JPH06275529A - Manufacturing method of compound semiconductor device - Google Patents

Manufacturing method of compound semiconductor device

Info

Publication number
JPH06275529A
JPH06275529A JP6161093A JP6161093A JPH06275529A JP H06275529 A JPH06275529 A JP H06275529A JP 6161093 A JP6161093 A JP 6161093A JP 6161093 A JP6161093 A JP 6161093A JP H06275529 A JPH06275529 A JP H06275529A
Authority
JP
Japan
Prior art keywords
compound semiconductor
layer
semiconductor layer
manufacturing
type gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6161093A
Other languages
Japanese (ja)
Inventor
Katsuhiko Mitani
克彦 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6161093A priority Critical patent/JPH06275529A/en
Publication of JPH06275529A publication Critical patent/JPH06275529A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a self-aligned electrode using selective CVD technology to be formed in a compound semiconductor device. CONSTITUTION:After the formation of the second compound semiconductor layer 102 containing Sb on the first compound semiconductor layer 101 formed on a semiconductor substrate 100, an SiO2 film 103 having an aperture part 104 is formed. Later, a W film 105 is selectively formed on the second semiconductor layer 102 exposed in the aperture part 104 using selective W-CVD technology. Through these procedures, the electrode comprising the W film 105 can be selectively formed on the second compound semiconductor layer 102 thereby enabling a self-aligned electrode or another electrode in a fine aperture part to be effectively formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はGaAsを主とするIII
−V族化合物半導体を用いた高速電子デバイスの製造方
法に係り、特に、電極の形成方法に関する。
FIELD OF THE INVENTION The present invention mainly uses GaAs. III.
The present invention relates to a method for manufacturing a high-speed electronic device using a group V compound semiconductor, and particularly to a method for forming an electrode.

【0002】[0002]

【従来の技術】近年のエピタキシャル成長技術の高度化
に伴い、数種類の化合物半導体を積層した構造の高速デ
バイスを用いた回路の実用化が積極的に検討されてい
る。その中で特にヘテロ接合トランジスタ(以下HB
T)は電流駆動能力が大きいため、高速回路への適用が
期待されている。HBTの高性能化を図るためには、素
子及び電極間距離の微細化により寄生抵抗及び寄生抵抗
を低減することが有効である。
2. Description of the Related Art With the advancement of epitaxial growth technology in recent years, practical application of a circuit using a high-speed device having a structure in which several kinds of compound semiconductors are laminated has been actively studied. Among them, especially heterojunction transistors (hereinafter HB
Since T) has a large current driving capability, it is expected to be applied to a high speed circuit. In order to improve the performance of the HBT, it is effective to reduce the parasitic resistance and the parasitic resistance by reducing the distance between the element and the electrode.

【0003】このような目的に適した電極形成方法とし
て、例えば、電子通信学会の研究会資料MW86−10
7巻、1頁〜6頁で報告されているように、ベース電極
をエミッタメサから絶縁膜側壁の幅だけ隔てて自己整合
的に形成する技術がある。この技術では第1の側壁絶縁
膜を具備したエミッタメサ及び外部ベース領域を含む領
域にAuZn/Ni/Au電極を蒸着した後、エミッタ
メサに対して第2の側壁絶縁膜を形成する。その後、エ
ミッタメサ上及び第2の側壁絶縁膜をマスクにしてGa
Asベース層上のAuZn/Ni/Au不要な領域をミ
リングにより除去している。次いで、アロイ処理を施す
ことにより、GaAsベース層に対して良好なオーミッ
ク電極を実現している。
As an electrode forming method suitable for such a purpose, for example, a research group material MW86-10 of the Institute of Electronics and Communication Engineers.
As reported in Volume 7, pp. 1 to 6, there is a technique of forming a base electrode in a self-aligned manner with a width of a side wall of an insulating film separated from an emitter mesa. In this technique, an AuZn / Ni / Au electrode is deposited on a region including an emitter mesa having a first sidewall insulating film and an external base region, and then a second sidewall insulating film is formed on the emitter mesa. After that, Ga is used as a mask on the emitter mesa and the second sidewall insulating film.
An unnecessary region of AuZn / Ni / Au on the As base layer is removed by milling. Then, an alloy process is performed to realize a good ohmic electrode for the GaAs base layer.

【0004】[0004]

【発明が解決しようとする課題】上述した従来例では、
AuZn/Ni/Auよりなるベース電極をミリングを
用いて加工しているため、微細加工性に乏しく、Auの
再付着などにより信頼性にも課題がある。また、AuZ
n系電極はアロイ処理によりオーミック接触を実現して
おり、その後の工程では耐熱性が乏しいという課題もあ
る。
In the above-mentioned conventional example,
Since the base electrode made of AuZn / Ni / Au is processed by using milling, it lacks in fine workability and has a problem in reliability due to redeposition of Au. Also, AuZ
The n-type electrode achieves ohmic contact by alloying, and there is also a problem that heat resistance is poor in the subsequent steps.

【0005】[0005]

【課題を解決するための手段】エミッタメサに自己整合
的に側壁絶縁膜を形成した後、結晶の選択成長技術を用
いてGaAsベース層上にSbを含む化合物半導体ノン
アロイコンタクト層を選択的に成長する。次に、Sbを
含む化合物半導体ノンアロイコンタト層に対して高融点
金属を選択的に被着する。これにより、エミッタメサに
対して自己整合的に耐熱性ベース電極を形成できる。
A side wall insulating film is formed on an emitter mesa in a self-aligned manner, and then a compound semiconductor non-alloy contact layer containing Sb is selectively grown on a GaAs base layer by using a crystal selective growth technique. To do. Next, a refractory metal is selectively deposited on the compound semiconductor non-alloy contact layer containing Sb. As a result, the heat resistant base electrode can be formed in self-alignment with the emitter mesa.

【0006】[0006]

【作用】Sbを含む化合物半導体層(例えばGaSb
層)をノンアロイコンタクト層としてGaAs層上に形
成することにより高融点金属(例えばW,WSi)電極
を用いてGaAsに対する良好なオーミック電極を実現
できる。Sbを含む化合物半導体層に対して選択W−C
VD技術が適用可能であることが実験的に確認された。
従って、上述したようにエミッタメサに対して自己整合
的に形成した側壁絶縁膜を利用してSbを含む化合物半
導体層をGaAsベース上に、W電極をSbを含む化合
物半導体層上に引き続き、各々堆積できる。
Function: A compound semiconductor layer containing Sb (for example, GaSb
By forming the layer as a non-alloy contact layer on the GaAs layer, a good ohmic electrode for GaAs can be realized by using a refractory metal (eg, W, WSi) electrode. Select W-C for compound semiconductor layer containing Sb
It was experimentally confirmed that the VD technique is applicable.
Therefore, the compound semiconductor layer containing Sb is deposited on the GaAs base and the W electrode is successively deposited on the compound semiconductor layer containing Sb by using the sidewall insulating film formed in self-alignment with the emitter mesa as described above. it can.

【0007】[0007]

【実施例】【Example】

(実施例1)本発明の一実施例を図1の工程図を用いて
説明する。半導体基板100上にエピタキシャル成長技
術を用いて第1の化合物半導体層101(例えば、Ga
As)を形成した後、Sbを含む第2の化合物半導体層
102(例えば、GaSb)をエピタキシャル成長技術
により形成した(a)。次いでCVD法により該試料に
SiO2 膜103を堆積した後、通常のリソグラフィと
エッチング技術を用いてSiO2 膜103に開孔部10
4を形成した(b)。その後、減圧CVD装置を用いて
選択W−CVD技術を適用して、開孔部104より露出
したSbを含む第2の化合物半導体層102に対して選
択的にW膜105を堆積した(c)。選択W−CVD条
件は、ガス流量:SiH4 2sccm,WF6 1sccm,全ガ
ス圧:0.12torr,基板温度:320℃である。
(Embodiment 1) An embodiment of the present invention will be described with reference to the process chart of FIG. A first compound semiconductor layer 101 (for example, Ga) is formed on the semiconductor substrate 100 by using an epitaxial growth technique.
After forming As), the second compound semiconductor layer 102 containing Sb (for example, GaSb) was formed by the epitaxial growth technique (a). Next, after depositing the SiO 2 film 103 on the sample by the CVD method, the opening portion 10 is formed in the SiO 2 film 103 by using ordinary lithography and etching techniques.
4 was formed (b). Then, a selective W-CVD technique was applied using a low pressure CVD apparatus to selectively deposit a W film 105 on the second compound semiconductor layer 102 containing Sb exposed from the opening 104 (c). . The selective W-CVD conditions are: gas flow rate: SiH 4 2 sccm, WF 6 1 sccm, total gas pressure: 0.12 torr, substrate temperature: 320 ° C.

【0008】本実施例では減圧CVDを用いてSbを含
む第2の化合物半導体層102上にW膜105の堆積を
行っているため、微細な開孔部104に対しても電極形
成が可能になる。
In this embodiment, since the W film 105 is deposited on the second compound semiconductor layer 102 containing Sb by using the low pressure CVD, it is possible to form the electrode even in the fine opening 104. Become.

【0009】(実施例2)本発明の他の一実施例を図2
の工程図を用いて説明する。半導体基板200上にエピ
タキシャル成長技術を用いて第1の化合物半導体層20
1(例えば、GaAs)を形成した後、Sb組成を膜厚方向に
徐々に増加させた第2の化合物半導体層202(例え
ば、GaAsSb)をエピタキシャル成長技術により形
成した(a)。次いでCVD法により該試料にSiO2
膜203を堆積した後、通常のリソグラフィとエッチン
グ技術を用いてSiO2 膜203に開孔部204を形成
した(b)。その後、減圧CVD装置を用いて選択W−
CVD技術を適用して、開孔部204より露出したSb
を含む第2の化合物半導体層202に対して選択的にW
膜205を堆積した(c)。選択W−CVD条件は、ガ
ス流量:SiH4 2sccm,WF6 1sccm ,全ガス圧:
0.12torr,基板温度:320℃である。
(Embodiment 2) Another embodiment of the present invention is shown in FIG.
This will be described with reference to the process chart of FIG. The first compound semiconductor layer 20 is formed on the semiconductor substrate 200 by using an epitaxial growth technique.
After forming 1 (for example, GaAs), a second compound semiconductor layer 202 (for example, GaAsSb) in which the Sb composition was gradually increased in the film thickness direction was formed by an epitaxial growth technique (a). Then, the sample is SiO 2 by the CVD method.
After depositing the film 203, an opening portion 204 was formed in the SiO 2 film 203 using ordinary lithography and etching techniques (b). Then, select W- using a low pressure CVD apparatus.
Sb exposed from the opening 204 by applying the CVD technique
W selectively with respect to the second compound semiconductor layer 202 containing
Film 205 was deposited (c). The selective W-CVD conditions are gas flow rate: SiH 4 2sccm, WF 6 1sccm, total gas pressure:
0.12 torr, substrate temperature: 320 ° C.

【0010】本実施例によれば、上記第1の化合物半導
体層201と第2の化合物半導体層202を組成を徐々
に変化させてエピタキシャル成長しているので格子不整
合及びバンド不連続の問題を低減できる。
According to the present embodiment, since the first compound semiconductor layer 201 and the second compound semiconductor layer 202 are epitaxially grown by gradually changing the composition, the problems of lattice mismatch and band discontinuity are reduced. it can.

【0011】(実施例3)本発明の他の実施例を図3の
工程図を用いて説明する。半導体基板300上にエピタ
キシャル成長技術を用いて第1の化合物半導体層301
(例えば、GaAs)を形成した後、Sbを含む数nm厚の
第2の極薄層化合物半導体層302(例えば、GaS
b)と数nm厚の第3の極薄層化合物半導体層303
(例えば、GaAs)を交互に数周期繰り返した後、最表面に
は第2の極薄層化合物半導体層302をエピタキシャル
成長技術により形成した(a)。次いで、CVD法によ
り試料にSiO2 膜304を堆積した後、通常のリソグ
ラフィとエッチング技術を用いてSiO2 膜304に開
孔部305を形成した(b)。その後、減圧CVD装置
を用いて選択W−CVD技術を適用して、開孔部305
より露出したSbを含む第2の化合物半導体層302に
対して選択的にW膜306を堆積した(c)。用いた選
択W−CVD条件は、ガス流量:SiH4 2sccm,WF
6 1sccm,全ガス圧:0.12torr,基板温度:320
℃である。
(Embodiment 3) Another embodiment of the present invention will be described with reference to the process chart of FIG. A first compound semiconductor layer 301 is formed on a semiconductor substrate 300 by using an epitaxial growth technique.
After forming (for example, GaAs), a second ultrathin compound semiconductor layer 302 (for example, GaS) containing Sb and having a thickness of several nm is formed.
b) and a third ultrathin compound semiconductor layer 303 having a thickness of several nm
After alternately repeating (for example, GaAs) several cycles, a second ultrathin compound semiconductor layer 302 was formed on the outermost surface by the epitaxial growth technique (a). Next, after depositing the SiO 2 film 304 on the sample by the CVD method, the opening 305 was formed in the SiO 2 film 304 by using the ordinary lithography and etching technique (b). Then, the selective W-CVD technique is applied using a low pressure CVD apparatus to form the opening 305.
A W film 306 was selectively deposited on the more exposed second compound semiconductor layer 302 containing Sb (c). The selective W-CVD conditions used were as follows: gas flow rate: SiH 4 2sccm, WF
6 1sccm, total gas pressure: 0.12 torr, substrate temperature: 320
℃.

【0012】本実施例によれば、第1の化合物半導体層
301層上に第2の極薄層化合物半導体層302と第3
の極薄層化合物半導体層303よりなる歪超格子構造を
採用しており、バンド不連続を緩和してW膜306と第
1の化合物半導体層301間で良好なオーミック接触を
実現できる。
According to this embodiment, the second ultrathin compound semiconductor layer 302 and the third compound semiconductor layer 302 are formed on the first compound semiconductor layer 301 layer.
The strained superlattice structure composed of the ultra-thin compound semiconductor layer 303 is adopted, and band discontinuity can be relaxed, and good ohmic contact can be realized between the W film 306 and the first compound semiconductor layer 301.

【0013】(実施例4)本発明の第4の実施例を図4
乃至図7に示す工程図を用いて説明する。
(Embodiment 4) A fourth embodiment of the present invention is shown in FIG.
It will be described with reference to the process charts shown in FIGS.

【0014】半絶縁性GaAs基板400上にMBE法
を用いて高濃度n型GaAsよりなるサブコレクタ層4
01,n型GaAsよりなるコレクタ層402,高濃度
p型GaAsよりなるベース層403,n型AlGaA
sよりなるエミッタ層404,高濃度n型GaAs及び
InGaAsよりなるサブエミッタ層405を順次積層
した後、スパッタ法によりWSi膜406を、CVD法
により第1のSiO2膜407を引き続いて形成した
(図4a)。次にリソグラフィとエッチング技術を用い
て第1のSiO2 膜407,WSi膜406,サブエミ
ッタ層405及びn型AlGaAsよりなるエミッタ層
404を各々同一マスクによりエッチングしてエミッタ
メサを形成して、外部ベース層403の表面を露出させ
た(図4b)。次に、CVD法により該試料に第2のSi
2 膜408を被着した後、エミッタメサ及び外部ベー
ス領域に開孔部を有するレジストマスク409を形成し
た(図5a)。
On the semi-insulating GaAs substrate 400, the sub-collector layer 4 made of high-concentration n-type GaAs by MBE method.
01, collector layer 402 made of n-type GaAs, base layer 403 made of high-concentration p-type GaAs, n-type AlGaA
After an emitter layer 404 made of s and a sub-emitter layer 405 made of high-concentration n-type GaAs and InGaAs are sequentially stacked, a WSi film 406 is formed by a sputtering method and a first SiO 2 film 407 is subsequently formed by a CVD method ( Figure 4a). Next, the first SiO 2 film 407, the WSi film 406, the sub-emitter layer 405, and the emitter layer 404 made of n-type AlGaAs are etched by the same mask using lithography and etching techniques to form an emitter mesa, and an external base is formed. The surface of layer 403 was exposed (Fig. 4b). Next, a second Si is added to the sample by the CVD method.
After depositing the O 2 film 408, a resist mask 409 having openings in the emitter mesa and the external base region was formed (FIG. 5a).

【0015】次いで、レジストマスク409を用いてR
IEによりSiO2 膜をエッチバックすることにより、
エミッタメサに対して自己整合的に側壁SiO2膜41
0を形成すると同時に外部ベース層を再び露出させた
(図5b)。
Next, using the resist mask 409, R
By etching back the SiO 2 film by IE,
The sidewall SiO 2 film 41 is self-aligned with the emitter mesa.
The outer base layer was exposed again at the same time that 0 was formed (FIG. 5b).

【0016】次いで、MOCVD或いはMOMBE法に
より、外部ベース層403上に選択的にGaAsSbよ
りなるベースコンタクト層411を形成した(図6
a)。このとき、GaAsSbのSb組成はベース層4
03との界面から徐々に増加させている。その後、試料
を減圧CVD装置に投入して、選択W−CVD技術を適
用して、GaAsSbよりなるベースコンタクト層41
1上に選択的にW膜412を形成した(図6b)。選択
W−CVD条件は、ガス流量:SiH4 2sccm,WF6
1sccm,全ガス圧:0.12torr ,基板温度:320℃
である。次いで、通常のリソグラフィとエッチング技術
を用いてコレクタコンタクト孔413を形成してサブコ
レクタ層401を露出させた後、AuGe/Ni/Au
よりなるコレクタ電極414をリフトオフ法により形成
した(図7)。
Next, a base contact layer 411 made of GaAsSb is selectively formed on the external base layer 403 by MOCVD or MOMBE method (FIG. 6).
a). At this time, the Sb composition of GaAsSb is 4
It is gradually increased from the interface with 03. Then, the sample is put into a low pressure CVD apparatus, and the selective W-CVD technique is applied to the base contact layer 41 made of GaAsSb.
A W film 412 was selectively formed on No. 1 (FIG. 6b). The selective W-CVD conditions are gas flow rate: SiH 4 2sccm, WF 6
1 sccm, total gas pressure: 0.12 torr, substrate temperature: 320 ° C
Is. Then, a collector contact hole 413 is formed by using a normal lithography and etching technique to expose the sub-collector layer 401, and then AuGe / Ni / Au is used.
Was formed by a lift-off method (FIG. 7).

【0017】ここで、本実施例ではSb傾斜組成のGa
AsSbをベースコンタクト層411として用いている
が、ベースコンタクト層411の最表面がGaSbにな
るまで組成を増大させることにより低接触抵抗が得られ
る。
Here, in this embodiment, Ga having an Sb gradient composition is used.
Although AsSb is used as the base contact layer 411, low contact resistance can be obtained by increasing the composition until the outermost surface of the base contact layer 411 becomes GaSb.

【0018】また、ベースコンタクト層411として実
施例3で述べたようにGaAs/GaSbの歪超格子を
用いても同様の効果が得られる。
The same effect can be obtained by using a strained superlattice of GaAs / GaSb as the base contact layer 411 as described in the third embodiment.

【0019】本実施例では、選択W−CVDを適用して
GaAsSbよりなるベースコンタクト層411上に選択的に
W膜412を形成しており、HBTのベース電極をエミ
ッタメサに対して自己整合的に形成することを可能にし
ている。
In this embodiment, selective W-CVD is applied.
The W film 412 is selectively formed on the base contact layer 411 made of GaAsSb, which enables the base electrode of the HBT to be formed in self-alignment with the emitter mesa.

【0020】[0020]

【発明の効果】本発明によると、Sbを含む化合物半導
体コンタクト層に対して選択W−CVD技術を適用するこ
とが可能であるため、化合物半導体デバイスの耐熱性電
極を自己整合的に形成することが可能になる。
According to the present invention, since the selective W-CVD technique can be applied to the compound semiconductor contact layer containing Sb, the heat-resistant electrode of the compound semiconductor device can be formed in a self-aligned manner. Will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の工程図。FIG. 1 is a process diagram of a first embodiment of the present invention.

【図2】本発明の実施例2の工程図。FIG. 2 is a process diagram of a second embodiment of the present invention.

【図3】本発明の実施例3の工程図。FIG. 3 is a process diagram of a third embodiment of the present invention.

【図4】本発明の実施例4の工程図。FIG. 4 is a process chart of Example 4 of the present invention.

【図5】本発明の実施例4の工程図。FIG. 5 is a process diagram of a fourth embodiment of the present invention.

【図6】本発明の実施例4の工程図。FIG. 6 is a process diagram of Example 4 of the present invention.

【図7】本発明の実施例4の工程図。FIG. 7 is a process chart of Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

100…半導体基板、101…第1の化合物半導体層、
102…第2の化合物半導体層、103…SiO2 膜、
104…開孔部。
100 ... Semiconductor substrate, 101 ... First compound semiconductor layer,
102 ... Second compound semiconductor layer, 103 ... SiO 2 film,
104 ... Opening part.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第1の化合物半導体層上にSbを含む第2
の化合物半導体を積層する工程、第2の化合物半導体層
上に絶縁膜マスクを形成する工程、及び金属の選択CV
D法を用いて前記絶縁膜マスクより露出した第2の化合
物半導体層上に選択的に金属膜を被着する工程を含むこ
とを特徴とする化合物半導体装置の製造方法。
1. A second compound containing Sb on a first compound semiconductor layer.
Step of stacking the compound semiconductor of above, step of forming an insulating film mask on the second compound semiconductor layer, and metal selection CV
A method of manufacturing a compound semiconductor device, comprising the step of selectively depositing a metal film on the second compound semiconductor layer exposed from the insulating film mask by using the D method.
【請求項2】請求項1において、前記第1の化合物半導
体層上にSb組成が徐々に増加して前記Sbを含む第2
の化合物半導体となるように前記第2の化合物半導体層
を積層する化合物半導体装置の製造方法。
2. The second composition according to claim 1, wherein the Sb composition is gradually increased on the first compound semiconductor layer to contain the Sb.
7. A method of manufacturing a compound semiconductor device, wherein the second compound semiconductor layer is laminated so as to be a compound semiconductor.
【請求項3】請求項1において、前記第1の化合物半導
体層上に数nmの第1の化合物半導体層と第2の化合物
半導体層を交互に積層した歪層を形成した後、最表面層
を第2の化合物半導体層とする化合物半導体装置の製造
方法。
3. The outermost surface layer according to claim 1, after forming a strained layer in which a first compound semiconductor layer and a second compound semiconductor layer having a thickness of several nm are alternately laminated on the first compound semiconductor layer. And a second compound semiconductor layer is used as a compound semiconductor device manufacturing method.
【請求項4】請求項1において、前記第1の化合物半導
体層及び第2の化合物半導体が各々、GaAs及びGa
Sbである化合物半導体装置の製造方法。
4. The method according to claim 1, wherein the first compound semiconductor layer and the second compound semiconductor are GaAs and Ga, respectively.
A method of manufacturing a compound semiconductor device which is Sb.
【請求項5】半導体基板上に高濃度n型GaAsサブコ
レクタ層,低濃度n型GaAsコレクタ層,高濃度p型
GaAsベース層,n型AlGaAsエミッタ層、及び
高濃度n型GaAsサブエミッタ層を順次積層する工
程、エミッタメサを形成して高濃度p型GaAsベース
層を露出させる工程、前記エミッタメサに対して自己整
合的に側壁絶縁膜マスクを形成する工程、その後、外部
p型GaAsベース層上にSb組成を徐々に増加させた
GaAsSb層を挿入した後GaSb層を選択的に形成
する工程、及び金属の選択CVD法により前記GaSb
層上に選択的に金属膜を被着する工程を含むことを特徴
とする化合物半導体装置の製造方法。
5. A high-concentration n-type GaAs subcollector layer, a low-concentration n-type GaAs collector layer, a high-concentration p-type GaAs base layer, an n-type AlGaAs emitter layer, and a high-concentration n-type GaAs subemitter layer on a semiconductor substrate. Steps of sequentially laminating, steps of forming an emitter mesa to expose a high-concentration p-type GaAs base layer, steps of forming a sidewall insulating film mask in a self-aligned manner with respect to the emitter mesa, and then, on the external p-type GaAs base layer. The step of selectively forming the GaSb layer after inserting the GaAsSb layer with the Sb composition gradually increased, and the GaSb layer by the selective CVD method of the metal.
A method of manufacturing a compound semiconductor device, comprising the step of selectively depositing a metal film on a layer.
JP6161093A 1993-03-22 1993-03-22 Manufacturing method of compound semiconductor device Pending JPH06275529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6161093A JPH06275529A (en) 1993-03-22 1993-03-22 Manufacturing method of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6161093A JPH06275529A (en) 1993-03-22 1993-03-22 Manufacturing method of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH06275529A true JPH06275529A (en) 1994-09-30

Family

ID=13176110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6161093A Pending JPH06275529A (en) 1993-03-22 1993-03-22 Manufacturing method of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH06275529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022145838A (en) * 2017-05-15 2022-10-04 東京エレクトロン株式会社 In-situ selective deposition and etching for advanced patterning application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022145838A (en) * 2017-05-15 2022-10-04 東京エレクトロン株式会社 In-situ selective deposition and etching for advanced patterning application

Similar Documents

Publication Publication Date Title
US5198689A (en) Heterojunction bipolar transistor
JP2771423B2 (en) Bipolar transistor
JP3086748B2 (en) High electron mobility transistor
JPH0797589B2 (en) Method for manufacturing heterojunction bipolar transistor
JPH06104273A (en) Semiconductor device
JP3439578B2 (en) Semiconductor device and manufacturing method thereof
JP2581455B2 (en) Negative differential resistance FET
JP3368449B2 (en) Semiconductor device and manufacturing method thereof
JPH06275529A (en) Manufacturing method of compound semiconductor device
EP0558011B1 (en) High electron mobility transistor
JP3057679B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
JP3135003B2 (en) Method for manufacturing heterojunction bipolar transistor
JP2000208754A (en) High electric-charge mobility transistor and its manufacture
JP3164150B2 (en) Method for manufacturing field effect transistor
JPH03159135A (en) Semiconductor device and its manufacture
JP3876397B2 (en) Method for manufacturing a Group III-V Group compound semiconductor device
JP3857609B2 (en) Method for manufacturing compound semiconductor device
JP2001135642A (en) Heterojunction bipolar transistor and its manufacturing method
JPH11330087A (en) Heterojunction bipolar transistor and its manufacture
JP2615983B2 (en) Method for manufacturing heterojunction bipolar transistor
JPH07283396A (en) Heterojunction field-effect transistor
JPH05226376A (en) Semiconductor device and manufacture thereof
JP2002134525A (en) Hetero junction bipolar transistor and manufacturing method thereof
JPH0661246A (en) Production of semiconductor device
JPH10209435A (en) Semiconductor device and its manufacturing method