JPH03140911A - Variable power lens - Google Patents

Variable power lens

Info

Publication number
JPH03140911A
JPH03140911A JP27858289A JP27858289A JPH03140911A JP H03140911 A JPH03140911 A JP H03140911A JP 27858289 A JP27858289 A JP 27858289A JP 27858289 A JP27858289 A JP 27858289A JP H03140911 A JPH03140911 A JP H03140911A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
negative
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27858289A
Other languages
Japanese (ja)
Inventor
Hirobumi Tsuchida
博文 槌田
Norihiko Aoki
青木 法彦
Hiroshi Matsuzaki
弘 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP27858289A priority Critical patent/JPH03140911A/en
Priority to US07/603,327 priority patent/US5157550A/en
Publication of JPH03140911A publication Critical patent/JPH03140911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain the variable power lens for video cameras which is fixed in aperture position, is simple in the constitution of a lens frame and does not change an F-number at the time of variable power by fixing a 1st lens group, 4th lens group and aperture position at the time of the variable power with a lens system which makes the variable power by changing the spacings between the respective lens groups. CONSTITUTION:The 1st lens group is constituted of the combined lens of a negative lens and a positive lens, the 2nd lens group of the combined lens of positive and negative lenses, the 3rd lens group of the combined lens of positive and negative lenses, and the 4th lens group of negative and positive lenses, respectively. A diaphragm is disposed on the object side of the 4th lens group and a spherical faces are used for the face on the extreme image side of the 1st lens group and the face on the extreme image side of the 4th lens group, respectively. The 2nd lens group and the 3rd lens group move and the rest are fixed at the time of the variable power. The lens system which has about 3 to 4 variable power ratio, about F/2.0 to F/4.0 aperture ratio, is fixed in the diaphragm, allows the simple construction of the lens frame and does not change the F-number at the time of the variable power is obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、カメラ特にビデオカメラ用の変倍レンズに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a variable magnification lens for cameras, particularly video cameras.

[従来の技術] 現在、民生用ビデオカメラのレンズとして、ズム比が6
〜10で口径比がF/1.2〜F72.0のズームレン
ズが主流である。それは、上記のスペックが設計上およ
びニーズ上で非常に効率の良い位置付けにあるからであ
る。
[Prior art] Currently, lenses for consumer video cameras have a zoom ratio of 6.
Zoom lenses with an aperture ratio of F/1.2 to F72.0 are mainstream. This is because the above specifications are extremely efficient in terms of design and needs.

上記のようなズームレンズは、一般に4群ズームと呼ば
れるものが多く、例えば特開昭58−102208号公
報、特開昭58−153913号公報等に示されている
ものがある。
Many of the above-mentioned zoom lenses are generally referred to as four-group zoom lenses, such as those disclosed in, for example, Japanese Patent Laid-Open No. 58-102208 and Japanese Patent Laid-Open No. 58-153913.

これらズームレンズは、一般に物体側より順に正の屈折
力を持ち変倍の際は固定でありフォーカシング機能を有
する第1)21群と、負の屈折力を持ち可動であって変
倍機能を有する第2レンズ群と、変倍に伴う像面の移動
を補正するために移動する第3レンズ群と、常時固定の
絞りと、正の屈折力を持ち常時固定で結像作用を有する
第4レンズ群とから構成されている。
These zoom lenses generally have, in order from the object side, a 21st group that has a positive refractive power and is fixed during zooming and has a focusing function, and a 21st group that has a negative refractive power and is movable and has a zooming function. A second lens group, a third lens group that moves to correct the movement of the image plane due to zooming, a permanently fixed aperture, and a fourth lens that has positive refractive power and is always fixed and has an imaging function. It consists of a group.

このタイプの4群ズームレンズは、高変倍化と大口径化
を達成するのには適している。しかし第1)21群が正
のパワーを有しているために広画角化には不向きであっ
てワイド端での画角は、50°程度が限度である。
This type of four-group zoom lens is suitable for achieving high variable power and large aperture. However, since the first (21) group has positive power, it is not suitable for widening the angle of view, and the angle of view at the wide end is limited to about 50°.

また4群ズームの他に2群ズームがある。それは物体側
より順に負の屈折力を持つ第1)21群と、正の屈折力
を持つ第2レンズ群とよりなり、これらのレンズ群の相
対的間隔を変化させて変倍を行なうものである。
In addition to the 4-group zoom, there is a 2-group zoom. It consists of a first (21) lens group with negative refractive power and a second lens group with positive refractive power in order from the object side, and magnification is changed by changing the relative spacing between these lens groups. be.

この2群ズームレンズは、負のレンズ群が先行するため
に広角化には適しているが高変倍化と大口径化には適し
ておらず、変倍比が2程度のものが一般的である。
This two-group zoom lens has a negative lens group in front, so it is suitable for wide angles, but it is not suitable for high zoom ratios and large apertures, and the zoom ratio is generally around 2. It is.

又この2群ズームレンズは、絞りが第2レンズ群中にあ
り、変倍の際に第2レンズ群とともに移動するのが一般
的である。このように絞りを移動させることは、鏡枠構
成上コスト高になり好ましくない。
Further, in this two-group zoom lens, the aperture is generally located in the second lens group and moves together with the second lens group when changing the magnification. Moving the diaphragm in this manner is undesirable because it increases the cost of the lens frame structure.

更に広画角化をめざしたビデオカメラ用ズームレンズと
して、特開昭63−292106号公報、特開平1−1
91820号公報に記載されたレンズ系が知られている
Furthermore, as a zoom lens for a video camera aiming at a wider angle of view, Japanese Patent Application Laid-Open No. 63-292106 and Japanese Patent Application Laid-Open No. 1-1
A lens system described in Japanese Patent No. 91820 is known.

前者は、負、正、正の三つのレンズ群よりなるズームレ
ンズであるが、絞りが第2レンズ群の中または物体側に
あり、第2レンズ群と共に動くので、鏡枠構成上コスト
高になる。又変倍に伴ってFナンバーが変化するので好
ましくない。
The former is a zoom lens consisting of three lens groups, negative, positive, and positive, but the aperture is located in the second lens group or on the object side and moves together with the second lens group, resulting in high cost due to the lens frame structure. Become. Furthermore, the F number changes as the magnification changes, which is not preferable.

又後者のズームレンズは、負、正、正の3群構成であり
、各レンズ群が可動であり、絞りが第2レンズ群と第3
レンズ群の間に固定されているが、変倍比が2〜3で小
さく、Fナンバーが変倍にともない変化する。
The latter zoom lens has a negative, positive, and positive three-group configuration, and each lens group is movable, and the aperture is divided between the second lens group and the third lens group.
Although it is fixed between the lens groups, the variable power ratio is small at 2 to 3, and the F number changes as the power is varied.

又負、正、正の3群構成のズームレンズとして、特開昭
64−40913号公報に記載されているものがある。
Furthermore, there is a zoom lens having a negative, positive, and positive three-group structure, which is described in Japanese Patent Laid-Open No. 40913/1983.

このレンズ系は、絞りと第3レンズ群が固定で又変倍時
にFナンバーが変化しないが、ワイド端での画角が最大
でも45°程度であって、広画角とは言えない。
In this lens system, the aperture and the third lens group are fixed, and the F number does not change when changing the magnification, but the maximum angle of view at the wide end is about 45 degrees, which cannot be said to be a wide angle of view.

[発明が解決しようとする課題] 本発明は、前述のように従来のビデオカメラ用変倍レン
ズが、そのワイド端での画角が狭いという問題点を解決
するためになされたもので、ワイド端での画角が60 
 程度以上で、変倍比が3〜4、程度度で、口径比がF
/20〜F74.0程度で、絞り位置が固定されていて
鏡枠の構成が簡単で、変化の際にFナンバーが変化しな
いビデオカメラ用変倍レンズを提供するものである。
[Problems to be Solved by the Invention] The present invention was made in order to solve the problem that the conventional variable magnification lens for video cameras has a narrow angle of view at the wide end, as described above. Angle of view at the edge is 60
Above the degree, the variable power ratio is 3 to 4, and at the degree, the aperture ratio is F.
To provide a variable magnification lens for a video camera, which has an aperture position of about /20 to F74.0, has a fixed aperture position, has a simple lens frame configuration, and whose F number does not change when changing.

[課題を解決するための手段] 本発明の変倍レンズは、物体側より順に負の屈折力を持
つ第1)21群と、いずれも正の屈折力を持つ第2.第
3レンズ群と、第4レンズ群、第3レンズ群の後方に配
された絞りとよりなり、各レンズ群間の間隔を変化させ
て変倍を行なうレンズ系で変倍時に第1)21群と第4
レンズ群と絞り位置とが固定されているものである。
[Means for Solving the Problems] The variable magnification lens of the present invention includes, in order from the object side, a first (21) group having a negative refractive power, and a second (21) group each having a positive refractive power. This lens system consists of a third lens group, a fourth lens group, and an aperture placed behind the third lens group, and changes the distance between each lens group to change the magnification. group and fourth
The lens group and the aperture position are fixed.

一般に、ズームレンズは変倍時に絞りより後方のレンズ
群を動かすと、変倍に伴ってFナンバ(口径比)が変化
する。この場合、Fナンバーを一定にするためには、変
倍を行なうにしたがって絞りの径を変化させなければな
らず、コスト高になる。
Generally, in a zoom lens, when the lens group behind the aperture is moved during zooming, the F number (aperture ratio) changes as the zoom lens changes magnification. In this case, in order to keep the F number constant, the diameter of the aperture must be changed as the magnification is changed, which increases costs.

又変倍の際にレンズ系の全長が変化しないようにするた
めには、第1)21群を固定にする必要がある。
Furthermore, in order to prevent the total length of the lens system from changing during zooming, it is necessary to keep the first (21) group fixed.

即ち、変化の際にレンズ系の全長を一定にし、絞りの径
を変化させることなしにFナンバーを一定に保つために
は、4群ズームレンズの場合、絞りを第3レンズ群より
後方に配置し、第1)21群と第4レンズ群と絞りの位
置を固定にすればよい。
In other words, in order to keep the overall length of the lens system constant and the F number constant without changing the aperture diameter, in the case of a 4-group zoom lens, the aperture should be placed behind the third lens group. However, the positions of the 1st) 21st lens group, the 4th lens group, and the aperture stop may be fixed.

本発明は、まず広角化を達成するために第38図に示す
ような負、正の2群ズームレンズを基本にした。即ち第
1)21群(Il を負のパワーとし第2レンズ群から
第4レンズ群(II [+ 1V )を全体として正の
パワーとした。ここで第ルンズ群fIl を固定にする
ためには、第2レンズ群から第4レンズ群(II II
I IV )は、全体として第1)21群(1)で出来
た虚像Iを物点としこれから像I゛までの距離を一定に
してリレーする構成にすればよい。第2レンズ群から第
4レンズ群までは、全体として正のパワーであるから、
第4レンズ群を固定としさらに全体として強い正のパワ
ーを保ちつつ大きな変倍効果を持たせるためには、第2
レンズ群と第3レンズ群を夫々正のパワーとすることが
望ましい。
The present invention is based on a negative and positive two-group zoom lens as shown in FIG. 38 in order to achieve a wide angle. That is, the 1st) 21st lens group (Il) was made to have negative power, and the second to fourth lens groups (II [+1V) were made to have positive power as a whole.Here, in order to fix the 21st lens group fIl, , from the second lens group to the fourth lens group (II II
IIV) may be constructed so that the virtual image I formed by the first 21st group (1) is used as an object point and the distance from there to the image I' is kept constant and relayed. Since the second lens group to the fourth lens group have positive power as a whole,
In order to keep the fourth lens group fixed and maintain strong positive power as a whole while achieving a large variable power effect, the second lens group must be fixed.
It is desirable that the lens group and the third lens group each have positive powers.

第38図において、第2レンズ群から第4レンズ群の全
体の結像倍率の絶対値は、ワイド端で小さくテレ端で大
きくなるため、第2レンズ群から第4レンズ群までの全
体の系の主点は、ワイドからテレに行くにしたがって前
方へ移動する。ところで、前述のように絞りを第4レン
ズ群の付近に固定させるためには、テレ側で第2レンズ
群から第4レンズ群全系の主点に対して絞りが大きく後
方に離れる構成になる。そのためテレ側の入射瞳が遠く
なり、テレ側の収差補正が難しくなる。その上第2レン
ズ群から第4レンズ群全体の系の主点が前に寄るために
Fナンバーを一定にするとテレ側でのマージナル光線の
光線高が高くなり、さらにテレ側での収差補正が難しく
なる。
In Figure 38, the absolute value of the overall imaging magnification of the second to fourth lens groups is small at the wide end and large at the telephoto end, so the entire system from the second to fourth lens groups The main point moves forward as you go from wide to tele. By the way, in order to fix the aperture near the fourth lens group as mentioned above, the aperture has to be configured to be far away from the second lens group to the rear from the principal point of the entire fourth lens group on the telephoto side. . Therefore, the entrance pupil on the telephoto side becomes far away, making it difficult to correct aberrations on the telephoto side. Furthermore, since the principal point of the entire system from the second lens group to the fourth lens group moves forward, if the F number is kept constant, the ray height of the marginal ray on the telephoto side will increase, and furthermore, the aberration correction on the telephoto side will become more difficult. It becomes difficult.

これを補正するためには次の条件(1)、(21を満足
することが望ましい。
In order to correct this, it is desirable to satisfy the following conditions (1) and (21).

(1)  −0.6<β2i4<−0.2(21−0.
1<fw/f、  <0.5ここでβ234はワイド端
における第2.第3.第4レンズ群全系の倍率、fwは
ワイド端における全系の焦点距離、f4は第4レンズ群
の焦点距離である。
(1) -0.6<β2i4<-0.2 (21-0.
1<fw/f, <0.5 where β234 is the second .fw/f at the wide end. Third. The magnification of the entire fourth lens group, fw is the focal length of the entire system at the wide end, and f4 is the focal length of the fourth lens group.

条件fi+ の下限を越えるとテレ端における第2〜第
4レンズ群全系の結像倍率も負の大きな値になり、テレ
側で第2〜第4レンズ群全系の主点が前方に寄り、入射
瞳が遠くなりすぎてテレ側での軸外収差が悪化するため
好ましくない。またテレ側でのマージナル光線の光線高
も高くなって、テレ側において球面収差、コマ収差も悪
化し好ましくない。条件(1)の上限を越えると第1)
21群の負のパワーが大きくなり、第1)21群で発生
する収差が補正しきれなくなり好ましくない。
When the lower limit of the condition fi+ is exceeded, the imaging magnification of the second to fourth lens groups at the telephoto end also becomes a large negative value, and the principal point of the second to fourth lens groups moves forward at the telephoto end. , the entrance pupil becomes too far away, which worsens off-axis aberrations on the telephoto side, which is undesirable. Furthermore, the ray height of the marginal ray on the telephoto side also increases, which is undesirable because spherical aberration and coma aberration worsen on the telephoto side. If the upper limit of condition (1) is exceeded, the first)
The negative power of the 21st group becomes large, and the aberrations generated in the 21st group (1) cannot be corrected completely, which is not preferable.

条件(2)は、第4レンズ群のパワーを規定したもので
、この条件の下限を越えるとテレ側において第2.第3
レンズ群でのマージナル光線の光線高が高くなりすぎて
テレ側での収差補正が難しくなる。条件(2)の上限を
越えると、第2レンズ群と第3レンズ群の夫々の正のパ
ワーが弱くなって変倍効果が低下するうえ第4レンズ群
での収差の発生が大になる。
Condition (2) defines the power of the fourth lens group, and if the lower limit of this condition is exceeded, the power of the fourth lens group will be reduced to the second lens group on the telephoto side. Third
The ray height of the marginal ray in the lens group becomes too high, making it difficult to correct aberrations on the telephoto side. If the upper limit of condition (2) is exceeded, the positive power of each of the second lens group and the third lens group becomes weaker, the variable magnification effect decreases, and the occurrence of aberrations in the fourth lens group increases.

第2レンズ群、第3レンズ群は、大きな変倍作用を有す
るために、これらレンズ群での色収差の発生を小さくす
る必要がある。そのためには、第2レンズ群又は第3レ
ンズ群が次の条件(3)を満足する負レンズを少なくと
も1枚有することが望ましい。
Since the second lens group and the third lens group have a large zooming effect, it is necessary to reduce the occurrence of chromatic aberration in these lens groups. For this purpose, it is desirable that the second lens group or the third lens group include at least one negative lens that satisfies the following condition (3).

(3)  νn〈50 ただしシフは上記負レンズのアツベ数である。(3) νn〈50 However, Schiff is the Atsube number of the above negative lens.

この条件(3)を越えると変倍による色収差の変動が大
になり好ましくない。
If this condition (3) is exceeded, the fluctuation of chromatic aberration due to zooming becomes large, which is not preferable.

条件(1)を満足するようにすると、第ルンズ群の負の
パワーが大きくなり、第1)21群において軸外収差が
発生しやすくなる。この場合良好な収差補正をするため
には、第ルンズ群中に少なくとも1面光軸から離れるに
したがって負の屈折力が減少するような非球面を設ける
ことが望ましい。
If condition (1) is satisfied, the negative power of the 1st lens group increases, and off-axis aberrations tend to occur in the 1st) 21st lens group. In this case, in order to perform good aberration correction, it is desirable to provide at least one aspherical surface in the first lens group whose negative refractive power decreases as the distance from the optical axis increases.

この非球面は、光軸との交点を原点として光軸方向にX
軸を、光軸に垂直な方向にy軸をとるとき次の式にて表
わされる。
This aspherical surface is
When the axis is taken as the y-axis in the direction perpendicular to the optical axis, it is expressed by the following equation.

ただしrは基準球面の曲率半径、Pは円錐定数、Ait
は非球面係数である。
However, r is the radius of curvature of the reference sphere, P is the conic constant, Ait
is the aspheric coefficient.

本発明において用いる上記の非球面は、次の条件(4)
を満足するものであることが望ましい。
The above aspherical surface used in the present invention satisfies the following condition (4):
It is desirable that it satisfies the following.

(4)   Σ1Δxl/h< o、 2   (3’
 = ’/wc )ただしΔXは非球面の基準球面から
の変位量、hは最大像高、yは光軸からの高さ、Vtt
cはこの面のワイド端における最大画角の主光線高であ
る。
(4) Σ1Δxl/h< o, 2 (3'
= '/wc) where ΔX is the amount of displacement of the aspherical surface from the reference spherical surface, h is the maximum image height, y is the height from the optical axis, and Vtt
c is the chief ray height at the maximum angle of view at the wide end of this surface.

又Σ1Δx1は第1)21群のすべての非球面につい1 てΔXの絶対値の総和をとることを意味する。Also, Σ1Δx1 is 1 for all aspheric surfaces in the 21st group. This means calculating the sum of the absolute values of ΔX.

この条件(4)の範囲を越えると、歪曲収差が補正過剰
になるうえコマ収差も増大するので好ましくない。
If the range of condition (4) is exceeded, distortion will be overcorrected and coma will also increase, which is not preferable.

本発明のレンズ系においては、通常のズームレンズと同
じように第1)21群のみをくり出してフォーカシング
を行なうことが出来る。この場合圧のパワー先行の変倍
レンズに比べて、レンズ群を(り出した時の光線のけら
れが少なく収差の変動も少ない、それは、第1)21群
を通った直後の光線が光軸と平行に近くなるからである
In the lens system of the present invention, focusing can be performed by extending only the 1st 21st group, as in a normal zoom lens. In this case, compared to a variable magnification lens that uses pressure power first, there is less vignetting of the light ray when it exits the lens group, and less variation in aberrations. This is because it is nearly parallel to the axis.

また本発明のレンズ系では、第4レンズ群全体またはそ
の一部を繰り出すことによってもフォーカシングな行な
うことが出来る。一般に第1)21群を繰り出すことに
よってフォーカシングを行なう場合、変倍してもフォー
カシングの際のくり出し量が変化しないと云う特長があ
るが、くり出すレンズが重いと云う欠点を有している。
Furthermore, in the lens system of the present invention, focusing can also be performed by extending the entire fourth lens group or a portion thereof. In general, when focusing is performed by extending the first (1) 21st lens group, it has the advantage that the amount of extension during focusing does not change even when the magnification is changed, but it has the disadvantage that the lens to be extended is heavy.

一方策4レンズ群によりフォーカシングな行なう場合、
繰り出すレンズが軽くフォーカシングの 2 際の負荷が小さいと云う特長がある。そのため、オート
フォーカスにおける合焦速度を早めるためには極めて有
効である。
On the other hand, when focusing is performed using four lens groups,
It has the advantage that the lens is lightweight and the load during focusing is small. Therefore, it is extremely effective for increasing the focusing speed in autofocus.

本発明の変倍レンズでは、前述のように第4レンズ群の
パワーを条件(2)の範囲内に定めることが望ましいが
、この範囲内ではパワーレスとすることも可能である。
In the variable power lens of the present invention, it is desirable to set the power of the fourth lens group within the range of condition (2) as described above, but it is also possible to make it powerless within this range.

更に特殊な場合として第4レンズ群を省略することが出
来る。
Furthermore, in a special case, the fourth lens group can be omitted.

上記のように第4レンズ群を省略した場合のレンズ系は
、物体側より順に負の屈折力を持つ第1)21群と、正
の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3
レンズ群と、絞りとよりなり、各レンズ群間の間隔を変
化させて変倍を行なうもので、変倍時に第1)21群と
絞り位置が固定されていることを特徴とするものである
As mentioned above, when the fourth lens group is omitted, the lens system consists of, in order from the object side, the 1st) 21st lens group with negative refractive power, the second lens group with positive refractive power, and the second lens group with positive refractive power. 3rd with
It consists of a lens group and an aperture, and magnification is changed by changing the distance between each lens group.It is characterized in that the position of the first (21) group and the aperture are fixed when changing the magnification. .

この変倍レンズも、前述の4群ズームレンズでの説明は
、はぼ成立つ、ただし第4レンズ群が省略されているた
めに、第2.第3レンズ群でのマージナル光線の光線高
が高くなるのでレンズ系を明るくするのには不向きであ
るが、レンズ枚数を  2 少なく出来るためにコストを下げるためには非常に有利
である。
With this variable power lens, the explanation for the 4-group zoom lens described above also holds true; however, since the 4th lens group is omitted, the 2nd... Since the ray height of the marginal ray in the third lens group becomes high, this is not suitable for making the lens system brighter, but since the number of lenses can be reduced by 2, it is very advantageous for reducing costs.

上記のような第4レンズ群を省略した構成の場合、上記
3群構成のレンズ系では、次の条件を満足することが望
ましい。
In the case of a configuration in which the fourth lens group is omitted as described above, it is desirable that the lens system having the three-group configuration satisfies the following conditions.

+5)  −0.6<βti<−0.2(6)   シ
フ<50 ただしβ23は第2レンズ群と第3レンズ群の合成の系
の結像倍率、νnは第2レンズ群、第3レンズ群中の少
なくとも1枚の負レンズのアツベ数である。
+5) -0.6<βti<-0.2 (6) Shift<50 However, β23 is the imaging magnification of the composite system of the second and third lens groups, and νn is the second and third lens groups. This is the Abbe number of at least one negative lens in the group.

条件(5)の下限を越えるとテレ端における第2レンズ
群、第3レンズ群全系での結像倍率が負の大きな値にな
りテレ側で第2レンズ群、第3レンズ群全系の主点が前
方に寄り、入射瞳が遠くなりすぎるためテレ側での軸外
収差が悪化し好ましくない、またテレ側でのマージナル
光線の光線高も高くなり、テレ側での球面収差、コマ収
差も悪化し好ましくない0条件(5)の上限を越えると
第1)21群の負のパワーが大きくなり第ルンズ群4 で発生する収差が補正しきれなくなり好ましくない。
When the lower limit of condition (5) is exceeded, the imaging magnification of the entire system of the second and third lens groups at the telephoto end becomes a large negative value, and the imaging magnification of the entire system of the second and third lens groups at the telephoto end increases. The principal point moves forward and the entrance pupil becomes too far away, which worsens off-axis aberrations on the telephoto side, which is undesirable.Also, the ray height of the marginal ray on the telephoto side also increases, causing spherical aberration and coma aberration on the telephoto side. If the upper limit of 0 condition (5) is exceeded, the negative power of the first (21) lens group becomes large and the aberrations generated in the lens group 4 cannot be corrected completely, which is not preferable.

条件(6)の範囲を越えると色収差の変動が過大になり
好ましくない。
If the range of condition (6) is exceeded, the fluctuation of chromatic aberration becomes excessive, which is not preferable.

尚この3構成の場合も第1)21群に非球面を用いるこ
とは、4群構成のレンズ系の際に述べたと同じ理由から
有効である。
In the case of these three structures as well, it is effective to use an aspheric surface in the first (1) 21st lens group for the same reason as stated in the case of the lens system with the four group structure.

し実施例] 次に本発明の変倍レンズの各実施例を示す6実施例1 f=7〜21  、  F/2.8  、  最大像高
 42ω= 61.9@〜20.9゜ r 、 = 44.5660 d1= 1.2000   n+ = 1.72916
  17+ = 54.68ra: 21.0144 d、= 1.9000 r、= 52.6896 d、=5.000On、= 1.804)、(5)8 
    vw  = 25.43r、=−26,934
6 d4” 1.2000    ns= 1.77250
    vs  = 49.665 rs= 18.3715  (非球面)d、=D、(可
変) ra=30.3953 do” 3.8000    n4= 1.72916
rt =−39,8855 d7= 1.0000    ns= 1.804)、
(5)8re=294.7054 ds=oz(可変) r、= 31.1464 d*= 5.2000   1a= 1.72916r
+o  =−18,5539 d+o = 1.0000   nt= 1.804)
、(5)8r+1  =−41,5452dz=Ds(
可変) j、2:00(絞り) d、、  =1.8000 r+*  =−6,1842 d+i  = 1.0000 1a= 1.72342
rz  =−13,3193 d、、  =0.2000 6 = 54.68 = 25.43 =54.68 = 25.43 =37.95 r+s  =−28,3790 d、、  =2.800On、=1.72916   
 v、  =54.68r+6 =−7,0616(非
球面) 非球面係数 (第5面) P = 1.0000  、  A4= −0.828
39x 10−’A、=−0.64078x 10−” (第16面) P = 1.000(1、A4= 0.24487X 
10−”A、= 0.41822x 10−’ f    7    12   21 D、   31.060 12.586  2.400
D、   0.600 1).469  8.654D
、   1.000  8.606 21.605β、
、4=−0.31、f、/f4=0.27Σ1Axl/
h= 0.008 実施例2 f=6〜24  、  F/2.8  、  最大像高
 42ω=70.3’  〜18.2゜ r+=67.0952 d、=1.200On、=1.72916r、= 13
.4535  (非球面)d、= 2.6000 r、= 24.0199 ds= 5.4000    n2= 1.804)、
(5)8r4= −29,8765 d4= 1.200On−= 1.7725Or、= 
15.5623  (非球面)d@=口、(可変) re” 44.8181 ds= 4.800On4= 1.72916r−=−
16,8876 dt= 1.0(1001s= 1.8(14)、(5
)8re=−54,3473 ds=oz(可変) r*=28.3527 d*= 5.200On−= 1.72916tho 
 =−19,7レンズ d+o  = 1.0000   nt= 1.804
)、(5)8rt+  =−47,6410= 54.
68 = 25.43 = 49.66 = 54.68 = 25.43 :54.68 = 25.43 di、=D3(可変) rl。=cx)(絞り) d、2 =2.2000 rls  =−4,6298 d、3 =1.0000   口、= 1.72342
     ν、  =37.95r+4 =−7,13
22 d、、  =2.0374   no=1.72916
    v、  ”=5448r+a =−4,932
1(非球面) 非球面係数 (第2面) P = 1.0000  、  A、= 0.5544
5x 10−’A、= 0.34)、(5)60x 1
0−?(第5面) P = 1.0000    A4=−0.63693
x 10−’A、= −0.27231x 10−’(
第15面) P=1.0000  、  A、= 0.42528X
10””A、= 0.26975x 10−’ f    6    12   24 D+   30.180 10.932  2.400
9 D2    0.600 D3    1.000 βzs4=−0.36 Σ 1Δx/h=0.064 実施例3 f=7〜28  、  F/2.8 2ω=62.3″〜15.5゜ rl = 26.7650 d、=1.100On、= 1.69680172= 
1).5080  (非球面)d、= 4.0000 rs = −21,9263 d、= 1.1000 r4= 17454.2482 d、= 0.7000 rr、= 329.6909 d、= 1.7818 1”6=−65,4528 d、=D、(可変) ry” 55.6324 n 2 = 1 、69680 n a ” 1 、804)、(5)81).209 
   3.875 9.639   25.505 f、/f、= 0.19 0 最大像高 =56.49 56.49 =25.43 d7= 2.4[100n4= 1.72916r、=
−65,1509 d、=D、(可変) rs=23.961) d−= 1.0000    ns= 1.804)、
(5)8r+o  = 13.3441d、、  = 
5.2000 1a= 1.6968Or、、  =−
104,0234 dz=03(可変) rl2 ”閃(絞り) dia  ”1.6000 rlx  =−5,4348 d、3 = 1.3133  na= 1.72916
シ4 ν5 = 54.68 = 25.43 シロ =56.49 νa  =54.68 rz  =−6,3666 d、4 =3.4)、(5)78 rls =12.9207  (非球面)dis  =
0.8[100n、=1.7847Orye  =5.
9133 dis  ”0.9500 rly  =9.8846 1 νa  ”26.22 dly  =2.3498 r、、  ニー30.7105 非球面係数 (第2面) P=1.0000  、  A、= A、= 0.18308X 10−’ (第5面) P=1.0000  、  A4= A、= 0.57100x 10−’ 7 D、   27.991 Da   0.800 Da   0.800 βI$4=−0.35。
[Example] Next, 6 Example 1 showing each example of the variable magnification lens of the present invention f = 7 ~ 21, F / 2.8, maximum image height 42ω = 61.9 @ ~ 20.9 ° r, = 44.5660 d1= 1.2000 n+ = 1.72916
17+ = 54.68ra: 21.0144 d, = 1.9000 r, = 52.6896 d, = 5.000 On, = 1.804), (5) 8
vw = 25.43r, = -26,934
6 d4” 1.2000 ns= 1.77250
vs = 49.665 rs = 18.3715 (aspherical surface) d, = D, (variable) ra = 30.3953 do” 3.8000 n4 = 1.72916
rt = -39,8855 d7 = 1.0000 ns = 1.804),
(5) 8re=294.7054 ds=oz (variable) r, = 31.1464 d*= 5.2000 1a= 1.72916r
+o = -18,5539 d+o = 1.0000 nt = 1.804)
, (5)8r+1 =-41,5452dz=Ds(
variable) j, 2:00 (aperture) d,, = 1.8000 r+* = -6,1842 d+i = 1.0000 1a = 1.72342
rz =-13,3193 d,, =0.2000 6 = 54.68 = 25.43 =54.68 = 25.43 =37.95 r+s =-28,3790 d,, =2.800On, =1 .72916
v, =54.68r+6 =-7,0616 (aspherical surface) Aspherical coefficient (fifth surface) P = 1.0000, A4 = -0.828
39x 10-'A, = -0.64078x 10-" (16th side) P = 1.000 (1, A4 = 0.24487X
10-"A, = 0.41822x 10-' f 7 12 21 D, 31.060 12.586 2.400
D, 0.600 1). 469 8.654D
, 1.000 8.606 21.605β,
, 4=-0.31, f, /f4=0.27Σ1Axl/
h=0.008 Example 2 f=6~24, F/2.8, maximum image height 42ω=70.3'~18.2°r+=67.0952 d, =1.200On, =1.72916r , = 13
.. 4535 (aspherical surface) d, = 2.6000 r, = 24.0199 ds = 5.4000 n2 = 1.804),
(5) 8r4= -29,8765 d4= 1.200On-= 1.7725Or, =
15.5623 (Aspherical surface) d@=mouth, (variable) re” 44.8181 ds= 4.800On4= 1.72916r-=-
16,8876 dt = 1.0 (1001s = 1.8 (14), (5
)8re=-54,3473 ds=oz (variable) r*=28.3527 d*= 5.200On-= 1.72916tho
=-19,7 lens d+o = 1.0000 nt= 1.804
), (5)8rt+ =-47,6410=54.
68 = 25.43 = 49.66 = 54.68 = 25.43 :54.68 = 25.43 di, = D3 (variable) rl. = cx) (aperture) d, 2 = 2.2000 rls = -4,6298 d, 3 = 1.0000 mouth, = 1.72342
ν, =37.95r+4 =-7,13
22 d,, =2.0374 no=1.72916
v, ”=5448r+a=-4,932
1 (Aspherical surface) Aspherical coefficient (second surface) P = 1.0000, A, = 0.5544
5x 10-'A, = 0.34), (5) 60x 1
0-? (5th side) P = 1.0000 A4 = -0.63693
x 10-'A, = -0.27231x 10-'(
15th side) P=1.0000, A,=0.42528X
10""A, = 0.26975x 10-' f 6 12 24 D+ 30.180 10.932 2.400
9 D2 0.600 D3 1.000 βzs4=-0.36 Σ 1Δx/h=0.064 Example 3 f=7~28, F/2.8 2ω=62.3″~15.5°rl= 26.7650 d, = 1.100 On, = 1.69680172 =
1). 5080 (Aspherical surface) d, = 4.0000 rs = -21,9263 d, = 1.1000 r4 = 17454.2482 d, = 0.7000 rr, = 329.6909 d, = 1.7818 1”6 = -65,4528 d, = D, (variable) ry” 55.6324 n 2 = 1, 69680 na ” 1, 804), (5) 81).209
3.875 9.639 25.505 f, /f, = 0.19 0 Maximum image height = 56.49 56.49 = 25.43 d7 = 2.4 [100n4 = 1.72916r, =
-65,1509 d, = D, (variable) rs = 23.961) d- = 1.0000 ns = 1.804),
(5) 8r+o = 13.3441d,, =
5.2000 1a= 1.6968Or,, =-
104,0234 dz=03 (variable) rl2 "Flash dia" 1.6000 rlx = -5,4348 d, 3 = 1.3133 na = 1.72916
4 ν5 = 54.68 = 25.43 White = 56.49 νa = 54.68 rz = -6,3666 d, 4 = 3.4), (5) 78 rls = 12.9207 (Aspherical surface) dis =
0.8[100n,=1.7847Orye=5.
9133 dis "0.9500 rly =9.8846 1 νa "26.22 dly =2.3498 r,, knee 30.7105 Aspheric coefficient (second surface) P=1.0000, A, = A, = 0 .18308X 10-' (5th surface) P=1.0000, A4=A, = 0.57100x 10-' 7 D, 27.991 Da 0.800 Da 0.800 βI$4=-0.35.

Σ1Δxi/h = 0.033 実施例4 f=7〜21  、  F/3,0 2 ω=61.4” 〜20.6” rl = 49.9638 dl= 1.2084 n9= 1.77250 n r = 1 、69680 2 4 8.728 10.083 to、780 fw/f4= 0.25 = 49.66 0.32926x 10−’ A、=  0.34804x 10−”0.36432
X 10−” A、=  0.32459X 10−’2δ 0.500 0.500 28.591 最大像高 = 56.49 rz=1]、8087  (非球面) d2= 3.8000 j’3=−21,1)86 d3=1.2297 1”4ニー1339.3852 d、= 1.0001 r5=−258,5732 d5=  1.8669     n、= 1.804
)、(5)8r6=−32,8734 d、=D、(可変) rt = 38.6070 d、= 2.8220 re=−230.6438 d、=D、(可変) r、= 24.8829 d、= 1.1)63 1)2= 1.69680 Q4= 1.72916 jl、= 1.804)、(5)8 rl。
Σ1Δxi/h = 0.033 Example 4 f=7 to 21, F/3,0 2 ω=61.4" to 20.6" rl = 49.9638 dl = 1.2084 n9 = 1.77250 n r = 1, 69680 2 4 8.728 10.083 to, 780 fw/f4= 0.25 = 49.66 0.32926x 10-' A, = 0.34804x 10-"0.36432
X 10-” A, = 0.32459 21,1)86 d3=1.2297 1”4 knee 1339.3852 d,=1.0001 r5=-258,5732 d5=1.8669 n,=1.804
), (5) 8r6 = -32,8734 d, = D, (variable) rt = 38.6070 d, = 2.8220 re = -230.6438 d, = D, (variable) r, = 24.8829 d, = 1.1) 63 1) 2 = 1.69680 Q4 = 1.72916 jl, = 1.804), (5) 8 rl.

12.2105 d、。 = 6.0000  1a= 1.69680
r、、  =−74,5630 d、、=D、(可変)  3 ν2 シロ 649 = 25.43 = 54.68 = 25.43 =56.49 r、2=■(絞り) d1□ = 2.8000 rla  =−5,3756 d、3 ” 1.3696   Q、= 1.7291
6r、、  =−6,2765 d、、  =3.7000 r、5=1).3897  (非球面)d、5 ” 0
.800On、= 1.7847゜rls  =5.6
137 d、、  =0.8000 rly  ”8.3643 d、7 =2.200One=1.7725Or+a 
 =−43,9605 非球面係数 = 54.68 = 26.22 = 49.66 (第2面) P = 1.0000  、  A、= −0.425
09x 10−’Aa=−0.26444xlO−’ 
 、 A、=−0.25545xlO−”(第15面) P = 1.0000  、  A4= 0.31)7
3x 10−”A、= 0.90524xlO−’ 、
  A、= O,15060xlO−’4 f       7       12D     2
2.761   7.905D2   3.626  
 9.4)、(5)0D3   0.8000  10
.072β234=−Q、36 、f、/f4=o、3
1Σ1Δx1/h= 0.030 実施例5 f=7〜21  、  F/2.8 2ω= 61.4°〜20.96 r、 = 158.1643 (非球面)d+” 5.
400On、= 1.72825rz= −18,98
47 d2= 1.3540   Q2= 1.72916r
s= 14.4361 di=DI(可変) 「4=23.7197 d<= 5.0000    ns= 1.72916
rs =−20.9506 d5= 1.0000 n4= 1.804)、(5)8 r6=  2794.8349 F1 1 O,800 159 24,528 最大像高 4 rl ν2 = 28.46 =54.68 =54.68 25.43 da”Da r7= 41.5540 d、” 3.2000    n5= 1.67790
    v5 = 55.33r8==−57,797
0 da=03(可変) r9=oo(絞り) d9= 4.5548 rlo  =−4,0736 d、、  ” 0.8000   n6= 1.784
70    シロ =26.22r、、  =−7,8
349 d、、  =0.5306 r、□ =−17,6719 d、2 =1.900On、=1.78590    
v、  =44.18r+a =−5,3395(非球
面) 非球面係数 (第1面) P=1.0000  、  A4= 0.36146x
lO−5A、= 0.89973xlO−’ 、  A
、=−0.41081xlO−9(第13面) P = 1.0000  、  A、= 0.3615
8X 10−36 A、=  0.10982xlO−’  、   A、
=f       7       12DI    
28.945  14.886D、     0.80
0   6.834D、     1.000   9
.025β234=−〇、、32   、  f、/f
4=0.37Σ Δxl/h= 0.026 実施例6 f=7〜21  、  F/4.0 2ω= 60.6’〜21.8゜ r、= 14.3307 d、= 1.0000   n、 = 1.77250
ra=9.2878 d、= 3.4000 rs=22.3754  (非球面) d、= 3.6000    n、” 1.8(14)
、(5)8r4= 182.6498 d、= 1.000On、= 1.77250rs=9
.6921 d−”DI(可変)  7 0.59604X 10 1 6.417 0.800 23.528 最大像高 ν1 =49.66 シ2 =25.43 ν3 = 49.66 r6= 31.1842 d、 = 2. Il!(10G ry= −94,204)、(5) dt=Dz  (可t) r、= 32.2391 d8= i、ooo。
12.2105 d. = 6.0000 1a = 1.69680
r,, =-74,5630 d,, =D, (variable) 3 ν2 White 649 = 25.43 = 54.68 = 25.43 =56.49 r, 2 = ■ (aperture) d1□ = 2. 8000 rla = -5,3756 d, 3'' 1.3696 Q, = 1.7291
6r,, =-6,2765 d,, =3.7000 r, 5=1). 3897 (Aspherical surface) d, 5” 0
.. 800On, = 1.7847゜rls = 5.6
137 d,, =0.8000 rly ”8.3643 d,7 =2.200One=1.7725Or+a
=-43,9605 Aspheric coefficient = 54.68 = 26.22 = 49.66 (second surface) P = 1.0000, A, = -0.425
09x 10-'Aa=-0.26444xlO-'
, A, = -0.25545xlO-" (15th surface) P = 1.0000, A4 = 0.31) 7
3x 10-"A, = 0.90524xlO-',
A, = O, 15060xlO-'4 f 7 12D 2
2.761 7.905D2 3.626
9.4), (5)0D3 0.8000 10
.. 072β234=-Q,36,f,/f4=o,3
1Σ1Δx1/h=0.030 Example 5 f=7~21, F/2.8 2ω=61.4°~20.96 r, = 158.1643 (Aspherical surface) d+"5.
400On, = 1.72825rz = -18,98
47 d2= 1.3540 Q2= 1.72916r
s= 14.4361 di=DI (variable) "4=23.7197 d<= 5.0000 ns= 1.72916
rs = -20.9506 d5 = 1.0000 n4 = 1.804), (5) 8 r6 = 2794.8349 F1 1 O,800 159 24,528 Maximum image height 4 rl ν2 = 28.46 =54.68 =54.68 25.43 da"Da r7= 41.5540 d," 3.2000 n5= 1.67790
v5=55.33r8==-57,797
0 da = 03 (variable) r9 = oo (aperture) d9 = 4.5548 rlo = -4,0736 d,, ” 0.8000 n6 = 1.784
70 Shiro =26.22r,, =-7,8
349 d,, =0.5306 r,□ =-17,6719 d,2 =1.900On, =1.78590
v, =44.18r+a =-5,3395 (aspherical surface) Aspherical coefficient (first surface) P=1.0000, A4=0.36146x
lO-5A, = 0.89973xlO-', A
, = -0.41081xlO-9 (13th surface) P = 1.0000, A, = 0.3615
8X 10-36 A, = 0.10982xlO-', A,
=f 7 12DI
28.945 14.886D, 0.80
0 6.834D, 1.000 9
.. 025β234=-〇,,32,f,/f
4=0.37Σ Δxl/h=0.026 Example 6 f=7~21, F/4.0 2ω=60.6'~21.8°r, = 14.3307 d, = 1.0000 n , = 1.77250
ra=9.2878 d, = 3.4000 rs=22.3754 (aspherical surface) d, = 3.6000 n,” 1.8 (14)
, (5)8r4=182.6498d,=1.000On,=1.77250rs=9
.. 6921 d-” DI (variable) 7 0.59604 2. Il! (10G ry = -94,204), (5) dt = Dz (possible t) r, = 32.2391 d8 = i, ooo.

r9= 12.4066 d+a= 5.8000 r+o  =−21,7625 dl。=D3(可変) rll =■(絞り) d、、  =3.0000 r1□ = −5,9364 dos  =1.6000 rrs  =−6,8832 非球面係数 P=1.0000  、  A、 = 0.49237
xlO−’A、= 0.4)、(5)699x 10−
’7 D、   32.632 12      21 16.134   4.507 8 nミニ1.49216 n<= 1.6(131) ns= 1.804)、(5)8 na” 1.69680 = 60.70 = 25.43 = 55.52 =57.50 D、     (1,6001),δ93na    
 o、aoo    6.004βzs4= −0.5
0、fw/f4= −0.04Σ Δx  /h=0.
061 実施例7 f=7〜28  、  F/2.8 2ω=62.3’〜15.6゜ r+=44.9788 d、= 1.0000   il、= 1.6968O
r、=12.8493  (非球面) d、= 4.0000 rlニー20.8212 dm= 1.0000   n*= 1.69680r
4= −858,0492 d、= 0.7000 rs=−60.4314 da” 1.8000   n、= 1.804)、(
5)8ra =−28,3267 d、=D、(町毫O ry:: 92.1)38 12.940 16.584 最大像高 ν1 =56.49 ν2 = 56.49 ν3 = 25.43 d、= 2.6000 r−= −52,8923 da”D*(可t) r、= 21.7443 d、= 1.0000 r+o  =12.7098 d、、  =5.6000 r、、  =−101,6235 d++ =Da (可り r1□ = −5,8903 d+、  = 1.3000   nt= 1.729
16r1m  =−6,5936 d、、  =0.8000 r14 =QQ (絞り) d、、  =5.0758 rrs =9.7260 (非球面) dos  = 1.0000   n*= 1.784
7Or+a  :5.243G d、、  =0.9000 rlt  = 8.2226 n、= 1.72916 nミニ1.804)、(5)8 na=1.69680 = 54.68 冨25.43 = 56.49 = 54.68 = 26.22  Q  0 d+y  = 2.4000   ns= 1.772
50    ve  = 49.66r+8 = 16
1.8048 非球面係数 (第2面) P=1.0000  、  A4=−0.24)、(5
)60XlO−’Ai=−0.4231)X 10−’
 、  As= 0.50898X 10−”(第15
面) P=1.0000  、  Aや= 0.30929X
10−3A6= 0.18672X 10−’ 、  
A6=−0.1)931X 10−’f    7  
  14   28 D、   27.898  7.991  0.600
D20.600 10.349  0.600D、  
 1.600 1).758 28.8986.34=
−0.38、f、/f、=0.20ΣΔx /h= 0
.027 実施例8 f=7〜21  、  F/4.0  、  最大像高
 42ω=61.5’〜22.0’ r、 = 15.8324 d、”1.000On、=1.77250   v、 
=49.661 r2=9.3824 d2= 3.4000 r3= 28.881)  (非球面)d 3” 3 
、600 On 2= ] 、 804)、(5)8r
4= −71,9406 d4= 1.0000    (13= 1.7725
0[’5= 12.5437 d5=D、  I可愛) r、=39.1309 d a ” 2 、8000    n 4= 1 、
6031)rr=−59,5657 d、=D、  (可T) ra=39.8143 d8= 1.000On、= 1.804)、(5)8
re=13.3682 d−= 5.8000    na= 1.6968O
r、、  =−21,5480 d、。=D3(可t) r++  =−6,14)、(5)5 dll = 1.6000  nt= 1.49216
2 =25 49.66 =60.70 =25.43 = 55.52 = 57.50 r+2 =−6,7778 d1□ = 1.0000 r、、::OO(絞り) 非球面係数 P = 1.0000  、  A4=A6= 0.5
5529x 10−’ 7 D、   33.24)、(5) D20.600 D、   1.600 βxi4=−o、47゜ ΣΔx /h= 0.044 実施例9 f=7〜21 2ω= 61.3゜ r、 = 16.8825 d、= 1.0000 r2 = 7.4074 d、= 4.6000 rs=−38,8946(非球面)  3 F/4.0 n+=1.72916 2 16.473 12.040 6.938 f、/f4= −0.01 〜21.8″ 0.22391x 10−’ 1 4.4)、(5)8 12.967 17.965 最大像高 4 =54.68 ds” 1.000[1nz= 1.7?250   
 ν2  = 49.66r4= 28.4674 d4=2.4000    n3= 1.804)、(
5)8    V3  = 25.43r5=−101
,6261(非球面)d5=D、 (可変) ra=26.6577 d、=2.800On、=1.65844   1/4
 =50.86r、=−661,1244 d、=D、   (可膏) r、= 24.5819  (非球面)da= 1.0
000    1s= 1.804)、(5)8   
  v5 =25.43re=IO,9050 d、=6.ロロ00     n、=1.69680 
    V6  =56.49r+a  =−41,2
706 dl。=03(町t) r1)=(資)(絞り) 非球面係数 (第3面) P = 1.0000  、  A、= 0.1063
3X 1O−3A、= 0.14749x 10−’ 4 (第5面) P = 1.0000   、    A4=  0.
39726x 10−’A6=−0.59156x 1
0−’ (第8面) P = 1.0000  、  A4= −0.953
59x 1O−5A、= 0.13027x 1O−6 f        7        12     
  21D、   29.833 13.843  2
.994D20.600 10.846 10.210
D3    0.800    6.544   18
.029β23 =−0.45、Σ 八x  /h =
0.053ただしrl、 r2.・・・はレンズ各面の
曲率半径、dl、d2.・・・は各レンズの肉厚および
空気間隔、+1 + +n2.−・・は各レンズの屈折
率、シ1.シ2.・・・は各レンズのアツベ数である。
r9= 12.4066 d+a= 5.8000 r+o =-21,7625 dl. =D3 (variable) rll = ■ (aperture) d,, =3.0000 r1□ = -5,9364 dos =1.6000 rrs = -6,8832 Aspheric coefficient P = 1.0000, A, = 0. 49237
xlO-'A, = 0.4), (5)699x 10-
'7 D, 32.632 12 21 16.134 4.507 8 n mini 1.49216 n <= 1.6 (131) ns = 1.804), (5) 8 na" 1.69680 = 60.70 = 25.43 = 55.52 = 57.50 D, (1,6001), δ93na
o, aoo 6.004βzs4= -0.5
0, fw/f4=-0.04ΣΔx/h=0.
061 Example 7 f=7~28, F/2.8 2ω=62.3'~15.6°r+=44.9788 d, = 1.0000 il, = 1.6968O
r, = 12.8493 (aspherical surface) d, = 4.0000 rl knee 20.8212 dm = 1.0000 n* = 1.69680r
4 = -858,0492 d, = 0.7000 rs = -60.4314 da" 1.8000 n, = 1.804), (
5) 8ra = -28,3267 d, =D, (Township Ory:: 92.1) 38 12.940 16.584 Maximum image height ν1 = 56.49 ν2 = 56.49 ν3 = 25.43 d , = 2.6000 r-= -52,8923 da"D*(possible t) r, = 21.7443 d, = 1.0000 r+o = 12.7098 d,, = 5.6000 r,, = -101 ,6235 d++ = Da (possible r1□ = -5,8903 d+, = 1.3000 nt = 1.729
16r1m = -6,5936 d,, =0.8000 r14 =QQ (aperture) d,, =5.0758 rrs =9.7260 (aspherical surface) dos = 1.0000 n*= 1.784
7Or+a: 5.243G d,, = 0.9000 rlt = 8.2226 n, = 1.72916 n mini 1.804), (5) 8 na = 1.69680 = 54.68 Tomi 25.43 = 56. 49 = 54.68 = 26.22 Q 0 d+y = 2.4000 ns = 1.772
50ve = 49.66r+8 = 16
1.8048 Aspheric coefficient (second surface) P=1.0000, A4=-0.24), (5
)60XlO-'Ai=-0.4231)X10-'
, As=0.50898X 10-” (15th
surface) P = 1.0000, A = 0.30929X
10-3A6=0.18672X 10-',
A6=-0.1)931X 10-'f 7
14 28 D, 27.898 7.991 0.600
D20.600 10.349 0.600D,
1.600 1). 758 28.8986.34=
-0.38, f, /f, = 0.20ΣΔx /h = 0
.. 027 Example 8 f=7~21, F/4.0, maximum image height 42ω=61.5'~22.0' r, = 15.8324 d, 1.000 On, = 1.77250 v,
=49.661 r2=9.3824 d2= 3.4000 r3= 28.881) (Aspherical surface) d 3” 3
, 600 On 2= ] , 804), (5) 8r
4= -71,9406 d4= 1.0000 (13= 1.7725
0 ['5 = 12.5437 d5 = D, I cute) r, = 39.1309 d a ” 2, 8000 n 4 = 1,
6031) rr=-59,5657 d, =D, (possible T) ra=39.8143 d8= 1.000On, = 1.804), (5) 8
re=13.3682 d-=5.8000 na=1.6968O
r,, =-21,5480 d,. =D3 (possible t) r++ =-6,14), (5)5 dll = 1.6000 nt = 1.49216
2 = 25 49.66 = 60.70 = 25.43 = 55.52 = 57.50 r+2 = -6,7778 d1□ = 1.0000 r,,::OO (aperture) Aspheric coefficient P = 1. 0000, A4=A6=0.5
5529x 10-' 7 D, 33.24), (5) D20.600 D, 1.600 βxi4=-o, 47°ΣΔx/h=0.044 Example 9 f=7~21 2ω=61.3゜r, = 16.8825 d, = 1.0000 r2 = 7.4074 d, = 4.6000 rs = -38,8946 (aspherical surface) 3 F/4.0 n+ = 1.72916 2 16.473 12 .040 6.938 f, /f4= -0.01 ~ 21.8" 0.22391x 10-' 1 4.4), (5) 8 12.967 17.965 Maximum image height 4 = 54.68 ds ” 1.000 [1nz= 1.7?250
ν2 = 49.66r4 = 28.4674 d4 = 2.4000 n3 = 1.804), (
5) 8 V3 = 25.43r5 = -101
,6261 (aspherical surface) d5=D, (variable) ra=26.6577 d, =2.800On, =1.65844 1/4
=50.86r, =-661,1244 d, =D, (curtain) r, = 24.5819 (aspherical) da = 1.0
000 1s= 1.804), (5)8
v5=25.43re=IO,9050d,=6. Rolo 00 n, = 1.69680
V6 =56.49r+a =-41,2
706 dl. = 03 (town t) r1) = (capital) (aperture) Aspheric coefficient (3rd surface) P = 1.0000, A, = 0.1063
3X 1O-3A, = 0.14749x 10-' 4 (5th surface) P = 1.0000, A4 = 0.
39726x 10-'A6=-0.59156x 1
0-' (8th side) P = 1.0000, A4 = -0.953
59x 1O-5A, = 0.13027x 1O-6 f 7 12
21D, 29.833 13.843 2
.. 994D20.600 10.846 10.210
D3 0.800 6.544 18
.. 029β23 = -0.45, Σ 8x /h =
0.053 but rl, r2. ... is the radius of curvature of each lens surface, dl, d2. . . . is the wall thickness and air spacing of each lens, +1 + +n2. -... is the refractive index of each lens. C2. ... is the Atsube number of each lens.

実施例1は、第1図に示すレンズ構成で、第1)21群
は負レンズおよび正レンズと負レンズの接合レンズ、第
2レンズ群は正レンズと負レンズの接合レンズ、第3レ
ンズ群は正レンズと負レンズの接合レンズ、第4レンズ
は負レンズとエレン5 ズで夫々構成されている。又絞りは第4レンズ群の物体
側に配置されている。非球面は、第1)21群の最も像
側の面と第4レンズ群の最も像側の面とに各々用いられ
ている。変倍の際は、第2レンズ群と第3レンズ群が移
動しその他は固定である。
Example 1 has the lens configuration shown in FIG. 1, in which the 1st) 21st group is a negative lens and a cemented lens of a positive lens and a negative lens, the 2nd lens group is a cemented lens of a positive lens and a negative lens, and the 3rd lens group is a cemented lens of a positive lens and a negative lens. is a cemented lens of a positive lens and a negative lens, and the fourth lens is composed of a negative lens and an Ellen 5 lens. Further, the diaphragm is arranged on the object side of the fourth lens group. The aspheric surfaces are used for the most image-side surface of the 21st lens group (first) and the most image-side surface of the fourth lens group. When changing the magnification, the second lens group and the third lens group move, and the rest remain fixed.

この実施例1の無限遠物点に対するワイド、スタンダー
ド、テレにおける収差状況は夫々第10群は負レンズお
よび正レンズと負レンズの接合レンズ、第2レンズ群は
正レンズと負レンズの接合レンズ、第3レンズ群は正レ
ンズと負レンズの接合レンズ、第4レンズ群は負レンズ
と正レンズの接合レンズで構成され、絞りは第4レンズ
群の物体側に配置されている。又非球面は第1)21群
の第2面と最も像側の面および第4レンズ群の最も像側
の面に各々用いている。この実施例のワイド端の画角は
70.3°と非常に広い。
The aberration conditions at wide, standard, and telephoto for the object point at infinity in Example 1 are as follows: The 10th lens group is a negative lens and a cemented lens of a positive lens and a negative lens, and the 2nd lens group is a cemented lens of a positive lens and a negative lens. The third lens group is composed of a cemented lens of a positive lens and a negative lens, and the fourth lens group is composed of a cemented lens of a negative lens and a positive lens.The aperture is arranged on the object side of the fourth lens group. Further, aspherical surfaces are used for the second surface and the surface closest to the image side of the first lens group 21, and the surface closest to the image side of the fourth lens group, respectively. The angle of view at the wide end of this embodiment is as wide as 70.3°.

この実施例2の無限遠物点に対するワイド、ス 6 タンダード、テレにおける収差状況は夫々第13図、第
14図、第15図に示す通りである。
The aberration situations in wide, standard, and telephoto for the object point at infinity in Example 2 are as shown in FIGS. 13, 14, and 15, respectively.

実施例3は、第3図に示すレンズ構成で、第1)21群
は負レンズ、負レンズ、正レンズの3枚のレンズ、第2
レンズ群は、正レンズ1枚、第3レンズ群は負レンズと
正レンズの接合レンズ、第4レンズ群は負レンズ、負レ
ンズ、正レンズの3枚のレンズにて構成され、絞りは第
4レンズ群の物体側に配置されている。又非球面は第1
)21群の第2面と第4レンズ群の第3面に各々用いて
いる。第4レンズ群の最も物体側のレンズは、物体側に
凹面を向けたほとんどパワーを持たないメニスカスレン
ズである。このレンズにより軸外収差を変化させること
なしに軸上収差をコントロールすることが出来、変倍全
域にわたって軸上収差を補正するのに有効である。又軸
上光線の光線高を上げることが出来、バックフォーカス
を長くするためにも有効である。この実施例の変倍比は
4で大である。
Embodiment 3 has a lens configuration shown in FIG.
The lens group consists of one positive lens, the third lens group consists of a cemented lens of a negative lens and a positive lens, and the fourth lens group consists of three lenses: a negative lens, a negative lens, and a positive lens.The aperture is the fourth lens group. It is placed on the object side of the lens group. Also, the aspherical surface is the first
) They are used for the second surface of the 21st lens group and the third surface of the fourth lens group. The lens closest to the object in the fourth lens group is a meniscus lens with a concave surface facing the object side and having almost no power. This lens allows axial aberrations to be controlled without changing off-axis aberrations, and is effective in correcting axial aberrations over the entire zoom range. Furthermore, the height of the axial ray can be increased, which is also effective for lengthening the back focus. The variable power ratio of this embodiment is 4, which is large.

この実施例の無限遠物点に対するワイド、スタンダード
、テレにおける収差状況は夫々第16図、第17図、第
18図に示す通りである。
The aberration situations in wide, standard, and telephoto with respect to an object point at infinity in this embodiment are as shown in FIGS. 16, 17, and 18, respectively.

実施例4は、第4図に示すレンズ構成であって、第1)
21群は、負レンズ、負レンズ、正レンズの3枚、第2
レンズ群は正レンズ1枚、第3レンズ群は負レンズと正
レンズの接合レンズ、第4レンズ群は負レンズ、負レン
ズ、正レンズの3枚で構成されており、絞りは第4レン
ズ群の物体側にある。非球面は第1)21群の第2面と
第4レンズ群の第3面に夫々用いている。第4レンズ群
の物体側にあるメニスカスレンズは、実施例3のものと
同じ効果を有する。このレンズ系のFナンバーは2.0
であって大口径である。
Example 4 has a lens configuration shown in FIG.
The 21st group consists of three lenses: a negative lens, a negative lens, a positive lens, and a second lens.
The lens group consists of one positive lens, the third lens group is a cemented lens of a negative lens and a positive lens, and the fourth lens group consists of three lenses: a negative lens, a negative lens, and a positive lens.The aperture is in the fourth lens group. is on the object side. The aspherical surfaces are used for the second surface of the first lens group (21) and the third surface of the fourth lens group, respectively. The meniscus lens on the object side of the fourth lens group has the same effect as that of the third embodiment. The F number of this lens system is 2.0
It has a large diameter.

この実施例4の無限遠物点に対するワイド、スタンダー
ド、テレにおける収差状況は夫々第19図、第20図、
第21図に示す通りである。
The aberration situations in wide, standard, and telephoto for the object point at infinity in Example 4 are shown in Figures 19 and 20, respectively.
As shown in FIG.

実施例5は、第5図に示すレンズ構成で、第1)21群
は正レンズと負レンズの接合レンズ、第2レンズ群は正
レンズと負レンズの接合レンズ、第3レンズ群は正レン
ズ1枚、第4レンズ群は負レンズと正レンズとの2枚で
構成され、絞りは第4レンズ群の物体側にある。非球面
は第1)21群の最も物体側の面と第4レンズ群の最も
像側の而に夫々用いている。このレンズ系は、7枚のレ
ンズで非常に少ない構成枚数である。
Example 5 has the lens configuration shown in FIG. 5, where the 1st) 21st lens group is a cemented lens of a positive lens and a negative lens, the 2nd lens group is a cemented lens of a positive lens and a negative lens, and the 3rd lens group is a positive lens. The fourth lens group consists of two lenses, a negative lens and a positive lens, and the aperture is located on the object side of the fourth lens group. The aspheric surfaces are used for the surface closest to the object side of the first lens group (21) and the surface closest to the image side of the fourth lens group, respectively. This lens system has seven lenses, which is a very small number of lenses.

この実施例の無限遠物点に対するワイド、スタンダード
、テレにおける収差状況は夫々第25図第23図、第2
4図に示す通りである。
The aberration situations in wide, standard, and telephoto for the object point at infinity in this example are shown in Fig. 25, Fig. 23, and Fig. 2, respectively.
As shown in Figure 4.

実施例6は、第6図に示すレンズ構成で、第1)21群
は負レンズおよび正レンズと負レンズの接合レンズ、第
2レンズ群は正レンズ1枚、第3レンズ群は負レンズと
正レンズの接合レンズ、第4レンズ群は負レンズ1枚で
構成され、絞りは第4レンズ群の物体側にある。非球面
は第1)21群の第3面に用いている。この実施例は、
これまでの実施例とは異なり第4レンズ群が非常に弱い
負のパワーである。第4レンズ群のパワーを弱くすると
この群で発生する収差を小さく出来、第4レンズ群の構
成枚数を少なく出来、この実施例では1枚のみで実施例
3のものと同様のメニスカス9 形状である。
Example 6 has a lens configuration shown in FIG. 6, in which the 1st) 21st lens group is a negative lens and a cemented lens of a positive lens and a negative lens, the 2nd lens group is a single positive lens, and the 3rd lens group is a negative lens. The fourth lens group, which is a cemented lens of positive lenses, is composed of one negative lens, and the aperture is located on the object side of the fourth lens group. The aspherical surface is used for the third surface of the 21st group (first). This example is
Unlike the previous embodiments, the fourth lens group has very weak negative power. By weakening the power of the fourth lens group, the aberrations generated in this group can be reduced, and the number of lenses in the fourth lens group can be reduced. be.

この実施例の無限遠物点に対するワイド、スタンダード
、テレにおける収差状況は夫々第25図、第26図、第
27図に示す通りである。
The aberration situations in wide, standard, and telephoto with respect to an object point at infinity in this embodiment are as shown in FIGS. 25, 26, and 27, respectively.

実施例7は、第7図に示す通りで、第1)21群は負レ
ンズ、負レンズ、正レンズの3枚、第2レンズ群は正レ
ンズ1枚、第3レンズ群は負レンズと正レンズの接合レ
ンズ、第4レンズ群は負レンズ、負レンズ、正レンズの
3枚で構成され、絞りは第4レンズ群中にある。第4レ
ンズ群の最も物体側のレンズは、物体側に凹面を向けた
ほとんどパワーのないメニスカスレンズである。このレ
ンズも実施例3のメニスカスレンズと同様の作用を有す
るものである。この実施例は変倍比4と非常に大きい変
倍比のレンズ系である。
Example 7 is as shown in FIG. The cemented lens, the fourth lens group, is composed of three lenses: a negative lens, a negative lens, and a positive lens, and the aperture is located in the fourth lens group. The lens closest to the object in the fourth lens group is a meniscus lens with almost no power, with its concave surface facing the object side. This lens also has the same effect as the meniscus lens of Example 3. This embodiment is a lens system with a very large variable power ratio of 4.

この実施例の無限遠物点に対するワイド、スタンダード
、テレにおける収差状況は夫々第28図、第29図、第
30図に示す通りである。
The aberration situations in wide, standard, and telephoto with respect to an object point at infinity in this embodiment are as shown in FIGS. 28, 29, and 30, respectively.

実施例8は第8図に示すレンズ構成で、第1)21群は
負レンズおよび正レンズと負レンズの接 0 合レンズ、第2レンズ群は正レンズ1枚、第3レンズ群
は負レンズと正レンズの接合レンズ、第4レンズ群は負
レンズ1枚で構成され、絞りは第4レンズ群の像側にあ
る。非球面は第1)21群の第3面に用いている。この
実施例は第4レンズ群が非常に弱い負のパワーになって
いる。第4レンズ群のパワーを弱くすると、この群で発
生ずる収差を小さ(出来、第4レンズ群の構成枚数を少
なく出来、1枚にて構成している。このレンズも実施例
3と同様のメニスカスレンズである。
Example 8 has a lens configuration shown in FIG. 8, in which the 1st) 21st lens group is a negative lens and a tangent of a positive lens and a negative lens, the 2nd lens group is a single positive lens, and the 3rd lens group is a negative lens. and a positive lens, and the fourth lens group is composed of one negative lens, and the aperture is located on the image side of the fourth lens group. The aspherical surface is used for the third surface of the 21st group (first). In this embodiment, the fourth lens group has very weak negative power. By weakening the power of the fourth lens group, the aberrations generated in this group can be reduced (possibly, the number of elements in the fourth lens group can be reduced, and it is composed of only one lens. This lens also has the same structure as in Example 3. It is a meniscus lens.

この実施例の無限遠物点に対するワイド、スタンダード
、テレにおける収差状況は夫々第31図、第32図、第
33図に示す通りである。
The aberration situations in wide, standard, and telephoto with respect to an object point at infinity in this embodiment are as shown in FIGS. 31, 32, and 33, respectively.

実施例9は第9図に示す構成で、レンズ系全体が3群よ
りなっている。第1)21群は負レンズおよび負レンズ
と正レンズの接合レンズ、第2レンズ群は正レンズ1枚
、第3レンズ群は負レンズと正レンズの接合レンズで構
成されている。非球面は第1)21群の第3面と最も像
側の面と第3レンズ群の物体側の面に用いている。この
実施例1 のように第4レンズ群の省略してレンズ系全体を3群で
構成することによりレンズの構成枚数を少なくすること
が出来る。
Embodiment 9 has the configuration shown in FIG. 9, and the entire lens system consists of three groups. The 1st) 21st lens group is composed of a negative lens and a cemented lens of a negative lens and a positive lens, the second lens group is composed of one positive lens, and the third lens group is composed of a cemented lens of a negative lens and a positive lens. The aspherical surfaces are used for the third surface of the 21st lens group, the surface closest to the image side, and the object side surface of the third lens group. By omitting the fourth lens group and configuring the entire lens system with three groups as in Example 1, the number of lenses can be reduced.

この実施例の無限遠物点に対するワイド、スタンダード
、テレにおける収差状況は夫々第34図、第35図、第
36図に示す通りである。
The aberration situations in wide, standard, and telephoto with respect to an object point at infinity in this embodiment are as shown in FIGS. 34, 35, and 36, respectively.

[発明の効果] 本発明の変倍レンズは、ワイド端の画角が60゜程度以
上、変倍比が3〜4程度、口径比がF/2.0〜F/4
.0枚度で、絞りが固定されていて鏡枠が簡単になし得
る上に変倍に際しFナンバーが変化しないレンズ系であ
る。
[Effects of the Invention] The variable power lens of the present invention has an angle of view at the wide end of about 60° or more, a variable power ratio of about 3 to 4, and an aperture ratio of F/2.0 to F/4.
.. It is a lens system with 0 degrees, a fixed aperture, a simple lens frame, and the F number does not change when changing the magnification.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第9図は夫々本発明の変倍レンズの実施例1
乃至実施例9の断面図、第10図乃至第12図は実施例
1の収差曲線図、第13図乃至第15図は実施例2の収
差曲線図、第16図乃至第18図は実施例3の収差曲線
図、第19図乃至第21図は実施例4の収差曲線図、第
22図乃至第24図は本発明の実施例5の収差曲線図、
第252 図乃至第27図は実施例6の収差曲線図、第28図乃至
第30図は実施例7の収差曲線図、第31図乃至第33
図は実施例8の収差曲線図、第34図乃至第36図は実
施例9の収差曲線図、第37図は第2レンズ群以後を一
つの群とした時の構成を示す図、第38図は本発明の基
本構成を示す図である。
1 to 9 show Example 1 of the variable power lens of the present invention, respectively.
10 to 12 are aberration curve diagrams of Example 1, FIGS. 13 to 15 are aberration curve diagrams of Example 2, and FIGS. 16 to 18 are sectional views of Example 9. 3, FIGS. 19 to 21 are aberration curve diagrams of Example 4, and FIGS. 22 to 24 are aberration curve diagrams of Example 5 of the present invention,
252 to 27 are aberration curve diagrams of Example 6, FIG. 28 to 30 are aberration curve diagrams of Example 7, and FIGS. 31 to 33.
The figure is an aberration curve diagram of Example 8, FIGS. 34 to 36 are aberration curve diagrams of Example 9, FIG. 37 is a diagram showing the configuration when the second lens group and subsequent lens groups are made into one group, and FIG. The figure is a diagram showing the basic configuration of the present invention.

Claims (1)

【特許請求の範囲】 (1)物体側より順に負の屈折力を持つ第1レンズ群と
、正の屈折力を持つ第2レンズ群と、正の屈折力を持つ
第3レンズ群と、第4レンズ群と、前記第3レンズ群よ
り後方に配置された絞りとよりなり、各レンズ群間の間
隔を変化させて変倍を行なうレンズ系で、変倍時に第1
レンズ群と第4レンズ群と絞り位置とが固定されている
変倍レンズ。 (2)以下の条件(1)、(2)、(3)を満足するこ
とを特徴とする請求項(1)の変倍レンズ。 (1)−0.6<β_2_3_4<−0.2(2)−0
.1<f_w/f_4<0.5 (3)νn<50 ただしβ_2_3_4はワイド端における第2レンズ群
、第3レンズ群、第4レンズ群の合成の系の結合倍率、
f_wはワイド端における全系の焦点距離、f_4は第
4レンズ群の焦点距離、νnは第2レンズ群、第3レン
ズ群中に含まれる少なくとも1枚の負レンズのアッベ数
である。 (3)第1レンズ群のうち少なくとも1面が光軸から離
れるにしたがって負の屈折力が減少するような非球面で
あることを特徴とする請求項(1)又は(2)の変倍レ
ンズ。 (4)物体側より順に負の屈折力を持つ第1レンズ群と
、正の屈折力を持つ第2レンズ群と、正の屈折力を持つ
第3レンズ群と絞りとよりなり、各レンズ群間の間隔を
変化させて変倍を行なうレンズ系で、変倍時に第1レン
ズ群と絞り位置とが固定されていることを特徴とする変
倍レンズ。 (5)以下の条件(4)、(5)を満足することを特徴
とする請求項(4)の変倍レンズ。 (5)−0.6<β_2_3<−0.2 (6)νn<50 ただしβ_2_3は第2レンズ群と第3レンズ群の合成
の系の結像倍率、νnは第2レンズ群、第3レンズ群中
に含まれる少なくとも1枚の負レンズのアッベ数である
[Claims] (1) In order from the object side, a first lens group with negative refractive power, a second lens group with positive refractive power, a third lens group with positive refractive power, and a third lens group with positive refractive power. This lens system consists of four lens groups and an aperture located behind the third lens group, and performs magnification by changing the distance between each lens group.
A variable magnification lens in which the lens group, the fourth lens group, and the aperture position are fixed. (2) The variable magnification lens according to claim (1), wherein the following conditions (1), (2), and (3) are satisfied. (1)-0.6<β_2_3_4<-0.2(2)-0
.. 1<f_w/f_4<0.5 (3) νn<50 where β_2_3_4 is the combined magnification of the combined system of the second lens group, third lens group, and fourth lens group at the wide end,
f_w is the focal length of the entire system at the wide end, f_4 is the focal length of the fourth lens group, and νn is the Abbe number of at least one negative lens included in the second and third lens groups. (3) The variable magnification lens according to claim (1) or (2), wherein at least one surface of the first lens group is an aspheric surface whose negative refractive power decreases as the distance from the optical axis increases. . (4) In order from the object side, each lens group consists of a first lens group with negative refractive power, a second lens group with positive refractive power, a third lens group with positive refractive power, and an aperture. A variable power lens is a lens system that performs power change by changing the distance between the lenses, and is characterized in that the first lens group and the aperture position are fixed during power change. (5) The variable power lens according to claim (4), which satisfies the following conditions (4) and (5). (5) -0.6<β_2_3<-0.2 (6) νn<50 where β_2_3 is the imaging magnification of the composite system of the second and third lens groups, and νn is the second and third lens groups. This is the Abbe number of at least one negative lens included in the lens group.
JP27858289A 1989-10-26 1989-10-27 Variable power lens Pending JPH03140911A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27858289A JPH03140911A (en) 1989-10-27 1989-10-27 Variable power lens
US07/603,327 US5157550A (en) 1989-10-26 1990-10-25 Vari-focal lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27858289A JPH03140911A (en) 1989-10-27 1989-10-27 Variable power lens

Publications (1)

Publication Number Publication Date
JPH03140911A true JPH03140911A (en) 1991-06-14

Family

ID=17599271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27858289A Pending JPH03140911A (en) 1989-10-26 1989-10-27 Variable power lens

Country Status (1)

Country Link
JP (1) JPH03140911A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248312A (en) * 1995-03-08 1996-09-27 Nikon Corp Zoom lens
JP2002090624A (en) * 2000-07-10 2002-03-27 Olympus Optical Co Ltd Electronic imaging device
EP1220002A2 (en) * 2000-12-27 2002-07-03 Canon Kabushiki Kaisha Zoom lens and optical apparatus using the same
JP2005331860A (en) * 2004-05-21 2005-12-02 Konica Minolta Opto Inc Variable power optical system, image pickup lens device, and digital equipment
JP2006065026A (en) * 2004-08-27 2006-03-09 Canon Inc Zoom lens and image projection device having the same
EP1785760A1 (en) * 2005-11-10 2007-05-16 Sharp Kabushiki Kaisha Zoom lens and image pickup device
CN100458490C (en) * 2005-11-10 2009-02-04 夏普株式会社 Zoom lens and image pickup device and portable information apparatus
JP2010152144A (en) * 2008-12-25 2010-07-08 Panasonic Corp Zoom lens system, image capturing apparatus, and camera
JP2010176096A (en) * 2009-02-02 2010-08-12 Panasonic Corp Zoom lens system, interchangeable lens apparatus and camera system
JP2011150289A (en) * 2009-12-22 2011-08-04 Canon Inc Zoom lens
JP2012252253A (en) * 2011-06-06 2012-12-20 Canon Inc Zoom lens and imaging device with the same
JP2013008064A (en) * 2008-07-02 2013-01-10 Panasonic Corp Zoom lens system, imaging device and camera
JP2013186458A (en) * 2012-03-12 2013-09-19 Olympus Imaging Corp Inner focus lens system and imaging apparatus including the same
WO2014007298A1 (en) * 2012-07-03 2014-01-09 株式会社タムロン Zoom lens

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248312A (en) * 1995-03-08 1996-09-27 Nikon Corp Zoom lens
JP4540261B2 (en) * 2000-07-10 2010-09-08 オリンパス株式会社 Electronic imaging device
JP2002090624A (en) * 2000-07-10 2002-03-27 Olympus Optical Co Ltd Electronic imaging device
EP1220002A2 (en) * 2000-12-27 2002-07-03 Canon Kabushiki Kaisha Zoom lens and optical apparatus using the same
EP1220002A3 (en) * 2000-12-27 2004-01-28 Canon Kabushiki Kaisha Zoom lens and optical apparatus using the same
JP2005331860A (en) * 2004-05-21 2005-12-02 Konica Minolta Opto Inc Variable power optical system, image pickup lens device, and digital equipment
JP4661085B2 (en) * 2004-05-21 2011-03-30 コニカミノルタオプト株式会社 Magnification optical system, imaging lens device, and digital device
JP4659412B2 (en) * 2004-08-27 2011-03-30 キヤノン株式会社 Zoom lens and image projection apparatus having the same
JP2006065026A (en) * 2004-08-27 2006-03-09 Canon Inc Zoom lens and image projection device having the same
US7551365B2 (en) 2005-11-10 2009-06-23 Sharp Kabushiki Kaisha Zoom lens, digital camera and portable information device
CN100458490C (en) * 2005-11-10 2009-02-04 夏普株式会社 Zoom lens and image pickup device and portable information apparatus
EP1785760A1 (en) * 2005-11-10 2007-05-16 Sharp Kabushiki Kaisha Zoom lens and image pickup device
JP2013008064A (en) * 2008-07-02 2013-01-10 Panasonic Corp Zoom lens system, imaging device and camera
JP2010152144A (en) * 2008-12-25 2010-07-08 Panasonic Corp Zoom lens system, image capturing apparatus, and camera
JP2010176096A (en) * 2009-02-02 2010-08-12 Panasonic Corp Zoom lens system, interchangeable lens apparatus and camera system
JP2011150289A (en) * 2009-12-22 2011-08-04 Canon Inc Zoom lens
JP2012252253A (en) * 2011-06-06 2012-12-20 Canon Inc Zoom lens and imaging device with the same
JP2013186458A (en) * 2012-03-12 2013-09-19 Olympus Imaging Corp Inner focus lens system and imaging apparatus including the same
WO2014007298A1 (en) * 2012-07-03 2014-01-09 株式会社タムロン Zoom lens

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
US5179473A (en) Zoom lens
JP3035830B2 (en) Zoom lens
JPH04163415A (en) Wide angle zoom lens
JP3173277B2 (en) Zoom lens
JPH08320435A (en) Wide-angle zoom lens
JP3849129B2 (en) Zoom lens
JPH03140911A (en) Variable power lens
JP3018723B2 (en) Zoom lens
JPH0642017B2 (en) Compact zoom lens
JP3503911B2 (en) Eyepiece zoom lens system
JP3821330B2 (en) Zoom lens
JPH04217219A (en) Zoom lens
JP3331223B2 (en) Small two-group zoom lens
JP3432050B2 (en) High zoom 3 group zoom lens
US20010022697A1 (en) Zoom lens system
JPS62198813A (en) Vari-focal lens
JPH11174322A (en) Zoom lens
JPH02284109A (en) Small-sized wide angle zoom lens
JP3323839B2 (en) Camera with a small zoom lens
JPS6111718A (en) Large aperture diameter zoom lens
US5995298A (en) Zoom lens
KR100310435B1 (en) Wide-angle zoom lens
JPH06300972A (en) Zoom lens with wide field angle
JPH05257063A (en) Small-sized zoom lens