JP2009282088A - Absorption type multi-layer film nd filter and method for manufacturing the same - Google Patents
Absorption type multi-layer film nd filter and method for manufacturing the same Download PDFInfo
- Publication number
- JP2009282088A JP2009282088A JP2008131574A JP2008131574A JP2009282088A JP 2009282088 A JP2009282088 A JP 2009282088A JP 2008131574 A JP2008131574 A JP 2008131574A JP 2008131574 A JP2008131574 A JP 2008131574A JP 2009282088 A JP2009282088 A JP 2009282088A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- filter
- humidity
- absorption
- multilayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
本発明は、波長400〜700nm間における分光透過特性の経時変化を抑えたシート状もしくはロール状の吸収型多層膜NDフィルタ及びその製造方法に関する。 The present invention relates to a sheet-shaped or roll-shaped absorption multilayer ND filter that suppresses temporal change in spectral transmission characteristics between wavelengths of 400 to 700 nm and a method for manufacturing the same.
NDフィルタ(Neutral Density Filter)には、入射光を反射して減衰させる反射型NDフィルタと、入射光を吸収して減衰させる吸収型NDフィルタが知られている。反射光が問題となるレンズ光学系にNDフィルタを組み込む場合には、一般的に吸収型NDフィルタが用いられている。この吸収型NDフィルタには、吸収物質を基板自体に混ぜるタイプ(色ガラスフィルタ)や基板に塗布するタイプの他、基板自体に吸収はなく、その表面に形成された薄膜に吸収があるタイプが存在する。薄膜に吸収があるタイプの場合は、薄膜表面の反射を防ぐために薄膜を多層膜(吸収型多層膜)で構成し、透過光を減衰する機能を持たせるとともに反射防止の効果が得られるようにしている。 As an ND filter (Neutral Density Filter), a reflection type ND filter that reflects and attenuates incident light and an absorption type ND filter that absorbs and attenuates incident light are known. When an ND filter is incorporated in a lens optical system in which reflected light is a problem, an absorption ND filter is generally used. The absorption type ND filter includes a type in which an absorbing substance is mixed with the substrate itself (colored glass filter) and a type in which the absorption material is applied to the substrate, as well as a type in which the substrate itself does not absorb and the thin film formed on the surface has absorption. Exists. If the thin film has absorption, the thin film is composed of a multilayer film (absorbing multilayer film) to prevent reflection on the surface of the thin film so that it has the function of attenuating transmitted light and has an antireflection effect. ing.
特許文献1には、透過光量を減衰させる金属酸化物からなる吸収膜MxOyを基板上に有し、この吸収膜MxOyの酸素比率(y/x)が膜厚方向と垂直な方向において変化しているNDフィルタが開示されている。また、この吸収膜MxOyを形成する工程と、多層膜反射防止の積層膜を形成する工程とを基板温度が150℃未満の雰囲気中で行い、その後、100℃から130℃の温度で空気中で熱処理を行うことによって、NDフィルタを製造する方法も提案されている。
In
上記方法では、反射防止膜の成膜後に100℃から130℃の範囲で1時間に亘って空気中で熱処理を行っているが、これは、プラスチック基板を用いているため、成膜時の基板温度を150℃未満にする必要があり、その結果、膜の封止密度が低下して耐環境性が劣る問題が生じるため、この熱処理によって膜の封止密度を向上させている。 In the above method, the heat treatment is performed in the air for 1 hour in the range of 100 ° C. to 130 ° C. after the formation of the antireflection film. This is because a plastic substrate is used. The temperature needs to be lower than 150 ° C. As a result, there arises a problem that the sealing density of the film is lowered and the environmental resistance is inferior. Therefore, the sealing density of the film is improved by this heat treatment.
また、特許文献2には、可視域において均一に光量を減衰可能であり且つ耐久性に優れた薄膜型NDフィルタの製造方法が提案されている。この製造方法では、原料としての金属材料Ti、Cr及びNiに酸素を含む混合ガスを成膜時に導入し、蒸着法により透明基板上に光吸収膜を成膜し、更にSiO2及びAl2O3誘電体膜を積層して薄膜型NDフィルタを形成している。
この方法では、光吸収膜と誘電体膜を透明基板に積層した後、酸素を10%以上含む酸素雰囲気で加熱して光学特性の変化を飽和させている。すなわち、加熱後の可視域波長における透過濃度の変化が±0.01以下となる様に、あらかじめ初期光学特性を変化させている。 In this method, after a light absorption film and a dielectric film are laminated on a transparent substrate, the change in optical characteristics is saturated by heating in an oxygen atmosphere containing 10% or more of oxygen. That is, the initial optical characteristics are changed in advance so that the change in transmission density at visible wavelengths after heating becomes ± 0.01 or less.
また、特許文献3には、入射光の強度如何にかかわらず経時的な劣化を抑制できるNDフィルタ及びその製造方法が提示されている。このNDフィルタは、エージング処理温度よりも高い軟化点を有する光透過性の基板と、該基板上に形成され、インコネル、ステンレス、Ti、Au、Ag、Nb、Ta、Zrなどの比較的耐食性の高い金属、TiNx、NbNx、TaNx、AlNxなどの窒化金属膜、またはTiOy、Al2O3などの酸化金属膜などの光吸収層と、該基板と該光吸収層との間に形成され、該基板もしくは該光吸収層の構成元素から構成される酸化物下地層とを備えている。
このNDフィルタの製造方法では、350℃以上且つ該基板の軟化点以下の温度でエージング処理が行われている。350℃以上の温度でエージング処理を行うことによって、光吸収特性の経時的変化を抑制できることが示されている。 In this ND filter manufacturing method, the aging treatment is performed at a temperature of 350 ° C. or higher and lower than the softening point of the substrate. It has been shown that aging treatment at a temperature of 350 ° C. or higher can suppress changes with time in light absorption characteristics.
特許文献2、3では、前述したように、所定温度で加熱処理が行われており、透過率の変化をある程度飽和させることができると考えられるが、長時間の使用で発生が認められる分光透過特性の長波長側へのシフトについての問題は解決されていなかった。
In
本発明は、このような従来の問題点に着目してなされたものであり、樹脂基板の少なくとも片面に酸化物誘電体膜と金属膜とを交互に積層させて成る吸収型多層膜が設けられた吸収型多層膜NDフィルタにおいて、該吸収型多層膜NDフィルタの金属膜の酸化によって発現する分光透過特性の変化を抑制するとともに、従来から行われている熱処理では解決できなかった、分光透過特性が長波長側へシフトする問題をも解決することを目的とする。 The present invention has been made paying attention to such a conventional problem, and an absorption multilayer film formed by alternately laminating an oxide dielectric film and a metal film is provided on at least one surface of a resin substrate. In the absorption multilayer ND filter, the spectral transmission characteristics that are suppressed by the change in the spectral transmission characteristics caused by the oxidation of the metal film of the absorption multilayer ND filter and cannot be solved by the conventional heat treatment are described. The purpose is to solve the problem of shifting to the longer wavelength side.
本発明者は、上記課題を解決するため、吸収型多層膜NDフィルタ作製後の該吸収型多層膜NDフィルタの透過率の経時変化、すなわち、金属膜の酸化によって発現する透過率の変化やNDフィルタ使用時に生じる透過率の長波長側へのシフトに対する該NDフィルタ作製後の熱処理方法等の効果について鋭意調査研究を行った。 In order to solve the above-mentioned problems, the present inventor has made a change in the transmittance of the absorption multilayer ND filter with time after the production of the absorption multilayer ND filter, that is, a change in transmittance or ND expressed by oxidation of the metal film. An earnest investigation and research were conducted on the effect of the heat treatment method after the ND filter was produced on the shift of the transmittance to the long wavelength side that occurs when the filter was used.
その結果、樹脂基板の少なくとも片面に酸化物誘電体膜と金属膜とを交互に積層させて成る吸収型多層膜が設けられた吸収型多層膜NDフィルタにおいて、上記樹脂基板に吸収型多層膜を積層させたのち、得られた吸収型多層膜NDフィルタを無塵紙の間に挟み込み、酸素含有雰囲気下で温湿度処理することによって、上記課題を解決できることを見出し、本発明に至った。 As a result, in an absorptive multilayer ND filter provided with an absorptive multilayer film in which an oxide dielectric film and a metal film are alternately laminated on at least one surface of a resin substrate, the absorptive multilayer film is provided on the resin substrate. After laminating, it was found that the above-mentioned problems can be solved by sandwiching the obtained absorption multilayer ND filter between dust-free paper and treating the temperature and humidity in an oxygen-containing atmosphere.
すなわち、本発明が提供する吸収型多層膜NDフィルタの製造方法は、樹脂基板の少なくとも片面に酸化物誘電体膜と金属膜とを交互に積層させて成る吸収型多層膜が設けられた吸収型多層膜NDフィルタの製造方法において、上記樹脂基板に吸収型多層膜を積層させたのち、得られた吸収型多層膜NDフィルタを無塵紙の間に挟み込み、酸素含有雰囲気下で温湿度処理することを特徴としている。 That is, in the method for manufacturing an absorption multilayer ND filter provided by the present invention, an absorption multilayer film in which an oxide dielectric film and a metal film are alternately laminated on at least one surface of a resin substrate is provided. In the manufacturing method of the multilayer ND filter, after the absorption multilayer film is laminated on the resin substrate, the obtained absorption multilayer film ND filter is sandwiched between dust-free papers and subjected to temperature and humidity treatment in an oxygen-containing atmosphere. It is characterized by.
上記本発明の製造方法においては、無塵紙間に挟み込まれる吸収型多層膜NDフィルタがシート状であり、該シート状の吸収型多層膜NDフィルタを無塵紙の間に挟み込んだ状態で積み重ねて温湿度処理用スタックを形成し、該温湿度処理用スタックを温湿度処理すること好ましい。あるいは、無塵紙間に挟み込まれる吸収型多層膜NDフィルタが長尺状であり、該長尺状の吸収型多層膜NDフィルタを無塵紙の間に挟み込んだ状態で巻き取って温湿度処理用ロール体を形成し、該温湿度処理用ロール体を温湿度処理しても良い。 In the manufacturing method of the present invention, the absorption multilayer ND filter sandwiched between dust-free paper is in the form of a sheet, and the sheet-like absorption multilayer ND filter is stacked in a state of being sandwiched between dust-free paper. It is preferable to form a humidity treatment stack and subject the temperature / humidity treatment stack to a temperature / humidity treatment. Alternatively, the absorption multi-layer film ND filter sandwiched between dust-free paper is long, and the temperature-humidity treatment roll is wound by winding the long absorption multi-layer film ND filter between dust-free paper. A body may be formed and the temperature and humidity treatment roll body may be subjected to temperature and humidity treatment.
上記本発明の製造方法において使用する無塵紙は、低発塵で且つ平坦性を有する無塵紙、又は凸部を有するエンボス無塵紙であることが好ましい。凸部を有するエンボス無塵紙の場合は、凸部の高さが20μm以上であることがより好ましい。 The dust-free paper used in the production method of the present invention is preferably dust-free paper having low dust generation and flatness, or embossed dust-free paper having convex portions. In the case of embossed dust-free paper having convex portions, the height of the convex portions is more preferably 20 μm or more.
更に、上記本発明の製造方法においては、温湿度処理を温度30℃以上70℃以下且つ湿度50%以上の温湿度条件で行うことが好ましい。この温湿度処理の処理時間は、温湿度処理を行うことなく吸収型多層膜を積層しただけの吸収型多層膜NDフィルタの波長400〜700nm間における平均透過率をT1とし、温度80℃湿度90%で24時間の基準温湿度処理を行ったときの吸収型多層膜NDフィルタの波長400〜700nm間における平均透過率をT0としたときに、上記温湿度条件の範囲から選択した所定の温度及び湿度で温湿度処理を施した後の吸収型多層膜NDフィルタの波長400〜700nm間における平均透過率Tが、
(T−T1)/(T0−T1)≧0.95
を満足するように定められることが好ましい。
Furthermore, in the manufacturing method of the present invention, it is preferable that the temperature and humidity treatment is performed under temperature and humidity conditions of a temperature of 30 ° C. or higher and 70 ° C. or lower and a humidity of 50% or higher. Processing time of the temperature and humidity treatment, the average transmittance between a
(T−T 1 ) / (T 0 −T 1 ) ≧ 0.95
It is preferable to be determined so as to satisfy
また、本発明が提供する吸収型多層膜NDフィルタは、樹脂基板の少なくとも片面に酸化物誘電体膜と金属膜とを交互に積層させて成る吸収型多層膜が設けられており、該樹脂基板に吸収型多層膜を積層させたのち、得られた吸収型多層膜NDフィルタを無塵紙の間に挟み込み、酸素含有雰囲気下で温湿度処理することによって製造されることを特徴としている。 Further, the absorption multilayer film ND filter provided by the present invention is provided with an absorption multilayer film in which an oxide dielectric film and a metal film are alternately laminated on at least one surface of a resin substrate. After the absorption multilayer film is laminated, the obtained absorption multilayer film ND filter is sandwiched between dust-free papers, and is processed by temperature and humidity treatment in an oxygen-containing atmosphere.
本発明によれば、金属膜の酸化に係る分光透過特性変化を飽和させるとともに、長時間の使用で発生が認められる分光透過特性の長波長側へのシフトも飽和させることができる。これによって、経時的変化を抑制することが可能となり、従来の吸収型多層膜NDフィルタと比較して分光透過特性の安定性の高い吸収型多層膜NDフィルタを得ることができ、工業的に有用である。 According to the present invention, it is possible to saturate a change in spectral transmission characteristic associated with oxidation of a metal film and to saturate a shift to a longer wavelength side of a spectral transmission characteristic that is observed when used for a long time. As a result, it is possible to suppress changes over time, and it is possible to obtain an absorption-type multilayer ND filter having a higher spectral transmission characteristic than that of a conventional absorption-type multilayer ND filter, which is industrially useful. It is.
以下、本発明の実施の形態について詳細に説明する。本発明は、樹脂基板の少なくとも片面に酸化物誘電体膜と金属膜とを交互に積層させて成る吸収型多層膜が設けられた吸収型多層膜NDフィルタの製造方法において、樹脂基板に吸収型多層膜を積層させたのち、得られた吸収型多層膜NDフィルタを無塵紙の間に挟み込み、酸素含有雰囲気下で温湿度処理することを特徴としている。 Hereinafter, embodiments of the present invention will be described in detail. The present invention relates to an absorption multilayer ND filter manufacturing method in which an absorption multilayer film in which an oxide dielectric film and a metal film are alternately laminated is provided on at least one surface of a resin substrate. After the multilayer films are laminated, the obtained absorption multilayer film ND filter is sandwiched between dust-free papers and is subjected to temperature and humidity treatment in an oxygen-containing atmosphere.
このように温湿度処理を行うことによって、金属膜の酸化に係る分光透過特性の変化を飽和させるとともに、長時間の使用で発生が認められる分光透過特性の長波長側へのシフトも飽和させることができる。 By performing the temperature and humidity treatment in this way, the change in the spectral transmission characteristics associated with the oxidation of the metal film is saturated, and the shift to the longer wavelength side of the spectral transmission characteristics that are observed after a long period of use is saturated. Can do.
本発明の吸収型多層膜NDフィルタの樹脂基板となる樹脂板若しくは樹脂フィルムには、ポリエチレンテレフタレート(PET)、ポリエーテルスルフォン(PES)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオレフィン(PO)及びノルボルネンの樹脂材料から選択された樹脂板若しくは樹脂フィルムの単体で構成されるか、あるいは、上記樹脂材料から選択された樹脂板若しくは樹脂フィルム単体と、この単体の少なくとも片面を覆うアクリル系有機膜との複合体で構成されている。 The resin plate or resin film that is the resin substrate of the absorption multilayer ND filter of the present invention includes polyethylene terephthalate (PET), polyethersulfone (PES), polyarylate (PAR), polycarbonate (PC), and polyolefin (PO). And a resin plate or resin film selected from the resin material of norbornene, or an acrylic organic film covering at least one surface of the resin plate or resin film selected from the resin material And is composed of a complex.
この樹脂基板の少なくとも片面に酸化物誘電体膜と金属膜とを交互に積層して吸収型多層膜を設ける。吸収型多層膜を構成する酸化物誘電体膜には、SiO2、Al2O3若しくはこれらの混合物のいずれかの誘電体層を用いることが好ましい。また、吸収型多層膜を構成する金属膜には、Niを主成分とする金属層を用いることが好ましい。該Niを主成分とする金属層は、Ti、Al、V、W、Ta、Siから選択された1種類以上の元素を添加したNi系合金材料で構成されていることが好ましい。 An absorption multilayer film is provided by alternately laminating oxide dielectric films and metal films on at least one surface of the resin substrate. For the oxide dielectric film constituting the absorption multilayer film, it is preferable to use a dielectric layer of any one of SiO 2 , Al 2 O 3 or a mixture thereof. Moreover, it is preferable to use a metal layer containing Ni as a main component for the metal film constituting the absorption multilayer film. The metal layer mainly composed of Ni is preferably made of a Ni-based alloy material to which one or more elements selected from Ti, Al, V, W, Ta, and Si are added.
上記Niに添加する元素の添加割合は、Ti元素の場合は5〜15重量%、Al元素の場合は3〜8重量%、V元素の場合は3〜9重量%、W元素の場合は18〜32重量%、Ta元素の場合は5〜12重量%、Si元素の場合は2〜6重量%の範囲であることが好ましい。 The addition ratio of the element added to Ni is 5 to 15% by weight for Ti element, 3 to 8% by weight for Al element, 3 to 9% by weight for V element, and 18 for W element. It is preferable to be in the range of ˜32% by weight, 5-12% by weight in the case of Ta element, and 2-6% by weight in the case of Si element.
次に、吸収型多層膜が積層された吸収型多層膜NDフィルタを、無塵紙の間に挟み込む。例えば、ロールトゥロールでロール状に巻き取られる長尺状の吸収型多層膜NDフィルタの場合は、吸収型多層膜の積層後、吸収型多層膜NDフィルタを無塵紙の間に挟み込んだ状態で巻き取って温湿度処理用ロール体を形成する。この温湿度処理用ロール体に対して後述する温湿度処理を施す。 Next, the absorption multilayer ND filter on which the absorption multilayer is laminated is sandwiched between dust-free paper. For example, in the case of a long absorption multilayer film ND filter wound up in a roll shape by roll-to-roll, after the absorption multilayer film is laminated, the absorption multilayer film ND filter is sandwiched between dust-free papers. A roll body for temperature and humidity treatment is formed by winding. The temperature and humidity treatment roll body described later is subjected to the temperature and humidity treatment roll body.
また、シート状の樹脂フィルム基板の少なくとも片面に酸化物誘電体膜と金属膜とを交互に積層させて成るシート状の吸収型多層膜NDフィルタの場合や、ロールトゥロールでロール状に巻き取られた長尺状の吸収型多層膜NDフィルタを巻き出しながらシート状に切断して得られたシート状の吸収型多層膜NDフィルタの場合は、各シートを無塵紙間に挟み込んだ状態で積み重ねることによってスタックを形成し、このスタックに対して温湿度処理を施す。 In addition, in the case of a sheet-like absorption multilayer ND filter in which an oxide dielectric film and a metal film are alternately laminated on at least one surface of a sheet-like resin film substrate, or in a roll shape by roll-to-roll. In the case of a sheet-like absorption multilayer film ND filter obtained by cutting into a sheet shape while unwinding the obtained long absorption multilayer film ND filter, the sheets are stacked while being sandwiched between dust-free paper Thus, a stack is formed, and the stack is subjected to temperature and humidity treatment.
上記無塵紙には、温湿度処理時に吸収型多層膜NDフィルタに埃の転写等が起こらないものであることが好ましく、低発塵で且つ平坦性を有する無塵紙が好ましい。また、凸部を有するエンボス無塵紙を用いても良い。例えば、繊維の脱落を防止するアクリル系の樹脂を含浸している無塵紙で、合成紙や再生可能なクリーンペーパーRC(桜井株式会社製)などが使用できる。 The dust-free paper is preferably one that does not cause dust transfer to the absorption multilayer ND filter during the temperature and humidity treatment, and is preferably dust-free paper having low dust generation and flatness. Moreover, you may use the embossed dust-free paper which has a convex part. For example, dust-free paper impregnated with an acrylic resin that prevents the fibers from dropping off, and synthetic paper, recyclable clean paper RC (manufactured by Sakurai Co., Ltd.), and the like can be used.
上記無塵紙の中でも、繊維の脱落を防止するために樹脂を含浸している無塵紙が特に好ましい。低発塵の天然紙をベースにして特殊樹脂を含浸したタイプがより好ましく、アクリル系の樹脂を含浸しているタイプが更に好ましい。また、エンボス加工された無塵紙であっても良い。 Among the dust-free papers, dust-free paper impregnated with a resin in order to prevent the fibers from dropping off is particularly preferable. A type in which a special resin is impregnated based on a natural paper with low dust generation is more preferable, and a type in which an acrylic resin is impregnated is more preferable. Further, embossed dustless paper may be used.
エンボス無塵紙の凸部の高さは20μm以上50μm以下が好ましく、30μm以上40μm以下であれば更に好ましい。エンボス無塵紙の凸部が20μm未満であると、凸部を有するエンボス無塵紙間に上記吸収型多層膜NDフィルタを挟み込んだ時の隙間が狭くなり、酸素含有雰囲気下での温湿度処理で発生する水分が該吸収型多層膜NDフィルタに吸収されにくくなる。その結果、長時間の使用で発生が認められる分光透過特性の長波長側へのシフトを温湿度処理の際に行うことが不十分となり、好ましくない。 The height of the convex portion of the embossed dust-free paper is preferably 20 μm or more and 50 μm or less, and more preferably 30 μm or more and 40 μm or less. If the convex part of embossed dust-free paper is less than 20 μm, the gap when the above-mentioned absorption multilayer film ND filter is sandwiched between the embossed dust-free paper having the convex part is narrowed, and is generated by temperature and humidity treatment in an oxygen-containing atmosphere Moisture that is absorbed is less likely to be absorbed by the absorption multilayer ND filter. As a result, it is not preferable to shift the spectral transmission characteristics, which are observed to occur over a long period of time, to the longer wavelength side during the temperature and humidity treatment.
また、凸部が50μmを超えると、凸部を有するエンボス無塵紙間に上記吸収型多層膜NDフィルタを挟み込んだ時の隙間が広くなり、取り扱い時に支障をきたすおそれがある。すなわち、シート状の場合は100枚〜200枚単位で重ねて温湿度処理するため、エンボスの凸部が高いと重ねた時にぐらついてしまう。また、ロール状の場合は、温湿度処理に際して無塵紙を挟み込むように巻き取るため、凸部が高いと巻き取りにくくなる。尚、重ねた時の枚数が多いと凸部の転写が起こり易くなるので注意が必要である。 On the other hand, if the convex portion exceeds 50 μm, a gap when the absorbent multilayer film ND filter is sandwiched between the embossed dust-free paper having the convex portion is widened, which may cause trouble in handling. That is, in the case of a sheet, the temperature and humidity treatment is performed in units of 100 to 200 sheets. Therefore, if the convex portions of the emboss are high, they will wobble when stacked. In the case of a roll, since the dust-free paper is wound up during the temperature and humidity treatment, it is difficult to wind up if the convex portion is high. It should be noted that if the number of stacked sheets is large, transfer of the convex portion is likely to occur.
次に、上記のようにして無塵紙に挟み込んだ吸収型多層膜NDフィルタを、所定の温度及び湿度に保たれた酸素含有雰囲気下で所定の時間に亘って保持する温湿度処理を行う。この所定の温度及び湿度は、それぞれ温度30℃以上70℃以下、湿度50%以上が好ましく、温度60℃以上70℃以下、湿度75以上90%以下がより好ましい。 Next, a temperature and humidity process is performed in which the absorption multilayer ND filter sandwiched between dust-free paper as described above is held for a predetermined time in an oxygen-containing atmosphere maintained at a predetermined temperature and humidity. The predetermined temperature and humidity are preferably 30 ° C. or higher and 70 ° C. or lower and 50% or higher humidity, more preferably 60 ° C. or higher and 70 ° C. or lower, and 75% or higher and 90% or lower.
温度が30℃よりも低いと、温湿度処理の際、金属膜の酸化を十分に行うことができず、金属膜の酸化による分光透過特性の変化を飽和させることができなくなるので好ましくない。また、70℃を超えると、金属膜の酸化によって発現する分光透過特性の変化は飽和させることができるが、樹脂フィルム基板に歪みが発生し、膜に微細なクラックが発生するため好ましくない。 If the temperature is lower than 30 ° C., the metal film cannot be sufficiently oxidized during the temperature and humidity treatment, and the change in spectral transmission characteristics due to the oxidation of the metal film cannot be saturated. On the other hand, when the temperature exceeds 70 ° C., the change in the spectral transmission characteristic that appears due to oxidation of the metal film can be saturated, but this is not preferable because distortion occurs in the resin film substrate and fine cracks occur in the film.
一方、湿度をかけることによって、長時間の使用で発生が認められる分光透過特性の長波長側へのシフトを飽和させることができるということが観測されており、湿度50%未満であると、上記吸収型多層膜NDフィルタに吸収される水分が不十分となり(水分を吸収することで屈折率が変化してシフトが起こる)、長時間の使用で発生が認められる分光透過特性の長波長側へのシフトを飽和させることができなくなるので好ましくない。 On the other hand, by applying humidity, it has been observed that the shift to the longer wavelength side of the spectral transmission characteristic that is observed after a long period of use can be saturated, and if the humidity is less than 50%, Moisture absorbed by the absorption-type multilayer ND filter becomes insufficient (the refractive index changes due to the absorption of moisture, causing a shift), and the long-term use of the spectral transmission characteristics, which are recognized to occur, is on the longer wavelength side This is not preferable because the shift of the above cannot be saturated.
また、酸素含有雰囲気としては一般に空気を用いることができるが、金属膜を酸化して分光透過特性の変化を飽和させることが可能な酸素濃度を有しているのであれば、他のガスであっても良い。このような酸素濃度としては、約20体積%以上であることが好ましい。 In general, air can be used as the oxygen-containing atmosphere, but other gases can be used as long as they have an oxygen concentration capable of oxidizing the metal film and saturating the change in spectral transmission characteristics. May be. Such an oxygen concentration is preferably about 20% by volume or more.
上記温湿度処理に必要な処理時間は、温湿度処理の際の温度及び湿度の温湿度条件に応じて適宜定めるのが望ましい。具体的には、上記の温湿度条件の範囲から選択した所定の温度及び湿度で温湿度処理を施した後の吸収型多層膜NDフィルタの波長400〜700nm間における平均透過率Tが、下記の要件を満たすように処理時間を定めることができる。
Desirably, the processing time required for the temperature and humidity treatment is appropriately determined according to the temperature and humidity conditions of the temperature and humidity during the temperature and humidity treatment. Specifically, the average transmittance T between
すなわち、温湿度処理を行うことなく吸収型多層膜を積層しただけの吸収型多層膜NDフィルタの波長400〜700nm間における平均透過率をT1とし、温度80℃湿度90%で24時間の基準温湿度処理を行ったときの吸収型多層膜NDフィルタの波長400〜700nm間における平均透過率をT0とし、これらT0とT1との差(T0−T1)を基準シフト量(X0)として100%とした場合に、TとT1との差(T−T1)から得られるシフト量(X)が、基準シフト量(X0)の95%以上になるように、上記温湿度処理の処理時間を定める。
That is, the average transmittance between a
尚、上記温度80℃湿度90%で24時間の温湿度処理は、前述したように、樹脂フィルム基板に歪みを発生させたり、膜に微細なクラックを発生させたりするものの、短時間で効果的に吸収型多層膜NDフィルタの分光透過特性の変化を飽和させることが可能な温湿度条件であることが判明したため、本発明においては、かかる温湿度処理を基準温湿度処理とした。上記の処理時間を定めるための要件を式で表すと下記の式1のようになる。 In addition, the temperature and humidity treatment for 24 hours at the temperature of 80 ° C. and the humidity of 90% is effective in a short time although the resin film substrate is distorted or the micro crack is generated in the film as described above. Therefore, in the present invention, the temperature / humidity process is set as the reference temperature / humidity process. The requirement for determining the above processing time is expressed by the following equation (1).
[式1]
(T−T1)/(T0−T1)=X/X0≧0.95
[Formula 1]
(T−T 1 ) / (T 0 −T 1 ) = X / X 0 ≧ 0.95
基準シフト量X0に対するシフト量Xの値が95%未満の場合は、温湿度処理が不十分となるため、吸収型多層膜NDフィルタを実際に使用した時に、金属膜の酸化による分光透過特性の変化や、分光透過特性の長波長側へのシフトによる透過率変化を抑制することができない。尚、温湿度処理に必要な処理時間は温度や湿度によって変化するため、実際には温度や湿度の条件ごとに上記したX/X0の値と処理時間との関係を予め実験により求めておき、この実験結果に従って温湿度処理を行えば良い。 If the value of the shift amount X with respect to the reference shift amount X 0 is less than 95%, the temperature and humidity treatment is insufficient, when actually using the absorption type multi-layer film ND filter, the spectral transmission characteristics due to oxidation of the metal film And a change in transmittance due to a shift of the spectral transmission characteristic to the longer wavelength side cannot be suppressed. Note that the processing time required for the temperature and humidity treatment is a function of the temperature and humidity, actually advance determined by experiment the relation between the value and the processing time of X / X 0 as described above for each condition of temperature and humidity The temperature and humidity treatment may be performed according to the experimental results.
以上のように、本発明の製造方法によって得られる吸収型多層膜NDフィルタは、樹脂基板の少なくとも片面に酸化物誘電体膜と金属膜とを交互に積層させたのち、この吸収型多層膜NDフィルタを無塵紙の間に挟み込み、酸素含有雰囲気下で温湿度処理して得られるものである。 As described above, the absorptive multilayer ND filter obtained by the manufacturing method of the present invention is obtained by alternately laminating an oxide dielectric film and a metal film on at least one surface of a resin substrate, and then the absorptive multilayer ND filter. The filter is obtained by sandwiching a filter between dust-free paper and treating the temperature and humidity in an oxygen-containing atmosphere.
このように吸収型多層膜NDフィルタに温湿度処理を施すことによって、分光透過特性の変化を飽和させるとともに、従来考慮されていなかった、長時間の使用で発生が認められる分光透過特性の長波長側へのシフトも飽和させることができる。これにより、経時的変化を抑制することが可能となり、従来の吸収型多層膜NDフィルタと比較して分光透過特性の安定性の高い吸収型多層膜NDフィルタを提供することができる。 By applying temperature and humidity treatment to the absorption-type multilayer ND filter in this way, the change in spectral transmission characteristics is saturated, and the long wavelength of the spectral transmission characteristics that has not been considered in the past and can be observed after long-term use. Side shifts can also be saturated. As a result, it is possible to suppress a change with time, and it is possible to provide an absorption multilayer ND filter having higher spectral transmission characteristics than that of a conventional absorption multilayer ND filter.
[実施例1]
吸収型多層膜NDフィルタの基板には、耐熱性が高く、可視域の波長域で透明性が高く、また吸水率が低いポリエチレンテレフタレート(以下PETフィルムと称する)(東洋紡績株式会社製)を選択した。このPETフィルム上に、図1に概略図で示されるスパッタリングロールコータ装置(ヒラノ光音株式会社製)を用いて吸収型多層膜を成膜した。
[Example 1]
Select polyethylene terephthalate (hereinafter referred to as PET film) (manufactured by Toyobo Co., Ltd.) as the substrate of the absorption type multilayer ND filter, which has high heat resistance, high transparency in the visible wavelength range, and low water absorption. did. An absorptive multilayer film was formed on this PET film using a sputtering roll coater apparatus (manufactured by Hirano Kotone Co., Ltd.) schematically shown in FIG.
具体的に説明すると、PETフィルム6(厚さ100μm、巾280mm)を巻き出しロール1にセットした後、巻き出しロール1から巻き出して冷却キャン3に沿って搬送し、巻き取りロール2で巻き取りながら、酸化物誘電体膜であるSiO2膜を成膜するための酸化物誘電体膜用ターゲット4を用いてスパッタリング法でPETフィルム6の片側に酸化物誘電体膜を成膜する。これにより、酸化物誘電体膜が成膜されたPETフィルム6は、一旦巻き取りロール2に巻き取られる。
Specifically, after setting the PET film 6 (thickness 100 μm, width 280 mm) on the unwinding
次に、巻き取りロール2を巻き出しロールとし、先の巻き出しロール1を巻き取りロールにして、PETフィルム6を冷却キャン3に沿って搬送しながら、金属膜であるNi膜を成膜するための金属膜用ターゲット5を用いてスパッタリング法で金属膜を成膜する。これにより、金属膜が成膜されたPETフィルム6は、一旦巻き取りロール1に巻き取られる。これらの操作を繰り返し行うことによって、片側に酸化物誘電体膜として3層のSiO2膜と、金属膜として2層のNi膜とを1層ずつ交互に積層させて吸収型多層膜を形成した。
Next, the Ni roll, which is a metal film, is formed while the PET roll 6 is transported along the cooling can 3 using the take-
更に、上記片側に成膜が終わったPETフィルム6を表裏逆になるよう巻き替え、成膜を行っていない樹脂フィルム側に上記操作と同様な操作で、酸化物誘電体膜として3層のSiO2膜と、金属膜として2層のNi膜とを1層ずつ交互に積層させて吸収型多層膜を形成した。これにより、両面に各々酸化物誘電体膜として3層のSiO2膜と、金属膜として2層のNi膜とが、1層ずつ交互に積層された、下記の表1に示す構成の吸収型多層膜を形成した。
Further, the PET film 6 having been deposited on one side is wound upside down, and the same operation as the above operation is performed on the side of the resin film that has not been deposited, and three layers of
酸化物誘電体膜であるSiO2膜を成膜するための酸化物誘電体膜用ターゲット4には、SiCにSiが添加されたターゲット(旭硝子セラミックス株式会社製)を用いた。この酸化物誘電体膜用ターゲット4を用いて、Arガスを導入してデュアルマグネトロンスパッタリング法により、酸素ガスを導入しながらSiO2膜を成膜した。Arガス圧は5Paとし、酸素ガス導入量はインピーダンスモニタにより制御した。
A target (manufactured by Asahi Glass Ceramics Co., Ltd.) in which Si is added to SiC was used as the oxide
また、金属膜であるNi膜を成膜するための金属膜用ターゲット5には、Ni−Ti8%添加のターゲット(住友金属鉱山株式会社製)を用いた。この金属膜用ターゲット5を用い、Arガスを導入してArガス圧5PaとしてDCマグネトロンスパッタリング法により金属膜を成膜した。
Moreover, the target (made by Sumitomo Metal Mining Co., Ltd.) added with Ni-Ti 8% was used for the
<温湿度処理>
上記のようにして成膜された吸収型多層膜NDフィルタを図1のスパッタリングロールコータ装置から取り出し、ロールから巻き出しながら2枚の無塵紙(大庫洋紙株式会社製)に挟み込み、一旦シート状(長さ330mm、巾280mm)に切断した。上記無塵紙には厚さ0.08mm、凸部高さ30μm、長さ330mm、巾280mmのエンボス紙を用いた。
<Temperature and humidity treatment>
The absorption-type multilayer ND filter formed as described above is taken out from the sputtering roll coater shown in FIG. 1, and is sandwiched between two dust-free papers (manufactured by Oohiro Paper Co., Ltd.) while being unwound from the roll. (Length 330 mm, width 280 mm). As the dust-free paper, an embossed paper having a thickness of 0.08 mm, a convex portion height of 30 μm, a length of 330 mm, and a width of 280 mm was used.
2枚の無塵紙に挟みこまれた吸収型多層膜NDフィルタを100組重ねて図2に示す環境試験機10(エスペック株式会社製)のチャンバ11内に配置し、カバー12で密閉した。チャンバ11には図示しないヒータが設けられており、チャンバ11内を所定の温度に設定できるようになっている。また、チャンバ11内には上部が開放した容器13が設置されており、ここに保持されている水に、ガス供給ライン14の先端部に設けられているノズル15からガスを吹き込むことによって、チャンバ11内の湿度及びガス組成が調整できるようになっている。
100 sets of absorption multilayer ND filters sandwiched between two dust-free papers were stacked and placed in the
実施例1では、ガス供給ライン14から空気を導入してチャンバ11内を酸素含有雰囲気としたうえで、温度70℃湿度80%で48時間の温湿度処理を行った。尚、この処理時間である48時間は、基準温湿度処理に基づく基準シフト量X0に対して前述の式1を満たすことを条件として選定した。
In Example 1, after introducing air from the
図3には、このようにして得られた温湿度処理後の吸収型多層膜NDフィルタの分光透過特性の測定結果が、温湿度処理前の測定結果と併せて示されている。分光透過特性の測定には、自記分光光度計(日本分光株式会社製)を用いた。温湿度処理前の吸収型多層膜NDフィルタの分光透過特性の測定結果は、「温湿度処理前」として一点鎖線で示されている。この一点鎖線は、485nm及び645nmで12.5%程度の透過率を示している。 FIG. 3 shows the measurement results of the spectral transmission characteristics of the absorption type multilayer ND filter after the temperature and humidity treatment thus obtained, together with the measurement results before the temperature and humidity treatment. A self-recording spectrophotometer (manufactured by JASCO Corporation) was used for measuring the spectral transmission characteristics. The measurement result of the spectral transmission characteristics of the absorption multilayer ND filter before the temperature and humidity treatment is indicated by a one-dot chain line as “before the temperature and humidity treatment”. This alternate long and short dash line shows a transmittance of about 12.5% at 485 nm and 645 nm.
また、温湿度処理後の吸収型多層膜NDフィルタの分光透過特性の測定結果は、「温湿度処理後」として点線で示されている。この点線は、485nmで13.5%程度の透過率を示しており、645nmで12.8%程度の透過率を示している。これらの測定結果から、温湿度処理を施すことにより、短波長側である485nmでは透過率が約1.0%増加し、長波長側である645nmでは透過率が約0.3%増加したことがわかる。これは、後述するように、分光透過特性に関して安定性の高い吸収型多層膜NDフィルタが得られたことを示している。 The measurement result of the spectral transmission characteristics of the absorption multilayer ND filter after the temperature and humidity treatment is indicated by a dotted line as “after the temperature and humidity treatment”. This dotted line shows a transmittance of about 13.5% at 485 nm and a transmittance of about 12.8% at 645 nm. From these measurement results, it was found that the transmittance increased by about 1.0% at 485 nm on the short wavelength side and the transmittance increased by about 0.3% at 645 nm on the long wavelength side by performing the temperature and humidity treatment. I understand. This indicates that an absorption-type multilayer ND filter having high stability with respect to spectral transmission characteristics is obtained, as will be described later.
<耐候性評価試験>
次に、上記温湿度処理の施された吸収型多層膜NDフィルタが、分光透過特性に関して安定性が高くなっているかどうかの評価を行うため、耐候性評価試験を行った。具体的には、図2に示す環境試験機10(エスペック株式会社製)内に上記温湿度処理を施した吸収型多層膜NDフィルタを配置し、ガス供給ライン14から空気を導入してチャンバ11内を酸素含有雰囲気としたうえで、温度80℃湿度90%の環境に24時間置いた。
<Weather resistance evaluation test>
Next, in order to evaluate whether or not the absorption multilayer ND filter subjected to the temperature and humidity treatment has high stability with respect to spectral transmission characteristics, a weather resistance evaluation test was performed. Specifically, an absorption type multilayer ND filter subjected to the above temperature and humidity treatment is disposed in the environmental testing machine 10 (manufactured by Espec Co., Ltd.) shown in FIG. After making the inside into an oxygen-containing atmosphere, it was placed in an environment of a temperature of 80 ° C. and a humidity of 90% for 24 hours.
この吸収型多層膜NDフィルタについて分光透過特性の測定を行った。温湿度処理を施した吸収型多層膜NDフィルタの耐候性評価試験後の測定結果を、「耐候性評価」として図3に実線で示す。また、参考のため、基準温湿度処理が施されたときの吸収型多層膜NDフィルタの測定結果を、「80℃90%24時間の基準温湿度処理後」として図3に破線で示す。 The spectral transmission characteristics of this absorption multilayer ND filter were measured. The measurement result after the weather resistance evaluation test of the absorption multilayer ND filter subjected to the temperature and humidity treatment is shown as a “weather resistance evaluation” in FIG. 3 by a solid line. For reference, the measurement result of the absorption multilayer ND filter when the reference temperature and humidity treatment is performed is indicated by a broken line in FIG. 3 as “after the reference temperature and humidity treatment at 80 ° C. and 90% for 24 hours”.
図3に示すこれら測定結果から、種々の処理を行ったことに起因する平均透過率のシフト量(X)を求めることができる。具体的には、実施例1の処理条件である温度70℃湿度80%で48時間の温湿度処理を行ったことに起因するシフト量(X)は、点線の値と一点鎖線の値との差から求めることができ、この温湿度処理に加えて耐候性評価試験を行ったことに起因するシフト量(X)は、実線の値と一点鎖線の値との差から求めることができる。また、基準温湿度処理を行ったことに起因する基準シフト量(X0)は、図3の破線の値と一点鎖線の値との差から求めることができる。 From these measurement results shown in FIG. 3, the shift amount (X) of the average transmittance resulting from performing various processes can be obtained. Specifically, the shift amount (X) resulting from performing the temperature and humidity treatment for 48 hours at the temperature of 70 ° C. and the humidity of 80%, which is the treatment condition of Example 1, is the value between the dotted line value and the dashed line value. The shift amount (X) resulting from the weather resistance evaluation test in addition to the temperature and humidity treatment can be obtained from the difference between the solid line value and the alternate long and short dash line value. Further, the reference shift amount (X 0 ) resulting from the reference temperature / humidity treatment can be obtained from the difference between the broken line value and the alternate long and short dash line value in FIG.
その結果、基準シフト量(X0)に対して、実施例1の処理条件で温湿度処理を行ったことに起因する平均透過率のシフト量(X)は98%である一方、この温湿度処理に加えて耐候性評価試験を行ったことに起因する平均透過率のシフト量(X)は99%であり、ほとんど変化しなかった。 As a result, the average transmittance shift amount (X) resulting from performing the temperature and humidity treatment under the processing conditions of Example 1 with respect to the reference shift amount (X 0 ) is 98%. The average transmittance shift amount (X) resulting from conducting a weather resistance evaluation test in addition to the treatment was 99%, which was hardly changed.
次に、耐候性評価試験前後の波長ごとの分光透過特性の変化が明確となるように、図3に示す測定結果のうち、温湿度処理後の分光透過特性と、耐候性評価試験後の分光透過特性とを抜き出して図4に示した。 Next, among the measurement results shown in FIG. 3, the spectral transmission characteristics after the temperature and humidity treatment and the spectral characteristics after the weather resistance evaluation test so that the change in the spectral transmission characteristics for each wavelength before and after the weather resistance evaluation test becomes clear. The transmission characteristics are extracted and shown in FIG.
この図4からわかるように、温湿度処理が施された吸収型多層膜NDフィルタは、更に温度80℃湿度90%の環境に24時間さらされても、分光透過特性は400nmから700nmまでの全波長域に亘って殆ど変化していない。すなわち、予め温湿度処理が施された吸収型多層膜NDフィルタは、耐候性評価試験によって分光透過特性が長波長側にシフトすることはなかった。 As can be seen from FIG. 4, the absorption multilayer ND filter subjected to the temperature and humidity treatment has a spectral transmission characteristic from 400 nm to 700 nm even when exposed to an environment of 80 ° C. and 90% humidity for 24 hours. Almost no change over the wavelength range. That is, the absorption-type multilayer ND filter that has been subjected to the temperature and humidity treatment in advance has a spectral transmission characteristic that is not shifted to the long wavelength side by the weather resistance evaluation test.
[比較例1]
温湿度処理を施す際に吸収型多層膜NDフィルタを無塵紙に挟み込まなかったことと、温湿度処理の処理時間を48時間の代わりに96時間としたこと以外は実施例1と同様にして吸収型多層膜NDフィルタに温湿度処理を施したうえ、耐候性評価試験を行った。この温湿度処理においては、フィルム同士が密着してしまい、金属膜の酸化による分光透過特性の変化が起きにくく、水分の吸収も不十分となった。
[Comparative Example 1]
Absorption was performed in the same manner as in Example 1 except that the absorption-type multilayer ND filter was not sandwiched between dust-free paper during the temperature / humidity treatment and that the treatment time for the temperature / humidity treatment was set to 96 hours instead of 48 hours. The mold multilayer ND filter was subjected to a temperature and humidity treatment and then subjected to a weather resistance evaluation test. In this temperature and humidity treatment, the films are brought into close contact with each other, the change in spectral transmission characteristics due to oxidation of the metal film hardly occurs, and moisture absorption is insufficient.
図5に、温湿度処理後の吸収型多層膜NDフィルタの分光透過特性の測定結果を、「温湿度処理後」として点線で示すとともに、その耐候性評価試験後の分光透過特性の測定結果を「耐候性評価」として実線で示す。また、参考のため、基準温湿度処理が施されたときの吸収型多層膜NDフィルタの分光透過特性の測定結果を、「80℃90%24時間の基準温湿度処理後」として破線で示す。 FIG. 5 shows the measurement results of the spectral transmission characteristics of the absorption-type multilayer ND filter after the temperature and humidity treatment with a dotted line as “after the temperature and humidity treatment”, and the measurement results of the spectral transmission characteristics after the weather resistance evaluation test. It is indicated by a solid line as “weather resistance evaluation”. For reference, the measurement result of the spectral transmission characteristics of the absorption multilayer ND filter when the reference temperature / humidity treatment is performed is indicated by a broken line as “after the reference temperature / humidity treatment at 80 ° C. and 90% for 24 hours”.
これら測定結果から平均透過率のシフト量(X)を求めたところ、基準シフト量(X0)に対して、比較例1の処理条件で温湿度処理を行ったことに起因するシフト量(X)は93%である一方、この温湿度処理に加えて耐候性評価試験を行ったことに起因するシフト量(X)は99%であり、大きく変化した。 When the shift amount (X) of the average transmittance was determined from these measurement results, the shift amount (X caused by the temperature and humidity treatment performed under the processing conditions of Comparative Example 1 with respect to the reference shift amount (X 0 ). ) Was 93%, while the shift amount (X) resulting from the weather resistance evaluation test in addition to the temperature and humidity treatment was 99%, which was greatly changed.
[比較例2]
図2に示す環境試験機10のガス供給ラインから窒素を供給することによって、環境試験機10内を窒素雰囲気とし、温湿度処理時間を48時間の代わりに96時間としたこと以外は実施例1と同様にして吸収型多層膜NDフィルタに温湿度処理を施したうえ、耐候性評価試験を行った。
[Comparative Example 2]
Example 1 except that nitrogen was supplied from the gas supply line of the
図6に、温湿度処理後の吸収型多層膜NDフィルタの分光透過特性の測定結果を、「温湿度処理後」として点線で示すとともに、その耐候性評価試験後の分光透過特性の測定結果を「耐候性評価」として実線で示す。また、参考のため、基準温湿度処理が施されたときの吸収型多層膜NDフィルタの分光透過特性の測定結果を、「80℃90%24時間の基準温湿度処理後」として破線で示す。 FIG. 6 shows the measurement results of the spectral transmission characteristics of the absorption multilayer ND filter after the temperature / humidity treatment by a dotted line as “after the temperature / humidity treatment”, and the measurement results of the spectral transmission characteristics after the weather resistance evaluation test. It is indicated by a solid line as “weather resistance evaluation”. For reference, the measurement result of the spectral transmission characteristics of the absorption multilayer ND filter when the reference temperature / humidity treatment is performed is indicated by a broken line as “after the reference temperature / humidity treatment at 80 ° C. and 90% for 24 hours”.
これら測定結果から平均透過率のシフト量(X)を求めたところ、基準シフト量(X0)に対して、比較例2の処理条件で温湿度処理を行ったことに起因するシフト量(X)は92%である一方、この温湿度処理に加えて耐候性評価試験を行ったことに起因するシフト量(X)は99%であり、大きく変化した。また、波長ごとの点線と実線の開きからわかるように、長波長側に比べて短波長側において、透過率が大きく増加しており、耐候性評価試験を行うことによって分光透過特性が長波長側にシフトした。 When the shift amount (X) of the average transmittance was obtained from these measurement results, the shift amount (X caused by performing the temperature and humidity treatment under the processing conditions of Comparative Example 2 with respect to the reference shift amount (X 0 ). ) Was 92%, while the shift amount (X) resulting from the weather resistance evaluation test in addition to the temperature and humidity treatment was 99%, which was greatly changed. In addition, as can be seen from the opening of the dotted line and the solid line for each wavelength, the transmittance is greatly increased on the short wavelength side compared to the long wavelength side, and the spectral transmission characteristics are increased on the long wavelength side by performing a weather resistance evaluation test. Shifted to.
[比較例3]
温度70℃湿度80%で48時間の温湿度処理を行う代わりに常温常湿で30日間放置した後、耐候性評価試験を行った。
[Comparative Example 3]
Instead of performing the temperature and humidity treatment for 48 hours at a temperature of 70 ° C. and a humidity of 80%, the samples were left at room temperature and normal humidity for 30 days, and then subjected to a weather resistance evaluation test.
図7に、常温常湿で30日間放置後の吸収型多層膜NDフィルタの分光透過特性の測定結果を、「常温常湿で30日間放置後」として点線で示すとともに、その耐候性評価試験後の分光透過特性の測定結果を「耐候性評価」として実線で示す。また、参考のため、基準温湿度処理が施されたときの吸収型多層膜NDフィルタの分光透過特性の測定結果を、「80℃90%24時間の基準温湿度処理後」として破線で示す。 FIG. 7 shows the measurement result of the spectral transmission characteristics of the absorption multilayer ND filter after being left for 30 days at room temperature and humidity as a dotted line “After 30 days at room temperature and humidity”, and after the weather resistance evaluation test. The measurement results of the spectral transmission characteristics are shown as a “weather resistance evaluation” by a solid line. For reference, the measurement result of the spectral transmission characteristics of the absorption multilayer ND filter when the reference temperature / humidity treatment is performed is indicated by a broken line as “after the reference temperature / humidity treatment at 80 ° C. and 90% for 24 hours”.
これら測定結果から平均透過率のシフト量(X)を求めたところ、基準シフト量(X0)に対して、常温常湿で30日間放置したことに起因するシフト量(X)は93%である一方、この常温常湿処理に加えて耐候性評価試験を行ったことに起因するシフト量(X)は99%であり、大きく変化した。また、波長ごとの点線と実線の開きからわかるように、長波長側に比べて短波長側において、透過率が大きく増加しており、耐候性評価試験を行うことによって分光透過特性が長波長側にシフトした。 When the shift amount (X) of the average transmittance was obtained from these measurement results, the shift amount (X) resulting from standing at room temperature and humidity for 30 days was 93% with respect to the reference shift amount (X 0 ). On the other hand, the shift amount (X) resulting from conducting the weather resistance evaluation test in addition to the normal temperature and normal humidity treatment was 99%, which was greatly changed. In addition, as can be seen from the opening of the dotted line and the solid line for each wavelength, the transmittance is greatly increased on the short wavelength side compared to the long wavelength side, and the spectral transmission characteristics are increased on the long wavelength side by performing a weather resistance evaluation test. Shifted to.
[実施例2]
温度70℃湿度80%の代わりに温度30℃湿度50%で湿度処処理したこと以外は実施例1と同様にして吸収型多層膜NDフィルタに温湿度処理を施したうえ、耐候性評価試験を行った
[Example 2]
A temperature-humidity treatment was applied to the absorption multilayer ND filter in the same manner as in Example 1 except that the humidity treatment was performed at a temperature of 30 ° C. and a humidity of 50% instead of a temperature of 70 ° C. and a humidity of 80%. went
図8に、温湿度処理後の吸収型多層膜NDフィルタの分光透過特性の測定結果を、「温湿度処理後」として点線で示すとともに、その耐候性評価試験後の分光透過特性の測定結果を「耐候性評価」として実線で示す。また、参考のため、基準温湿度処理が施されたときの吸収型多層膜NDフィルタの分光透過特性の測定結果を、「80℃90%24時間の基準温湿度処理後」として破線で示す。 FIG. 8 shows the measurement result of the spectral transmission characteristic of the absorption multilayer ND filter after the temperature and humidity treatment as a dotted line as “after the temperature and humidity treatment”, and the measurement result of the spectral transmission characteristic after the weather resistance evaluation test. It is indicated by a solid line as “weather resistance evaluation”. For reference, the measurement result of the spectral transmission characteristics of the absorption multilayer ND filter when the reference temperature / humidity treatment is performed is indicated by a broken line as “after the reference temperature / humidity treatment at 80 ° C. and 90% for 24 hours”.
これら測定結果から平均透過率のシフト量(X)を求めたところ、基準シフト量(X0)に対して、実施例2の処理条件で温湿度処理を行ったことに起因するシフト量(X)は98%である一方、この温湿度処理に加えて耐候性評価試験を行ったことに起因するシフト量(X)は99%であり、ほとんど変化せず安定していた。また、400nmから700nmまでの波長域において点線と実線はほぼ一致しており、耐候性評価試験によって分光透過特性が長波長側にシフトすることはなかった。 When the shift amount (X) of the average transmittance was determined from these measurement results, the shift amount (X caused by the temperature and humidity treatment performed under the processing conditions of Example 2 with respect to the reference shift amount (X 0 ). ) Was 98%, while the shift amount (X) resulting from the weather resistance evaluation test in addition to the temperature and humidity treatment was 99%, and was almost unchanged and stable. In addition, the dotted line and the solid line almost coincided with each other in the wavelength region from 400 nm to 700 nm, and the spectral transmission characteristic was not shifted to the long wavelength side by the weather resistance evaluation test.
[比較例4]
温度70℃の代わりに25℃で温湿度処理したこと以外は実施例1と同様にして吸収型多層膜NDフィルタに温湿度処理を施したうえ、耐候性評価試験を行った。
[Comparative Example 4]
A temperature and humidity treatment was performed on the absorption multilayer ND filter in the same manner as in Example 1 except that a temperature and humidity treatment was performed at 25 ° C. instead of a temperature of 70 ° C., and a weather resistance evaluation test was performed.
図9に、温湿度処理後の吸収型多層膜NDフィルタの分光透過特性の測定結果を、「温湿度処理後」として点線で示すとともに、その耐候性評価試験後の分光透過特性の測定結果を「耐候性評価」として実線で示す。また、参考のため、基準温湿度処理が施されたときの吸収型多層膜NDフィルタの分光透過特性の測定結果を、「80℃90%24時間の基準温湿度処理後」として破線で示す。 FIG. 9 shows the measurement results of the spectral transmission characteristics of the absorption multilayer ND filter after the temperature / humidity treatment with a dotted line as “after the temperature / humidity treatment”, and the measurement results of the spectral transmission characteristics after the weather resistance evaluation test. It is indicated by a solid line as “weather resistance evaluation”. For reference, the measurement result of the spectral transmission characteristics of the absorption multilayer ND filter when the reference temperature / humidity treatment is performed is indicated by a broken line as “after the reference temperature / humidity treatment at 80 ° C. and 90% for 24 hours”.
これら測定結果から平均透過率のシフト量(X)を求めたところ、基準シフト量(X0)に対して、比較例4の処理条件で温湿度処理を行ったことに起因するシフト量(X)は92%である一方、この温湿度処理に加えて耐候性評価試験を行ったことに起因するシフト量(X)は99%であり、大きく変化した。また、波長ごとの点線と実線の開きからわかるように、長波長側に比べて短波長側において、透過率が大きく増加しており、耐候性評価試験を行うことによって分光透過特性が長波長側にシフトした。 When the shift amount (X) of the average transmittance was obtained from these measurement results, the shift amount (X caused by performing the temperature and humidity treatment under the processing conditions of Comparative Example 4 with respect to the reference shift amount (X 0 ). ) Was 92%, while the shift amount (X) resulting from the weather resistance evaluation test in addition to the temperature and humidity treatment was 99%, which was greatly changed. In addition, as can be seen from the opening of the dotted line and the solid line for each wavelength, the transmittance is greatly increased on the short wavelength side compared to the long wavelength side, and the spectral transmission characteristics are increased on the long wavelength side by performing a weather resistance evaluation test. Shifted to.
[比較例5]
湿度80%の代わりに40%で温湿度処理したこと以外は実施例1と同様にして吸収型多層膜NDフィルタに温湿度処理を施したうえ、耐候性評価試験を行った。
[Comparative Example 5]
A temperature and humidity treatment was performed on the absorption multilayer ND filter in the same manner as in Example 1 except that the temperature and humidity treatment was performed at 40% instead of the humidity of 80%, and a weather resistance evaluation test was performed.
図10に、温湿度処理後の吸収型多層膜NDフィルタの分光透過特性の測定結果を、「温湿度処理後」として点線で示すとともに、その耐候性評価試験後の分光透過特性の測定結果を「耐候性評価」として実線で示す。また、参考のため、基準温湿度処理が施されたときの吸収型多層膜NDフィルタの分光透過特性の測定結果を、「80℃90%24時間の基準温湿度処理後」として破線で示す。 FIG. 10 shows the measurement result of the spectral transmission characteristic of the absorption multilayer ND filter after the temperature and humidity treatment as a dotted line as “after the temperature and humidity treatment”, and the measurement result of the spectral transmission characteristic after the weather resistance evaluation test. It is indicated by a solid line as “weather resistance evaluation”. For reference, the measurement result of the spectral transmission characteristics of the absorption multilayer ND filter when the reference temperature / humidity treatment is performed is indicated by a broken line as “after the reference temperature / humidity treatment at 80 ° C. and 90% for 24 hours”.
これら測定結果から平均透過率のシフト量(X)を求めたところ、基準シフト量(X0)に対して、比較例5の処理条件で温湿度処理を行ったことに起因するシフト量(X)は91%である一方、この温湿度処理に加えて耐候性評価試験を行ったことに起因するシフト量(X)は99%であり、大きく変化した。また、波長ごとの点線と実線の開きからわかるように、長波長側に比べて短波長側において、透過率が大きく増加しており、耐候性評価試験を行うことによって分光透過特性が長波長側にシフトした。 When the shift amount (X) of the average transmittance was obtained from these measurement results, the shift amount (X caused by the temperature and humidity treatment being performed under the processing conditions of Comparative Example 5 with respect to the reference shift amount (X 0 ). ) Was 91%, while the shift amount (X) resulting from the weather resistance evaluation test in addition to the temperature and humidity treatment was 99%, which was greatly changed. In addition, as can be seen from the opening of the dotted line and the solid line for each wavelength, the transmittance is greatly increased on the short wavelength side compared to the long wavelength side, and the spectral transmission characteristics are increased on the long wavelength side by performing a weather resistance evaluation test. Shifted to.
[比較例6]
温度70℃の代わりに80℃で温湿度処理した以外は実施例1と同様にして吸収型多層膜NDフィルタに温湿度処理を施したうえ、耐候性評価試験を行った。
[Comparative Example 6]
A temperature and humidity treatment was performed on the absorption multilayer ND filter in the same manner as in Example 1 except that the temperature and humidity treatment was performed at 80 ° C. instead of the temperature of 70 ° C., and a weather resistance evaluation test was performed.
図11に、温湿度処理後の吸収型多層膜NDフィルタの分光透過特性の測定結果を、「温湿度処理後」として点線で示すとともに、その耐候性評価試験後の分光透過特性の測定結果を「耐候性評価」として実線で示す。また、参考のため、基準温湿度処理が施されたときの吸収型多層膜NDフィルタの分光透過特性の測定結果を、「80℃90%24時間の基準温湿度処理後」として破線で示す。 FIG. 11 shows the measurement results of the spectral transmission characteristics of the absorption multilayer ND filter after the temperature / humidity treatment with a dotted line as “after the temperature / humidity treatment”, and the measurement results of the spectral transmission characteristics after the weather resistance evaluation test. It is indicated by a solid line as “weather resistance evaluation”. For reference, the measurement result of the spectral transmission characteristics of the absorption multilayer ND filter when the reference temperature / humidity treatment is performed is indicated by a broken line as “after the reference temperature / humidity treatment at 80 ° C. and 90% for 24 hours”.
これら測定結果から平均透過率のシフト量(X)を求めたところ、基準シフト量(X0)に対して、比較例6の処理条件で温湿度処理を行ったことに起因するシフト量(X)は98%である一方、この温湿度処理に加えて耐候性評価試験を行ったことに起因するシフト量(X)は99%であり、ほとんど変化せず安定していたが、高温のためPETフィルムに歪みが発生し、膜に微細なクラックが発生した。 When the shift amount (X) of the average transmittance was obtained from these measurement results, the shift amount (X caused by the temperature and humidity treatment being performed under the processing conditions of Comparative Example 6 with respect to the reference shift amount (X 0 ). ) Was 98%, while the shift amount (X) resulting from the weather resistance evaluation test in addition to the temperature and humidity treatment was 99%, which remained stable with almost no change. Distortion occurred in the PET film, and fine cracks occurred in the film.
[比較例7]
エンボス無塵紙の凸部の高さを20μm未満とした以外は実施例1と同様にして吸収型多層膜NDフィルタに温湿度処理を施したうえ、耐候性評価試験を行った。
[Comparative Example 7]
Except that the height of the convex part of the embossed dust-free paper was less than 20 μm, the absorption type multilayer film ND filter was subjected to temperature and humidity treatment in the same manner as in Example 1 and then subjected to a weather resistance evaluation test.
図12に、温湿度処理後の吸収型多層膜NDフィルタの分光透過特性の測定結果を、「温湿度処理後」として点線で示すとともに、その耐候性評価試験後の分光透過特性の測定結果を「耐候性評価」として実線で示す。また、参考のため、基準温湿度処理が施されたときの吸収型多層膜NDフィルタの分光透過特性の測定結果を、「80℃90%24時間の基準温湿度処理後」として破線で示す。 FIG. 12 shows the measurement result of the spectral transmission characteristics of the absorption multilayer ND filter after the temperature and humidity treatment as a dotted line as “after the temperature and humidity treatment”, and the measurement result of the spectral transmission characteristics after the weather resistance evaluation test. It is indicated by a solid line as “weather resistance evaluation”. For reference, the measurement result of the spectral transmission characteristics of the absorption multilayer ND filter when the reference temperature / humidity treatment is performed is indicated by a broken line as “after the reference temperature / humidity treatment at 80 ° C. and 90% for 24 hours”.
これら測定結果から平均透過率のシフト量(X)を求めたところ、基準シフト量(X0)に対して、比較例7の処理条件で温湿度処理を行ったことに起因するシフト量(X)は91%である一方、この温湿度処理に加えて耐候性評価試験を行ったことに起因するシフト量(X)は99%であり、大きく変化した。また、波長ごとの点線と実線の開きからわかるように、長波長側に比べて短波長側において、透過率が大きく増加しており、耐候性評価試験を行うことによって分光透過特性が長波長側にシフトした。 When the shift amount (X) of the average transmittance was obtained from these measurement results, the shift amount (X caused by performing the temperature and humidity treatment under the processing conditions of Comparative Example 7 with respect to the reference shift amount (X 0 ). ) Was 91%, while the shift amount (X) resulting from the weather resistance evaluation test in addition to the temperature and humidity treatment was 99%, which was greatly changed. In addition, as can be seen from the opening of the dotted line and the solid line for each wavelength, the transmittance is greatly increased on the short wavelength side compared to the long wavelength side, and the spectral transmission characteristics are increased on the long wavelength side by performing a weather resistance evaluation test. Shifted to.
[実施例3]
凸部を有するエンボス無塵紙の代わりに無塵紙(大庫洋紙株式会社製、厚さ0.08mm、長さ330mm、巾280mm)を用いた以外は実施例1と同様にして吸収型多層膜NDフィルタに温湿度処理を施したうえ、耐候性評価試験を行った。
[Example 3]
Absorptive multilayer film ND in the same manner as in Example 1 except that dust-free paper (manufactured by Ooyo Paper Co., Ltd., thickness 0.08 mm, length 330 mm, width 280 mm) was used instead of embossed dust-free paper having convex portions. The filter was subjected to a temperature and humidity treatment and a weather resistance evaluation test.
図13に、温湿度処理後の吸収型多層膜NDフィルタの分光透過特性の測定結果を、「温湿度処理後」として点線で示すとともに、その耐候性評価試験後の分光透過特性の測定結果を「耐候性評価」として実線で示す。また、参考のため、基準温湿度処理が施されたときの吸収型多層膜NDフィルタの分光透過特性の測定結果を、「80℃90%24時間の基準温湿度処理後」として破線で示す。 FIG. 13 shows the measurement results of the spectral transmission characteristics of the absorption multilayer ND filter after the temperature / humidity treatment with a dotted line as “after temperature / humidity treatment”, and the measurement results of the spectral transmission characteristics after the weather resistance evaluation test. It is indicated by a solid line as “weather resistance evaluation”. For reference, the measurement result of the spectral transmission characteristics of the absorption multilayer ND filter when the reference temperature / humidity treatment is performed is indicated by a broken line as “after the reference temperature / humidity treatment at 80 ° C. and 90% for 24 hours”.
これら測定結果から平均透過率のシフト量(X)を求めたところ、基準シフト量(X0)に対して、実施例3の処理条件で温湿度処理を行ったことに起因するシフト量(X)は98%である一方、この温湿度処理に加えて耐候性評価試験を行ったことに起因するシフト量(X)は99%であり、大きく変化せず安定していた。また、400nmから700nmまでの波長域において点線と実線はほぼ一致しており、耐候性評価試験によって分光透過特性が長波長側にシフトすることはなかった。 When the shift amount (X) of the average transmittance was obtained from these measurement results, the shift amount (X caused by performing the temperature and humidity treatment under the processing conditions of Example 3 with respect to the reference shift amount (X 0 ). ) Was 98%, while the shift amount (X) resulting from the weather resistance evaluation test in addition to the temperature and humidity treatment was 99%, which was stable without significant change. In addition, the dotted line and the solid line almost coincided with each other in the wavelength region from 400 nm to 700 nm, and the spectral transmission characteristic was not shifted to the long wavelength side by the weather resistance evaluation test.
[結果]
実施例1〜2では、共に耐候性評価試験の前後でシフト量(X)の変化が殆どなかったので、吸収型多層膜NDフィルタをエンボス無塵紙に挟み込んで温湿度処理を行うことにより、分光透過特性の変化を飽和させることが可能であることがわかった。また、耐候性評価試験の前後で、400nmから700nmまでの波長域に亘って透過率は殆ど変化しなかったので、従来考慮されていなかった、長時間の使用で発生が認められる分光透過特性の長波長側へのシフトも飽和させることが可能であることがわかった。これらの結果から、予め温湿度処理を行うことによって、耐候性が良好になることがわかった。
[result]
In Examples 1 and 2, since there was almost no change in the shift amount (X) before and after the weather resistance evaluation test, the absorption-type multilayer film ND filter was sandwiched between embossed dust-free paper and subjected to temperature and humidity treatment. It was found that the change in transmission characteristics can be saturated. In addition, before and after the weather resistance evaluation test, the transmittance hardly changed over the wavelength range from 400 nm to 700 nm. It was found that the shift to the long wavelength side can be saturated. From these results, it was found that the weather resistance is improved by performing the temperature and humidity treatment in advance.
実施例3においても、耐候性評価試験の前後でシフト量(X)の変化が殆どなく、且つ耐候性評価試験の前後で、400nmから700nmまでの波長域に亘って透過率は殆ど変化しなかったので、エンボス無塵紙ではない無塵紙を用いた温湿度処理であっても、分光透過特性の変化や長波長側へのシフトを飽和させることが可能であり、耐候性が良好になることがわかった。 Also in Example 3, there is almost no change in the shift amount (X) before and after the weather resistance evaluation test, and the transmittance hardly changes over the wavelength region from 400 nm to 700 nm before and after the weather resistance evaluation test. Therefore, even with temperature and humidity treatment using dust-free paper that is not embossed dust-free paper, it is possible to saturate changes in spectral transmission characteristics and shift to the longer wavelength side, resulting in better weather resistance. all right.
一方、比較例1では、温湿度処理の際に無塵紙を使用しなかったので、耐候性評価試験の前後で平均透過率のシフト量(X)の変化が大きくなり、耐候性は良くなかった。また、比較例2〜5では、温湿度処理が不十分であったため、耐候性評価試験の前後で平均透過率のシフト量(X)の変化が大きくなった上、分光透過特性が長波長側にシフトし、耐候性は良くなかった。 On the other hand, in Comparative Example 1, since dust-free paper was not used during the temperature and humidity treatment, the change in the average transmittance shift amount (X) before and after the weather resistance evaluation test was large, and the weather resistance was not good. . Further, in Comparative Examples 2 to 5, since the temperature and humidity treatment was insufficient, the change in the average transmittance shift amount (X) before and after the weather resistance evaluation test was increased, and the spectral transmission characteristics were on the long wavelength side. The weather resistance was not good.
具体的には、比較例2は、実施例1よりも長時間に亘って温湿度処理を行ったが、酸素含有雰囲気ではなく窒素雰囲気で温湿度処理を行ったため、分光透過特性の変化を飽和させるに至らなかった。比較例3は、常温常湿で30日間放置したが、この条件では分光透過特性の変化を飽和させるに至らなかった。比較例4の温度25℃湿度80%、及び比較例5の温度70℃湿度40%も分光透過特性の変化を飽和させるに至らなかった。 Specifically, in Comparative Example 2, the temperature and humidity treatment was performed for a longer time than Example 1, but the change in spectral transmission characteristics was saturated because the temperature and humidity treatment was performed in a nitrogen atmosphere instead of an oxygen-containing atmosphere. I didn't get it. Comparative Example 3 was allowed to stand at room temperature and normal humidity for 30 days, but under these conditions, the change in spectral transmission characteristics was not saturated. The temperature of 25 ° C. and 80% humidity in Comparative Example 4 and the temperature of 70 ° C. and 40% humidity in Comparative Example 5 also did not saturate the change in spectral transmission characteristics.
比較例6では、耐候性は安定したが、PETフィルムに歪みが発生し、膜に微細なクラックが発生したため、吸収型多層膜NDフィルタとしては利用できなかった。 In Comparative Example 6, although the weather resistance was stable, the PET film was distorted, and fine cracks were generated in the film, so that it could not be used as an absorption multilayer ND filter.
比較例7では、エンボス無塵紙の凸部の高さが20μm未満であったため、実施例1と同様の温湿度条件で温湿度処理を行ったにもかかわらず、耐候性評価試験の前後で平均透過率のシフト量(X)の変化が大きくなったうえ、分光透過特性が長波長側にシフトし、耐候性は良くなかった。 In Comparative Example 7, since the height of the convex portion of the embossed dust-free paper was less than 20 μm, the average was measured before and after the weather resistance evaluation test, even though the temperature and humidity treatment was performed under the same temperature and humidity conditions as in Example 1. The change in the transmittance shift amount (X) increased, and the spectral transmission characteristics shifted to the longer wavelength side, and the weather resistance was not good.
1 巻き出しロール
2 巻き取りロール
3 冷却キャン
4 酸化物誘電体膜用ターゲット
5 金属膜用ターゲット
6 PETフィルム
10 環境試験機
DESCRIPTION OF
Claims (9)
(T−T1)/(T0−T1)≧0.95
を満足するように温湿度処理の処理時間を定めることを特徴とする、請求項7に記載の吸収型多層膜NDフィルタの製造方法。 The average transmittance between wavelengths 400 to 700 nm of the absorption multilayer film ND filter in which the absorption multilayer film is simply laminated without performing the temperature and humidity treatment is T 1, and the reference temperature and humidity is 24 hours at a temperature of 80 ° C. and a humidity of 90%. When the average transmittance in the wavelength range of 400 to 700 nm of the absorption multilayer ND filter when the treatment is performed is T 0 , the temperature and humidity treatment is performed at a predetermined temperature and humidity selected from the range of the temperature and humidity conditions. The average transmittance T between wavelengths 400 to 700 nm of the absorption multilayer ND filter after
(T−T 1 ) / (T 0 −T 1 ) ≧ 0.95
The method of manufacturing an absorption-type multilayer ND filter according to claim 7, wherein a treatment time of the temperature and humidity treatment is determined so as to satisfy the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008131574A JP5104540B2 (en) | 2008-05-20 | 2008-05-20 | Absorption-type multilayer ND filter and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008131574A JP5104540B2 (en) | 2008-05-20 | 2008-05-20 | Absorption-type multilayer ND filter and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009282088A true JP2009282088A (en) | 2009-12-03 |
JP5104540B2 JP5104540B2 (en) | 2012-12-19 |
Family
ID=41452635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008131574A Expired - Fee Related JP5104540B2 (en) | 2008-05-20 | 2008-05-20 | Absorption-type multilayer ND filter and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5104540B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102353356A (en) * | 2011-07-14 | 2012-02-15 | 上海辉格科技发展有限公司 | Digitalized clinometer and measuring method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08240701A (en) * | 1995-03-01 | 1996-09-17 | Canon Inc | Optical thin film |
JP2005225117A (en) * | 2004-02-13 | 2005-08-25 | Tokuyama Corp | Gas barrier film |
JP2006058854A (en) * | 2004-07-20 | 2006-03-02 | Sumitomo Metal Mining Co Ltd | Absorption type multilayer film nd filter |
JP2006091694A (en) * | 2004-09-27 | 2006-04-06 | Nidec Copal Corp | Nd filter, its manufacturing method, and light quantity control diaphragm device |
JP2008102363A (en) * | 2006-10-19 | 2008-05-01 | Nidec Copal Corp | Nd filter and light quantity adjusting device using the same |
-
2008
- 2008-05-20 JP JP2008131574A patent/JP5104540B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08240701A (en) * | 1995-03-01 | 1996-09-17 | Canon Inc | Optical thin film |
JP2005225117A (en) * | 2004-02-13 | 2005-08-25 | Tokuyama Corp | Gas barrier film |
JP2006058854A (en) * | 2004-07-20 | 2006-03-02 | Sumitomo Metal Mining Co Ltd | Absorption type multilayer film nd filter |
JP2006091694A (en) * | 2004-09-27 | 2006-04-06 | Nidec Copal Corp | Nd filter, its manufacturing method, and light quantity control diaphragm device |
JP2008102363A (en) * | 2006-10-19 | 2008-05-01 | Nidec Copal Corp | Nd filter and light quantity adjusting device using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102353356A (en) * | 2011-07-14 | 2012-02-15 | 上海辉格科技发展有限公司 | Digitalized clinometer and measuring method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5104540B2 (en) | 2012-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5425351B1 (en) | Light transmissive conductive film, method for producing the same, and use thereof | |
TW201524756A (en) | Optical film exhibiting improved light to solar gain heat ratio | |
JP6105849B2 (en) | Phase difference element | |
EP1213599A2 (en) | Heat resistant reflecting layer | |
WO2006117979A1 (en) | Infrared blocking filter | |
JP2009073090A (en) | Functional film, manufacturing method of functional film, laminated body, and electronic device | |
WO2022244686A1 (en) | Method for producing far-infrared transmission member, and far-infrared transmission member | |
JP4895902B2 (en) | Method for forming reflective film | |
JP2009003440A (en) | Transparent electrode | |
JP5104540B2 (en) | Absorption-type multilayer ND filter and manufacturing method thereof | |
CN102730984A (en) | One-way perspective glass and preparation method thereof | |
JP2003114302A (en) | Antireflection film and method for manufacturing antireflective polarizing plate | |
JP6010078B2 (en) | Light transmissive conductive film, method for producing the same, and use thereof | |
CN115734951A (en) | Transparent substrate with antireflection film | |
JP2016128259A (en) | Laminate film and film roll of the same, light-transmitting conductive film obtained from the same, and touch panel using the same | |
CN202181259U (en) | One-way perspective glass | |
JP4862829B2 (en) | Absorption-type multilayer ND filter | |
CN116609872A (en) | Optical filter | |
CN110579829A (en) | Near-infrared filter, preparation method thereof and filtering equipment | |
JP2012042726A (en) | Terahertz band optical element | |
JP5125268B2 (en) | Method for manufacturing absorption multilayer ND filter | |
KR102542171B1 (en) | Flexible transparent conductive film, transparent electrode and transparent infrared radiation-cutting film comprising the same | |
JP2013246266A (en) | Optical filter | |
JP4811294B2 (en) | Method for manufacturing absorption multilayer ND filter | |
JP4811293B2 (en) | Absorption-type multilayer ND filter and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120321 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120904 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120917 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151012 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |