JP2010207672A - Method of disposing of waste containing chromium - Google Patents

Method of disposing of waste containing chromium Download PDF

Info

Publication number
JP2010207672A
JP2010207672A JP2009054465A JP2009054465A JP2010207672A JP 2010207672 A JP2010207672 A JP 2010207672A JP 2009054465 A JP2009054465 A JP 2009054465A JP 2009054465 A JP2009054465 A JP 2009054465A JP 2010207672 A JP2010207672 A JP 2010207672A
Authority
JP
Japan
Prior art keywords
chromium
waste
slag
ladle
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009054465A
Other languages
Japanese (ja)
Inventor
Yoshimichi Nabeshima
良径 鍋嶋
Hiroaki Hayashi
浩明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009054465A priority Critical patent/JP2010207672A/en
Publication of JP2010207672A publication Critical patent/JP2010207672A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disposal method which enables disposing of waste containing chromium without using a special disposal device and recovering the chromium as a steel material component. <P>SOLUTION: This method of disposing of waste containing chromium involves the following procedures: First, the waste 4 containing the chromium is put into a molten slag 3 of a ladle 1 in which a secondary refining is caaried out. After that, a reducing agent is added, and hence the chromium contained in the waste 4 is reduced and thus, the disposal of the waste 4 is accomplished. That is, the chromium can be recovered directly as a molten steel component by melting and reducing the waste 4 containing the chromium. Further, the concentration of chromic acid contained in the waste 4 is set at not more than 0.5% and therefore is below the hexavalent Cr elution criterion to soil, 0.05 mg/l, so that the same disposal procedures as applied to the ordinary slag can be applied to the slag under this disposal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、クロムを含有する廃棄物中のクロムを還元反応により溶鋼成分として回収し、廃棄物を無害な状態に処理する方法に関する。   The present invention relates to a method of recovering chromium in waste containing chromium as a molten steel component by a reduction reaction and treating the waste in a harmless state.

マグクロレンガのようなマグネシウム酸化物及びクロム酸化物を含むレンガは、耐火性、高温耐食性に優れるため、セメントロータリーキルンや製鋼二次精錬炉の内張り耐火物として使用されている。かかるレンガに含有されるクロムは、製造時は三価のCr2O3として安定しており、水に対しても非溶解性であるため危険性は低い。しかし、使用後の廃材においては、高温酸化等により六価のCrO3に変化するため、炉解体時のレンガ屑は六価クロムを含有する。六価クロムは水溶性を有しているため、埋立地の底に遮断シートを敷きこんでその上に埋め立てる方法で処理をしているが、遮断シートが完全に防水を行うことができず、地下水を汚染する例も見られるなど、環境問題になっている。 Since bricks containing magnesium oxide and chromium oxide such as magcro brick are excellent in fire resistance and high temperature corrosion resistance, they are used as lining refractories for cement rotary kilns and secondary steelmaking furnaces. Chromium contained in such bricks is stable as trivalent Cr 2 O 3 at the time of production, and has low risk because it is insoluble in water. However, the waste material after use is changed to hexavalent CrO 3 due to high-temperature oxidation or the like, so that the brick scraps at the time of furnace disassembly contain hexavalent chromium. Hexavalent chromium is water-soluble, so it is treated by burying a barrier sheet at the bottom of the landfill and reclaiming it on top of it, but the barrier sheet cannot be completely waterproofed. There have been some environmental problems such as the contamination of groundwater.

ここで、特開平6−269764には、6価クロムを含む固形廃棄物を直径10mm以下に粉砕し、アルミニウム精錬灰を主体とする還元剤と酸化錫または酸化アンチモンを混合し、この混合物を800℃以上に加熱することにより固形廃棄物中6価クロムを還元して無害化を行なう技術が開示されている。また、特開平10−174955には、廃棄物となったマグクロレンガを還元雰囲気下にて500℃以上で焼成し、含有される6価クロムを除去する方法が開示されている。また、特開2002−249811には、竪型溶融還元炉を用いて、レンガ廃材中のクロム分をクロム含有金属として回収し無害化する技術が開示されている。   Here, in JP-A-6-269964, solid waste containing hexavalent chromium is pulverized to a diameter of 10 mm or less, a reducing agent mainly composed of aluminum refining ash and tin oxide or antimony oxide are mixed, and this mixture is added to 800 There has been disclosed a technique for detoxifying hexavalent chromium in solid waste by heating to a temperature of ℃ or higher. Japanese Patent Application Laid-Open No. 10-174955 discloses a method for removing hexavalent chromium contained by firing waste magcro bricks at 500 ° C. or higher in a reducing atmosphere. Japanese Patent Application Laid-Open No. 2002-249811 discloses a technique of using a vertical smelting reduction furnace to recover a chromium component in a brick waste material as a chromium-containing metal and render it harmless.

特開平6−269764号公報Japanese Unexamined Patent Publication No. 6-269964 特開平10−174955号公報Japanese Patent Laid-Open No. 10-174955 特開2002−249811号公報JP 2002-249811 A

しかしながら、特開平6−269764および特開平10−174955に開示された方法では、含有される6価クロムを還元することで無害化し、クロム含有廃耐火物処理を可能にする技術とされているが、還元に必要な還元剤の量や処理量などが明らかにされておらず、セメントキルン炉や製鐵用二次精錬設備等の耐火物といった規模の大きい廃耐火物を処理する際の経済性などが不明であり、適用が難しい。また、特開2002−249811に開示された方法は、クロム−鉄をベースとした溶融金属を得られるが、通常の製鐵所にはこのような炉を設置していることはまれで、クロム含有廃棄物処理のために新たに建設する必要があり、処理費用が大きくなる。   However, in the methods disclosed in JP-A-6-269964 and JP-A-10-174955, the hexavalent chromium contained therein is rendered harmless by reduction, and it is considered as a technology that enables the treatment of waste refractories containing chromium. The amount of reducing agent necessary for reduction and the amount of processing are not clarified, and the economics of processing large-scale waste refractories such as cement kiln furnaces and secondary refining equipment for ironmaking Etc. are unknown and difficult to apply. In addition, the method disclosed in Japanese Patent Application Laid-Open No. 2002-249811 can obtain a molten metal based on chrome-iron, but it is rare that such a furnace is installed in a normal ironworks. It is necessary to construct a new construction for the treatment of contained waste, which increases the processing cost.

このような事情を考慮し、本発明は、クロムを含有する廃棄物を特別な処理装置を用いずに処理し、クロムを鋼材成分として回収する処理方法を提供する。   In consideration of such circumstances, the present invention provides a processing method for processing waste containing chromium without using a special processing apparatus and recovering chromium as a steel material component.

上の課題解決のため、本発明によれば、二次精錬が行われる取鍋の溶融スラグ中に、クロムを含有する廃棄物を入れて溶融させ、還元剤を添加することにより、廃棄物中のクロムを還元して、溶鋼中にクロムを回収する、クロムを含有する廃棄物の処理方法が提供される。取鍋中の溶融スラグの組成が例えばT.Fe+MnO≦2.5質量%となるようにAl,Si等の還元剤を添加し、還元力の強い溶融スラグ中において廃棄物に含有されているクロムを還元することにより、溶鋼中にクロムを回収する。   In order to solve the above problems, according to the present invention, in a molten slag of a ladle where secondary refining is performed, waste containing chromium is melted and added with a reducing agent. A method for treating chromium-containing waste is provided in which chromium is reduced to recover chromium in molten steel. Add reducing agents such as Al and Si so that the composition of the molten slag in the ladle is, for example, T.Fe + MnO ≤ 2.5 mass%, and reduce chromium contained in the waste in the molten slag with strong reducing power. By doing so, chromium is recovered in the molten steel.

本発明によれば、取鍋に造滓材を投入し、取鍋内の溶融スラグ中のT.Fe+MnO≦2.5質量%となるようにAl,Si等の還元剤を添加して、造滓、還元精錬を行う溶鋼取鍋精錬において、クロムを含有する廃棄物を精錬処理前、または処理中に溶融スラグの中に入れ、溶融還元処理を行うことで廃棄物を溶融させてクロムを直接溶鋼成分として回収する。精錬終了後、スラグに含まれるクロム酸濃度を0.5質量%以下とすることで、土壌への6価Cr溶出基準0.05mg/lを下回るようになり、通常のスラグと同様の処理が可能になる。   According to the present invention, the slagging material is put into the ladle, and a reducing agent such as Al, Si, etc. is added so that T.Fe + MnO ≦ 2.5% by mass in the molten slag in the ladle. In molten steel ladle refining for reduction refining, chromium-containing waste is put into molten slag before or during refining treatment, and the waste is melted by melting reduction treatment to directly add chromium to the molten steel component. As recovered. After the refining process, the chromic acid concentration in the slag is reduced to 0.5 mass% or less, so that the hexavalent Cr elution standard of 0.05 mg / l in the soil will be reduced, and the same treatment as normal slag will be possible. .

本発明の実施の形態にかかる廃棄物の処理方法の説明図である。It is explanatory drawing of the processing method of the waste concerning embodiment of this invention. スラグ中のCr2O3濃度とCr6+の溶出量の関係を示すグラフである。It is a graph showing the amount of elution of the relationship Cr 2 O 3 concentration and Cr 6+ in the slag. 取鍋精錬後におけるスラグ中のT.Fe+MnOと、スラグ中のCr2O3濃度の分析結果を示すグラフである。And T.Fe + MnO in the slag after the ladle refining, a graph illustrating the results of Cr 2 O 3 concentration in the slag. 取鍋精錬後における溶鋼中のSi質量%とスラグ中のT.Fe+MnOの関係を示すグラフである。It is a graph which shows the relationship of Si mass% in the molten steel after ladle refining, and T.Fe + MnO in slag. 取鍋精錬後における溶鋼中のAl質量%とスラグ中のT.Fe+MnOの関係を示すグラフである。It is a graph which shows the relationship of Al mass% in the molten steel after ladle refining, and T.Fe + MnO in slag.

以下、本発明の実施の形態を、図面を参照にして説明する。図1は、本発明の実施の形態にかかる廃棄物の処理方法の説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of a waste processing method according to an embodiment of the present invention.

図1(a)に示すように、取鍋1に溶鋼2が例えば転炉や電気炉から出鋼され、取鍋1中において、二次精錬が行われる。なお、取鍋1中で行われる二次精錬法としては、LF、RH、DH、VAD、VOD、AOD等が例示される。取鍋1中の溶鋼2には、例えばAl,Si等の還元剤が添加され、脱酸が行われる。なお、溶融スラグ3中のT.Fe+MnO≦2.5質量%となるようにAl,Si等の還元剤を添加する。その際、取鍋1に生石灰、アルミナ等を主成分とするフラックスを投入し、ガスバブリング等を用いて攪拌し、造滓することで、精錬効率が高められる。   As shown in FIG. 1A, molten steel 2 is extracted from a converter or an electric furnace, for example, into a ladle 1, and secondary refining is performed in the ladle 1. In addition, as a secondary refining method performed in the ladle 1, LF, RH, DH, VAD, VOD, AOD etc. are illustrated. For example, a reducing agent such as Al or Si is added to the molten steel 2 in the ladle 1 to perform deoxidation. A reducing agent such as Al or Si is added so that T.Fe + MnO ≦ 2.5 mass% in the molten slag 3 is satisfied. At that time, the refining efficiency is increased by charging the ladle 1 with a flux mainly composed of quicklime, alumina or the like, stirring the mixture using gas bubbling or the like, and kneading.

このように二次精錬が行われる取鍋1中において、図1(b)に示すように、溶鋼2の溶融スラグ3の中に、クロムを含有する廃棄物4が入れられる。廃棄物4は、例えば、セメントロータリーキルンや製鋼二次精錬炉の内張り耐火物として使用された耐火物レンガ(MgCrレンガ)である。なお、廃棄物4は、溶融スラグ3中に直接投入しても良いが、取鍋1に溶鋼2を受鋼する際に、成分調整用の各種合金鉄や還元剤であるAl,Si等と同時にクロムを含有する廃棄物4を投入しても良い。   In the ladle 1 where secondary refining is performed in this way, as shown in FIG. 1 (b), the waste 4 containing chromium is put into the molten slag 3 of the molten steel 2. The waste 4 is, for example, a refractory brick (MgCr brick) used as a lining refractory for a cement rotary kiln or a secondary steelmaking refining furnace. The waste 4 may be directly fed into the molten slag 3, but when receiving the molten steel 2 in the ladle 1, various alloy irons for component adjustment, Al, Si and the like as reducing agents are used. At the same time, waste 4 containing chromium may be added.

そして、取鍋1において、例えばLFを用いた二次精錬が行われる。こうして、溶融スラグ3中にクロムを含有する廃棄物4が入れられることにより、溶融スラグ3と混合されることで廃棄物4が溶解し、図1(c)に示すように、廃棄物4に含まれるクロム酸が、溶鋼2に添加されたAl,Siといった強還元剤により還元され、溶鋼成分(クロム)として回収される。   And in the ladle 1, the secondary refining using LF, for example is performed. Thus, the waste 4 containing chromium is put into the molten slag 3, so that the waste 4 is dissolved by being mixed with the molten slag 3, and as shown in FIG. The contained chromic acid is reduced by a strong reducing agent such as Al or Si added to the molten steel 2 and recovered as a molten steel component (chromium).

このように、溶鋼取鍋精錬が持つ強力な還元機能を利用することで、クロムを含む廃棄物4は溶融還元され、クロム分は溶鋼2へ、その他成分はスラグ3へと分離される。この処理方法では、そのままでは廃棄処理が困難な廃棄物4に含まれる6価クロムを、新たに廃棄物4の処理設備を建設する必要がなく、多くの鉄鋼会社に普及している取鍋精錬設備を用いた通常の生産活動の中で処理できるため、非常に低コストの処理方法だといえる。また、新規設備を建設する必要もなく、通常の生産活動の中で大量に処理することができ、同時にCrを溶鋼成分として回収できるため、コストパフォーマンスの高い処理方法である。   Thus, by utilizing the powerful reduction function of the molten steel ladle refining, the waste 4 containing chromium is melted and reduced, the chromium content is separated into the molten steel 2, and the other components are separated into the slag 3. In this treatment method, it is not necessary to construct a new treatment facility for hexavalent chromium contained in waste 4 that is difficult to dispose of as it is, and ladle smelting that is widely used by many steel companies. Since it can be processed in normal production activities using equipment, it can be said that it is a very low cost processing method. In addition, since it is not necessary to construct a new facility, it can be processed in large quantities in normal production activities, and at the same time, Cr can be recovered as a molten steel component.

レンガ廃材に含まれるクロム酸化物を転炉/電気炉出鋼後の取鍋に投入し、さらに造滓材および還元剤を投入して、取鍋精錬を行うことで、レンガ廃材を溶融させて、クロム酸化物を還元し、溶鋼成分としてクロムを回収する。実施例として、取鍋精錬にLFを用いた場合を挙げる。280t転炉から出鋼した溶鋼を取鍋に受鋼する際に、成分調整用の各種合金鉄や還元剤であるAlと同時に、表1に示す成分のクロム含有レンガ(MgCrレンガ)を400kg投入した。次に、取鍋をLFに搬送し、不活性ガスによる底吹バブリングを行いながら、生石灰2200kg、アルミナ600kgを投入し、電極加熱を行い、造滓した。この時、同時に脱酸材(還元剤)としてAlを投入した。表2に約50分のLF処理を行った後のスラグ成分を示す。クロム含有レンガは溶融し、スラグ中のCr2O3濃度は0.02%まで低下した。スラグ中のT.Fe+MnOは0.6質量%(≦2.5質量%)であった。 Put the chromium oxide contained in the brick waste into the ladle after the converter / electric furnace steel, and then add the slagging material and the reducing agent and smelt the ladle to melt the brick waste. The chromium oxide is reduced and chromium is recovered as a molten steel component. As an example, a case where LF is used for ladle refining will be described. When receiving molten steel from a 280t converter into a ladle, 400 kg of chromium-containing bricks (MgCr bricks) with the components shown in Table 1 are added together with various alloy irons for component adjustment and Al as a reducing agent. did. Next, the ladle was transported to LF, and while performing bottom blowing bubbling with an inert gas, 2200 kg of quicklime and 600 kg of alumina were added, and the electrode was heated to slag. At the same time, Al was added as a deoxidizer (reducing agent). Table 2 shows the slag component after about 50 minutes of LF treatment. The chromium-containing brick melted and the Cr 2 O 3 concentration in the slag decreased to 0.02%. T.Fe + MnO in the slag was 0.6% by mass (≦ 2.5% by mass).

Figure 2010207672
Figure 2010207672
Figure 2010207672
Figure 2010207672

ここで、スラグ中のCr2O3濃度とCr6+の溶出量の関係を図2に示す。溶融スラグ中のCr2O3濃度が0.5質量%以下となることで、Cr6+の溶出量が土壌溶出基準量である0.05mg/l以下となり、溶融スラグを通常の埋め立て処分することが可能になる。 Here, the relationship between the Cr 2 O 3 concentration in the slag and the elution amount of Cr 6+ is shown in FIG. When the Cr 2 O 3 concentration in the molten slag is 0.5% by mass or less, the dissolution amount of Cr 6+ will be 0.05 mg / l or less, which is the soil dissolution standard amount, and the molten slag should be disposed of in landfills. Is possible.

この実施例では、スラグ中のCr2O3濃度は0.02質量%まで低下し、十分に低い値まで還元されていることが分かる。また、スラグを土木用資材に使用する際の6価クロム溶出量0.05mg/l以下を大幅にクリアできた。一方、溶鋼中のCr濃度は表3に示すように、0.030質量%(LF処理前)から0.059質量%(LF処理後)に、0.029質量%上昇し、還元されたクロムがほぼ完全に溶鋼成分として回収されていることが分かる。また、溶鋼成分へのクロム回収率は、94%となった。 In this example, it can be seen that the Cr 2 O 3 concentration in the slag is reduced to 0.02% by mass and reduced to a sufficiently low value. Moreover, the elution amount of hexavalent chromium of 0.05 mg / l or less when using slag as civil engineering materials was greatly cleared. On the other hand, as shown in Table 3, the Cr concentration in the molten steel increased by 0.029% by mass from 0.030% by mass (before LF treatment) to 0.059% by mass (after LF treatment). It can be seen that it is completely recovered as a molten steel component. Moreover, the chromium recovery rate to the molten steel component was 94%.

Figure 2010207672
Figure 2010207672

この実施例のように、スラグ中のCr2O3濃度が0.02質量%以下まで低下する一方で、Cr2O3の還元により、溶鋼中へCrが0.029質量%分回収された結果となったことは、取鍋に投入したクロム含有レンガ(MgCrレンガ)が溶解し、還元反応が起こったために生じたためである。もしもクロム含有レンガが溶解せずにスラグ中に残存していたとしたら、起きない事象だと考えられる。LF処理中にクロム含有レンガを取鍋に投入すると、溶鋼比重≒7、MgCrレンガ比重≒3.0であるため、クロム含有レンガは溶鋼表面とスラグ間に浮遊する。この状態で処理が進行し、クロム含有レンガの溶解が進み、クロム含有レンガとして投入したCr分がほぼ全量溶鋼中に移動する。本方法で処理を行なうことで、スラグから溶鋼へCr分が移り、スラグが無害な状態となる。その結果、クロム含有レンガが無害な状態に処理される。 As in this example, the Cr 2 O 3 concentration in the slag decreased to 0.02% by mass or less, while the reduction of Cr 2 O 3 resulted in the recovery of 0.029% by mass of Cr in the molten steel. This is because the chromium-containing brick (MgCr brick) put into the ladle was dissolved and a reduction reaction occurred. If the chrome-containing brick was not dissolved and remained in the slag, it would be an event that did not occur. When the chromium-containing brick is put into the ladle during the LF treatment, the molten steel specific gravity≈7 and the MgCr brick specific gravity≈3.0, so the chromium-containing brick floats between the molten steel surface and the slag. In this state, the processing proceeds, the melting of the chromium-containing brick progresses, and almost all of the Cr component added as the chromium-containing brick moves into the molten steel. By performing the treatment by this method, Cr content moves from the slag to the molten steel, and the slag becomes harmless. As a result, the chromium-containing brick is processed into a harmless state.

図3は、取鍋精錬後におけるスラグ中のT.Fe+MnO(質量%)と、スラグ中のCr2O3濃度の分析結果(実績値)を示すグラフである。なお、T.Feは、Total Fe(全鉄)の質量%である。この図3より、Cr6+の溶出量制限をクリアするための条件、「スラグ中のCr2O3濃度≦0.5質量%」を満足するためには、T.Fe+MnO≦2.5質量%となっていれば、十分であると分かる。 FIG. 3 is a graph showing the analysis results (actual values) of T.Fe + MnO (mass%) in the slag and the Cr 2 O 3 concentration in the slag after ladle refining. In addition, T.Fe is the mass% of Total Fe (total iron). From FIG. 3, in order to satisfy the condition for clearing the Cr 6+ elution limit, “Cr 2 O 3 concentration in slag ≦ 0.5 mass%”, T.Fe + MnO ≦ 2.5 mass% If it is, you know that it is enough.

図4に、取鍋精錬後(LF終了時)における溶鋼中のSi質量%とスラグ中のT.Fe+MnO(質量%)の関係を示す。また、図5に、取鍋精錬後(LF終了時)における溶鋼中のAl質量%とスラグ中のT.Fe+MnO(質量%)の関係を示す。取鍋精錬後におけるスラグ中のT.Fe+MnO(質量%)とするためには、取鍋に還元剤としてSiを投入する場合は、取鍋精錬後(LF後)における溶鋼中でSi≧0.10質量%とすれば良い。また、取鍋に還元剤としてAlを投入する場合は、取鍋精錬後(LF後)における溶鋼中でAl≧0.012質量%とすれば良い。   FIG. 4 shows the relationship between Si mass% in molten steel and T.Fe + MnO (mass%) in slag after ladle refining (at the end of LF). FIG. 5 shows the relationship between Al mass% in molten steel and T.Fe + MnO (mass%) in slag after ladle refining (at the end of LF). In order to obtain T.Fe + MnO (mass%) in the slag after ladle refining, when Si is added as a reducing agent to the ladle, Si ≧ 0. What is necessary is just to set it as 10 mass%. Moreover, what is necessary is just to set it as Al> = 0.012 mass% in the molten steel after ladle refining (after LF), when throwing Al as a reducing agent in a ladle.

本発明は、例えばセメントロータリーキルンや製鋼二次精錬炉の内張り耐火物として使用されたレンガのごとき、クロムを含有する廃棄物の処理に適用できる。   The present invention can be applied to the treatment of waste containing chromium such as bricks used as lining refractories for cement rotary kilns and steelmaking secondary refining furnaces.

1 取鍋
2 溶鋼
3 溶融スラグ
4 廃棄物
1 Ladle 2 Molten steel 3 Molten slag 4 Waste

Claims (2)

二次精錬が行われる取鍋の溶融スラグ中に、クロムを含有する廃棄物を入れて溶融させ、還元剤を添加することにより、廃棄物中のクロムを還元して、溶鋼中にクロムを回収する、クロムを含有する廃棄物の処理方法。 Chromium is contained in molten slag in a ladle where secondary refining is performed and melted. By adding a reducing agent, the chromium in the waste is reduced and recovered in the molten steel. A method for treating waste containing chromium. 溶融スラグの組成がT.Fe+MnO≦2.5質量%である、請求項1に記載のクロムを含有する廃棄物の処理方法。 The processing method of the waste containing chromium of Claim 1 whose composition of molten slag is T.Fe + MnO <= 2.5 mass%.
JP2009054465A 2009-03-09 2009-03-09 Method of disposing of waste containing chromium Pending JP2010207672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054465A JP2010207672A (en) 2009-03-09 2009-03-09 Method of disposing of waste containing chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054465A JP2010207672A (en) 2009-03-09 2009-03-09 Method of disposing of waste containing chromium

Publications (1)

Publication Number Publication Date
JP2010207672A true JP2010207672A (en) 2010-09-24

Family

ID=42968461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054465A Pending JP2010207672A (en) 2009-03-09 2009-03-09 Method of disposing of waste containing chromium

Country Status (1)

Country Link
JP (1) JP2010207672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500930A (en) * 2020-05-06 2020-08-07 山西太钢不锈钢股份有限公司 Component control method of ultrapure stainless steel for nuclear power

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181725A (en) * 1999-12-27 2001-07-03 Nippon Steel Corp Method for modifying slag in refining of molten stainless steel
JP2001316712A (en) * 2000-05-02 2001-11-16 Nippon Steel Corp Method for recovering chromium from chromium containing slag
JP2005060740A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp Treatment method for chromium-containing waste
JP2005298834A (en) * 2004-04-06 2005-10-27 Nippon Steel Corp Method for making chromium-containing steel slag harmless

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181725A (en) * 1999-12-27 2001-07-03 Nippon Steel Corp Method for modifying slag in refining of molten stainless steel
JP2001316712A (en) * 2000-05-02 2001-11-16 Nippon Steel Corp Method for recovering chromium from chromium containing slag
JP2005060740A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp Treatment method for chromium-containing waste
JP2005298834A (en) * 2004-04-06 2005-10-27 Nippon Steel Corp Method for making chromium-containing steel slag harmless

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500930A (en) * 2020-05-06 2020-08-07 山西太钢不锈钢股份有限公司 Component control method of ultrapure stainless steel for nuclear power
CN111500930B (en) * 2020-05-06 2022-01-28 山西太钢不锈钢股份有限公司 Component control method of ultrapure stainless steel for nuclear power

Similar Documents

Publication Publication Date Title
JP4350711B2 (en) Industrial waste melting process
CN109022644B (en) Method for recovering slag desulfurization and dephosphorization in cooperation with ferrite in full-three-removal process
JP2001323327A (en) Method and device for recovering valuable metal form liquid slag and bag-house dust in electric arc furnace
AU2007315330B2 (en) Recovery of non-ferrous metals from by-products of the zinc and lead industry using electric smelting with submerged plasma
CA2095946A1 (en) Method for processing refuse incineration products to give products which are environmentally acceptable and can be used especially for building purposes
RU2404114C2 (en) Method of producing hydrogen and/or other gases from steel work wastes and waste heat
JP4486047B2 (en) Industrial waste melting process
JP5720497B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JP5793842B2 (en) Method for separating phosphorus
JP2010207672A (en) Method of disposing of waste containing chromium
JP2011174166A (en) Method for reusing oxidized slag and recycling slag
JP5341849B2 (en) Manufacturing method of recycled slag
Zhang et al. A new method of red mud recycling in the process of hot metal pretreatment
KR20210134310A (en) Combined smelting of molten slag and residues from stainless steel and ferrochrome processing
JP2872586B2 (en) Reforming method of stainless steel slag
JP2008050700A (en) Method for treating chromium-containing steel slag
JP2015063744A (en) Method for recovering metal
CN115386685B (en) Harmless treatment method for converter production synergistic chromium slag and electrolytic aluminum carbon slag
JP3732561B2 (en) Simultaneous implementation of iron alloy production and incineration ash melting in an electric furnace
JP3756904B2 (en) Treatment method of chromium-containing waste
JP2008081845A (en) Method for treating slag for refining chromium-containing steel
JP5962826B2 (en) Method for treating slag containing Cr
Ye et al. Swerea MEFOS perspective on metal recovery from slags
JP2014031540A (en) Method for recovering valuable metal from stainless steel dust
TW201819641A (en) Method of waste reuse in steelmaking furnace device cutting the need for adding carburisers, oxidizers, or heavy metal alloy additives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207