JP4189110B2 - Method for reforming stainless steel smelting slag - Google Patents

Method for reforming stainless steel smelting slag Download PDF

Info

Publication number
JP4189110B2
JP4189110B2 JP36925499A JP36925499A JP4189110B2 JP 4189110 B2 JP4189110 B2 JP 4189110B2 JP 36925499 A JP36925499 A JP 36925499A JP 36925499 A JP36925499 A JP 36925499A JP 4189110 B2 JP4189110 B2 JP 4189110B2
Authority
JP
Japan
Prior art keywords
slag
stainless steel
mass
reforming
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36925499A
Other languages
Japanese (ja)
Other versions
JP2001181725A (en
Inventor
昭男 新飼
英宏 鍬取
義人 三村
健一郎 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP36925499A priority Critical patent/JP4189110B2/en
Publication of JP2001181725A publication Critical patent/JP2001181725A/en
Application granted granted Critical
Publication of JP4189110B2 publication Critical patent/JP4189110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、ステンレス溶鋼の精錬で生成するスラグからの有価金属を回収し、スラグの自然膨張を抑制して資源化を図るステンレス溶鋼精錬スラグの改質方法に関する。
【0002】
【従来の技術】
従来、上底吹き転炉、上吹き転炉等の精錬炉を用いて、吹酸による脱炭精錬を行った際に、溶鉄中に含まれるクロム(Cr)が同時に酸化され、一般的にこのクロム酸化物(Cr23)は、生成したスラグ中に10質量%以上含まれている。
クロムは、高価であることから、Fe−Si等の合金鉄を添加して、スラグ中に含まれるクロム酸化物を還元し、クロムとしてステンレス溶鋼中に回収することが行われている。
しかし、クロム酸化物の還元は、Fe−Si等の還元剤の使用コストとスラグ中に未還元で残存するクロム酸化物の量とのコストバランスによって決まるため、クロム濃度として0.6〜5質量%程度がスラグ中に残留し、一部微量の金属クロムが存在する状態となる。
その結果、クロムの損失量が増し、補充するクロム合金鉄の使用量が増加してステンレス溶鋼の製造コストが高くなる。
更に、ステンレス溶鋼の脱炭精錬の際に生成したスラグは、資源として活用することが推進されている。しかし、膨張して崩壊(粉化)性が大きい特性を有するため、土木用の埋め立て材や路盤材として用いる際に制約を受けたり、使用できない等の問題がある。
【0003】
この対策として、特開昭52−147512号公報に記載されているように、上吹き転炉や上底吹き転炉、電気炉等の精錬炉を用いて大気下で炭素濃度が0.2〜0.3質量%程度になるまで吹酸による脱炭を行った後、このステンレス溶鋼を真空取鍋精錬装置に移し、取鍋底部から不活性ガスを吹き込んでステンレス溶鋼とスラグを混合攪拌し、スラグ中に含まれるクロム酸化物を炭素により還元することにより、クロム歩留りを高めて低炭素のステンレス溶鋼を溶製することが行われている。
また、スラグを資源として活用する方法として、特開平8−104553号公報に記載されているように、脱炭精錬を行って生成したスラグのクロム酸化物を還元処理して後、このスラグにFeSあるいはCaS等の2価の硫化物を添加してクロムの溶出のない安定したスラグにしている。
更に、特開平9−165238号公報、特開平11−61219号公報に記載されているように、ステンレス溶鋼の製造過程で発生するスラグにほう酸(B25)を添加して、ダイカルシウムシリケート(2CaO・SiO2)内にほう酸を拡散して固溶させ、α’2Ca0・SiO2(C2S)からγ2CaO・SiO2(C2S)への相転移を抑制し、膨張に起因する粉化を防止するか、あるいは特開平8−188813号公報に記載されているように、ほう酸とリン酸(P25)含有物を添加して固溶させることにより、スラグのα’C2SからγC2Sへの相転移を抑制することが行われている。
【0004】
【発明が解決しようとする課題】
しかしながら、特開昭52−147512号公報に記載された方法では、スラグ中のクロム酸化物を還元してステンレス溶鋼中に回収するのに時間を要し、生産性の低下や取鍋等の耐火物の損耗等を招く。しかも、クロム酸化物の還元に限界があり、精錬を終了した後のスラグ中に残存するクロム酸化物が多くなり、フェロクロム等の合金鉄の使用が増加して製造コストが高くなる。
しかも、スラグの崩壊性を改善することが出来ないため、土木用の埋め立て材や路盤材として使用する際に問題がある。
また、特開平9−165238号公報、特開平11−61219号公報、特開平8−188813号公報に記載された方法では、スラグにほう酸、あるいはほう酸とリン酸を添加し、2CaO・SiO2の膨張に起因する粉化を防止できるが、高価なほう酸を多量に添加するため、処理コストが高くなる。
しかも、スラグにほう素(B)やリン酸を加えることになり、スラグ量の増加を招き、スラグの処理費用等を含めた経済的及び環境上の問題があり好ましくない。
更に、精錬を終了した後のスラグ中に残存するクロム酸化物を還元してステンレス溶鋼中に回収できないため、クロム損失を招き、フェロクロム等の合金鉄の使用が増加し、ステンレス溶鋼の製造コストが高くなる等の問題がある。
【0005】
本発明はかかる事情に鑑みてなされたもので、ステンレス溶鋼の脱炭精錬の際に生成するスラグ中に含まれるクロム酸化物を効率良く還元してステンレス溶鋼中に回収し、スラグ中に含まれるクロムの低減と膨張による粉化を改善してスラグの資源化を図ることができるステンレス溶鋼精錬スラグの改質方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記目的に沿う本発明のステンレス溶鋼精錬スラグの改質方法は、上底吹き転炉を用いてステンレス溶鋼を精錬する方法で、炭素濃度が0.1〜1.0質量%にまで低下した時点かつCr23が10〜30質量%となった時点で、アルミドロス及び/又は金属Alを添加し、炉体底部に設けたノズルで不活性ガスを転炉炉内に吹き込んで、スラグを攪拌するスラグの改質方法において、
前記スラグの塩基度に対するAl23の濃度比を、12≧Al23 質量%/(CaO質量%/SiO2 質量%)≧10とし、
前記アルミドロス及び/又は金属Alによる金属Al添加量は、前記スラグ中のCr23、FeO及びMnOの合計量を金属Alで還元する反応の化学量論量の1.0倍以上1.2倍以下としている。
この方法により、スラグの滓化が促進されクロム酸化物の還元が容易になり、スラグ組成中にダイカルシウムシリケート(2CaO・SiO2)が生成するのを防止して、スラグ自体の膨張による崩壊を無くすことができる。
なお、スラグの塩基度は、スラグ中に含まれるSiO2に対するCaOの比(CaO/SiO2)である。
【0007】
ここで、前記スラグにアルミドロス及び/又は金属Alを添加している。この方法により、スラグ中に含まれるクロム酸化物の還元を促進してスラグ中に残留する総クロム量を低減することができ、同時に生成する2CaO・SiO2を抑制することができる。
【0008】
更に、前記スラグにAl23含有物を添加しても良い。
安価なAl23によって2CaO・SiO2の生成を抑制でき、処理コストを低減することができる。
【0009】
また、前記スラグを改質した後のスラグに含まれる全クロム含有量を0.5質量%以下にすることができる。
クロムの含有量を一般の製鋼工程で発生するスラグと同等にしているので、資源化が可能になり土木用の埋め立て材や路盤材等に使用することができる。
【0010】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明者等は、前記の課題を解決するため鋭意研究を重ねた結果、炭素濃度が2〜5質量%の溶銑から精錬炉を用いて脱炭精錬を行って生成されたスラグと、VOD(Vacuum・Oxygen・Decaburization)、一本足の大径の浸漬管等の真空を利用した二次精錬で生成したスラグでは、その特徴に大きな差異があることを知見できた。
更に、Al脱酸した二次精錬スラグは、普通鋼スラグと同様にスラグ中に残留するクロム量が少なくなる。しかも、膨張による崩壊性が小さく塊状を維持している。
一方、Si脱酸した二次精錬スラグは、クロム酸化物の還元効率が悪く、スラグ中に残留するクロム量が高くなり、且つ、膨張による崩壊性が大きいことが判った。
そして、クロム酸化物の還元効率及びスラグ性状は、脱酸の仕方に大きく関連することに着目し、本発明に至った。以下に具体的に説明する。
図1は本発明の一実施の形態に係るステンレス溶鋼精錬スラグの改質方法に適用される上底吹き転炉の全体図、図2はCaO−Al23−SiO2系状態図である。
図1に示すように、本発明の一実施の形態に係るステンレス溶鋼精錬スラグの改質方法に用いられる精錬炉の一例である上底吹き転炉10は、炉体11と、炉体11の上方から炉体11内に酸素あるいは酸素とアルゴンガス等を混合した酸素含有気体を吹き込むランス12と、炉体11内を攪拌するため不活性ガスを吹き込む底部に設けたノズル13と、炉体11内に生石灰、鉄鉱石、ダスト等の副原料やFe−Si、Fe−Cr、アルミドロス、金属Al等の合金鉄を添加するシュート14及び貯蔵ホッパー15と、脱炭精錬を終了したステンレス溶鋼(以下溶鋼という)を図示しない取鍋に出鋼するための出鋼口16を備えている。
【0011】
次に、上底吹き転炉10を用いたステンレス溶鋼精錬スラグの改質方法について説明する。
予め脱硫、脱燐等の処理を施した150トンの溶銑を上底吹き転炉10に装入し、貯蔵ホッパー15に貯蔵した生石灰やFe−Cr等をシュート14から炉11内に添加し、ランス12を下降させて酸素含有気体を前記熔銑に吹き付けることにより、溶銑中に含まれる炭素を燃焼して除去するいわゆる脱炭が行われて、同時に、生石灰や溶銑中のSi等が酸化してスラグが生成する。
そして、脱炭の進行に伴って、溶鉄中に含まれるクロム(Cr)も酸化されて10〜30質量%のクロム酸化物(Cr23)が生成し、このクロム酸化物はスラグ中に移行する。
炭素濃度が0.1〜1.0質量%にまで低下して、脱炭精錬が終了し溶鋼が溶製された時点で、アルミドロス、あるいは金属Alを添加し(アルミドロスと金属Alの両方を添加してもよい)、ノズル13から不活性ガスの一例であるアルゴンガスを炉11内に吹き込んで、スラグを攪拌し、スラグ中のCr23を下記(1)式に示す反応により還元して、還元されたCrを溶鋼中に回収する。
Cr23+2Al→2Cr+Al23 ・・・・・(1)
このアルミドロスに含まれるAlあるいは金属Alの添加量は、前記の(1)式で消費される化学量論的な量以上の金属(メタリック)Al量となるようにすることにより、改質後のスラグ中の金属Cr及びCr23を全てCrに換算した残留全Cr濃度(スラグ中の全クロム含有量)を0.5質量%以下にでき、普通溶鋼の溶製時に生成するスラグに相当する品質にして、金属CrやCr23による環境への影響を無くし、資源化を可能にすることができる。
更に、添加する金属Al量を、スラグ中のCr23の量とFeO及びMnOの量を加えた量を還元するのに必要な化学量論的な量以上にすると、残留全Cr濃度をより安定して0.5質量%以下にすることができるので好ましい結果が得られる。
【0012】
また、スラグ組成が下記(2)式を満足するように、Al23量を調整する。例えばスラグ中のCr23やFeO、MnO等を還元するために添加した金属Al量から生成するAl23が不足する際には、その不足量に見合うようにアルミドロスやAl23を含有するフラックス等を添加する。
Al23/(CaO/SiO2)≧10 ・・・・・(2)
スラグ組成の調整は、上底吹き転炉10を用いて脱炭精錬を行った際に生成したスラグの分析を行って、Cr23、CaO、SiO2、Al23、FeO、MnO等の濃度を把握し、生石灰等の使用量を基に過去の操業経験から全スラグ量を決めることができ、これ等からスラグの塩基度の計算と、添加する金属Al量やAl23量を一般の化学当量計算により求める。
スラグの塩基度(CaO/SiO2)に対するAl23の濃度比が10より小さくなると、図2に示すように、2CaO・SiO2(ダイカルシウムシリケート)が生成する領域になり、凝固してからα’2Ca0・SiO2(C2S)からγ2CaO・SiO2(C2S)に相転移して体積膨張を起こし、膨張が激しくなると粉化する。
従って、2CaO・SiO2の生成域とCaO濃度の高い範囲を除いたゲレナイト(2CaO・Al23・SiO2である図2のC2AS)、Ca3Al26(図2のC3A)等の範囲、即ち塩基度に対するAl23の濃度比が10以上となるようにスラグ中のAl23の含有量を調整することにより、凝固したスラグの膨張による崩壊(粉化)性を十分に抑制でき、土木用埋め立て材や路盤材として使用することができる。
そして、Cr23及びメタリックCrのスラグ中の残留全クロム量を0.5質量%以下にして膨張による崩壊を抑制したスラグは、上底吹き転炉10から排滓し、冷却して、粒度を5〜70mm程度に破砕されてから土木用埋め立て材や路盤材等として搬送される。
【0013】
【実施例】
次に、ステンレス溶鋼精錬スラグの改質方法の実施例について説明する。
予め脱硫、脱燐等の処理を施した150トンの熔銑を上底吹き転炉(転炉)に装入して、生石灰及び鉄鉱石とFe−Cr合金鉄をシュートから転炉内に添加し、ランスから15000〜28000Nm3/hrの速度で吹酸して炭素濃度を0.3質量%になるまで脱炭精錬を行った。そして、脱炭精錬の際に生成したスラグの塩基度とAl23の濃度を変え、その時のクロム酸化物の還元効率の良否、還元後のスラグ中クロム濃度の良否、スラグの膨張性、総合評価について調査した。その結果を表1に示す。
実施例1は、塩基度に対するAl23の比を10にし、しかも、スラグ中のCr23とFeO及びMnOの合計量を還元するに必要な化学量論的量の1.0倍の金属Alを添加した場合であり、クロム酸化物の還元効率が良く、還元後のスラグ中クロム濃度を普通溶鋼と同等に低減(○)でき、スラグの膨張性を小さく(○)でき、総合評価として良い(○)結果が得られた。
実施例2は、塩基度に対するAl23の比を12にし、しかも、スラグ中のCr23とFeO及びMnOの合計量を還元するに必要な化学量論的量の1.2倍の金属Alを添加した場合であり、クロム酸化物の還元効率が良く、還元後のスラグ中クロム濃度を普通溶鋼と同等に低減(○)でき、スラグの膨張性を小さく(○)でき、総合評価として良い(○)結果が得られた。
実施例3は、塩基度に対するAl23の比を12にし、しかも、スラグ中のCr23とFeO及びMnOの合計量を還元するに必要な化学量論的量の1.0倍の金属Alを添加した場合であり、クロム酸化物の還元効率が良く、還元後のスラグ中クロム濃度を普通溶鋼と同等に低減(○)でき、スラグの膨張性を小さく(○)でき、総合評価として良い(○)結果が得られた。
【0014】
【表1】

Figure 0004189110
【0015】
これに対し、比較例1は、塩基度に対するAl23の比を8にし、しかも、スラグ中のCr23とFeO及びMnOの合計量を還元するに必要な化学量論的量の1.0倍の金属Alを添加した場合であり、クロム酸化物の還元効率が良く、還元後のスラグ中クロム濃度を普通溶鋼と同等に低減(○)できたが、2CaO・SiO2が生成してスラグの膨張性が大きく(×)なり、総合評価として悪い(×)結果になった。
比較例2は、塩基度に対するAl23の比を8にし、しかも、スラグ中のCr23とFeO及びMnOの合計量を還元するに必要な化学量論的量の0.6倍の金属Alを添加した場合であり、クロム酸化物の還元効率が悪く、還元後のスラグ中クロム濃度も高く(×)なり、2CaO・SiO2が生成してスラグの膨張性が大きく(×)なり、総合評価として悪い(×)結果になった。
【0016】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、AOD(Argon・Oxygen・Decaburization)や電気炉等の吹酸を伴う脱炭精錬によって生成したスラグや取鍋等の二次精錬において、Si脱酸を行ったスラグに適用することができる。
更に、ステンレス鋼溶融還元炉等の精錬炉、スラグ処理炉等のスラグにも適用できる。
【0017】
【発明の効果】
請求項1、2記載のステンレス溶鋼精錬スラグの改質方法は、精錬炉を用いてステンレス溶鋼を精錬する際のスラグの改質方法において、スラグの塩基度に対するAl23の濃度比を10以上にしているので、Al23源としての金属Alによりスラグ中に含まれるクロムの溶鋼中への回収率を高めてFe−Cr合金鉄等の使用量を節減し、ダイカルシウムシリケート(2CaO・SiO2)等の生成を抑制してスラグの崩壊性を小さくし、路盤材や土木埋め立て材等の資源として活用することができる。
【0018】
特にスラグにアルミドロス及び/又は金属Alを添加するので、スラグ中に含まれるクロム量を安定して低減でき、同時にスラグの崩壊を安定して防止し、資源としての活用を可能にでき、スラグ量を最小限にすることにより処理コストを低減することができる。
【0019】
【0020】
請求項記載のステンレス溶鋼精錬スラグの改質方法は、スラグを改質した後のスラグに含まれる全クロム含有量を0.5質量%以下にするので、一般の製鋼工程で発生するスラグと同等にすることができ、環境制約が無く、資源として活用範囲が広くなり、スラグの付加価値を高めることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係るステンレス溶鋼精錬スラグの改質方法に適用される上底吹き転炉の全体図である。
【図2】CaO−Al23−SiO2系状態図である。
【符号の説明】
10:上底吹き転炉、11:炉体、12:ランス、13:ノズル、14:シュート、15:貯蔵ホッパー、16:出鋼口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reforming stainless steel refining slag that recovers valuable metals from slag produced by refining molten stainless steel and suppresses natural expansion of the slag to recycle.
[0002]
[Prior art]
Conventionally, when decarburization and refining with blowing acid is performed using a refining furnace such as a top-bottom blowing converter or top-blowing converter, chromium (Cr) contained in the molten iron is simultaneously oxidized. Chromium oxide (Cr 2 O 3 ) is contained in the produced slag by 10% by mass or more.
Since chromium is expensive, an alloy iron such as Fe—Si is added to reduce chromium oxide contained in the slag and collect it in the molten stainless steel as chromium.
However, the reduction of chromium oxide is determined by the cost balance between the cost of using a reducing agent such as Fe-Si and the amount of chromium oxide remaining unreduced in the slag, so the chromium concentration is 0.6 to 5 mass. % Remains in the slag, and a small amount of metallic chromium is present.
As a result, the amount of chromium loss increases, the amount of chromium alloy iron to be supplemented increases, and the production cost of molten stainless steel increases.
Furthermore, utilization of slag produced during decarburization and refining of molten stainless steel as a resource is promoted. However, since it has a characteristic of expanding and disintegrating (pulverizing), there is a problem that it is restricted or cannot be used when used as a landfill material or roadbed material for civil engineering.
[0003]
As a countermeasure against this, as described in JP-A-52-147512, the carbon concentration is 0.2 to 0.2 in the atmosphere using a refining furnace such as a top blowing converter, a top bottom blowing converter, or an electric furnace. After decarburization with blowing acid until about 0.3% by mass , this stainless steel molten steel is transferred to a vacuum ladle refining device, inert gas is blown from the bottom of the ladle, and the stainless steel molten steel and slag are mixed and stirred. Reduction of chromium oxide contained in the slag with carbon increases the chromium yield and melts low-carbon stainless steel.
Further, as a method of utilizing slag as a resource, as described in JP-A-8-104553, slag chromium oxide produced by decarburization refining is reduced, and the slag is treated with FeS. Alternatively, a divalent sulfide such as CaS is added to form a stable slag without leaching of chromium.
Further, as described in JP-A-9-165238 and JP-A-11-61219, boric acid (B 2 O 5 ) is added to slag generated in the manufacturing process of molten stainless steel, and then dicalcium silicate. (2CaO · SiO 2) boric acid diffused by solid solution in, phase transition is suppressed from α'2Ca0 · SiO 2 (C 2 S ) to γ2CaO · SiO 2 (C 2 S ), due to the expansion As described in JP-A-8-188813, by adding powders containing boric acid and phosphoric acid (P 2 O 5 ) and dissolving them, α′C of the slag is prevented. Suppression of the phase transition from 2 S to γC 2 S has been performed.
[0004]
[Problems to be solved by the invention]
However, in the method described in JP-A-52-147512, it takes time to reduce the chromium oxide in the slag and recover it in the molten stainless steel. It causes wear and tear of things. In addition, there is a limit to the reduction of chromium oxide, the amount of chromium oxide remaining in the slag after finishing refining increases, the use of alloy iron such as ferrochrome increases, and the manufacturing cost increases.
Moreover, since the slag disintegrability cannot be improved, there is a problem when used as a landfill material or roadbed material for civil engineering.
Further, in the methods described in JP-A-9-165238, JP-A-11-61219, and JP-A-8-188813, boric acid or boric acid and phosphoric acid are added to slag, and 2CaO · SiO 2 Although powdering due to expansion can be prevented, a large amount of expensive boric acid is added, so that the processing cost becomes high.
Moreover, boron (B) and phosphoric acid are added to the slag, which causes an increase in the amount of slag, which is not preferable because of economic and environmental problems including slag processing costs.
In addition, chromium oxide remaining in the slag after refining cannot be reduced and recovered in the stainless steel, resulting in chromium loss, increased use of ferrochrome and other alloy irons, and the production cost of stainless steel There are problems such as high.
[0005]
The present invention has been made in view of such circumstances, and chromium oxides contained in slag generated during decarburization and refining of molten stainless steel are efficiently reduced and recovered in the molten stainless steel, and contained in the slag. An object of the present invention is to provide a method for reforming stainless steel refined slag capable of improving pulverization due to reduction and expansion of chromium and thereby making slag resources available.
[0006]
[Means for Solving the Problems]
The method for reforming stainless steel refining slag of the present invention that meets the above-mentioned purpose is a method of refining stainless steel using a top-bottom blow converter, and when the carbon concentration is reduced to 0.1 to 1.0% by mass. and when the Cr 2 O 3 became 10 to 30 mass%, the addition of aluminum dross and / or metal Al, the nozzle provided in a furnace body bottom by blowing an inert gas into the converter furnace slag In the method of reforming slag to be stirred,
The concentration ratio of Al 2 O 3 to the basicity of the slag is 12 ≧ Al 2 O 3 mass% / (CaO mass% / SiO 2 mass% ) ≧ 10,
The amount of metal Al added by the aluminum dross and / or metal Al is 1.0 times or more the stoichiometric amount of the reaction of reducing the total amount of Cr 2 O 3 , FeO and MnO in the slag with metal Al. 2 times or less.
By this method, the hatching of slag is promoted and the reduction of chromium oxide is facilitated, the formation of dicalcium silicate (2CaO.SiO 2 ) is prevented during the slag composition, and the collapse of the slag itself due to expansion is prevented. It can be lost.
The basicity of slag is the ratio of CaO to SiO 2 contained in slag (CaO / SiO 2 ).
[0007]
Here, aluminum dross and / or metal Al is added to the slag. By this method, the reduction of the chromium oxide contained in the slag can be promoted to reduce the total amount of chromium remaining in the slag, and at the same time, 2CaO.SiO 2 produced can be suppressed.
[0008]
Further, an Al 2 O 3 containing material may be added to the slag.
The production of 2CaO.SiO 2 can be suppressed by inexpensive Al 2 O 3 , and the processing cost can be reduced.
[0009]
Moreover, the total chromium content contained in the slag after modifying the slag can be reduced to 0.5% by mass or less.
Since the chromium content is equivalent to that of slag generated in a general steelmaking process, it can be used as a landfill material or roadbed material for civil engineering.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, as a result of intensive studies to solve the above-mentioned problems, the present inventors, as a result, slag produced by performing decarburization refining from a hot metal having a carbon concentration of 2 to 5% by mass using a refining furnace, It was found that the characteristics of the slag produced by secondary refining using vacuum such as VOD (Vacuum, Oxygen, Decaburization) and a large-diameter dip tube of one leg are greatly different.
Furthermore, the amount of chromium remaining in the slag is reduced in the secondary refining slag that has been deoxidized by Al as in the case of ordinary steel slag. In addition, the disintegration property due to expansion is small and the lump is maintained.
On the other hand, it was found that the secondary refining slag deoxidized with Si has poor reduction efficiency of chromium oxide, the amount of chromium remaining in the slag is high, and the disintegration due to expansion is large.
The inventors have focused on the fact that the reduction efficiency and slag properties of chromium oxide are greatly related to the way of deoxidation, and have reached the present invention. This will be specifically described below.
FIG. 1 is an overall view of an upper-bottom blown converter applied to a method for reforming stainless steel refining slag according to an embodiment of the present invention, and FIG. 2 is a CaO—Al 2 O 3 —SiO 2 phase diagram. .
As shown in FIG. 1, an upper bottom blow converter 10, which is an example of a refining furnace used in a method for reforming stainless steel refining slag according to an embodiment of the present invention, includes a furnace body 11 and a furnace body 11. A lance 12 for blowing oxygen or an oxygen-containing gas obtained by mixing oxygen and argon gas into the furnace body 11 from above, a nozzle 13 provided at the bottom for blowing an inert gas to stir the interior of the furnace body 11, and the furnace body 11 Chute 14 and storage hopper 15 in which auxiliary materials such as quick lime, iron ore, and dust and alloy iron such as Fe-Si, Fe-Cr, aluminum dross, and metal Al are added, and stainless steel that has been decarburized and refined ( (Hereinafter referred to as “molten steel”) is provided with a steel outlet 16 for putting it into a ladle (not shown).
[0011]
Next, a method for reforming stainless steel refining slag using the top-bottom converter 10 will be described.
150 tons of hot metal previously treated with desulfurization, dephosphorization, etc. are charged into the top-bottom blow converter 10, and quick lime, Fe—Cr, etc. stored in the storage hopper 15 are added into the furnace 11 from the chute 14; By lowering the lance 12 and blowing an oxygen-containing gas onto the molten iron, so-called decarburization is performed by burning and removing carbon contained in the molten iron, and at the same time, quick lime, Si in the molten iron, etc. are oxidized. Slag is generated.
As the decarburization proceeds, chromium (Cr) contained in the molten iron is also oxidized to produce 10 to 30% by mass of chromium oxide (Cr 2 O 3 ), and this chromium oxide is contained in the slag. Transition.
When the carbon concentration is reduced to 0.1 to 1.0 mass %, decarburization refining is finished, and molten steel is melted, aluminum dross or metal Al is added (both aluminum dross and metal Al). In addition, argon gas, which is an example of an inert gas, is blown into the furnace 11 from the nozzle 13, the slag is stirred, and Cr 2 O 3 in the slag is reacted by the reaction shown in the following formula (1). Reduction is performed, and the reduced Cr is recovered in the molten steel.
Cr 2 O 3 + 2Al → 2Cr + Al 2 O 3 (1)
The amount of Al or metal Al contained in the aluminum dross is adjusted to be a metal (metallic) Al amount equal to or higher than the stoichiometric amount consumed by the above-mentioned formula (1), so that Residual total Cr concentration (total chromium content in slag) converted to Cr for all metal Cr and Cr 2 O 3 in slag of slag can be reduced to 0.5 mass % or less. The quality can be made equivalent, and the influence of the metal Cr or Cr 2 O 3 on the environment can be eliminated and resource can be made available.
Furthermore, when the amount of metallic Al added is more than the stoichiometric amount necessary to reduce the amount of Cr 2 O 3 in the slag plus the amount of FeO and MnO, the residual total Cr concentration is reduced. Since it can be more stably made 0.5 mass % or less, a preferable result is obtained.
[0012]
Further, the amount of Al 2 O 3 is adjusted so that the slag composition satisfies the following formula (2). For example, when Al 2 O 3 produced from the amount of metal Al added to reduce Cr 2 O 3 , FeO, MnO, etc. in the slag is insufficient, aluminum dross or Al 2 O is used to meet the shortage. Add flux containing 3 .
Al 2 O 3 / (CaO / SiO 2 ) ≧ 10 (2)
The slag composition is adjusted by analyzing the slag produced when decarburizing and refining using the top-bottom converter 10, and Cr 2 O 3 , CaO, SiO 2 , Al 2 O 3 , FeO, MnO The total amount of slag can be determined from past operational experience based on the amount of quicklime used, etc. From this, the basicity of slag can be calculated, the amount of metal Al added and Al 2 O 3 The amount is determined by general chemical equivalent calculation.
When the concentration ratio of Al 2 O 3 to slag basicity (CaO / SiO 2 ) is less than 10, as shown in FIG. 2, it becomes a region where 2CaO · SiO 2 (dicalcium silicate) is formed and solidifies. Phase transition from α′2Ca0 · SiO 2 (C 2 S) to γ2CaO · SiO 2 (C 2 S) to cause volume expansion.
Thus, (C 2 AS in Figure 2 is 2CaO · Al 2 O 3 · SiO 2) Gerenaito excluding the range of high generation region and CaO concentration of 2CaO · SiO 2, the Ca 3 Al 2 O 6 (FIG. 2 C 3 A) etc., that is, by adjusting the content of Al 2 O 3 in the slag so that the concentration ratio of Al 2 O 3 to basicity is 10 or more, disintegration due to expansion of the solidified slag (powder) Can be sufficiently suppressed, and can be used as a landfill material for civil engineering or a roadbed material.
Then, Cr 2 O 3 and the slag that suppresses disintegration residual total chromium content due to expansion in the 0.5 mass% in the slag of metallic Cr is to Haikasu from converter 10 blown upper base, cooled, After the particle size is crushed to about 5 to 70 mm, it is transported as a landfill material for civil engineering or a roadbed material.
[0013]
【Example】
Next, an embodiment of a method for reforming stainless steel refining slag will be described.
150 tons of molten iron that has been treated in advance with desulfurization, dephosphorization, etc. are charged into an upper-bottom blowing converter (converter), and quick lime, iron ore, and Fe-Cr alloy iron are added to the converter from the chute. Then, decarburization and refining were performed by blowing acid from the lance at a rate of 15000 to 28000 Nm 3 / hr until the carbon concentration became 0.3 mass %. And, the basicity of the slag generated during decarburization refining and the concentration of Al 2 O 3 are changed, the reduction efficiency of the chromium oxide at that time, the quality of the chromium concentration in the slag after reduction, the expansibility of the slag, The overall evaluation was investigated. The results are shown in Table 1.
In Example 1, the ratio of Al 2 O 3 to basicity was set to 10, and 1.0 times the stoichiometric amount necessary for reducing the total amount of Cr 2 O 3 , FeO and MnO in the slag. The reduction efficiency of chromium oxide is good, the chromium concentration in the slag after reduction can be reduced to the same level as ordinary molten steel (○), and the expansion of the slag can be reduced (○). Good (◯) results were obtained for evaluation.
In Example 2, the ratio of Al 2 O 3 to basicity was 12, and 1.2 times the stoichiometric amount required to reduce the total amount of Cr 2 O 3 , FeO and MnO in the slag. The reduction efficiency of chromium oxide is good, the chromium concentration in the slag after reduction can be reduced to the same level as ordinary molten steel (○), and the expansion of the slag can be reduced (○). Good (◯) results were obtained for evaluation.
In Example 3, the ratio of Al 2 O 3 to basicity was set to 12, and 1.0 times the stoichiometric amount necessary for reducing the total amount of Cr 2 O 3 , FeO and MnO in the slag. The reduction efficiency of chromium oxide is good, the chromium concentration in the slag after reduction can be reduced to the same level as ordinary molten steel (○), and the expansion of the slag can be reduced (○). Good (◯) results were obtained for evaluation.
[0014]
[Table 1]
Figure 0004189110
[0015]
On the other hand, in Comparative Example 1, the ratio of Al 2 O 3 to basicity was set to 8, and the stoichiometric amount necessary for reducing the total amount of Cr 2 O 3 , FeO and MnO in the slag was reduced. This is the case when 1.0 times the metal Al is added, the reduction efficiency of chromium oxide is good, and the chromium concentration in the slag after reduction can be reduced (◯) to the same level as ordinary molten steel, but 2CaO · SiO 2 is produced. As a result, the expandability of the slag was increased (x), and the overall evaluation was bad (x).
In Comparative Example 2, the ratio of Al 2 O 3 to basicity was set to 8, and 0.6 times the stoichiometric amount necessary for reducing the total amount of Cr 2 O 3 , FeO and MnO in the slag. When the metal Al is added, the reduction efficiency of the chromium oxide is poor, the chromium concentration in the slag after reduction is high (×), 2CaO · SiO 2 is generated, and the slag is highly expandable (×). It became a bad (x) result as comprehensive evaluation.
[0016]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, it can be applied to slag subjected to Si deoxidation in secondary refining such as slag and ladle produced by decarburization refining with blowing acid such as AOD (Argon, Oxygen, Decaburization) and electric furnace.
Furthermore, the present invention can also be applied to a slag such as a refining furnace such as a stainless steel melting reduction furnace or a slag processing furnace.
[0017]
【The invention's effect】
The method for reforming stainless steel refining slag according to claim 1 or 2 is a method for reforming stainless steel using a refining furnace, wherein the concentration ratio of Al 2 O 3 to the basicity of the slag is 10 As described above, metal Al as the Al 2 O 3 source increases the recovery rate of chromium contained in the slag into the molten steel, thereby reducing the amount of Fe—Cr alloy iron and the like, and dicalcium silicate (2CaO・ Suppressing the generation of SiO 2 ) and the like can reduce the collapse of slag, and can be used as resources such as roadbed materials and civil engineering landfill materials.
[0018]
In particular , since aluminum dross and / or metal Al is added to the slag, the amount of chromium contained in the slag can be stably reduced, and at the same time, the collapse of the slag can be stably prevented, making it possible to use it as a resource. Processing costs can be reduced by minimizing the amount of slag.
[0019]
[0020]
Since the total chromium content contained in the slag after modifying the slag is 0.5% by mass or less, the method for modifying the molten steel smelting slag according to claim 2 includes slag generated in a general steelmaking process. It can be made equal, there is no environmental restriction, the range of utilization as resources is widened, and the added value of slag can be increased.
[Brief description of the drawings]
FIG. 1 is an overall view of an upper bottom blown converter applied to a method for reforming stainless steel refining slag according to an embodiment of the present invention.
FIG. 2 is a CaO—Al 2 O 3 —SiO 2 phase diagram.
[Explanation of symbols]
10: Top bottom blowing converter, 11: Furnace body, 12: Lance, 13: Nozzle, 14: Chute, 15: Storage hopper, 16: Steel outlet

Claims (2)

上底吹き転炉を用いてステンレス溶鋼を精錬する方法で、炭素濃度が0.1〜1.0質量%にまで低下した時点かつCr23が10〜30質量%となった時点で、アルミドロス及び/又は金属Alを添加し、炉体底部に設けたノズルで不活性ガスを転炉炉内に吹き込んで、スラグを攪拌するスラグの改質方法において、
前記スラグの塩基度に対するAl23の濃度比を、12≧Al23 質量%/(CaO質量%/SiO2 質量%)≧10とし、
前記アルミドロス及び/又は金属Alによる金属Al添加量は、前記スラグ中のCr23、FeO及びMnOの合計量を金属Alで還元する反応の化学量論量の1.0倍以上1.2倍以下とすることを特徴とするステンレス溶鋼精錬スラグの改質方法。
In a method of refining molten stainless steel using a top-bottom blow converter, when the carbon concentration is reduced to 0.1 to 1.0% by mass and when Cr 2 O 3 becomes 10 to 30% by mass, In the slag reforming method of adding alumidos and / or metal Al, blowing an inert gas into the converter furnace with a nozzle provided at the bottom of the furnace body, and stirring the slag,
The concentration ratio of Al 2 O 3 to the basicity of the slag is 12 ≧ Al 2 O 3 mass% / (CaO mass% / SiO 2 mass% ) ≧ 10,
The amount of metal Al added by the aluminum dross and / or metal Al is 1.0 times or more the stoichiometric amount of the reaction of reducing the total amount of Cr 2 O 3 , FeO and MnO in the slag with metal Al. A method for reforming stainless steel refining slag, characterized by being made twice or less.
請求項1記載のステンレス溶鋼精錬スラグの改質方法において、前記スラグを改質した後のスラグに含まれる全クロム含有量を0.5質量%以下にすることを特徴とするステンレス溶鋼精錬スラグの改質方法。  The method for reforming stainless steel refining slag according to claim 1, wherein the total chromium content contained in the slag after reforming the slag is 0.5 mass% or less. Modification method.
JP36925499A 1999-12-27 1999-12-27 Method for reforming stainless steel smelting slag Expired - Fee Related JP4189110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36925499A JP4189110B2 (en) 1999-12-27 1999-12-27 Method for reforming stainless steel smelting slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36925499A JP4189110B2 (en) 1999-12-27 1999-12-27 Method for reforming stainless steel smelting slag

Publications (2)

Publication Number Publication Date
JP2001181725A JP2001181725A (en) 2001-07-03
JP4189110B2 true JP4189110B2 (en) 2008-12-03

Family

ID=18493964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36925499A Expired - Fee Related JP4189110B2 (en) 1999-12-27 1999-12-27 Method for reforming stainless steel smelting slag

Country Status (1)

Country Link
JP (1) JP4189110B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207672A (en) * 2009-03-09 2010-09-24 Nippon Steel Corp Method of disposing of waste containing chromium
JP6451462B2 (en) * 2015-04-01 2019-01-16 新日鐵住金株式会社 Method for recovering chromium from chromium-containing slag
WO2020201869A1 (en) * 2019-04-01 2020-10-08 Sabic Global Technologies B.V. Method for recycling chromium oxide and forming chromium- alloy steel

Also Published As

Publication number Publication date
JP2001181725A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
US20080156144A1 (en) Method for reducing to metallic chromium the chromium oxide in slag from stainless steel processing
JP5320680B2 (en) Method for producing high phosphorus slag
JP4189110B2 (en) Method for reforming stainless steel smelting slag
JP2002256323A (en) Method for reforming roughly decarburized slag in molten stainless steel
JP4189112B2 (en) Processing method for slag refining stainless steel
US4222768A (en) Method for producing electric steel
CN114457204A (en) Method for dephosphorizing molten iron
JP2005015889A (en) Method for preventing effluence of slag in converter
JP3769860B2 (en) Stainless steel refining method
JPH07278644A (en) Dephosphorizing method of high chrome and high manganese molten alloy iron
JP4192503B2 (en) Manufacturing method of molten steel
JP3140256B2 (en) Slag reforming method
JP2000144272A (en) Method for recovering chromium and iron in melting and smelting steel containing chromium
JP3063537B2 (en) Stainless steel manufacturing method
JP7338663B2 (en) Method for producing chromium-containing molten iron
JP2757707B2 (en) Hot metal dephosphorization slag treatment method
JP2002371313A (en) Method for smelting molten stainless steel
JPH10265827A (en) Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag
JP4598220B2 (en) Hot metal processing method using decarburized iron
JP2686204B2 (en) Smelting reduction method for chromium ore
JP2002069520A (en) Method for recovering chromium in slag
JP3994988B2 (en) Method of recovering and using metal components contained in slag slag containing chromium
JPH08232008A (en) Steelmaking method in converter
JP2023049462A (en) Dephosphorization of hot metal
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

R151 Written notification of patent or utility model registration

Ref document number: 4189110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees