JPH08240701A - Optical thin film - Google Patents

Optical thin film

Info

Publication number
JPH08240701A
JPH08240701A JP7067031A JP6703195A JPH08240701A JP H08240701 A JPH08240701 A JP H08240701A JP 7067031 A JP7067031 A JP 7067031A JP 6703195 A JP6703195 A JP 6703195A JP H08240701 A JPH08240701 A JP H08240701A
Authority
JP
Japan
Prior art keywords
film
layer
substrate
thickness
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7067031A
Other languages
Japanese (ja)
Inventor
Junichi Sakamoto
淳一 坂本
Yukinori Tsukamoto
征徳 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7067031A priority Critical patent/JPH08240701A/en
Publication of JPH08240701A publication Critical patent/JPH08240701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE: To form a reflection preventing film or the like having excellent adhesibility on a substrate of a synthetic resin containing polycarbonate. CONSTITUTION: A titanium oxide film such as TiO film has excellent adhesibility to the synthetic resin containing polycarbonate and further has a property hardly permeating an organic solvent or moisture. Then, the reflection preventing film 10 using the TiO film 11 as a 1st layer is formed on the surface of the substrate B1 of the synthetic resin containing polycarbonate. The reflection preventing film excellent in adhesibility and environmental resistance is can be obtained even when the substrate B1 is not heated while forming respective thin films 11-16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カメラ、複写機、ファ
クシミリ、レーザビームプリンタ等の光学機器の光学系
に用いられる合成樹脂製光学部品の光学薄膜に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical thin film of a synthetic resin optical component used in an optical system of an optical device such as a camera, a copying machine, a facsimile and a laser beam printer.

【0002】[0002]

【従来の技術】カメラ、複写機、ファクシミリ、レーザ
ビームプリンタ等の光学機器においては、これらの光学
系にできるだけ多くの合成樹脂製光学部品を用いること
で、部品コストの低減や軽量化、生産性の向上等を促進
する努力がなされている。
2. Description of the Related Art In optical devices such as cameras, copying machines, facsimiles, and laser beam printers, by using as many synthetic resin optical parts as possible in these optical systems, the cost of parts can be reduced, the weight can be reduced, and the productivity can be improved. Efforts are being made to promote the improvement of

【0003】光学部品がガラス製で、その表面に反射防
止膜等の光学薄膜を設ける場合には、ガラス製の基体
(光学部品)を200℃以上に加熱して真空蒸着法によ
って単層または複数層の薄膜を成膜するのが一般的であ
り、この方法によって、基体に対する密着性が良好で優
れた光学特性を有し、かつ、高温高湿の環境下において
も密着性や光学特性が劣化するおそれのない良質の光学
薄膜を得ることができる。
When the optical component is made of glass and an optical thin film such as an antireflection film is provided on the surface of the optical component, the glass substrate (optical component) is heated to 200 ° C. or higher and a single layer or a plurality of layers are formed by a vacuum deposition method. Generally, a thin film of a layer is formed. By this method, the adhesion to the substrate is good and the optical characteristics are excellent, and the adhesion and the optical characteristics are deteriorated even in an environment of high temperature and high humidity. It is possible to obtain a high-quality optical thin film that is free from the risk of

【0004】ところが、合成樹脂製光学部品の場合には
ガラス製のものに比べて軟化温度が低い(略110℃以
下)ため、薄膜の成膜中に上記のような高温に加熱する
ことができず、このために、基体(合成樹脂製光学部
品)に対する光学薄膜の密着性が不充分であり、また光
学薄膜の表面硬度も低くて傷つきやすい等の難点が多
く、実用性に乏しいものとなる。
However, since the softening temperature of the optical parts made of synthetic resin is lower than that of glass parts (about 110 ° C. or less), it is possible to heat the above-mentioned high temperature during the thin film formation. For this reason, the adhesion of the optical thin film to the substrate (optical component made of synthetic resin) is insufficient, and the surface hardness of the optical thin film is low, causing many problems such as being easily scratched, resulting in poor practicality. .

【0005】低温で成膜した場合の密着性を向上させる
方法としては、合成樹脂との密着性が良好で硬度の高い
SiOx(シリコン酸化物)層を基体に接する第1層と
する反射防止膜(特公昭53−000306号公報参
照)や、無極性合成樹脂(弗素系プラスチックやオレフ
ィン系プラスチック)の表面にジルコニウム、ニッケ
ル、チタン等の酸化物を主成分とする金属酸化物を積層
したもの(特開平3−260052号公報参照)が開発
されている。
As a method for improving the adhesion when the film is formed at a low temperature, an antireflection film having a SiOx (silicon oxide) layer having good adhesion to a synthetic resin and high hardness as a first layer in contact with a substrate (See Japanese Patent Publication No. 53-000306) or non-polar synthetic resin (fluorine-based plastic or olefin-based plastic) on the surface of which a metal oxide containing an oxide such as zirconium, nickel or titanium as a main component is laminated ( JP-A-3-260052) has been developed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、SiOx層を基体に接する第1層とす
るものは、ポリメチルメタアクリレート(アクリル)製
の基体に対しては有効であるが、基体がポリカーボネイ
ト(PC)やポリカーボネイトとポリスチレン等の混合
物である場合には、高温高湿の環境下(例えば、温度7
0℃以上で湿度85%以上)等において密着性が著しく
劣化する。従って、ポリカーボネイトを含む合成樹脂製
光学部品には不適である。
However, according to the above-mentioned conventional technique, the one having the SiOx layer as the first layer in contact with the substrate is effective for the substrate made of polymethylmethacrylate (acrylic). In the case where the substrate is polycarbonate (PC) or a mixture of polycarbonate and polystyrene, etc., in a high temperature and high humidity environment (for example, at a temperature of 7
When the temperature is 0 ° C or higher and the humidity is 85% or higher), the adhesiveness is significantly deteriorated. Therefore, it is unsuitable for synthetic resin optical parts containing polycarbonate.

【0007】また、ジルコニウム、ニッケル等の酸化物
を主成分とする金属酸化物を積層したものは、無極性の
合成樹脂製光学部品のために開発されたものであり、こ
れをそのまま、構造式の中にカルボニル基を有し従って
高い極性を示すポリカーボネイトを含有する合成樹脂製
光学部品に適用することは難しい。
A laminate of metal oxides containing an oxide such as zirconium or nickel as a main component was developed for an optical component made of a nonpolar synthetic resin. It is difficult to apply to a synthetic resin optical component containing a polycarbonate having a carbonyl group in the inside and therefore showing a high polarity.

【0008】本発明は、上記従来の技術の有する問題点
に鑑みてなされたものであって、ポリカーボネイトを含
有する合成樹脂の基体に対して高い密着性を有し、耐環
境性も充分である光学薄膜を提供することを目的とする
ものである。
The present invention has been made in view of the problems of the above-mentioned conventional techniques, and has high adhesion to a synthetic resin substrate containing polycarbonate and sufficient environmental resistance. It is intended to provide an optical thin film.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の光学薄膜はポリカーボネイトを含有する基
体に積層された複数層の薄膜からなる多層膜を有し、前
記複数層の薄膜のうちで、前記基体に接する第1層がチ
タン酸化物膜であることを特徴とする。
In order to achieve the above object, the optical thin film of the present invention has a multilayer film consisting of a plurality of thin films laminated on a substrate containing polycarbonate, and Then, the first layer in contact with the substrate is a titanium oxide film.

【0010】基体の表面から最も遠い最終層が珪素酸化
物膜であるとよい。
The final layer farthest from the surface of the substrate is preferably a silicon oxide film.

【0011】[0011]

【作用】TiO膜やTi23 膜等のチタン酸化物膜
は、特にポリカーボネイトを含有する合成樹脂に対して
優れた密着性を有し、かつ、有機溶剤や水分が浸透し難
い性質を有する。そこで、ポリカーボネイトを含有する
合成樹脂を基体とする反射防止膜やハーフミラー等の光
学薄膜の第1層にチタン酸化物膜を用いることで、基体
に対する密着性が充分であり、しかも高温高湿の環境下
においても密着性が著しく劣化するおそれのない良質の
光学薄膜を実現する。該光学薄膜は、基体を無加熱で成
膜しても充分な密着性や耐環境性を得ることができる。
[Function] A titanium oxide film such as a TiO film or a Ti 2 O 3 film has excellent adhesiveness especially to a synthetic resin containing polycarbonate, and has a property that an organic solvent or water hardly penetrates. . Therefore, by using a titanium oxide film as the first layer of an optical thin film such as an antireflection film or a half mirror having a synthetic resin containing polycarbonate as a substrate, sufficient adhesion to the substrate and high temperature and high humidity can be achieved. To realize a high-quality optical thin film in which the adhesiveness is not significantly deteriorated even in an environment. The optical thin film can obtain sufficient adhesion and environment resistance even if the substrate is formed without heating.

【0012】また、光学薄膜の最終層が、硬質で有機溶
剤や水分を透過し難い性質を有する珪素酸化物膜であれ
ば、摩擦等の機械的刺激によって傷つき難いという長所
が付加されるとともに、耐環境性もより一層向上する。
Further, if the final layer of the optical thin film is a silicon oxide film which is hard and has a property of hardly permeating an organic solvent or water, it has an advantage that it is hard to be damaged by mechanical stimulation such as friction. The environment resistance is further improved.

【0013】[0013]

【実施例】本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0014】図1は第1実施例による光学薄膜である反
射防止膜10を示すもので、ポリカーボネイトをレンズ
形状に射出成形した基体B1 の表面に真空蒸着法によっ
て積層された6層の薄膜からなる多層膜を有し、基体B
1 の表面に成膜された第1層は膜厚5nmのチタン酸化
物膜であるTiO膜11であり、第2層は膜厚166n
mのSiO膜12、第3層は膜厚12nmのTiO膜1
3、第4層は膜厚21nmのSiO2 膜14、第5層は
膜厚106nmのTiO膜15、第6層は膜厚84nm
の珪素酸化物膜であるSiO2 膜16である。
FIG. 1 shows an antireflection film 10 which is an optical thin film according to the first embodiment. It consists of a six-layer thin film laminated by a vacuum deposition method on the surface of a substrate B 1 injection-molded with polycarbonate in the shape of a lens. Having a multilayer film of
A first layer which is formed on the first surface is a TiO film 11 is a titanium oxide film having a thickness of 5 nm, the second layer thickness 166n
m SiO film 12, the third layer is a 12 nm thick TiO film 1
The third and fourth layers have a SiO 2 film 14 with a thickness of 21 nm, the fifth layer has a TiO film 15 with a thickness of 106 nm, and the sixth layer has a thickness of 84 nm.
Is a SiO 2 film 16 which is a silicon oxide film.

【0015】各層の薄膜11〜16の成膜は、いずれ
も、真空室に酸素ガスを導入して圧力1.33e〜2P
aの真空雰囲気のもとに所定の蒸発源を電子ビーム加熱
法によって加熱して蒸発させ、基体B1 は無加熱で行な
われたもので、各層の膜厚制御には単色光による反射率
測光法を採用した。
The thin films 11 to 16 of the respective layers are formed by introducing oxygen gas into the vacuum chamber to obtain pressures of 1.33e to 2P.
A predetermined evaporation source is heated and evaporated by an electron beam heating method in a vacuum atmosphere of a, and the substrate B 1 is heated without heating. The thickness of each layer is controlled by reflectance photometry with monochromatic light. Adopted the law.

【0016】図2は反射防止膜10の分光反射率を測定
した結果を示すグラフである。このグラフから解るよう
に反射防止膜10は波長400〜700nmの範囲で反
射率が1%以下であり極めてすぐれた光学特性を有す
る。
FIG. 2 is a graph showing the results of measuring the spectral reflectance of the antireflection film 10. As can be seen from this graph, the antireflection film 10 has a reflectance of 1% or less in the wavelength range of 400 to 700 nm and has extremely excellent optical characteristics.

【0017】また、温度70℃湿度85%の高温高湿耐
久槽に100時間放置したうえで粘着テープによる密着
性のテストを行なったところ、基体B1 との間の密着性
は極めて良好であり、カメラレンズ等の光学部品の反射
防止膜として光学特性および耐環境性の双方が充分であ
ることが判明した。
Further, the adhesiveness with the adhesive tape was tested after leaving it in a high temperature and high humidity durability tank having a temperature of 70 ° C. and a humidity of 85% for 100 hours. As a result, the adhesiveness with the substrate B 1 was extremely good. It has been found that both the optical characteristics and the environmental resistance are sufficient as an antireflection film for optical parts such as camera lenses.

【0018】本実施例は、基体の表面に成膜する第1層
がポリカーボネイト製の基体に対して極めて密着性にす
ぐれたTiO膜であるため、基体を無加熱で成膜しても
充分な密着性を得ることができる。また、TiO膜等の
チタン酸化物膜は有機溶剤や水分を透過し難い性質を有
するため、高温高湿の環境下において密着性が劣化する
のを回避できる。
In this embodiment, since the first layer formed on the surface of the substrate is a TiO film having excellent adhesion to the polycarbonate substrate, it is sufficient to form the substrate without heating. Adhesion can be obtained. In addition, since the titanium oxide film such as the TiO film has a property of hardly permeating an organic solvent or water, it is possible to avoid the deterioration of the adhesiveness under the environment of high temperature and high humidity.

【0019】さらに、反射防止膜の最終層(第6層)が
SiO2 膜であるために、水分や有機溶剤が反射防止膜
の内部へ侵入するのを防ぎ、前述のように耐環境性が大
きく向上するものと推察される。
Furthermore, since the final layer (sixth layer) of the antireflection film is a SiO 2 film, it is possible to prevent moisture and organic solvent from entering the inside of the antireflection film, and as described above, the environment resistance is improved. It is estimated that it will greatly improve.

【0020】加えて、表面層が硬度の高いSiO2 膜で
あるために、摩擦等の外部からの機械的刺激に対して傷
つきにくいという利点を有する。
In addition, since the surface layer is a SiO 2 film having high hardness, it has an advantage that it is not easily scratched by external mechanical stimuli such as friction.

【0021】比較のために図3に示す反射防止膜20を
製作してその分光反射率を測定し、測定結果を図4に示
す。
For comparison, the antireflection film 20 shown in FIG. 3 was manufactured and its spectral reflectance was measured. The measurement result is shown in FIG.

【0022】図3の反射防止膜20は、第1実施例と同
様のポリカーボネイトの基体B2 にそれぞれ第1実施例
と同様の真空蒸着法によって成膜された膜厚170nm
のSiO膜21からなる第1層と、膜厚15nmのTi
O膜22からなる第2層と、膜厚30nmのSiO2
23からなる第3層と、膜厚120nmのTiO膜24
からなる第4層と、膜厚87nmのSiO2 膜25から
なる第5層を有する。
The antireflection film 20 of FIG. 3 is formed on the same polycarbonate substrate B 2 as in the first embodiment by the same vacuum deposition method as in the first embodiment, and has a film thickness of 170 nm.
Of the first SiO 2 film 21 and Ti of 15 nm thickness
A second layer made of an O film 22, a third layer made of a SiO 2 film 23 having a film thickness of 30 nm, and a TiO film 24 having a film thickness of 120 nm.
And a fifth layer made of a SiO 2 film 25 having a film thickness of 87 nm.

【0023】この反射防止膜20は、図4に示すよう
に、波長400〜700nmの範囲で反射率が1%以下
であるが、温度70℃湿度85%の高温高湿耐久槽に1
00時間放置したうえで粘着テープによる密着性のテス
トを行なったところ、反射防止膜が基体B2 から剥離
し、密着性の劣化が確認された。従って、カメラレンズ
等光学部品の反射防止膜として用いるのは好ましくな
い。
As shown in FIG. 4, the antireflection film 20 has a reflectance of 1% or less in the wavelength range of 400 to 700 nm, but is used in a high temperature and high humidity durability tank having a temperature of 70 ° C. and a humidity of 85%.
When the adhesiveness of the adhesive tape was tested after standing for 00 hours, the antireflection film was peeled off from the substrate B 2 , and deterioration of the adhesiveness was confirmed. Therefore, it is not preferable to use it as an antireflection film for optical parts such as a camera lens.

【0024】耐環境試験によって密着性が劣化した理由
は、基体に接触する第1層がSiO膜であり、基体に対
する密着性がTiO膜に比べて低いためと推察される。
The reason why the adhesion is deteriorated by the environment resistance test is presumed to be that the first layer contacting the substrate is the SiO film and the adhesion to the substrate is lower than that of the TiO film.

【0025】図5は第2実施例による光学薄膜である反
射防止膜30を示すもので、これは、ポリカーボネイト
をレンズ形状に射出成形した基体B3 の表面に真空蒸着
法によって成膜された6層の薄膜からなり、第1層は、
Tiをターゲットとして、Arを0.7Paまで真空室
に導入した後、O2 を5sccmの流量で同真空室に導
入し、高周波マグネトロンスパッタ法によって成膜した
膜厚16nmのチタン酸化物膜31であり、第2層は、
SiO2 をターゲットとして、Arを0.7Paまで真
空室に導入し、高周波マグネトロンスパッタ法によって
成膜した膜厚29nmのSiO2 膜32であり、第3層
は、第1層のチタン酸化物膜31と同様に成膜された膜
厚58nmのチタン酸化物膜33であり、第4層は、第
2層のSiO2 膜32と同様に成膜されたSiO2 膜3
4であり、第5層は、第1層のチタン酸化物膜31と同
様に成膜された膜厚45nmのチタン酸化物膜35であ
り、第6層は、第2層のSiO2 膜32と同様に成膜さ
れた膜厚91nmのSiO2 膜36である。各層の薄膜
31〜36の膜厚は、スパッタレートよりスパッタ時間
を逆算し、時間により制御した。このようにして得られ
た反射防止膜30の分光反射率を測定した結果を図6に
示す。
FIG. 5 shows an antireflection film 30 which is an optical thin film according to the second embodiment. It is formed by vacuum deposition on the surface of a substrate B 3 which is injection molded of polycarbonate in a lens shape. The first layer consists of a thin film of layers
Using Ti as a target, Ar was introduced into the vacuum chamber up to 0.7 Pa, and then O 2 was introduced into the vacuum chamber at a flow rate of 5 sccm to form a titanium oxide film 31 with a thickness of 16 nm formed by the high frequency magnetron sputtering method. Yes, the second layer is
A SiO 2 film 32 having a film thickness of 29 nm was formed by high-frequency magnetron sputtering by introducing Ar to a pressure of 0.7 Pa in a vacuum chamber with SiO 2 as a target, and the third layer was a titanium oxide film of the first layer. The titanium oxide film 33 has a film thickness of 58 nm and is formed in the same manner as 31, and the fourth layer is the SiO 2 film 3 formed in the same manner as the second SiO 2 film 32.
4, the fifth layer is a titanium oxide film 35 having a film thickness of 45 nm formed in the same manner as the titanium oxide film 31 of the first layer, and the sixth layer is the SiO 2 film 32 of the second layer. The SiO 2 film 36 having a film thickness of 91 nm is formed in the same manner as in. The film thicknesses of the thin films 31 to 36 of the respective layers were controlled by calculating the sputtering time backward from the sputtering rate. FIG. 6 shows the result of measuring the spectral reflectance of the antireflection film 30 thus obtained.

【0026】本実施例による反射防止膜30は、可視域
全域にわたって反射率が1%以下であり、特に波長41
0〜680nmの範囲では0.5%以下の反射率で極め
て高性能な反射防止膜である。また、温度70℃湿度8
5%の高温高湿耐久層に100時間放置したうえで粘着
テープによる密着性のテストを実施したとろこ、基体に
対する密着性は良好であり、カメラやビデオの光学系や
メガネレンズ等の反射防止膜として好適であることが判
明した。
The antireflection film 30 according to this embodiment has a reflectance of 1% or less over the entire visible region, and particularly, the wavelength 41
In the range of 0 to 680 nm, it is an antireflection film of extremely high performance with a reflectance of 0.5% or less. Also, the temperature is 70 ° C and the humidity is 8
After being left in a 5% high temperature and high humidity durable layer for 100 hours, an adhesion test was performed using an adhesive tape, and the adhesion to the substrate was good, and the optical system of cameras and videos, and the anti-reflection of eyeglass lenses, etc. It has been found to be suitable as a membrane.

【0027】図7は第3実施例による光学薄膜であるハ
ーフミラー40を示すもので、これは、ポリカーボネイ
トとポリスチレンの混合物を平板状に射出成形した基体
4と、その表面に真空蒸着法により積層された5層の
薄膜からなり、第1層は真空室の圧力を1.33e〜2
Paに制御して136nmの膜厚に成膜されたチタン酸
化物膜であるTi23 膜41であり、第2層は真空室
の圧力が1.33e〜2Paになるように酸素ガスを導
入して、78nmの膜厚に成膜されたSiO2膜42で
あり、第3層は第1層のTi23 膜41と同様の方法
で51nmの膜厚に成膜されたTi23 膜43であ
り、第4層は第2層のSiO2 膜42と同様の方法で8
0nmの膜厚に成膜されたSiO2 膜44であり、第5
層は第1層のTi23 膜41と同様の方法で89nm
の膜厚に成膜されたTi23 膜45である。
FIG. 7 shows a half mirror 40, which is an optical thin film according to the third embodiment, which comprises a substrate B 4 injection-molded in a flat plate form of a mixture of polycarbonate and polystyrene, and a surface thereof formed by a vacuum deposition method. It consists of 5 layers of thin film laminated, and the first layer has a pressure of 1.33e ~ 2 in the vacuum chamber.
It is a Ti 2 O 3 film 41 which is a titanium oxide film formed to a film thickness of 136 nm while controlling the pressure to be Pa, and the second layer contains oxygen gas so that the pressure in the vacuum chamber becomes 1.33e to 2Pa. introducing a SiO 2 film 42 which is formed into a film having a thickness of 78 nm, Ti 2 third layer which is formed into a film having a thickness of 51nm in the same way as Ti 2 O 3 film 41 of the first layer O 3 film 43, and the fourth layer is formed by the same method as the second layer SiO 2 film 42.
The SiO 2 film 44 having a film thickness of 0 nm is
The layer is 89 nm in the same manner as the Ti 2 O 3 film 41 of the first layer.
Is a Ti 2 O 3 film 45 having a film thickness of.

【0028】各層の薄膜41〜45の成膜はいずれも所
定の蒸発源を電子ビーム加熱法によって加熱し、基体B
4 は無加熱で行なわれ、また、膜厚制御には単色光によ
る反射率測光法を採用した。このようにして得られた反
射防止膜40の分光反射率を測定した結果を図8に示
す。
The thin films 41 to 45 of each layer are formed by heating a predetermined evaporation source by an electron beam heating method to form a substrate B.
No. 4 was performed without heating, and the reflectance photometry with monochromatic light was used to control the film thickness. The result of measuring the spectral reflectance of the antireflection film 40 thus obtained is shown in FIG.

【0029】本実施例によるハーフミラー40は、可視
域全域の平均反射率が約50%であり、温度70℃湿度
85%の高温高湿耐久槽に100時間放置したうえで粘
着テープによる密着性のテストを実施したところ、基体
に対する密着性は良好であり、耐久性にすぐれたハーフ
ミラーであることが判明した。
The half mirror 40 according to the present embodiment has an average reflectance in the entire visible region of about 50%, is left in a high temperature and high humidity durability tank having a temperature of 70 ° C. and a humidity of 85% for 100 hours, and then adheres with an adhesive tape. As a result, it was found that the half mirror had good adhesion to the substrate and excellent durability.

【0030】比較のために図9に示すハーフミラー50
を製作してその分光反射率を測定した。図9のハーフミ
ラー50は、ポリカーボネイトとポリスチレンの混合物
を平板角形状に射出成形した基体B5 と、その表面に真
空蒸着法により成膜された6層の薄膜からなり、第1層
は真空室の圧力が1.33e〜2Paになるように酸素
ガスを導入して5nmの膜厚に成膜したSiO膜51、
第2層は真空室の圧力を1.33e〜2Paに制御して
136nmの膜厚に成膜したTi23 膜52、第3層
は真空室の圧力が1.33e〜2Paになるように酸素
ガスを導入して75nmの膜厚に成膜したSiO2 膜5
3、第4層は第2層のTi23 膜52と同様の方法で
51nmの膜厚に成膜されたTi23 膜54、第5層
は第3層のSiO2 膜53と同様の方法で80nmの膜
厚に成膜されたSiO2 膜55、第6層は第2層のTi
23 膜52と同様の方法で89nmの膜厚に成膜され
たTi23 膜56であり、第1層のSiO膜51の成
膜は蒸発源を抵抗加熱法で加熱し、残りの薄膜52〜5
6の成膜はいずれも蒸発源を電子ビーム加熱法によって
加熱することによって行なわれた。
A half mirror 50 shown in FIG. 9 for comparison.
Was manufactured and its spectral reflectance was measured. The half mirror 50 shown in FIG. 9 is composed of a substrate B 5 obtained by injection-molding a mixture of polycarbonate and polystyrene into a square plate shape, and a thin film of 6 layers formed on the surface thereof by a vacuum deposition method. The first layer is a vacuum chamber. Of the SiO film 51 having a film thickness of 5 nm by introducing oxygen gas so that the pressure becomes 1.33e to 2Pa.
The second layer is a Ti 2 O 3 film 52 formed to a film thickness of 136 nm by controlling the pressure in the vacuum chamber to 1.33e to 2Pa, and the third layer has a pressure in the vacuum chamber of 1.33e to 2Pa. SiO 2 film 5 formed by introducing oxygen gas into the film to a thickness of 75 nm
The third and fourth layers are a Ti 2 O 3 film 54 having a film thickness of 51 nm formed by the same method as the Ti 2 O 3 film 52 of the second layer, and the fifth layer is a SiO 2 film 53 of the third layer. A SiO 2 film 55 having a film thickness of 80 nm was formed by the same method, and the sixth layer was the second layer of Ti.
The Ti 2 O 3 film 56 is formed to have a film thickness of 89 nm by the same method as the 2 O 3 film 52, and the first layer SiO film 51 is formed by heating the evaporation source by a resistance heating method and leaving Thin film 52-5
All of the film formations of No. 6 were performed by heating the evaporation source by the electron beam heating method.

【0031】また、このようにして得られたハーフミラ
ー50の分光反射率を測定した結果を図10に示す。ハ
ーフミラー50は、可視域全域で平均反射率が50%と
なるものの、温度70℃湿度85%の高温高湿耐久槽に
100時間放置したうえで、粘着テープによる密着性の
テストを実施したところ、基体から膜が剥離した。これ
は、基体50に接触する第1層がチタン酸化物に比べて
密着性の低いSiO膜51であることに起因すると考え
られる。
FIG. 10 shows the result of measuring the spectral reflectance of the half mirror 50 thus obtained. Although the half mirror 50 has an average reflectance of 50% in the entire visible range, the half mirror 50 was left in a high temperature and high humidity durability tank having a temperature of 70 ° C. and a humidity of 85% for 100 hours, and then an adhesive tape adhesiveness test was conducted. The film peeled from the substrate. It is considered that this is because the first layer in contact with the base body 50 is the SiO film 51 having lower adhesion than titanium oxide.

【0032】図11は第4実施例による光学薄膜である
ハーフミラー60を示すもので、これは、ポリカーボネ
イトを平板角形状に射出成形した基体B6 と、その表面
に真空蒸着法により成膜された6層の薄膜からなり、第
1層は真空室を1.33e〜2Paの圧力に制御して1
23nmの膜厚に成膜されたTiO膜61、第2層は真
空室の圧力が1.33e〜2Paになるように酸素ガス
を導入して、81nmの膜厚に成膜されたSiOx膜6
2、第3層は第1層のTiO膜61と同様の方法で54
nmの膜厚に成膜されたTiO膜63、第4層は第2層
のSiOx膜62と同様の方法で86nmの膜厚に成膜
されたSiOx膜64、第5層は第1層のTiO膜61
と同様の方法で膜厚59nmに成膜されたTiO膜6
5、第6層は第2層のSiOx膜62と同様の方法で5
7nmの膜厚に成膜された珪素酸化物膜であるSiOx
膜66である。
FIG. 11 shows a half mirror 60 which is an optical thin film according to the fourth embodiment. This is a substrate B 6 in which a polycarbonate is injection-molded into a flat plate shape, and a film is formed on the surface thereof by a vacuum deposition method. The first layer consists of 6 layers of thin film, and the first layer controls the vacuum chamber to a pressure of 1.33e-2Pa.
The TiO film 61 having a film thickness of 23 nm and the second layer were formed by introducing oxygen gas so that the pressure in the vacuum chamber was 1.33 e to 2 Pa, and the SiOx film 6 having a film thickness of 81 nm.
The second and third layers are formed by the same method as the first layer TiO film 61.
TiO film 63 formed to a thickness of 8 nm, the fourth layer is a SiOx film 64 formed to a thickness of 86 nm by the same method as the SiOx film 62 of the second layer, and the fifth layer is a first layer. TiO film 61
TiO film 6 formed to a film thickness of 59 nm by the same method as
The fifth and sixth layers are formed by the same method as the second layer SiOx film 62.
SiOx, which is a silicon oxide film formed to a thickness of 7 nm
The film 66.

【0033】各層の薄膜61〜66の成膜は所定の蒸発
源を抵抗加熱法によって加熱して行なわれ、また、各層
の膜厚は、単色光による反射率測光法により制御した。
このようにして得られたハーフミラー60の分光反射率
を測定した結果を図12に示す。本実施例によるハーフ
ミラー60は、可視域全域の平均反射率が45%とな
る。また、温度70℃湿度85%の高温高湿耐久槽に1
00時間放置したうえで粘着テープによる密着性のテス
トを実施したところ、基体に対する密着性は良好であっ
た。さらに、メタノールとエーテルの混合液をレンズク
リーニングペーパーに浸して500gの加重をかけて表
面を50往復擦ったが、ハーフミラーの表面には傷や膜
剥離といった変化も認められず、機械的刺激に対する耐
久性も充分であることが判明した。
The thin films 61 to 66 of each layer were formed by heating a predetermined evaporation source by a resistance heating method, and the film thickness of each layer was controlled by a reflectance photometry method using monochromatic light.
The result of measuring the spectral reflectance of the half mirror 60 thus obtained is shown in FIG. The half mirror 60 according to the present embodiment has an average reflectance of 45% over the entire visible range. In addition, a high temperature and high humidity durability tank with a temperature of 70 ° C and a humidity of 85%
When the adhesive tape was tested for adhesion after being left to stand for 00 hours, the adhesion to the substrate was good. Furthermore, a mixed solution of methanol and ether was dipped in a lens cleaning paper and a load of 500 g was applied to rub the surface 50 times, but no change such as scratches or film peeling was observed on the surface of the half mirror, and mechanical stimulus It was found that the durability was also sufficient.

【0034】比較のために本実施例のハーフミラーと同
様のハーフミラーをアクリル基板に形成し、温度70℃
湿度85%の高温高湿耐久槽に100時間放置したうえ
で、粘着テープによる密着性のテストを実施したとこ
ろ、基板より膜が剥離しているのが観察された。アクリ
ル基板に対してはチタン酸化物が良好な密着性を持たな
いためと推察される。
For comparison, a half mirror similar to the half mirror of this embodiment is formed on an acrylic substrate and the temperature is 70 ° C.
After leaving it in a high temperature and high humidity durability tank having a humidity of 85% for 100 hours, an adhesive tape adhesiveness test was conducted, and it was observed that the film was peeled from the substrate. It is presumed that titanium oxide does not have good adhesion to the acrylic substrate.

【0035】[0035]

【発明の効果】本発明は上述のとおり構成されているの
で、次に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0036】ポリカーボネイトを含有する合成樹脂の基
体に対して高い密着性を有し、耐環境性も充分であって
しかも安価な反射防止膜やハーフミラー等の光学薄膜を
実現できる。
It is possible to realize an optical thin film such as an antireflection film or a half mirror, which has high adhesion to a synthetic resin substrate containing polycarbonate, has sufficient environmental resistance, and is inexpensive.

【0037】このような合成樹脂製光学部品を用いるこ
とで、各種光学機器の軽量化や低コスト化を大きく促進
できる。
By using such a synthetic resin optical component, weight saving and cost reduction of various optical devices can be greatly promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例による反射防止膜の膜構成を示す図
である。
FIG. 1 is a diagram showing a film structure of an antireflection film according to a first example.

【図2】図1の反射防止膜の分光反射率を測定した結果
を示すグラフである。
FIG. 2 is a graph showing the results of measuring the spectral reflectance of the antireflection film of FIG.

【図3】第1実施例の一比較例の膜構成を示す図であ
る。
FIG. 3 is a diagram showing a film configuration of a comparative example of the first embodiment.

【図4】図3の反射防止膜の分光反射率を測定した結果
を示すグラフである。
FIG. 4 is a graph showing the results of measuring the spectral reflectance of the antireflection film of FIG.

【図5】第2実施例による反射防止膜の膜構成を示す図
である。
FIG. 5 is a diagram showing a film configuration of an antireflection film according to a second example.

【図6】図5の反射防止膜の分光反射率を測定した結果
を示すグラフである。
6 is a graph showing the results of measuring the spectral reflectance of the antireflection film of FIG.

【図7】第3実施例によるハーフミラーの膜構成を示す
図である。
FIG. 7 is a diagram showing a film structure of a half mirror according to a third embodiment.

【図8】図7のハーフミラーの分光反射率を測定した結
果を示すグラフである。
8 is a graph showing the results of measuring the spectral reflectance of the half mirror of FIG.

【図9】第3実施例の一比較例の膜構成を示す図であ
る。
FIG. 9 is a diagram showing a film configuration of a comparative example of the third embodiment.

【図10】図9のハーフミラーの分光反射率を測定した
結果を示すグラフである。
10 is a graph showing the results of measuring the spectral reflectance of the half mirror of FIG.

【図11】第4実施例によるハーフミラーの膜構成を示
す図である。
FIG. 11 is a diagram showing a film configuration of a half mirror according to a fourth example.

【図12】図12のハーフミラーの分光反射率を測定し
た結果を示すグラフである。
12 is a graph showing the results of measuring the spectral reflectance of the half mirror of FIG.

【符号の説明】[Explanation of symbols]

11,13,15,22,24,61,63,65
TiO膜 12,21,51 SiO膜 14,16,23,25,32,34,36,42,4
4,53,55 SiO2 膜 31,33,35 チタン酸化物膜 41,43,45,52,54,56 Ti23 膜 62,64,66 SiOx膜
11, 13, 15, 22, 24, 61, 63, 65
TiO film 12, 21, 51 SiO film 14, 16, 23, 25, 32, 34, 36, 42, 4
4, 53, 55 SiO 2 film 31, 33, 35 titanium oxide film 41, 43, 45, 52, 54, 56 Ti 2 O 3 film 62, 64, 66 SiOx film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリカーボネイトを含有する基体に積層
された複数層の薄膜からなる多層膜を有し、前記複数層
の薄膜のうちで、前記基体に接する第1層がチタン酸化
物膜であることを特徴とする光学薄膜。
1. A multilayer film comprising a plurality of thin films laminated on a substrate containing polycarbonate, wherein the first layer of the plurality of thin films in contact with the substrate is a titanium oxide film. An optical thin film characterized by.
【請求項2】 基体の表面から最も遠い最終層が珪素酸
化物膜であることを特徴とする請求項1記載の光学薄
膜。
2. The optical thin film according to claim 1, wherein the final layer farthest from the surface of the substrate is a silicon oxide film.
【請求項3】 多層膜が反射防止膜であることを特徴と
する請求項1または2記載の光学薄膜。
3. The optical thin film according to claim 1, wherein the multilayer film is an antireflection film.
【請求項4】 多層膜がハーフミラーであることを特徴
とする請求項1または2記載の光学薄膜。
4. The optical thin film according to claim 1, wherein the multilayer film is a half mirror.
JP7067031A 1995-03-01 1995-03-01 Optical thin film Pending JPH08240701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7067031A JPH08240701A (en) 1995-03-01 1995-03-01 Optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7067031A JPH08240701A (en) 1995-03-01 1995-03-01 Optical thin film

Publications (1)

Publication Number Publication Date
JPH08240701A true JPH08240701A (en) 1996-09-17

Family

ID=13333111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7067031A Pending JPH08240701A (en) 1995-03-01 1995-03-01 Optical thin film

Country Status (1)

Country Link
JP (1) JPH08240701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058854A (en) * 2004-07-20 2006-03-02 Sumitomo Metal Mining Co Ltd Absorption type multilayer film nd filter
JP2009282088A (en) * 2008-05-20 2009-12-03 Sumitomo Metal Mining Co Ltd Absorption type multi-layer film nd filter and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058854A (en) * 2004-07-20 2006-03-02 Sumitomo Metal Mining Co Ltd Absorption type multilayer film nd filter
JP4595687B2 (en) * 2004-07-20 2010-12-08 住友金属鉱山株式会社 Absorption-type multilayer ND filter
JP2009282088A (en) * 2008-05-20 2009-12-03 Sumitomo Metal Mining Co Ltd Absorption type multi-layer film nd filter and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5725959A (en) Antireflection film for plastic optical element
JP2008164678A (en) Reflection mirror
JPS6135521B2 (en)
JPH08240701A (en) Optical thin film
JP3739478B2 (en) Antireflection multilayer film, film forming method and film forming apparatus
JP2000241612A (en) Reflector
JP3221764B2 (en) Anti-reflection coating for optical parts made of synthetic resin
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JP3068252B2 (en) Optical member having antireflection film
JPH11149005A (en) Inside surface reflection mirror and its production
JPS60130702A (en) Antireflection film for plastic substrate
JPS6381402A (en) Reflection reducing coating of plastic optical parts
JPH0894802A (en) Optical element
JPH05127005A (en) Surface-coated reflecting mirror
JP2894530B2 (en) Optical member having antireflection film
JP2777937B2 (en) Resin optical element and method of manufacturing the same
JPH07270601A (en) Optical thin film
JP3111243B2 (en) Optical component having laminated antireflection film
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
JPH077126B2 (en) Synthetic resin reflector
JPH03132601A (en) Antireflection film of optical parts made of plastic and production thereof
JP2693500B2 (en) Anti-reflective coating
JPH05313001A (en) Reflection preventing film for plastic made optical part
JPS63172201A (en) Two-layer antireflection coating
JPH0255302A (en) Antireflection film of plastic optical parts