
JP2000214380A (en) Photographing lens
JP3063459B2 (en) Rear focus type zoom lens and camera using the same
JP3144192B2 (en) Zoom lens
JPH06160713A (en) Miniaturized zoom lens
JP3186388B2 (en) Zoom lens