JPH08236467A - Method for heat-treating semiconductor substrate - Google Patents

Method for heat-treating semiconductor substrate

Info

Publication number
JPH08236467A
JPH08236467A JP6190395A JP6190395A JPH08236467A JP H08236467 A JPH08236467 A JP H08236467A JP 6190395 A JP6190395 A JP 6190395A JP 6190395 A JP6190395 A JP 6190395A JP H08236467 A JPH08236467 A JP H08236467A
Authority
JP
Japan
Prior art keywords
quartz
heat treatment
semiconductor substrate
reaction tube
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6190395A
Other languages
Japanese (ja)
Inventor
Hisashi Adachi
尚志 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP6190395A priority Critical patent/JPH08236467A/en
Publication of JPH08236467A publication Critical patent/JPH08236467A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve the characteristics and manufacturing yield of a semicon ductor element by remarkably reducing heavy metal contamination which occurs in the course of a semiconductor substrate manufacturing method in which high-temperature heat treatment is performed on various kinds of semiconductor substrates. CONSTITUTION: A quartz reaction tube used for the heat treatment of a semiconductor substrate is constructed in a two-layer structure composed of synthetic quartz containing an OH group at a concentration of >=120ppm on the internal surface side and natural crystalline quartz or fused quartz containing an OH group at a concentration of <=80ppm so that the reaction tube can have durability at a high temperature and the contamination of the semiconductor substrate can be reduced after heat treatment. Therefore, the heavy metal contamination of the substrate with iron, etc., can be remarkably reduced when the substrate is heat-treated in an atmosphere containing a hydrogen gas having an etching ability at a temperature between 900 deg.C and l,300 deg.C, especially, >=1,100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シリコン等の半導体
基板の熱処理方法の改良に係り、外面を天然結晶質石英
あるいは溶融石英、内面を合成石英にて構成した2層構
造石英反応管を用いて熱処理することにより、高温熱処
理を施す種々の製造方法において生じる重金属汚染の大
幅な低減を可能にし、半導体素子の特性及び製造歩留を
向上させた半導体基板の熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a heat treatment method for a semiconductor substrate such as silicon, and uses a two-layer structure quartz reaction tube having an outer surface made of natural crystalline quartz or fused quartz and an inner surface made of synthetic quartz. The present invention relates to a heat treatment method for a semiconductor substrate, in which heavy metal contamination that occurs in various manufacturing methods in which high-temperature heat treatment is performed can be significantly reduced, and the characteristics and manufacturing yield of semiconductor elements are improved.

【0002】[0002]

【従来の技術】シリコン・ウェーハ熱処理として、例え
ば、ウェーハ表面近傍の結晶欠陥を低減させるDZ処理
(デニューデットゾーン)やデバイス・プロセスのウェ
ール拡散など種々高温熱処理手法がある。近年、シリコ
ン・ウェーハを水素ガスを含有する雰囲気下で熱処理す
ることにより酸化膜耐圧を向上させる方法が、特開昭6
0−231365号公報、特開昭61−19345号公
報等で知られている。
2. Description of the Related Art As a silicon wafer heat treatment, there are various high temperature heat treatment methods such as DZ treatment (denued dead zone) for reducing crystal defects near the wafer surface and wale diffusion in a device process. In recent years, a method of improving the breakdown voltage of an oxide film by heat-treating a silicon wafer in an atmosphere containing hydrogen gas has been disclosed in Japanese Patent Laid-Open No.
It is known from 0-231365, JP-A-61-19345, and the like.

【0003】これら熱処理はいずれも900℃以上を必
要とし、熱処理を行う反応管は天然結晶質石英もしくは
SiC反応管を使用している。しかし、SiC反応管
は、純度の面で天然結晶質石英に比し明かに劣り、現在
ほとんどの熱処理反応管は天然結晶質石英を使用してい
る。
All of these heat treatments require 900 ° C. or higher, and the reaction tube for heat treatment is a natural crystalline quartz or SiC reaction tube. However, the SiC reaction tube is clearly inferior to the natural crystalline quartz in terms of purity, and most heat treatment reaction tubes currently use natural crystalline quartz.

【0004】一方、水素ガスを含有する雰囲気下での高
温熱処理では、以下のような問題点も生じる。すなわ
ち、水素ガスは還元作用により石英反応管内面をエッチ
ングし、石英材質自体に含まれる不純物、特にFe、C
u、Niなどの重金属により熱処理中のシリコン・ウェ
ーハを汚染させることが知られている。
On the other hand, high temperature heat treatment in an atmosphere containing hydrogen gas causes the following problems. That is, the hydrogen gas etches the inner surface of the quartz reaction tube due to the reducing action, and impurities such as Fe and C contained in the quartz material itself are etched.
It is known to contaminate silicon wafers during heat treatment with heavy metals such as u and Ni.

【0005】[0005]

【発明が解決しようとする課題】最近、半導体デバイス
の高集積化すなわちパターンの微細化は著しく、それに
伴い半導体シリコン・ウェーハ品質に対する要求仕様が
一層厳しくなっている。重金属汚染のさらなる低減を考
慮すると、従来使用の石英反応管では充分とはいえな
い。そこで、上記問題点を解決するには、従来の天然結
晶質石英反応管より高純度である合成石英を使用するこ
とが考えられる。
Recently, high integration of semiconductor devices, that is, miniaturization of patterns has been remarkable, and accordingly, required specifications for semiconductor silicon / wafer quality have become more severe. Considering the further reduction of heavy metal contamination, the conventionally used quartz reaction tube is not sufficient. Therefore, in order to solve the above problems, it is conceivable to use synthetic quartz having a higher purity than the conventional natural crystalline quartz reaction tube.

【0006】すなわち、合成石英は天然結晶質石英に比
べ重金属濃度(鉄、銅等)が約1桁程低いことが知られ
ている。しかし、合成石英材質はOH基濃度が高く90
0℃〜1300℃の条件下では酸水素溶融石英等に比較
し粘性低下が大きく、反応管たわみが顕著となり、高温
熱処理の使用が困難である。また、合成石英材質のOH
基を脱水処理することによりOH基濃度を低減させるこ
とは可能だが、全量合成石英材質による反応管は非常に
高価となり、工業生産での使用には無理がある。
That is, it is known that synthetic quartz has a heavy metal concentration (iron, copper, etc.) lower than that of natural crystalline quartz by about one digit. However, the synthetic quartz material has a high OH group concentration and
Under the condition of 0 ° C to 1300 ° C, the viscosity is much lower than that of oxyhydrogen fused quartz and the like, the deflection of the reaction tube becomes remarkable, and it is difficult to use high temperature heat treatment. Also, synthetic quartz material OH
Although it is possible to reduce the OH group concentration by dehydrating the group, the reaction tube made of synthetic quartz material in its entirety becomes very expensive, and it is impossible to use it in industrial production.

【0007】一方、実開昭62−14722号公報に
は、OH基が80ppm以下の内管とOH基が120p
pm以上の外管からなる2層構造の石英反応管が提案さ
れている。ヒーター、ライナー管等の外部汚染に対して
は、外面石英のOH基濃度を120ppm以上にしてい
るため問題ないが、水素ガス雰囲気下での熱処理時にお
いては、内面石英をエッチングするため石英純度の問題
が生じる。
On the other hand, in Japanese Utility Model Publication No. 62-14722, an inner tube having an OH group of 80 ppm or less and an OH group of 120 p are disclosed.
A two-layer quartz reaction tube having an outer tube of pm or more has been proposed. There is no problem with respect to external contamination of the heater, liner tube, etc. because the OH group concentration of the outer surface quartz is 120 ppm or more, but during heat treatment in a hydrogen gas atmosphere, the inner surface quartz is etched and the purity of the quartz The problem arises.

【0008】また、天然結晶質石英反応管の内面ライニ
ングに、シリコン・アルコキシドの加水分解からの合成
石英を張り付けた構成の2層構造反応管が提案(特開平
4−21587号公報)されている。しかし、合成石英
中のOH基濃度を100ppm以下に限定しているた
め、ヒーター、ライナー管等の外部からの汚染をOH基
により捕獲(拡散抑制)する能力が低く炉内汚染を引き
起こす可能性がある。
Further, a two-layer structure reaction tube having a structure in which synthetic quartz from the hydrolysis of silicon alkoxide is attached to the inner surface lining of a natural crystalline quartz reaction tube has been proposed (JP-A-4-21587). . However, since the OH group concentration in synthetic quartz is limited to 100 ppm or less, the ability to capture (suppress diffusion) external contamination of heaters, liner tubes, etc. by the OH group is low, and there is a possibility of causing in-furnace contamination. is there.

【0009】そこで、かかる問題を解決するため、内面
にOH基を1000〜2000ppmに限定した合成石
英ガラス、外面に高純度石英ガラスを用いた2層構造反
応管が提案されている。しかし、内面合成石英のOH基
濃度が高いため、高温熱処理(1200℃以上)におい
て外面天然結晶質石英部でのみ反応管変形を抑えるため
に、外面石英の厚みを厚くする必要があり、昇温冷却速
度の応答性劣化が生じる問題がある。
In order to solve such a problem, therefore, there has been proposed a two-layer structure reaction tube using synthetic quartz glass whose OH group is limited to 1000 to 2000 ppm on the inner surface and high-purity quartz glass on the outer surface. However, since the inner surface synthetic quartz has a high OH group concentration, it is necessary to increase the thickness of the outer surface quartz in order to suppress the deformation of the reaction tube only in the outer surface natural crystalline quartz portion during the high temperature heat treatment (1200 ° C or higher). There is a problem that the response of the cooling rate deteriorates.

【0010】これらの現状をふまえると、従来使用され
ていた反応管では高温時での反応管変形抑制を考慮する
と重金属汚染低減は極めて困難となり、また、重金属汚
染低減を図ると反応管熱変形が無視できなくなる問題が
あった。この発明は、高温熱処理を施す種々の半導体基
板の製造方法において生じる反応管変形を抑制しかつ重
金属汚染の大幅な低減を可能にし、半導体素子の特性及
び製造歩留を向上させた半導体基板の熱処理方法の提供
を目的とする。
In view of these circumstances, it is extremely difficult to reduce heavy metal contamination in the conventionally used reaction tube in view of suppression of reaction tube deformation at high temperature, and when reducing heavy metal contamination, reaction tube thermal deformation occurs. There was a problem that could not be ignored. INDUSTRIAL APPLICABILITY The present invention suppresses reaction tube deformation that occurs in various semiconductor substrate manufacturing methods that are subjected to high-temperature heat treatment, makes it possible to significantly reduce heavy metal contamination, and improves semiconductor element characteristics and manufacturing yield. The purpose is to provide a method.

【0011】[0011]

【課題を解決するための手段】この発明は、内面を合成
石英、外面を天然結晶質石英あるいは溶融石英にて構成
した石英反応管内で、半導体基板を900℃〜1300
℃で熱処理することを特徴とする半導体基板の熱処理方
法である。
According to the present invention, a semiconductor substrate is placed in a quartz reaction tube having an inner surface made of synthetic quartz and an outer surface made of natural crystalline quartz or fused quartz.
A heat treatment method for a semiconductor substrate is characterized in that the heat treatment is carried out at a temperature of ° C.

【0012】また、この発明は、上記構成において、熱
処理雰囲気が水素ガスを含有する雰囲気である半導体基
板の熱処理方法、内面の合成石英材質中のOH基濃度を
120ppm以上、外面の天然結晶質石英材質中のOH
基濃度を80ppm以下とする半導体基板の熱処理方
法、石英反応管の外面側石英の厚みを1mm以上、内面
側石英の厚みを0.2mm以上とする2層構造を有する
半導体基板の熱処理方法、を併せて提案する。
Further, according to the present invention, in the above constitution, the heat treatment method for the semiconductor substrate is such that the heat treatment atmosphere is an atmosphere containing hydrogen gas, the OH group concentration in the synthetic quartz material on the inner surface is 120 ppm or more, and the natural crystalline quartz on the outer surface. OH in the material
A heat treatment method for a semiconductor substrate having a base concentration of 80 ppm or less; and a heat treatment method for a semiconductor substrate having a two-layer structure in which the thickness of the quartz on the outer surface side of the quartz reaction tube is 1 mm or more and the thickness of the quartz on the inner surface side is 0.2 mm or more. We also propose.

【0013】この発明において、内面の合成石英材質中
のOH基濃度を120ppm以上としたのは反応管外部
にあるヒーターなどの構造物からの汚染を防ぐことを確
認されたからであり、外面の天然結晶質石英あるいは溶
融石英材質中のOH基濃度を80ppm以下とするのは
高温になっても粘性低下が少なく高温熱処理にも耐え得
るからであり、熱処理中のウェーハの重金属汚染を極力
低減させ、かつ高温下、特に1200℃以上での熱処理
においても反応管変形を抑制するには、上記の内外面の
OH基濃度は同時に満足する必要がある。外面の天然結
晶質石英材質中のOH基濃度は、反応管変形抑制の長期
安定を考慮すると、さらに40ppm以下が好ましい。
In the present invention, the OH group concentration in the synthetic quartz material on the inner surface is set to 120 ppm or more because it is confirmed that the structure such as the heater outside the reaction tube is prevented from being contaminated. The reason why the OH group concentration in the crystalline quartz or fused quartz material is set to 80 ppm or less is that the viscosity does not decrease even at high temperatures and it can withstand high temperature heat treatment, and the heavy metal contamination of the wafer during heat treatment is reduced as much as possible. Further, in order to suppress the deformation of the reaction tube even at a high temperature, especially at a heat treatment at 1200 ° C. or higher, the above OH group concentrations on the inner and outer surfaces must be simultaneously satisfied. The OH group concentration in the natural crystalline quartz material on the outer surface is preferably 40 ppm or less in consideration of long-term stability of suppressing reaction tube deformation.

【0014】この発明において、石英反応管を構成する
外面側の天然結晶質石英あるいは酸水素火炎溶融石英ま
たは電気溶融石英の厚さは、高温下での反応管の撓みを
極力低減するために、少なくとも1mm以上を必要とす
る。石英反応管の形態は、縦円筒型、ドーム型、横チュ
ーブ型等公知にいずれの形態をも採用でき、構造主体と
しての外面側、内面側の合成石英の構成が採用できれ
ば、構造などはいずれの構造も採用できる。
In the present invention, the thickness of the natural crystalline quartz, the oxyhydrogen flame fused quartz or the electrofused quartz on the outer surface side of the quartz reaction tube is set so as to reduce the deflection of the reaction tube at high temperature as much as possible. At least 1 mm or more is required. The form of the quartz reaction tube can be any known form such as a vertical cylinder type, a dome type, and a horizontal tube type, and if the structure of the synthetic quartz on the outer surface side and the inner surface side as the main constituent can be adopted, the structure etc. The structure of can also be adopted.

【0015】この発明において、反応管作製方法は特に
制限されるものでなく、適宜選択することができ、例え
ば、酸水素火炎溶融石英または電気溶融石英で構成され
た石英反応管の反応室を形成する内面の全面に、合成石
英材質を化学蒸着、スパッタ、プラズマスパッタなどの
気相成膜法にて所要厚みに成膜することにより、合成石
英の内張りを形成できる。
In the present invention, the method for producing the reaction tube is not particularly limited and can be appropriately selected. For example, the reaction chamber of the quartz reaction tube made of oxyhydrogen flame fused quartz or electrofused quartz is formed. The synthetic quartz lining can be formed by depositing a synthetic quartz material to a required thickness on the entire inner surface by a vapor deposition method such as chemical vapor deposition, sputtering or plasma sputtering.

【0016】石英材質中のFeイオンの拡散定数の温度
依存性がCorrosin Science, 21,
49(’81)に出典されている。但し、上限温度は1
000℃までであるが概算で1200℃での拡散定数を
推定すると1×10-12cm2/secであり、例えば、
1200℃で100時間熱処理するとFeの拡散長は6
μmである。従って、内面側の合成石英の厚みは、Fe
汚染防止の観点から少なくとも10μmもあれば有効で
ある。
[0016] The temperature dependence of the diffusion constant of Fe ions in the quartz material is Corrosin Science, 21,
49 ('81). However, the upper limit temperature is 1
Although it is up to 000 ° C., the diffusion constant at 1200 ° C. is estimated to be 1 × 10 −12 cm 2 / sec.
When heat-treated at 1200 ° C for 100 hours, the diffusion length of Fe is 6
μm. Therefore, the thickness of the synthetic quartz on the inner surface side is Fe
From the viewpoint of preventing contamination, it is effective if it is at least 10 μm.

【0017】この発明において、工業生産における内面
側の合成石英の厚みを0.2mm(200μm)以上と
したのは、通常、反応管洗浄時に希ふっ酸を使用する
が、後述の如く、石英自体ふっ酸によるエッチングを考
慮して決定した。ふっ酸の石英材質に対するエッチング
速度は、一般的に、5%ふっ酸で約0.25μm/分、
25%ふっ酸で0.6μm/分、45%ふっ酸で1.8
μm/分であり、1回の洗浄時に石英反応管を希ふっ酸
中に浸す時間を約10分程度とすると、45%ふっ酸中
では約18μmエッチング除去され、少なくとも厚みが
200μmであれば、約10回の洗浄に耐え得ることに
なる。
In the present invention, the reason why the thickness of the synthetic quartz on the inner surface side in industrial production is set to 0.2 mm (200 μm) or more is that dilute hydrofluoric acid is usually used for cleaning the reaction tube. It was determined in consideration of etching with hydrofluoric acid. The etching rate of hydrofluoric acid with respect to the quartz material is generally about 0.25 μm / min at 5% hydrofluoric acid,
0.6 μm / min with 25% hydrofluoric acid, 1.8 with 45% hydrofluoric acid
μm / min, and when the time for immersing the quartz reaction tube in dilute hydrofluoric acid at one cleaning is about 10 minutes, it is removed by etching by about 18 μm in 45% hydrofluoric acid, and if the thickness is at least 200 μm, It will be able to withstand about 10 washes.

【0018】また、合成石英の純度は、鉄<0.1pp
m、銅<0.01ppm、アルミニウム<0.1ppm
程度、外面の天然結晶質石英、酸水素火炎溶融石英もし
くは電気溶融石英の純度は、鉄<2ppm、銅<0.1
ppm、アルミニウム<30ppm程度の市販品レベル
でよい。
The purity of synthetic quartz is iron <0.1 pp.
m, copper <0.01 ppm, aluminum <0.1 ppm
The degree of purity of natural crystalline quartz, oxyhydrogen flame fused quartz or electro fused quartz on the outer surface is iron <2 ppm, copper <0.1
A commercially available product level of about ppm and aluminum <30 ppm may be used.

【0019】[0019]

【作用】この発明は、半導体基板を熱処理する石英反応
管の内面を合成石英、外面を天然結晶質石英あるいは酸
水素溶融石英もしくは電気溶融石英の2層構造とし、高
温下での耐久性を持たせ、かつ熱処理後の半導体基板の
汚染を低減することを可能にしたものである。石英反応
管の内面に高純度の合成石英を用いることにより、90
0℃〜1300℃での熱処理、特に、1100℃以上、
エッチング能を有する水素ガス含有雰囲気での熱処理
時、及び非酸化性ガス(Arガス等)での熱処理時に、
鉄等の重金属汚染を大幅に防止することができる。
According to the present invention, a quartz reaction tube for heat-treating a semiconductor substrate has a two-layer structure of synthetic quartz on the inner surface and natural crystalline quartz or oxyhydrogen fused quartz or electrofused quartz on the outer surface, and has durability at high temperature. In addition, the contamination of the semiconductor substrate after the heat treatment can be reduced. By using high-purity synthetic quartz on the inner surface of the quartz reaction tube,
Heat treatment at 0 ° C to 1300 ° C, particularly 1100 ° C or higher,
At the time of heat treatment in an atmosphere containing hydrogen gas having etching ability and at the time of heat treatment with a non-oxidizing gas (Ar gas etc.),
Contamination of heavy metals such as iron can be greatly prevented.

【0020】また、この発明による熱処理は、半導体基
板にエピタキシャル成膜する際、特に有効である。例え
ば、成長温度が高いほどパターンシフト及びパターンデ
ィストーションを小さくできることが知られているが、
成長温度が高いほど重金属汚染も活性化することから、
通常では処理温度を上げることができない。しかし、こ
の発明の熱処理では1200℃以上の温度でも重金属汚
染が少なく、上記の成長温度を高く設定でき、パターン
シフト及びパターンディストーションを低減することが
可能である。
The heat treatment according to the present invention is particularly effective when epitaxially forming a film on a semiconductor substrate. For example, it is known that the higher the growth temperature, the smaller the pattern shift and the pattern distortion.
The higher the growth temperature, the more the heavy metal contamination is activated.
Normally, the processing temperature cannot be raised. However, in the heat treatment of the present invention, heavy metal contamination is small even at a temperature of 1200 ° C. or higher, the above growth temperature can be set high, and pattern shift and pattern distortion can be reduced.

【0021】[0021]

【実施例】試料には、チョクラルスキー法により育成さ
れたシリコン基板に鏡面研磨を行い、電気溶融石英反応
管内で100%水素雰囲気下、1200℃、1時間熱処
理を施した。熱処理後の基板は、HF水溶液にて基板表
面の不純物を回収し、ICP−MS装置にて表面鉄濃度
を測定した。
EXAMPLE As a sample, a silicon substrate grown by the Czochralski method was mirror-polished and heat-treated at 1200 ° C. for 1 hour in a 100% hydrogen atmosphere in an electric fused silica reaction tube. For the substrate after the heat treatment, impurities on the substrate surface were collected with an HF aqueous solution, and the surface iron concentration was measured with an ICP-MS apparatus.

【0022】前記と同じ試料を用い、内面がOH基濃度
120ppmの合成石英、外面がOH基濃度75ppm
の天然結晶質石英反応管内にて100%水素雰囲気下、
1200℃、1時間の熱処理を施した。基板表面不純物
は上記同様方法にて測定した。図1に従来法及び本発明
法の鉄濃度の測定結果を示すのが、従来法に比べて約1
桁程、汚染が低減されていることがわかる。また、70
0℃から1200℃昇温、1200℃で1時間熱処理
後、700℃までの降温サイクルを100回行ったが、
石英反応管のひずみは発生しなかった。
Using the same sample as above, synthetic quartz with an OH group concentration of 120 ppm on the inner surface and 75 ppm with an OH group concentration on the outer surface
In a natural crystalline quartz reaction tube of 100% hydrogen atmosphere,
Heat treatment was performed at 1200 ° C. for 1 hour. The substrate surface impurities were measured by the same method as described above. FIG. 1 shows the measurement results of the iron concentration of the conventional method and the method of the present invention, which are about 1% as compared with the conventional method.
It can be seen that the pollution is reduced by an order of magnitude. Also, 70
The temperature was raised from 0 ° C. to 1200 ° C., the heat treatment was performed at 1200 ° C. for 1 hour, and then the temperature lowering cycle up to 700 ° C. was performed 100 times.
No distortion of the quartz reaction tube occurred.

【0023】[0023]

【発明の効果】この発明は、半導体基板の高温熱処理、
900℃〜1300℃での熱処理、特に、エッチング能
を有する水素ガス含有雰囲気での熱処理時に、熱処理後
の基板表面重金属汚染を低減することを可能にし、得ら
れるデバイス特性向上、プロセスにおける製造歩留の向
上等の利点を得ることができる。また、この発明の熱処
理では1200℃以上の温度でも重金属汚染が少なく、
エピタキシャル成膜の成長温度を高く設定でき、パター
ンシフト及びパターンディストーションを低減すること
が可能である。
The present invention provides a high temperature heat treatment of a semiconductor substrate,
During heat treatment at 900 ° C. to 1300 ° C., particularly in a hydrogen gas-containing atmosphere having etching ability, it is possible to reduce heavy metal contamination on the surface of the substrate after heat treatment, improve device characteristics obtained, and increase manufacturing yield in the process. Can be obtained. Further, in the heat treatment of the present invention, heavy metal contamination is small even at a temperature of 1200 ° C. or higher,
It is possible to set a high growth temperature for epitaxial film formation and reduce pattern shift and pattern distortion.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年6月30日[Submission date] June 30, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の熱処理法及び本発明の熱処理法を施した
後の基板表面における鉄濃度の測定結果を示すグラフで
ある。
FIG. 1 is a graph showing measurement results of iron concentration on a substrate surface after a conventional heat treatment method and a heat treatment method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内面を合成石英、外面を天然結晶質石英
あるいは溶融石英にて構成した石英反応管内で、半導体
基板を900℃〜1300℃で熱処理することを特徴と
する半導体基板の熱処理方法。
1. A heat treatment method for a semiconductor substrate, comprising heat-treating the semiconductor substrate at 900 ° C. to 1300 ° C. in a quartz reaction tube having an inner surface made of synthetic quartz and an outer surface made of natural crystalline quartz or fused quartz.
【請求項2】 熱処理雰囲気が水素ガスを含有する雰囲
気である請求項1に記載の半導体基板の熱処理方法。
2. The heat treatment method for a semiconductor substrate according to claim 1, wherein the heat treatment atmosphere is an atmosphere containing hydrogen gas.
【請求項3】 内面の合成石英材質中のOH基濃度を1
20ppm以上、外面の天然結晶質石英材質中のOH基
濃度を80ppm以下とする請求項1に記載の半導体基
板の熱処理方法。
3. The concentration of OH groups in the synthetic quartz material of the inner surface is 1
The heat treatment method for a semiconductor substrate according to claim 1, wherein the concentration of OH groups in the natural crystalline quartz material on the outer surface is 20 ppm or more and 80 ppm or less.
【請求項4】 石英反応管の外面側石英の厚みを1mm
以上、内面側石英の厚みを0.2mm以上とする2層構
造を有する請求項1に記載の半導体基板の熱処理方法。
4. The thickness of the quartz on the outer surface side of the quartz reaction tube is 1 mm.
The method for heat treating a semiconductor substrate according to claim 1, wherein the inner surface side quartz has a two-layer structure having a thickness of 0.2 mm or more.
JP6190395A 1995-02-24 1995-02-24 Method for heat-treating semiconductor substrate Pending JPH08236467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6190395A JPH08236467A (en) 1995-02-24 1995-02-24 Method for heat-treating semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6190395A JPH08236467A (en) 1995-02-24 1995-02-24 Method for heat-treating semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH08236467A true JPH08236467A (en) 1996-09-13

Family

ID=13184582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6190395A Pending JPH08236467A (en) 1995-02-24 1995-02-24 Method for heat-treating semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH08236467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201766A (en) * 2010-03-02 2011-10-13 Mitsubishi Chemicals Corp Nitride semiconductor production apparatus, production method for nitride semiconductor, and nitride semiconductor crystal
CN110544613A (en) * 2018-05-28 2019-12-06 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201766A (en) * 2010-03-02 2011-10-13 Mitsubishi Chemicals Corp Nitride semiconductor production apparatus, production method for nitride semiconductor, and nitride semiconductor crystal
CN110544613A (en) * 2018-05-28 2019-12-06 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method
CN110544613B (en) * 2018-05-28 2023-05-26 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method

Similar Documents

Publication Publication Date Title
KR0132036B1 (en) Method for treating a semiconductor substrate
US4587928A (en) Apparatus for producing a semiconductor device
EP0340802B1 (en) Silicon carbide diffusion tube for semi-conductor
JPH01301589A (en) Epitaxial growth of silicon
JP2008063157A (en) Quartz glass member for semiconductor manufacture
WO2005014898A1 (en) Process for producing wafer
JPH0648686B2 (en) Silicon wafer having excellent gettering ability and method of manufacturing the same
JP2003502836A (en) Manufacturing method of epitaxial silicon wafer having intrinsic gettering
US5759426A (en) Heat treatment jig for semiconductor wafers and a method for treating a surface of the same
KR19990087649A (en) Method of manufacturing silicon single crystal and silicon single crystal thin film
JPH08236467A (en) Method for heat-treating semiconductor substrate
JP7231120B2 (en) Epitaxial wafer manufacturing method
JPH10114532A (en) Production of jig for heat-treating quartz-glass semiconductor
JP2907095B2 (en) Method for manufacturing semiconductor device
JP2005223292A (en) High purification method of rapid thermal annealing jig for semiconductor
JPH05144751A (en) Manufacture of semiconductor epitaxial substrate
JPH0636979A (en) Semiconductor device
KR20040013396A (en) Manufacturing method for annealed wafer
JP4259881B2 (en) Cleaning method of silicon wafer
JP4096557B2 (en) Silicon single crystal wafer, silicon single crystal manufacturing method, and silicon single crystal wafer manufacturing method
TW480563B (en) Method to form active layer without lattice defect on wafer surface
JP3578063B2 (en) Pretreatment method for Si wafer and semiconductor wafer
KR0146173B1 (en) Method for manufacturing oxide film of semiconductor device
JPS5994809A (en) Production of semiconductor element
CN116798853A (en) Growth method of silicon epitaxial wafer