JPH08232008A - Steelmaking method in converter - Google Patents

Steelmaking method in converter

Info

Publication number
JPH08232008A
JPH08232008A JP3881195A JP3881195A JPH08232008A JP H08232008 A JPH08232008 A JP H08232008A JP 3881195 A JP3881195 A JP 3881195A JP 3881195 A JP3881195 A JP 3881195A JP H08232008 A JPH08232008 A JP H08232008A
Authority
JP
Japan
Prior art keywords
oxygen
slag
blowing
flux
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3881195A
Other languages
Japanese (ja)
Other versions
JP3339982B2 (en
Inventor
Kosuke Yamashita
幸介 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3881195A priority Critical patent/JP3339982B2/en
Publication of JPH08232008A publication Critical patent/JPH08232008A/en
Application granted granted Critical
Publication of JP3339982B2 publication Critical patent/JP3339982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To enable dephosphorization at high temp. and to improve desulfurizing efficiency by blowing powdery flux together with oxygen from an oxygen top-blowing lance during blow-refining and promoting the slag-making. CONSTITUTION: Molten iron 2 of a blast furnace is charged into a converter 3 with a molten iron ladle 1 together with scrap 4 and a molded pig iron 5. The flux 6 mainly containing lime is added on the molten iron 2 and the oxygen is top-blown from the oxygen top-blowing lance 7, and N2 and O2 +LPG is bottom-blown from a bottom-blowing device 9, and while controlling the slag 9, P and S in the molten iron are reduced by dephosphorization(de-P) and desulfurization(de-S). After removing the slag 9, the decarburization is executed by adding the flux and blowing the oxygen. The produced slag 9 is remained in the converter 3 to tap the steel. This process is repeated and the steelmaking in a conveter is executed. The powdery flux is blown together with the oxygen from the oxygen top-blowing lance 7 during blow-refining in the de-P and de-S processes and de-P and de-S are facilitated by promoting the slag-making. By this method, the frequency of the occurrence of slopping can drastically be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉溶銑を転炉に装入
して精錬する転炉製鋼法に関し、より詳しくは、転炉内
で溶銑の脱P、脱S、脱炭を行い、脱炭滓を熱間再利用
してスラグの滓化を促進させる転炉製鋼法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a converter steelmaking method in which blast furnace hot metal is charged into a converter for refining, and more specifically, hot metal de-P, de-S, and decarburization are performed in the converter. The present invention relates to a converter steelmaking method in which decarburized slag is hot reused to promote slag slag formation.

【0002】[0002]

【従来の技術】従来、高炉からの溶銑を使用した転炉製
鋼法においては、溶銑を転炉に装入し、生石灰を主体と
するフラックスの投入とO2 吹錬により、鋼を溶製する
のが一般的な方法であった。その後、脱P、脱Sの反応
効率を改善するため転炉に装入する前の溶銑に脱P脱S
処理を施し、転炉内では主に脱炭反応させる方法が採用
されるようになってきている。
2. Description of the Related Art Conventionally, in a converter steelmaking method using molten pig iron from a blast furnace, the molten pig iron is charged into a converter and a steel is produced by introducing a flux mainly containing quick lime and O 2 blowing. Was the common method. After that, in order to improve the reaction efficiency of de-P and de-S, de-P and de-S removal of the hot metal before charging the converter.
A method of performing a treatment and mainly performing a decarburization reaction in a converter has been adopted.

【0003】また、近年では極低炭素鋼の需要増大に伴
い、転炉では500〜200ppm (C)領域まで脱炭
し、出鋼後、RH式、DH式真空脱ガス設備による2次
精錬工程において50ppm (C)以下の領域まで脱炭す
る方法も採用されるようになってきている。
Further, in recent years, along with the increase in demand for ultra-low carbon steel, decarburization is carried out in the converter in the range of 500 to 200 ppm (C), and after the steel is tapped, the secondary refining process by RH type and DH type vacuum degassing equipment is carried out. In Japan, a method of decarburizing up to the range of 50 ppm (C) or less has also been adopted.

【0004】しかし、これらの従来例の実施に際して
は、各精錬工程毎に多額の設備投資と運転要員を必要と
し、固定費の負荷増大は避けられなかった。また、反応
容器の異なる各工程を順次経過させる必要があり、各工
程での諸資材(耐火物等)が多くなる。さらに、高炉出
銑から最終の溶鋼を得るまでに長時間を要するため、エ
ネルギーロスも多く、精錬コスト増になる等の問題があ
った。
However, in carrying out these conventional examples, a large amount of capital investment and operating personnel were required for each refining process, and an increase in the fixed cost load was unavoidable. Further, it is necessary to sequentially pass through the different steps of the reaction container, and the various materials (refractory, etc.) in each step increase. Further, since it takes a long time to obtain the final molten steel from the tapped blast furnace, there is a problem that energy loss is large and refining cost is increased.

【0005】これらの問題点を解消するために、本件出
願人は特開平4−72007号公報に開示される溶鋼製
造法を提案した。この溶鋼製造法は、前記従来における
問題点を解決するため、溶銑予備処理工程、転炉工
程、2次精錬工程のうち、ないし、との工程を
すなわち転炉工程に集約することを特徴とするもので
ある。
In order to solve these problems, the applicant of the present invention has proposed a molten steel manufacturing method disclosed in Japanese Patent Application Laid-Open No. 4-72007. This molten steel manufacturing method is characterized in that, in order to solve the above-mentioned conventional problems, one of the hot metal pretreatment step, the converter step, and the secondary refining step is integrated into the converter step. It is a thing.

【0006】すなわち、高炉溶銑を精錬して溶鋼を製造
する際に、第一工程として、溶銑を転炉に装入し、第二
工程として、投入、吹き付け、吹き込みのいずれか1つ
の方法または2つ以上を組み合わせた方法によるフラッ
クス添加と、酸素上吹きとを行って、脱P、脱S精錬を
施し所定のP含有量並びにS含有量まで低減させ、第三
の工程として、前記転炉を横転させて、第二工程で生成
したスラグを排滓し、第四工程として、フラックス添加
2 と吹錬により所定のC含有量まで脱炭し、第五工程
として、第四工程で、生成したスラグを該転炉に残した
まま出鋼し、再びの工程へ戻り、前記5工程を繰り返
し実施することを特徴とする溶鋼製造法である。
That is, when refining the blast furnace hot metal to produce molten steel, the first step is to load the hot metal into the converter, and the second step is one of charging, spraying and blowing, or two. Flux addition by a combination of two or more methods and oxygen top blowing to perform de-P and de-S refining to reduce to a predetermined P content and S content. As a third step, the converter is used. Roll over and remove the slag generated in the second step, as the fourth step, decarburize to a predetermined C content by flux addition O 2 and blowing, and generate as the fifth step in the fourth step. The molten steel is produced while leaving the slag left in the converter, returned to another step, and repeatedly performs the above-mentioned 5 steps.

【0007】しかし、この溶鋼製造法においては、 (1)第二工程でのフラックス添加は、実施例で示され
るように、上方からの塊状フラックスの投入、または上
方からの塊状フラックスの投入と粉状フラックスの底吹
きの併用によって行っている。このように、上方から塊
状フラックスを投入した場合には、スラグの滓化が十分
ではない。すなわちスラグ中実績塩基度CaO/SiO
2 が1.5〜1.7程度までしか上昇せず、高温での脱
Pが不十分となり、また脱S効率も低位である。さら
に、塩基度の低いスラグはフォーミングしやすくスロッ
ピングの発生頻度が高いという問題がある。
However, in this molten steel manufacturing method, (1) the flux addition in the second step is, as shown in the embodiment, the introduction of the lump flux from above, or the addition of the lump flux from above and the powder. This is done by using the bottom blowing of a flat flux. As described above, when the massive flux is introduced from above, the slag is not sufficiently slagged. That is, actual basicity CaO / SiO in slag
2 rises only to about 1.5 to 1.7, P removal at high temperature becomes insufficient, and S removal efficiency is low. Furthermore, there is a problem that slag with low basicity is easy to form and sloping occurs frequently.

【0008】(2)第四工程でのフラックスの添加は、
実施例で示されるように、上方から塊状フラックスの投
入によって行っている。このように、上方から塊状フラ
ックスを投入した場合には、特に吹止[C]>0.2〜
0.3%の中高炭素鋼種を、底吹撹拌力が強い上底吹転
炉で精錬する場合、スラグ中の(T.Fe)が上がら
ず、スラグの滓化が十分でなく、溶鋼の脱P、脱Sが著
しく阻害されるという問題がある。
(2) The addition of the flux in the fourth step is
As shown in the examples, the lumpy flux is introduced from above. As described above, when the massive flux is fed from above, the blow stop [C]> 0.2 to
When refining 0.3% medium-high carbon steel grade in a top-bottom blow converter with strong bottom-blown stirring power, (T.Fe) in the slag does not rise, the slag is not sufficiently solidified, and molten steel is removed. There is a problem that P and S removal are significantly inhibited.

【0009】[0009]

【発明が解決しようとする課題】本発明は、特開平4−
72007号の発明の第二工程および第四工程において
添加するフラックス特にCaOの添加形態を改善して、
上述(1)および(2)の問題を有利に解消する転炉製
鋼法を提供するものである。
The present invention is disclosed in Japanese Unexamined Patent Publication No.
By improving the addition form of the flux, especially CaO, added in the second and fourth steps of the invention of 72007,
The present invention provides a converter steelmaking method that advantageously solves the problems (1) and (2).

【0010】[0010]

【課題を解決するための手段】本発明の第一の発明は、
高炉溶銑を転炉に装入し、フラックス添加と、酸素
上吹きあるいは酸素上底吹きとにより脱P、脱S精錬を
施して溶銑中のP、Sを所定レベルまで低下させ、生
成したスラグを排滓した後に、フラックス添加と酸素
吹錬により脱炭を行い、生成したスラグを転炉内に残
したまま出鋼し、このスラグを転炉内に残留させた状態
で再びの工程に戻り、繰り返し〜の工程を実施す
る転炉製鋼法において、の脱P、脱S工程で吹錬中に
粉体のフラックスを酸素上吹きランスから酸素とともに
吹き込み、スラグの滓化を促進させることにより溶銑中
の脱P、脱Sを容易にすることを特徴とする転炉製鋼法
である。
The first invention of the present invention is as follows:
Blast furnace hot metal is charged into a converter, flux is added, and P and S refining are performed by oxygen top blowing or oxygen top and bottom blowing to reduce P and S in the hot metal to a predetermined level, and to generate slag. After the slag was removed, decarburization was carried out by adding flux and blowing oxygen, and the produced slag was tapped while it was left in the converter and returned to the process again with this slag remaining in the converter. In the converter steel making method, which repeats the steps 1 to 3, the flux of the powder is blown together with oxygen from the oxygen top blowing lance during the blowing in the de-P and de-S steps to promote the slag slag formation, and It is a converter steelmaking method characterized by facilitating the removal of P and the removal of S.

【0011】第二の発明は、前記第一の発明において、
の脱炭工程で吹錬中に酸素上吹きランスから粉体のフ
ラックスを酸素とともに吹き込み、スラグの滓化を促進
させることにより、の工程での溶湯の脱P、脱Sをさ
らに容易にすることを特徴とする。
The second invention is the same as the first invention.
In the decarburization process of step 1, the flux of powder is blown together with oxygen from the oxygen top blowing lance to promote slag slag formation, thereby facilitating the removal of P and S of the molten metal in the process of Is characterized by.

【0012】[0012]

【作用】本発明においては、溶銑予備処理工程および脱
炭工程で添加するフラックス中の少なくともCaOを粉
体として、酸素上吹きランスから酸素とともに吹き込む
ため、 (1)溶銑予備処理工程では、スラグの滓化が促進され
るので、スラグの塩基度が上昇し、高温での脱Pが可能
になり、かつ脱S効率を向上することができる。またス
ロッピング発生頻度を大幅に減少することができる。 (2)脱炭工程では、底吹による撹拌力を強く維持した
まま、中高炭素域でのスラグ中の(T.Fe)が上昇
し、溶鋼の脱P、脱Sが促進され、中高炭素鋼種の溶製
が可能である。 したがって、これらにより転炉製鋼プロセスにおいて著
しい経済効果が享受できるとともに、生産性を向上させ
ることができる。
In the present invention, since at least CaO in the flux added in the hot metal pretreatment step and the decarburization step is blown as a powder together with oxygen from the oxygen top blowing lance, (1) in the hot metal pretreatment step, slag Since the slag formation is promoted, the basicity of the slag is increased, the P removal at high temperature is possible, and the S removal efficiency can be improved. In addition, the frequency of occurrence of sloping can be significantly reduced. (2) In the decarburization process, (T.Fe) in the slag in the medium-high carbon region is increased while the stirring force by bottom blowing is strongly maintained, and de-Ping and S-depletion of the molten steel are promoted. Can be melted. Therefore, by these, a remarkable economic effect can be enjoyed in the converter steelmaking process, and productivity can be improved.

【0013】本発明者等は、前記特開平4−72007
号公報の発明の実用過程において、以下のことを知見し
た。 a.溶銑予備処理工程において、フラックスを塊状にし
て、上方から投入添加した場合には、スラグ中実績塩基
度CaO/SiO2 が1.5〜1.7程度までしか上昇
せず、高温での脱Pが不十分であり、脱S効率も低位で
ある。さらに塩基度の低いスラグはフォーミングしやす
くスロッピングの発生頻度が高い。 b.脱炭工程において、フラックスを塊状にして、上方
から投入添加した場合には、特に吹止[C]>0.2〜
0.3%の中高炭素鋼種を、底吹撹拌力が強い上底吹転
炉で精錬する場合、スラグ中の(T.Fe%)が上がら
ず、スラグの滓化が十分でなく、溶鋼の脱P、脱Sが著
しく阻害される。 これらの現象は、スラグの滓化が不十分であることに起
因して生じるものである。
The inventors of the present invention described the above-mentioned Japanese Patent Application Laid-Open No. 4-72007.
In the practical process of the invention of the publication, the following facts were discovered. a. In the hot metal pretreatment step, when the flux is made into a lump and added from above, the actual basicity CaO / SiO 2 in the slag rises only up to about 1.5 to 1.7, and P removal at high temperature occurs. Is insufficient, and the S removal efficiency is also low. Furthermore, slag with low basicity is easy to form and sloping occurs frequently. b. In the decarburization step, when the flux is lumped and added from above, blowing stop [C]> 0.2-
When refining 0.3% medium-high carbon steel grade in a top-bottom converter with strong bottom-blown stirring power, (T.Fe%) in the slag does not rise and slag slag formation is not sufficient, De-P and de-S are significantly inhibited. These phenomena are caused by insufficient slag slag formation.

【0014】そこで、本発明者等は、スラグ滓化を十分
にするための条件について、種々実験を重ねた。その結
果、フラックスの添加形態を最適化することが有効であ
るとの結論に達し、さらに実験を重ね、本発明を完成す
るに至った。
Therefore, the inventors of the present invention conducted various experiments on the conditions for making the slag slag sufficiently. As a result, it was concluded that it is effective to optimize the flux addition form, and further experiments were conducted to complete the present invention.

【0015】本発明では、溶銑予備処理工程および脱炭
工程において添加するフラックス中の少くともCaOを
粉体にして、CaOは粒径2000μm以下が好まし
い。これを酸素吹錬中の酸素上吹きランスから酸素とと
もに吹き込むことを特徴とする。もちろん、滓化促進剤
として、蛍石やアルミナの粉体等をCaO粉に混合させ
て吹き込むことも有効である。
In the present invention, it is preferable that at least CaO in the flux added in the hot metal pretreatment step and the decarburization step is made into powder, and the particle size of CaO is 2000 μm or less. It is characterized in that this is blown together with oxygen from the oxygen top blowing lance during oxygen blowing. As a matter of course, it is also effective to mix powder of fluorite or alumina with CaO powder and blow it in as a slag formation accelerator.

【0016】フラックスの粒径が2000μm以上の場
合は、酸素による搬送性が低下するとともに、転炉内溶
湯中での溶解性が低下して溶湯中のP、Sとの反応効率
が低下する。また、スロッピングの抑制効果が低下す
る。なお、粒径が50μm以下の粉状のものが多い場合
は、飛散率が高く添加効率が低下するため、この領域の
ものの混合比率は、20%以下に押さえることが好まし
い。
When the particle size of the flux is 2000 μm or more, the transportability by oxygen is lowered, and the solubility in the molten metal in the converter is lowered to lower the reaction efficiency with P and S in the molten metal. In addition, the effect of suppressing sloping is reduced. If many powders having a particle size of 50 μm or less have a high scattering rate and the addition efficiency decreases, it is preferable to keep the mixing ratio of the particles in this region to 20% or less.

【0017】このフラックスの添加方法としては、酸素
吹錬中の酸素上吹きランスから、酸素とともにこの酸素
を搬送ガスとして吹き込むことが有効である。上吹ラン
スからの酸素ジェットは、湯面上で温度2千数百℃とい
われる火点を形成する。よって、CaO粉を上吹酸素と
ともに吹き込むことは、酸素吹き込み効果を損なうこと
なく添加することができるし、上吹酸素による火点域で
瞬時にフラックスが溶融して、スラグの滓化を促進さ
せ、反応効率を向上することができる。また設備配置面
でも有利である。
As a method of adding this flux, it is effective to blow this oxygen together with oxygen as a carrier gas from an oxygen top blowing lance during oxygen blowing. The oxygen jet from the top blowing lance forms a fire point with a temperature of 2,000 to several hundred degrees Celsius on the surface of the molten metal. Therefore, blowing CaO powder together with top-blowing oxygen can be added without impairing the oxygen-blowing effect, and the flux is instantly melted in the fire point region due to top-blowing oxygen to promote slag slag formation. The reaction efficiency can be improved. It is also advantageous in terms of equipment layout.

【0018】[0018]

【実施例】以下に本発明を実施例に基づいて説明する。
まず、図1に、溶銑予備処理工程と脱炭工程を集約する
本発明の基本プロセスを示す。この例は、上吹ランスか
ら酸素を上吹し、溶銑予備処理時には、底部からN2
たはO2 +LPGを、また脱炭処理時には底部からAr
またはO2 +LPGを底吹きする上底吹転炉製鋼法の場
合を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
First, FIG. 1 shows a basic process of the present invention in which a hot metal pretreatment process and a decarburization process are integrated. In this example, oxygen is blown upward from the top blowing lance, N 2 or O 2 + LPG is fed from the bottom during hot metal pretreatment, and Ar is fed from the bottom during decarburization.
Alternatively, it shows the case of the upper bottom blowing converter steelmaking method in which O 2 + LPG is bottom blown.

【0019】第一工程として、溶銑鍋1(あるいはトー
ピードカー)で搬入された高炉からの溶銑2をスクラッ
プ4、型銑5などとともに転炉3内に装入する。
As a first step, molten iron 2 from a blast furnace carried in a molten iron ladle 1 (or a torpedo car) is loaded into a converter 3 together with scrap 4, mold pig 5, and the like.

【0020】第二工程として、生石灰(CaO)を中心
としたフラックス6(必要に応じてドロマイト、鉄鉱石
とともに)を転炉3内の溶銑中2に添加し、酸素上吹ラ
ンス7から酸素を上吹きするとともに、底部の底吹き装
置8からN2 あるいはO2 +LPGを底吹きして生成ス
ラグ9の(T.Fe%)を3〜10%の範囲にコントロ
ールしながら、脱P、脱S(溶銑予備処理)を施し、所
定のP、Sまで低減させる。
In the second step, a flux 6 centered on quick lime (CaO) (with dolomite and iron ore if necessary) is added to the hot metal 2 in the converter 3, and oxygen is blown from the oxygen top blowing lance 7. While top blowing, bottom blowing N 2 or O 2 + LPG from the bottom blowing device 8 controls the (T.Fe%) of the produced slag 9 in the range of 3 to 10%, while removing P and S. (Preliminary hot metal treatment) is performed to reduce the P and S to predetermined values.

【0021】第三工程として、第二工程で生成したスラ
グ9を、転炉3を反出鋼側(排滓側)に傾動することに
より流動化スラグを排出する。
As the third step, the fluidized slag is discharged by tilting the slag 9 generated in the second step in the converter 3 toward the side opposite to the steel strip (slag side).

【0022】第四工程として、排滓完了後に転炉3を正
立させ、若干の量の副原料(生石灰、ドロマイト、Mn
鉱石、鉄鉱石等)10を添加して、酸素上吹ランス7か
ら酸素を上吹きするとともに、底部の底吹き装置8から
ArあるいはO2 +LPGを底吹きしてして酸素吹錬に
より、脱炭精錬を行う。
As a fourth step, after the slag is completed, the converter 3 is erected and some auxiliary materials (quick lime, dolomite, Mn) are added.
(Ore, iron ore, etc.) 10 is added, oxygen is top-blown from the oxygen top-blowing lance 7, and Ar or O 2 + LPG is bottom-blown from the bottom-blown device 8 at the bottom to remove oxygen. Perform charcoal refining.

【0023】第五工程として、吹止後、溶鋼11を出鋼
し溶鋼鍋12に受鋼するが、第四工程で生成したスラグ
9はそのまま転炉内に残して次のヒートの溶銑予備処理
用スラグとして活用する。
In the fifth step, the molten steel 11 is tapped out and received in the molten steel ladle 12 after the blowing is stopped, but the slag 9 produced in the fourth step is left as it is in the converter and the hot metal pretreatment for the next heat is carried out. Use it as a slag for business.

【0024】本発明においては、第二工程あるいは第四
工程において、生石灰(CaO)を中心としたフラック
ス6、10を転炉内の溶銑2中に添加する際の添加形態
に特徴を有する。
The present invention is characterized by the addition form when the fluxes 6 and 10 centered on quick lime (CaO) are added to the hot metal 2 in the converter in the second step or the fourth step.

【0025】図2は、本発明におけるフラックス添加の
ための設備フローを概念的に示したものである。あらか
じめ粒度調整と配合調整されたフラックス6(10)
は、搬送車13で搬入され、ここからストックタンク1
4内に気流搬送されており、適時、圧送タンク15を介
してブロータンク16に供給されている。そして、ロー
タリーフィーダー17を介して適時に適量、酸素上吹ラ
ンス7の酸素供給管18に切り出されフレキシブルチュ
ーブ19を介して、酸素とともに酸素上吹ランス7から
転炉3内の溶銑中に吹き込まれ、また底部の底吹き装置
8からは、N2 あるいはArあるいはO2 +LPGが底
吹されるように構成されている。
FIG. 2 conceptually shows an equipment flow for adding flux in the present invention. Flux 6 (10) with particle size adjusted and compounded in advance
Are loaded by the transport vehicle 13, and from here, the stock tank 1
The gas is conveyed in the air stream 4 and is supplied to the blow tank 16 through the pressure feed tank 15 at appropriate times. Then, a proper amount is cut out to the oxygen supply pipe 18 of the oxygen blowing lance 7 through the rotary feeder 17 and blown into the molten pig iron in the converter 3 together with oxygen from the oxygen blowing lance 7 through the flexible tube 19. Further, N 2 or Ar or O 2 + LPG is blown from the bottom blowing device 8 at the bottom.

【0026】前記溶銑予備処理工程と脱炭工程を集約す
る本発明の基本プロセスに、本発明におけるフラックス
添加のための図2の設備を接続し、転炉操業を実施し
た。操業条件は表1に示す。この表中のフラックス(C
aO)の粒径分布は表2に示す。
The equipment for flux addition in the present invention shown in FIG. 2 was connected to the basic process of the present invention for integrating the hot metal pretreatment process and the decarburization process, and the converter operation was carried out. The operating conditions are shown in Table 1. The flux (C
The particle size distribution of aO) is shown in Table 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】まず、溶銑予備処理工程(第二工程)にお
いて、表2に示すように粒径を1000μm以下に調整
した粉体状の生石灰を酸素吹錬中、酸素上吹きランスか
ら酸素とともに転炉内溶湯中に吹き込んだ。その結果を
図3、図4、図5、表3に従来例による場合と比較して
示す。従来例は粒径が20〜40mmの塊状のフラックス
(CaO)を炉上バンカーより副材投入シュートを用い
て投入した場合のものである。
First, in the hot metal pretreatment step (second step), powdered quick lime having a particle size adjusted to 1000 μm or less as shown in Table 2 is blown together with oxygen from the oxygen top blowing lance during oxygen blowing. It was blown into the molten metal. The results are shown in FIGS. 3, 4, 5 and Table 3 in comparison with the case of the conventional example. The conventional example is a case where a massive flux (CaO) having a particle size of 20 to 40 mm is charged from a furnace bunker using a sub material charging chute.

【0030】[0030]

【表3】 [Table 3]

【0031】図3は、計算上の装入塩基度と溶銑予備処
理後のスラグの実績塩基度との関係を示したものであ
る。従来のように塊状の生石灰(CaO)を投入した場
合のスラグの実績塩基度は、1.7までしか上昇が見ら
れず、滓化性が不十分であったが、粉体状の生石灰(C
aO)を酸素上吹ランスから酸素とともに吹き込んだ本
発明による場合、滓化性が著しく向上し、実績塩基度を
2.0〜2.5まで上昇させることができた。
FIG. 3 shows the relationship between the calculated charging basicity and the actual basicity of the slag after the hot metal pretreatment. The actual basicity of slag when lumped quick lime (CaO) was added as in the past was only increased to 1.7, and the slag-forming property was insufficient, but powdery quick lime ( C
According to the present invention in which aO) was blown together with oxygen from the oxygen top blowing lance, the slagging property was remarkably improved, and the actual basicity could be increased to 2.0 to 2.5.

【0032】図4は、溶銑予備処理後の溶湯温度と溶銑
予備処理後の溶湯中の[P]の関係を示したものであ
る。従来のように塊状の生石灰を投入した場合、溶銑予
備処理後[P]は溶銑予備処理後の温度の上昇につれて
急激に上昇しているが、粉体状の生石灰(CaO)を酸
素上吹ランスから酸素とともに吹き込んだ本発明による
場合は、前述の滓化性の向上により、溶銑予備処理後の
温度が上昇しても、溶銑予備処理後[P]は低値に安定
しており、良好な脱P特性を示した。
FIG. 4 shows the relationship between the molten metal temperature after the hot metal pretreatment and the [P] in the molten metal after the hot metal pretreatment. When lumpy quick lime is added as in the conventional method, the hot metal [P] after the hot metal pretreatment rises sharply as the temperature rises after the hot metal pretreatment. In the case of the present invention in which oxygen is blown in from the above, even if the temperature after the hot metal pretreatment rises due to the above-mentioned improvement of the slagging property, [P] after the hot metal pretreatment is stable at a low value, which is favorable. The P-free property was exhibited.

【0033】図5は、溶銑予備処理後のスラグの実績塩
基度と溶銑予備処理後の脱S効率との関係を示したもの
である。従来のように塊状の生石灰を投入した場合に比
して、粉体状の生石灰(CaO)を酸素上吹ランスから
酸素とともに吹き込んだ本発明による場合は、滓化性が
向上し、実塩基度の上昇により、脱S剤効率が著しく向
上した。
FIG. 5 shows the relationship between the actual basicity of the slag after the hot metal pretreatment and the S removal efficiency after the hot metal pretreatment. In the case of the present invention in which powdered quick lime (CaO) is blown together with oxygen from the oxygen top blowing lance, as compared with the case where lumped quick lime is added as in the conventional case, the slagging property is improved and the actual basicity is improved. As a result, the efficiency of removing S agent was remarkably improved.

【0034】表3は、酸素とフラックスと吹込み時のス
ロッピングの発生頻度を示すものである。従来のように
塊状の生石灰を投入した場合に比して、粉体状の生石灰
を酸素上吹ランスから酸素とともに吹き込んだ本発明に
よる場合は、スロッピング発生頻度が1/20以下に減
少した。
Table 3 shows the occurrence frequency of sloping at the time of blowing with oxygen and flux. In the case of the present invention in which powdered quick lime is blown together with oxygen from the oxygen top blowing lance, the sloping occurrence frequency is reduced to 1/20 or less as compared with the case where lumped quick lime is charged as in the conventional case.

【0035】次に、脱炭精錬工程(第四工程)におい
て、表2に示すように粒径を1000μm以下に調整し
た粉体状のフラックス(CaO)を酸素吹錬中、酸素上
吹きランスから酸素とともに転炉内溶湯中に吹き込んで
中高炭素鋼種を溶製した。その結果を図6、図7、図
8、図9に従来例による場合と比較して示す。従来例は
粒径が20〜40mmの塊状のフラックス(CaO)を炉
上バンカーから副材投入シュートを用いて投入した場合
のものである。
Next, in the decarburization refining step (fourth step), a powdery flux (CaO) whose particle size is adjusted to 1000 μm or less as shown in Table 2 is supplied from the oxygen top blowing lance during oxygen blowing. It was blown into the molten metal in the converter together with oxygen to produce a medium-high carbon steel grade. The results are shown in FIGS. 6, 7, 8 and 9 in comparison with the case of the conventional example. The conventional example is a case where a massive flux (CaO) having a particle size of 20 to 40 mm is thrown in from a furnace bunker using an auxiliary material chute.

【0036】図6は中高炭素鋼種の溶製時、従来のよう
に塊状のフラックス(CaO)を投入した場合の底吹ガ
ス流量とスラグ中(T.Fe)および吹止[P]の関係
を示したものである。底吹ガス量が増加、すなわち鋼浴
中撹拌力が増加するにつれて、スラグ中の(T.F
e)、すなわちスラグの酸素ポテンシャルが減少し、ス
ラグの脱P能が低減するため、吹止[P]が高くなるこ
とを示している。
FIG. 6 shows the relationship between the bottom blowing gas flow rate, the slag (T.Fe) and the blow stop [P] when a lumpy flux (CaO) was introduced as in the conventional case during the melting of medium-high carbon steel grades. It is shown. As the amount of bottom blowing gas increases, that is, as the stirring force in the steel bath increases, the (TF
e), that is, the oxygen potential of the slag is reduced, and the deP capacity of the slag is reduced, so that the blow stop [P] is increased.

【0037】図7は底吹ガス量を0.15Nm3 /min-ton
として、中高炭素鋼種を溶製した場合の吹止[C]とス
ラグ中(T.Fe)の関係を示したものである。従来の
ように塊状の生石灰を投入した場合に比し、粉体状の生
石灰(CaO)を酸素上吹ランスから酸素とともに吹き
込んだ本発明による場合は、スラグ中の(T.Fe)が
上昇しており、滓化性のよい、酸素ポテンシャルの高い
スラグが得られた。
FIG. 7 shows a bottom blowing gas amount of 0.15 Nm 3 / min-ton.
Shows the relationship between blow stop [C] and slag (T.Fe) when a medium-high carbon steel grade is melted. In the case of the present invention in which powdered quick lime (CaO) is blown together with oxygen from the oxygen top blowing lance, (T.Fe) in the slag is increased, as compared with the case where lumped quick lime is charged as in the conventional case. Therefore, slag with good slag formation and high oxygen potential was obtained.

【0038】図8は、底吹ガス流量を0.15Nm3 /min
-tonとして、中高炭素鋼種を溶製した場合のスラグ中
(T.Fe)と吹止[P]の関係を示したものである。
従来のように塊状の生石灰を投入した場合に比し、粉体
状の生石灰(CaO)を酸素上吹ランスから酸素ととも
に吹き込んだ本発明による場合は、スラグ中の(T.F
e)を高くできるため、吹止[P]は低位にコントロー
ルでき、良好な脱P特性を示した。
FIG. 8 shows a bottom blowing gas flow rate of 0.15 Nm 3 / min.
-ton shows the relationship between the slag (T.Fe) and the blow stop [P] when the medium-high carbon steel grade is melted.
In the case of the present invention in which powdered quick lime (CaO) is blown together with oxygen from the oxygen top blowing lance, as compared with the case where lumped quick lime is charged as in the conventional case, (TF
Since e) can be increased, the blow stop [P] can be controlled to a low level, and good P removal characteristics were exhibited.

【0039】図9は、底吹ガス流量を0.15Nm3 /min
-tonとして、中高炭素鋼種を溶製した場合の吹止[C]
と吹止[S]の関係を示したものである。従来のように
塊状の生石灰を投入した場合に比し、粉体状の生石灰
(CaO)を酸素上吹ランスから酸素とともに吹き込ん
だ本発明による場合は、スラグ滓化性が向上したため、
吹止[S]は低位にコントロールでき、良好な脱S特性
を示した。
FIG. 9 shows a bottom blowing gas flow rate of 0.15 Nm 3 / min.
-ton as blow-stop when melting medium-high carbon steel grade [C]
It shows the relationship between and the blow stop [S]. Compared to the case where lumped quick lime is added as in the conventional case, in the case of the present invention in which powdered quick lime (CaO) is blown together with oxygen from the oxygen top blowing lance, the slag slagification property is improved,
Blowing stop [S] could be controlled to a low level and showed good S-removing characteristics.

【0040】[0040]

【発明の効果】本発明においては、 (1)脱P、脱Sの溶銑予備処理工程でのスラグの滓化
が促進されるので、スラグの塩基度が上昇し、高温での
脱Pが可能になり、かつ脱S効率を向上することができ
る。また、スロッピング発生頻度を大幅に減少すること
ができる。 (2)脱炭工程で、底吹による撹拌力を強く維持したま
ま、中高炭素域でのスラグ中の(T・Fe)が上昇し、
溶鋼の脱P、脱Sが促進され、中高炭素鋼種の溶製が可
能になった。 したがって、これらによって、転炉製鋼プロセスにおい
て著しい経済効果が享受できるとともに、生産性を向上
させることができる。
EFFECTS OF THE INVENTION According to the present invention, (1) the slag slag is promoted in the hot metal pretreatment process of de-Ping and de-S, so that the basicity of the slag increases and the de-Ping at high temperature is possible. In addition, the S removal efficiency can be improved. Moreover, the frequency of occurrence of sloping can be significantly reduced. (2) In the decarburization process, (T · Fe) in the slag in the middle and high carbon regions rises while strongly maintaining the stirring force by bottom blowing,
The removal of P and S from molten steel was promoted, making it possible to produce medium-high carbon steel grades. Therefore, by these, a remarkable economic effect can be enjoyed in the converter steelmaking process, and productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用する転炉製鋼法の基本プロセスを
示す縦断面概念説明図。
FIG. 1 is a vertical cross-sectional conceptual explanatory view showing a basic process of a converter steelmaking method to which the present invention is applied.

【図2】本発明におけるフラックス添加形態を示す縦断
面概念説明図。
FIG. 2 is a conceptual explanatory view of a vertical cross section showing a flux addition mode in the present invention.

【図3】本発明の実施例での計算塩基度と実塩基度の関
係説明図。
FIG. 3 is an explanatory diagram of the relationship between the calculated basicity and the actual basicity in the embodiment of the present invention.

【図4】本発明の実施例での溶銑予備処理精錬による脱
P後の温度と脱P後[P]の関係説明図。
FIG. 4 is an explanatory view of a relationship between a temperature after dePing and a [P] after dePing by hot metal pretreatment refining in an example of the present invention.

【図5】本発明の実施例での溶銑予備処理精錬による脱
P後の実塩基度と脱硫剤効率との関係説明図。
FIG. 5 is an explanatory view of the relationship between the actual basicity after P removal by the hot metal pretreatment refining and the desulfurizing agent efficiency in the example of the present invention.

【図6】本発明の実施例での脱炭精錬時の底吹ガス流量
とスラグ中(T.Fe)、吹止[P]との関係説明図。
6 is an explanatory view of a relationship between a bottom blown gas flow rate during decarburization refining, slag (T.Fe), and blow stop [P] in an example of the present invention.

【図7】本発明の実施例での脱炭精錬時の吹止[C]と
スラグ中の(T.Fe)との関係説明図。
7 is an explanatory diagram of the relationship between blow stop [C] and (T.Fe) in slag during decarburization refining in an example of the present invention.

【図8】本発明の実施例での脱炭精錬時のスラグ中の
(T.Fe)と吹止[P]との関係説明図。
8 is an explanatory diagram of a relationship between (T.Fe) in slag and blow stop [P] during decarburization refining in the example of the present invention.

【図9】本発明の実施例での脱炭精錬時の吹止[C]と
吹止[S]との関係説明図。
FIG. 9 is an explanatory view of the relationship between blow stop [C] and blow stop [S] during decarburization refining in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 溶銑鍋 2 溶銑 3 転炉 4 スクラップ 5 型銑 6 フラックス(溶銑予備処理精錬時) 7 酸素上吹ランス 8 底吹装置 9 スラグ 10 フラックス(脱炭精錬時) 11 溶鋼 12 溶鋼鍋 13 搬送車 14 ストックタンク 15 圧送タンク 16 ブロータンク 17 ロータリーフィーダー 18 酸素供給管 19 フレキシブルチューブ 1 Hot metal ladle 2 Hot metal 3 Converter 4 Scrap 5 Type pig iron 6 Flux (at the time of hot metal pretreatment refining) 7 Oxygen top blowing lance 8 Bottom blowing device 9 Slag 10 Flux (at the time of decarburizing refining) 11 Molten steel 12 Molten steel pot 13 Carrier truck 14 Stock tank 15 Pressure feed tank 16 Blow tank 17 Rotary feeder 18 Oxygen supply pipe 19 Flexible tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉溶銑を転炉に装入し、フラック
ス添加と酸素上吹きあるいは酸素上底吹きとにより脱
P、脱S精錬を施して溶銑中のP、Sを所定レベルまで
低下させ、生成したスラグを排滓した後に、フラッ
クス添加と酸素吹錬により脱炭を行い、生成したスラ
グを転炉内に残したまま出鋼し、このスラグを転炉内に
残留させた状態で再びの工程に戻り、繰り返し〜
の工程を実施する転炉製鋼法において、の脱P、脱S
工程で吹錬中に粉体のフラックスを酸素上吹きランスか
ら酸素とともに吹き込み、スラグの滓化を促進させるこ
とにより溶銑中の脱P、脱Sを容易にすることを特徴と
する転炉製鋼法。
1. A blast furnace hot metal is charged into a converter, and P and S in the hot metal are reduced to a predetermined level by performing flux removal and oxygen top blowing or oxygen top bottom blowing to perform P and S refining. After the generated slag is discharged, it is decarburized by adding flux and oxygen blowing, and the produced slag is tapped while it remains in the converter. Return to the process and repeat ~
In the converter steelmaking method that carries out the process
In the process, a converter steel making method characterized in that powder flux is blown together with oxygen from an oxygen top blowing lance during blowing to facilitate slag slag formation, thereby facilitating de-P and de-S in hot metal. .
【請求項2】 の脱炭工程で、吹錬中に酸素上吹きラ
ンスから粉体のフラックスを酸素とともに吹き込み、ス
ラグの滓化を促進させることにより、の工程での溶湯
の脱P、脱Sをさらに容易にすることを特徴とする請求
項1記載の転炉製鋼法。
2. In the decarburizing step, the flux of the powder is blown together with oxygen from the oxygen top blowing lance during the blowing so as to promote the slag slag formation, so that the molten metal is removed P and S in the step. 2. The converter steelmaking method according to claim 1, further comprising:
JP3881195A 1995-02-27 1995-02-27 Converter steelmaking method Expired - Fee Related JP3339982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3881195A JP3339982B2 (en) 1995-02-27 1995-02-27 Converter steelmaking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3881195A JP3339982B2 (en) 1995-02-27 1995-02-27 Converter steelmaking method

Publications (2)

Publication Number Publication Date
JPH08232008A true JPH08232008A (en) 1996-09-10
JP3339982B2 JP3339982B2 (en) 2002-10-28

Family

ID=12535673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3881195A Expired - Fee Related JP3339982B2 (en) 1995-02-27 1995-02-27 Converter steelmaking method

Country Status (1)

Country Link
JP (1) JP3339982B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274349A (en) * 2005-03-29 2006-10-12 Sumitomo Metal Ind Ltd Method for refining steel
CN111020115A (en) * 2019-12-17 2020-04-17 邯郸钢铁集团有限责任公司 Method for refining molten steel outside furnace by using liquid blast furnace slag

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274349A (en) * 2005-03-29 2006-10-12 Sumitomo Metal Ind Ltd Method for refining steel
CN111020115A (en) * 2019-12-17 2020-04-17 邯郸钢铁集团有限责任公司 Method for refining molten steel outside furnace by using liquid blast furnace slag

Also Published As

Publication number Publication date
JP3339982B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
WO1995001458A1 (en) Steel manufacturing method using converter
JP6693536B2 (en) Converter steelmaking method
KR101430377B1 (en) Method of same processing for desiliconizing and dephosphorizing hot metal
JP6551626B2 (en) Method of melting high manganese steel
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
JP5272378B2 (en) Hot metal dephosphorization method
JP4210011B2 (en) Dephosphorization method of hot metal using converter
JP4581751B2 (en) Prevention of dust from hot metal transport container
JPH08232008A (en) Steelmaking method in converter
JP2912963B2 (en) Slag reforming method as desulfurization pretreatment
JP4192503B2 (en) Manufacturing method of molten steel
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP2001107124A (en) Method for dephosphorizing molten iron
JPH08311519A (en) Steelmaking method using converter
JP4189110B2 (en) Method for reforming stainless steel smelting slag
JP7302749B2 (en) Molten iron dephosphorization method
JP2958842B2 (en) Converter refining method
JP4205818B2 (en) Dephosphorization method for hot metal using decarburized slag
JP3327062B2 (en) Melting method of ultra-low carbon / ultra low sulfur steel
JPS61104014A (en) Method for reducing mn ore with high efficiency in oxidation refining furnace
JP2023049462A (en) Dephosphorization of hot metal
JPH11269525A (en) Desiliconization of molten iron by addition of desiliconizing agent
JP2002256326A (en) Method for refining molten iron
JPH07258714A (en) Method for pre-treating molten iron
JPH06100919A (en) Treatment of dephosphorized slag in molten iron

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020709

LAPS Cancellation because of no payment of annual fees