JPH0824123B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0824123B2
JPH0824123B2 JP9570687A JP9570687A JPH0824123B2 JP H0824123 B2 JPH0824123 B2 JP H0824123B2 JP 9570687 A JP9570687 A JP 9570687A JP 9570687 A JP9570687 A JP 9570687A JP H0824123 B2 JPH0824123 B2 JP H0824123B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
electrode
base layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9570687A
Other languages
Japanese (ja)
Other versions
JPS63261750A (en
Inventor
健一 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9570687A priority Critical patent/JPH0824123B2/en
Publication of JPS63261750A publication Critical patent/JPS63261750A/en
Publication of JPH0824123B2 publication Critical patent/JPH0824123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 〔概要〕 この発明は、半導体基板に垂直方向にキャリアが走行
する半導体装置を、 半導体基板上にそのベース層まで成長し、ベース層に
オーミックコンタクトする電極を配設した後に、ベース
層上に所要の半導体層を再成長することにより、 そのベース層厚が数nm程度である場合にも、制御性よく
容易に製造可能とするものである。
DETAILED DESCRIPTION OF THE INVENTION [Outline] According to the present invention, a semiconductor device in which a carrier travels in a direction perpendicular to a semiconductor substrate is grown on a semiconductor substrate up to its base layer, and an electrode which makes ohmic contact with the base layer is provided. After that, by re-growing a required semiconductor layer on the base layer, even if the thickness of the base layer is about several nm, it is possible to easily manufacture with good controllability.

〔産業上の利用分野〕[Industrial applications]

本発明は半導体装置、特に基板に垂直方向にキャリア
が走行するバイポーラ構造の半導体装置の製造方法にか
かり、そのベース層が例えば数nm程度の厚さに過ぎない
半導体装置でも容易に実現し得る半導体装置の製造方法
に関する。
The present invention relates to a method for manufacturing a semiconductor device, in particular, a semiconductor device having a bipolar structure in which carriers run in a direction perpendicular to a substrate, and a semiconductor that can be easily realized even in a semiconductor device whose base layer is only a few nm thick, for example. The present invention relates to a method of manufacturing a device.

ヘテロ接合を含む半導体積層構造に垂直な方向にキャ
リアが走行する化合物半導体装置が種々開発され、高速
デバイスとして期待されているが、積層構造の中間に位
置するベース層が例えば数nm程度の厚さに過ぎない半導
体装置を実現する製造方法が要望されている。
Various compound semiconductor devices in which carriers travel in a direction perpendicular to the semiconductor laminated structure including a heterojunction have been developed and are expected as high-speed devices, but the base layer located in the middle of the laminated structure has a thickness of, for example, about several nm. There is a demand for a manufacturing method for realizing a semiconductor device which is nothing more than the above.

〔従来の技術〕[Conventional technology]

半導体積層構造を貫いて垂直方向にキャリアが走行す
るバイポーラ構造の化合物半導体装置の一例として、本
特許出願人が先に特願昭59−75885及び特願昭59−75886
等によって提供した量子化ベーストランジスタ(QBT)
は、例えば第2図に示す如き構造を備える。
As an example of a bipolar-structured compound semiconductor device in which carriers travel vertically through a semiconductor laminated structure, the present applicant has previously filed Japanese Patent Application Nos. 59-75885 and 59-75886.
Quantized base transistor (QBT) provided by
Has a structure as shown in FIG. 2, for example.

このQBTは例えば半絶縁性ガリウム砒素化合物(GaA
s)基板11上に、n型GaAsコレクタ層12、i型アルミニ
ウムガリウム砒素化合物(AlGaAs)コレクタバリア層1
3、p+型GaAsベース層14、i型AlGaAsエミッタバリア層1
5、n型GaAsエミッタ層16、コレクタ電極17、ベース電
極18、エミッタ電極19を備えて、量子井戸構造のウエル
層であるp+型GaAsベース層14はその厚さ方向のキャリア
の運動を量子化して所要のサブバンドが生成される様
に、またi型AlGaAsバリア層13、15はトンネル効果でキ
ャリアが遷移できる様に数nmの薄さに形成され、共鳴ト
ンネリングによりキャリアがエミッタからコレクタに到
達するために極めて高速な動作が得られる。
This QBT is, for example, a semi-insulating gallium arsenide compound (GaA
s) n-type GaAs collector layer 12, i-type aluminum gallium arsenide compound (AlGaAs) collector barrier layer 1 on substrate 11
3, p + type GaAs base layer 14, i type AlGaAs emitter barrier layer 1
5. The n-type GaAs emitter layer 16, the collector electrode 17, the base electrode 18, and the emitter electrode 19 are provided. The p + -type GaAs base layer 14, which is a well layer of a quantum well structure, quantizes carrier movement in the thickness direction. The i-type AlGaAs barrier layers 13 and 15 are formed to have a thickness of several nm so that carriers can transit due to the tunnel effect, and the carriers are transferred from the emitter to the collector by resonance tunneling. Very fast motion is obtained to reach.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

積層構造のバイポーラ化合物半導体装置の中間に位置
するベース層にコンタクトする電極の一般的な製造方法
としては、所要の半導体層を積層形成した半導体基体を
用いて、その上層の例えばエミッタ領域を画定しかつベ
ース・コンタクト面を設けるエッチング処理を行ってベ
ース電極を配設するが、電極形成前に不純物拡散領域を
形成し、電極形成後にフラッシュランプ加熱等により合
金化を行うことが多い。
As a general method of manufacturing an electrode that contacts a base layer located in the middle of a laminated bipolar compound semiconductor device, a semiconductor substrate on which required semiconductor layers are laminated is used to define, for example, an emitter region above the semiconductor substrate. Moreover, the base electrode is provided by performing an etching process for providing a base / contact surface, but an impurity diffusion region is formed before the electrode is formed, and alloying is often performed by flash lamp heating or the like after the electrode is formed.

この製造方法は例えばヘテロ接合バイポーラトランジ
スタ(HBT)等に適用されているが、上述のQBTなどでは
ベース層、更にその上下のバリア層が何れも数nmと極め
て薄く、上述の選択的エッチング、不純物拡散、合金化
の何れのプロセスも極めて困難である。
This manufacturing method is applied to, for example, a heterojunction bipolar transistor (HBT), but in the above QBT and the like, the base layer and the barrier layers above and below are extremely thin, each having a thickness of several nm. Both diffusion and alloying processes are extremely difficult.

本発明はこの様な事態に対処して、QBTなどの製造を
容易にし実用化を推進することを目的とする。
It is an object of the present invention to cope with such a situation and facilitate the production of QBT and the like and promote the practical use thereof.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、半導体基板上にコレクタ又はエミッタ
層となる第1の半導体層及びベース層となる第2の半導
体層を成長する工程と、 該第2の半導体層の所定領域上にオーミックコンタク
ト電極を形成する工程と、 該電極を形成した領域外の該第2の半導体層上にエミ
ッタ又はコレクタ層となる第3の半導体層を成長する工
程とを有する本発明による半導体装置の製造方法により
解決される。
The problem is that a step of growing a first semiconductor layer to be a collector or emitter layer and a second semiconductor layer to be a base layer on a semiconductor substrate, and an ohmic contact electrode on a predetermined region of the second semiconductor layer. And a step of growing a third semiconductor layer to be an emitter or collector layer on the second semiconductor layer outside the region where the electrode is formed, which is solved by the method for manufacturing a semiconductor device according to the present invention. To be done.

〔作 用〕[Work]

バイポーラ構造の半導体装置の半導体層の成長をベー
ス層までで一旦停止し、オーミックコンタクト電極をベ
ース層上に配設した後に、残る所要の半導体層を再成長
する本発明によれば、ベース層が極めて薄い前記QBTな
どの従来の製造方法の隘路である選択的エッチングが不
必要で、その実現が容易に可能となる。
According to the present invention, the growth of the semiconductor layer of the semiconductor device having the bipolar structure is temporarily stopped up to the base layer, the ohmic contact electrode is disposed on the base layer, and then the remaining required semiconductor layer is regrown. The selective etching, which is a bottleneck of the conventional manufacturing method of the extremely thin QBT and the like, is not necessary and can be easily realized.

なお電極配設後の半導体層の成長温度で電極と半導体
層との間に金属学的反応を生じない耐熱性材料で電極を
形成し、この電極で合金化を行わずに良好なオーミック
コンタクトを得るためにベース層の組成、不純物ドーピ
ング等を選択することが望ましい。
It should be noted that an electrode is formed of a heat-resistant material that does not cause a metallurgical reaction between the electrode and the semiconductor layer at the growth temperature of the semiconductor layer after the electrode is disposed, and good ohmic contact is made without alloying with this electrode. In order to obtain it, it is desirable to select the composition of the base layer, impurity doping, and the like.

〔実施例〕〔Example〕

以下本発明を第1図(a)乃至(c)に工程順模式断
面図を示す実施例により具体的に説明する。
Hereinafter, the present invention will be described in detail with reference to Examples in which schematic sectional views in order of steps are shown in FIGS.

第1図(a)参照: 半絶縁性インジウム燐(InP)
基板1上に先ずベース層4まで、例えばMBE法により下
記の様に順次エピタキシャル成長する。ただし成長温度
Ts=450℃としている。
See Fig. 1 (a): Semi-insulating indium phosphide (InP)
First, the base layer 4 is sequentially epitaxially grown on the substrate 1 by the MBE method as described below. However, growth temperature
Ts = 450 ℃.

本実施例のp+型In0.53Ga0.47Asベース層4は、2層の
Beアトミックプレートドーピングを面濃度5×1012cm-2
で行い、キャリアである正孔の濃度2×1019cm-3を得て
いる。なおn+型のコレクタ層2のSiドーピングは通常の
一様なドーピングである。
The p + -type In 0.53 Ga 0.47 As base layer 4 of this embodiment is composed of two layers.
Be atomic plate doping with a surface concentration of 5 × 10 12 cm -2
The concentration of holes as carriers is 2 × 10 19 cm −3 . The Si doping of the n + type collector layer 2 is an ordinary uniform doping.

この半導体基板上にスパッタ法等により、例えばタン
グステンシリサイド(WSix,x≒0.6)を厚さ300nm程度に
披着し、例えば4弗化炭素(CF4)に酸素(O2)を添加
したドライエッチング法でこれをパターニングして、ベ
ース電極8を形成する。
On this semiconductor substrate, for example, tungsten silicide (WSi x , x≈0.6) is deposited to a thickness of about 300 nm by a sputtering method or the like, and carbon tetrafluoride (CF 4 ) to which oxygen (O 2 ) is added is dried. This is patterned by an etching method to form the base electrode 8.

第1図(b)参照: この半導体基板をMBE成長装置
に収容し、先ずECR(電子サイクロトロン共鳴)プラズ
マエッチング法等によりベース層4の表面を清浄化す
る。
See FIG. 1 (b): This semiconductor substrate is housed in an MBE growth apparatus, and the surface of the base layer 4 is first cleaned by an ECR (electron cyclotron resonance) plasma etching method or the like.

続いて例えば成長温度Ts=400℃として、ベース層4
上に下記の半導体層を成長する。
Subsequently, for example, the growth temperature Ts is set to 400 ° C., and the base layer 4
The following semiconductor layers are grown on top.

このMBE成長プロセスによる電極8上の多結晶状態の
堆積は弗酸(HF)系エッチング液により単結晶に対して
選択的に除去する。
The deposition of the polycrystalline state on the electrode 8 by this MBE growth process is selectively removed with respect to the single crystal by a hydrofluoric acid (HF) -based etching solution.

第1図(c)参照: エミッタ層6上に例えばクロム
(Cr)が50nm、金(Au)が250nm程度のエミッタ電極9
を配設し、コレクタ層2を表出する選択的エッチングを
行って同様の構成のコレクタ電極7を配設する。
See FIG. 1 (c): On the emitter layer 6, for example, chromium (Cr) 50 nm and gold (Au) emitter electrode 9 of about 250 nm
And the collector electrode 7 having the same structure is provided by performing selective etching to expose the collector layer 2.

上述の様に本発明により、ベース層4が薄く従来の製
造方法ではオーミックコンタクト電極の形成が極めて困
難な半導体装置でも容易にベース電極8を配設して、期
待される高速性を実現することができる。
As described above, according to the present invention, it is possible to easily dispose the base electrode 8 even in a semiconductor device in which the base layer 4 is thin and it is extremely difficult to form the ohmic contact electrode by the conventional manufacturing method, and to realize the expected high speed. You can

本発明は上述の説明に引例したQBTに限られるもので
はなく、例えばヘテロ接合バイポーラトランジスタ(HB
T)或いはホットエレクトロントランジスタ(HET)等の
QBTより厚いベース層で動作可能な半導体装置について
も、本発明の製造方法によりそのベース層を薄くして、
動作速度の一層の向上を実現することができる。
The present invention is not limited to the QBT cited in the above description, but may be a heterojunction bipolar transistor (HB
T) or hot electron transistor (HET)
For semiconductor devices that can operate with a base layer thicker than QBT, the base layer is thinned by the manufacturing method of the present invention,
Further improvement in operating speed can be realized.

また上述の実施例ではコレクタ層を基板側としている
が、エミッタ層を基板側としコレクタ層を最上層とする
構造でも本発明を同様に適用することができる。
Further, although the collector layer is on the substrate side in the above-mentioned embodiments, the present invention can be similarly applied to a structure in which the emitter layer is on the substrate side and the collector layer is on the uppermost layer.

〔発明の効果〕〔The invention's effect〕

以上説明した如く本発明によれば、半導体積層構造に
垂直方向にキャリアが走行するバイポーラ構造の半導体
装置を、そのベース層が例えば数nm程度の厚さである場
合にも制御性よく容易に製造することが可能となり、こ
の種の半導体装置に期待されている高速性を充分に発揮
することが可能となる。
As described above, according to the present invention, a bipolar structure semiconductor device in which carriers run in a direction perpendicular to the semiconductor laminated structure can be easily manufactured with good controllability even when the base layer has a thickness of, for example, about several nm. Therefore, it is possible to sufficiently exhibit the high speed expected for this type of semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の工程順模式断面図、 第2図はQBTの模式断面図である。 図において、 1は半絶縁性InP基板、 2はn+型In0.53Ga0.47Asコレクタ層、 3、5はノンドープのAl0.48In0.52Asバリア層、 4はp+型In0.53Ga0.47Asベース層、 6はn+型In0.53Ga0.47Asエミッタ層、 7はコレクタ電極、 8はWSixベース電極、 9はエミッタ電極を示す。FIG. 1 is a schematic cross-sectional view in order of the processes of an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of QBT. In the figure, 1 is a semi-insulating InP substrate, 2 is an n + type In 0.53 Ga 0.47 As collector layer, 3 and 5 are undoped Al 0.48 In 0.52 As barrier layers, 4 is a p + type In 0.53 Ga 0.47 As base layer , 6 is an n + type In 0.53 Ga 0.47 As emitter layer, 7 is a collector electrode, 8 is a WSi x base electrode, and 9 is an emitter electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上にコレクタ又はエミッタ層と
なる第1の半導体層及びベース層となる第2の半導体層
を成長する工程と、 該第2の半導体層の所定領域上にオーミックコンタクト
電極を形成する工程と、 該電極を形成した領域外の該第2の半導体層上にエミッ
タ又はコレクタ層となる第3の半導体層を成長する工程
とを有することを特徴とする半導体装置の製造方法。
1. A step of growing a first semiconductor layer to be a collector or emitter layer and a second semiconductor layer to be a base layer on a semiconductor substrate, and an ohmic contact electrode on a predetermined region of the second semiconductor layer. And a step of growing a third semiconductor layer to be an emitter or collector layer on the second semiconductor layer outside the region where the electrode is formed. .
【請求項2】前記ベース層が量子井戸構造のウエル層で
あることを特徴とする特許請求の範囲第1項記載の半導
体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the base layer is a well layer having a quantum well structure.
JP9570687A 1987-04-17 1987-04-17 Method for manufacturing semiconductor device Expired - Lifetime JPH0824123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9570687A JPH0824123B2 (en) 1987-04-17 1987-04-17 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9570687A JPH0824123B2 (en) 1987-04-17 1987-04-17 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63261750A JPS63261750A (en) 1988-10-28
JPH0824123B2 true JPH0824123B2 (en) 1996-03-06

Family

ID=14144950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9570687A Expired - Lifetime JPH0824123B2 (en) 1987-04-17 1987-04-17 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0824123B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168071A (en) * 1991-04-05 1992-12-01 At&T Bell Laboratories Method of making semiconductor devices

Also Published As

Publication number Publication date
JPS63261750A (en) 1988-10-28

Similar Documents

Publication Publication Date Title
JP4043600B2 (en) Schottky barrier forming electrode
JPH0824123B2 (en) Method for manufacturing semiconductor device
JPH0945890A (en) Ohmic electrode structure, semiconductor device, and manufacture thereof
JP3057679B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
JP2652647B2 (en) Heterojunction field effect transistor
JP2890729B2 (en) Bipolar transistor and method of manufacturing the same
JP2654828B2 (en) Semiconductor device having quantum wires and method of manufacturing the same
JP2904156B2 (en) Method of manufacturing ohmic electrode
JPS62165317A (en) Manufacture of semiconductor device
JP3876397B2 (en) Method for manufacturing a Group III-V Group compound semiconductor device
JPH0945898A (en) Field-effect transistor and manufacture thereof
JPS6376380A (en) Semiconductor device
JPS63102257A (en) Manufacture of heterojunction bipolar semiconductor device
JPH09172165A (en) Field-effect transistor and its fabrication
JPH03159135A (en) Semiconductor device and its manufacture
JPH06209077A (en) Semiconductor device and its manufacture
JPH0575095A (en) Heterobipolar transistor and its manufacture
JPH0437583B2 (en)
JPH07202168A (en) Semiconductor device and manufacture thereof
JPH01296667A (en) Manufacture of heterojunction bipolar transistor
JPH06163600A (en) Field-effect transistor
JPH11345961A (en) Hetero-junction field-effect transistor
JPS63245958A (en) Hetero junction bipolar transistor
JPH06275529A (en) Manufacturing method of compound semiconductor device
JPH01125984A (en) Semiconductor device