JP5793842B2 - Method for separating phosphorus - Google Patents

Method for separating phosphorus Download PDF

Info

Publication number
JP5793842B2
JP5793842B2 JP2010218310A JP2010218310A JP5793842B2 JP 5793842 B2 JP5793842 B2 JP 5793842B2 JP 2010218310 A JP2010218310 A JP 2010218310A JP 2010218310 A JP2010218310 A JP 2010218310A JP 5793842 B2 JP5793842 B2 JP 5793842B2
Authority
JP
Japan
Prior art keywords
phosphorus
iron
slag
mass
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010218310A
Other languages
Japanese (ja)
Other versions
JP2012072018A (en
Inventor
八尾 泰子
泰子 八尾
高橋 克則
克則 高橋
菊池 直樹
直樹 菊池
章敏 松井
章敏 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010218310A priority Critical patent/JP5793842B2/en
Publication of JP2012072018A publication Critical patent/JP2012072018A/en
Application granted granted Critical
Publication of JP5793842B2 publication Critical patent/JP5793842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、特定の複合酸化物から燐を分離する方法及び製鋼スラグから燐を分離する方法に関する。   The present invention relates to a method for separating phosphorus from a specific composite oxide and a method for separating phosphorus from steelmaking slag.

燐は化学製品や肥料の原料として利用されている希少有価資源であるが、その原料としての燐鉱石は全量を海外からの輸入に依存している。燐鉱石の枯渇問題や、中国、アメリカなどの燐鉱石の囲い込みのために、燐資源が高騰している。現在、貴重な燐資源として注目されている副生成物に、下水汚泥焼却灰、鉄鋼精錬工程において発生する製鋼スラグが挙げられる。   Phosphorus is a rare resource that is used as a raw material for chemical products and fertilizers, but the entire amount of phosphorus ore used as a raw material depends on imports from overseas. Phosphorus resources are soaring due to the problem of depletion of phosphate ore and the inclusion of phosphate ore in China and the United States. By-products that are currently attracting attention as valuable phosphorus resources include sewage sludge incineration ash and steelmaking slag generated in the steel refining process.

燐鉱石から燐酸肥料の原料である燐酸を製造する方法としては、燐鉱石を硫酸または硫燐酸の混酸で分解する湿式法が一般的である。鉱石の塩酸分解液から燐酸を溶剤で抽出する方法も一部で実施されているが、この方法による燐酸は純度および価格が高いので薬品用として用いられる。   As a method for producing phosphoric acid which is a raw material for phosphate fertilizer from phosphate ore, a wet method is generally used in which phosphate ore is decomposed with a mixed acid of sulfuric acid or phosphoric acid. A method of extracting phosphoric acid from a hydrochloric acid decomposition solution of ore with a solvent has been practiced in part, but phosphoric acid by this method is used for chemicals because of its high purity and cost.

下水汚泥焼却灰から燐を燐酸として分離する方法としては、強酸性溶液又は強アルカリ性溶液を加えて溶解させる方法が考えられる。例えば以下のような報告があげられる。   As a method of separating phosphorus from sewage sludge incinerated ash as phosphoric acid, a method of adding a strong acidic solution or a strong alkaline solution and dissolving it can be considered. For example, the following reports can be given.

特許文献1および2には、下水汚泥焼却灰に、強酸性溶液又は強アルカリ性溶液を加えて燐を溶解、固液分離により不溶性成分を除去して燐抽出液を回収した後に、該抽出液に、燐と反応して不溶性の化合物をつくる化学薬品を添加して、燐化合物を析出させた後、固液分離して分離液を回収する技術が開示されている。
特許文献3〜8には、下水汚泥焼却灰に酸を加えて燐を抽出し、固液分離により不溶性成分を除去して、燐抽出液を分離する技術が開示されている。
特許文献9〜11には、下水汚泥焼却灰にアルカリ性液を加えて燐を抽出し、固液分離により不溶性成分を除去して、燐抽出液を分離する技術が開示されている。
In Patent Documents 1 and 2, a strong acid solution or a strong alkaline solution is added to sewage sludge incinerated ash to dissolve phosphorus, and after removing an insoluble component by solid-liquid separation to recover a phosphorus extract, A technique is disclosed in which a chemical that reacts with phosphorus to form an insoluble compound is added to precipitate the phosphorus compound, and then the liquid is separated by solid-liquid separation.
Patent Documents 3 to 8 disclose a technique for extracting phosphorus by adding an acid to sewage sludge incineration ash, removing insoluble components by solid-liquid separation, and separating the phosphorus extract.
Patent Documents 9 to 11 disclose a technique in which an alkaline liquid is added to sewage sludge incineration ash to extract phosphorus, an insoluble component is removed by solid-liquid separation, and the phosphorus extract is separated.

高炉で溶製される溶銑には、鉄鉱石の成分に起因した燐(P)が含まれる。燐は、鋼材製品にとって有害な成分であるので、従来から鉄鋼製品の材料特性向上のために、製鋼工程において脱燐処理が行われる。一般に脱燐処理においては、溶銑または溶鋼中の燐が酸素源(酸素ガスや酸化鉄)によって酸化されることにより、脱燐がなされる。溶銑または溶鋼中の燐が酸素源によって酸化する際には鉄も酸化され、スラグ中には鉄も酸化鉄の形態で含まれる。製鋼製錬プロセスにおいて発生した燐を含有する製鋼スラグ中の燐含有量は1〜2%程度であり、肥料として使用するも燐酸として分離するも燐濃度が不足している。そのため、製鋼スラグは、従来、路盤材などの土木用材料として使用され、スラグ中の燐は分離されることはなかった。   The hot metal melted in the blast furnace contains phosphorus (P) resulting from iron ore components. Since phosphorus is a harmful component for steel products, conventionally, phosphorus removal treatment is performed in the steel making process in order to improve the material properties of steel products. In general, dephosphorization is performed by oxidizing phosphorus in hot metal or molten steel with an oxygen source (oxygen gas or iron oxide). When phosphorus in hot metal or molten steel is oxidized by an oxygen source, iron is also oxidized, and iron is also contained in the slag in the form of iron oxide. The phosphorus content in the steelmaking slag containing phosphorus generated in the steelmaking smelting process is about 1 to 2%, and the phosphorus concentration is insufficient although it is used as fertilizer or separated as phosphoric acid. For this reason, steelmaking slag has been conventionally used as a civil engineering material such as roadbed material, and phosphorus in the slag has not been separated.

特開2010−036107号公報JP 2010-036107 A 特開2009−207982号公報JP 2009-207982 A 特開2001−130903号公報JP 2001-130903 A 特開平11−278814号公報Japanese Patent Laid-Open No. 11-278814 特開平11−092122号公報Japanese Patent Laid-Open No. 11-092122 特開平10−101332号公報JP-A-10-101332 特開平09−077506号公報Japanese Patent Application Laid-Open No. 09-075506 特開平07−251141号公報Japanese Patent Application Laid-Open No. 07-251141 特開2008−230940号公報JP 2008-230940 A 特開2007−261878号公報JP 2007-261878 A 特開2006−007194号公報JP 2006007194 A

この燐含有製鋼スラグ中の燐を炭素、珪素、アルミニウム、炭化水素などで、高温環境下で還元すれば、燐含有製鋼スラグ中のPは、容易に還元される。同時に製鋼スラグ中のFexOが還元されて、溶融状態の金属鉄になり、燐含有溶融鉄が生成する。この燐含有溶融鉄を、CaO系フラックスを用いて、脱燐処理をすると、燐が濃縮されたCaOが生成する。この燐が濃縮されたCaO系フラックス等の複合酸化物から燐を分離できないか検討した。 If phosphorus in the phosphorus-containing steel slag is reduced with carbon, silicon, aluminum, hydrocarbons, etc. in a high temperature environment, P 2 O 5 in the phosphorus-containing steel slag is easily reduced. At the same time, FexO in the steelmaking slag is reduced to become molten metallic iron, and phosphorus-containing molten iron is generated. When the phosphorus-containing molten iron is dephosphorized using a CaO-based flux, CaO enriched with phosphorus is generated. It was investigated whether phosphorus could be separated from complex oxides such as CaO-based fluxes enriched with phosphorus.

しかしながら、上記の下水汚泥焼却灰で燐分離回収技術として用いられるアルカリ処理薬剤である4%程度の水酸化ナトリウム溶液、水酸化カリウム溶液や水酸化カルシウム溶液では、燐を含有する特定の複合酸化物(例えば、スラグ成分などに由来する特定の複合酸化物)に含まれる燐を溶解させることができない。これは、複合酸化物の燐構成化合物は下水汚泥焼却灰の燐構成化合物と異なるためと考えられる。   However, in the case of sodium hydroxide solution, potassium hydroxide solution or calcium hydroxide solution of about 4%, which is an alkali treatment chemical used in the sewage sludge incineration ash as a phosphorus separation and recovery technology, a specific composite oxide containing phosphorus Phosphorus contained in (for example, a specific composite oxide derived from a slag component) cannot be dissolved. This is presumably because the phosphorus constituent compound of the composite oxide is different from the phosphorus constituent compound of the sewage sludge incineration ash.

一方、酸処理方法では、燐を含有する特定の複合酸化物(例えば、スラグ成分などに由来する特定の複合酸化物)には、燐とともに鉄やマンガンが共存しているため、分離した燐酸溶液に鉄やマンガンが高濃度に混入し、鉄やマンガンによって燐が難溶化しやすいため、燐と鉄やマンガンとの分離が必要となる。燐を含有する特定の複合酸化物および燐鉱石の組成の一例を表1に示す。燐を含有する特定の複合酸化物には、燐鉱石に比べて、転炉スラグなどに由来するトータルFeやMnOが多く含まれていることがわかる。これらの鉄やマンガンは燐を難溶化させるため、燐酸液への混入は極力抑制する必要がある。   On the other hand, in the acid treatment method, a specific composite oxide containing phosphorus (for example, a specific composite oxide derived from a slag component) coexists with iron and manganese together with phosphorus. Since iron and manganese are mixed in a high concentration and phosphorus is easily insolubilized by iron and manganese, it is necessary to separate phosphorus from iron and manganese. An example of the composition of the specific composite oxide containing phosphorus and the phosphate rock is shown in Table 1. It can be seen that the specific composite oxide containing phosphorus contains more total Fe and MnO derived from converter slag and the like than phosphate ore. Since these iron and manganese make phosphorus insoluble, it is necessary to suppress the mixing into the phosphoric acid solution as much as possible.

Figure 0005793842
Figure 0005793842

鉄やマンガンが共存している燐酸液から鉄やマンガンを除去する技術としては、(a)硫化物としての沈殿・除去技術、(b)イオン交換樹脂、または液体イオン交換法(例えば、特開平06−016403)、(c)溶媒抽出法、(d)膜技術などが考えられるが、(a)の技術は、硫化水素を使用するため装置・作業場の制約があること、薬剤(酸・アルカリ)コストが高くなることなどの課題解決が必要である。一方、(b)、(c)、(d)の技術も装置ならびに維持コストが高いことが問題となる。   Techniques for removing iron and manganese from a phosphoric acid solution in which iron and manganese coexist include (a) precipitation / removal technique as sulfide, (b) ion exchange resin, or liquid ion exchange method (for example, 06-016403), (c) Solvent extraction method, (d) Membrane technology, etc., but the technology (a) uses hydrogen sulfide and has restrictions on equipment / workplace, chemicals (acid / alkali ) It is necessary to solve problems such as high costs. On the other hand, the techniques (b), (c), and (d) also have a problem that the apparatus and the maintenance cost are high.

従って、本発明の目的は、燐を含有する特定の複合酸化物例えば、スラグ成分などに由来する特定の複合酸化物から燐を効率的に且つ経済的に分離することができる方法を提供することにある。   Accordingly, an object of the present invention is to provide a method capable of efficiently and economically separating phosphorus from a specific composite oxide containing phosphorus, such as a specific composite oxide derived from a slag component. It is in.

発明者らは、上記課題を解決すべく鋭意検討した結果、スラグ成分などに由来する燐と鉄とカルシウムが高濃度に共存する複合酸化物を、特定の有機酸もしくは有機酸塩を複合酸化物と接触させることにより、燐を抽出するとともに、一旦有機酸もしくは有機酸塩に溶解した鉄やマンガンを有機酸や有機酸塩との錯体として、析出させ沈殿分離できることを知得した。   As a result of intensive studies to solve the above problems, the inventors have determined that a complex oxide in which phosphorus, iron, and calcium derived from a slag component coexist at a high concentration are mixed with a specific organic acid or an organic acid salt. It was found that phosphorus and phosphorus can be extracted by bringing them into contact with iron and manganese once dissolved in an organic acid or an organic acid salt as a complex with the organic acid or organic acid salt, and precipitated and separated.

本発明は、上記知見にさらに検討を加えたもので、その要旨は以下の通りである。   The present invention is a further study of the above findings, and the gist thereof is as follows.

第一の発明は、質量%で、CaO分を10%以上、トータルFeを5%以上、P分を10%以上含む複合酸化物を、有機酸溶液もしくは有機酸塩溶液と接触させ、複合酸化物中の燐を溶液中に抽出し、かつ、溶解した鉄やマンガンを有機酸または有機酸塩との錯体として、沈殿分離することを特徴とする燐の分離方法である。 In the first invention, a composite oxide containing, by mass%, CaO content of 10% or more, total Fe of 5% or more, and P 2 O 5 min of 10% or more is brought into contact with an organic acid solution or an organic acid salt solution. The phosphorus separation method is characterized in that phosphorus in the composite oxide is extracted into a solution, and dissolved iron or manganese is precipitated and separated as a complex with an organic acid or an organic acid salt.

第二の発明は、燐を含有する製鋼スラグを、炭素、珪素、アルミニウム、炭化水素のうちから選ばれる1種以上を含有する還元剤を用いて高温還元処理することにより、製鋼スラグ中の鉄酸化物及び燐酸化物を還元して燐含有溶融鉄を生成させる工程(A)と、該工程(A)で生成した燐含有溶融鉄を、CaO系フラックスを用いて脱燐処理する工程(B)と、該工程(B)で生成した、CaO分が10質量%以上、トータルFeが5質量%以上、P分が10質量%以上含まれる脱燐スラグを、有機酸溶液または有機酸塩溶液と接触させ、脱燐スラグ中の燐を水溶液中に抽出し、かつ、溶解した鉄やマンガンを有機酸または有機酸塩との錯体として、沈殿分離する工程(C)を有することを特徴とする燐の分離方法である。 In a second invention, iron in steelmaking slag is obtained by subjecting steelmaking slag containing phosphorus to high-temperature reduction treatment using a reducing agent containing one or more selected from carbon, silicon, aluminum, and hydrocarbons. Step (A) of reducing oxide and phosphorus oxide to produce phosphorus-containing molten iron, and step (B) of dephosphorizing the phosphorus-containing molten iron produced in step (A) using a CaO-based flux If, generated in said step (B), CaO content of 10 mass% or more, the total Fe is 5 wt% or more, the dephosphorization slag P 2 O 5 minutes that contain more than 10 wt%, the organic acid solution or an organic acid Contacting with a salt solution, extracting phosphorus in dephosphorized slag into an aqueous solution, and precipitating and separating dissolved iron or manganese as a complex with an organic acid or an organic acid salt (C) This is a method for separating phosphorus.

本発明による第一の燐の分離方法によれば、燐と鉄とカルシウムが高濃度に共存する複合酸化物(例えば、スラグ成分などに由来する特定の複合酸化物)を特定の有機酸溶液もしくは有機酸塩溶液と接触させることにより、燐を鉄やマンガンを含まない資源化可能な形態に分離することができる。これにより、分離した燐酸を燐酸肥料用原料などとして有効に利用することができる。   According to the first phosphorus separation method of the present invention, a complex oxide in which phosphorus, iron, and calcium coexist at high concentrations (for example, a specific complex oxide derived from a slag component) is converted into a specific organic acid solution or By contacting with an organic acid salt solution, phosphorus can be separated into a recyclable form that does not contain iron or manganese. Thereby, the separated phosphoric acid can be effectively used as a raw material for phosphoric acid fertilizer.

また、本発明による第二の燐の分離方法によれば、燐を含有する製鋼スラグ及びその成
分を含む生成物に一連の処理を加えることにより、燐を資源化可能な形態に分離できる。
Further, according to the second method for separating phosphorus according to the present invention, phosphorus can be separated into a resource-recyclable form by adding a series of treatments to the steel-containing slag containing phosphorus and the product containing the components.

2体積%シュウ酸浸出後の残渣のX線回折図である。It is an X-ray diffraction pattern of the residue after leaching of 2% by volume oxalic acid.

まず、本発明による燐の分離方法のうち、燐を含有する製鋼スラグを原料とした燐分離方法(さきに「発明の効果」で述べた本発明による第二の燐の分離方法)について述べる。   First, among the phosphorus separation methods according to the present invention, a phosphorus separation method using a steel-making slag containing phosphorus as a raw material (the second phosphorus separation method according to the present invention described earlier in “Effects of the Invention”) will be described.

本発明で処理対象となる燐を含有するスラグとしては、溶銑予備処理で発生するスラグ(溶銑予備処理スラグ)、転炉脱炭精錬で発生する転炉スラグなどが挙げられる。溶銑予備処理スラグとしては、脱燐スラグが主たる対象となるが、これに限定されるものではない。本発明では、これら製鋼スラグの1種以上を処理対象とすることができる。   Examples of the slag containing phosphorus to be treated in the present invention include slag generated in hot metal pretreatment (hot metal pretreatment slag), converter slag generated in converter decarburization and refining. As hot metal pretreatment slag, dephosphorization slag is the main target, but is not limited to this. In the present invention, one or more of these steelmaking slags can be treated.

まず、燐含有製鋼スラグを炭素、珪素、アルミニウム、炭化水素などを用いて高温還元処理すれば、燐含有製鋼スラグ中のPは容易に還元されることがわかった。それとともに、燐含有製鋼スラグには、鉄がFeOやFeの形態の酸化物(以下、総称してFexOと呼ぶ)として含有されており、これらの鉄酸化物は酸素との親和力が燐と同等であるので、燐を含有する製鋼スラグを炭素、珪素、アルミニウム、炭化水素などの1種以上を用いて高温還元処理すると、製鋼スラグ中のFexOが還元されて金属鉄となることがわかった。燐は比較的低濃度であるため、濃度が高い鉄分を利用し、燐を鉄に溶け込ませた状態で同時にスラグから分離すれば、効率よく燐とスラグを分離することが可能となる。この燐及び鉄とスラグとの分離が効率的になされるようにするには、還元により生成した鉄が溶融状態になるように、高温下で還元することが望ましい。 First, it was found that if phosphorus-containing steelmaking slag is subjected to high temperature reduction treatment using carbon, silicon, aluminum, hydrocarbons, etc., P 2 O 5 in the phosphorus-containing steelmaking slag is easily reduced. At the same time, phosphorus-containing steelmaking slag contains iron as an oxide in the form of FeO or Fe 2 O 3 (hereinafter collectively referred to as FexO), and these iron oxides have an affinity for oxygen. Since it is equivalent to phosphorus, when steelmaking slag containing phosphorus is subjected to high temperature reduction treatment using one or more of carbon, silicon, aluminum, hydrocarbons, etc., FexO in the steelmaking slag may be reduced to become metallic iron. all right. Since phosphorus has a relatively low concentration, it is possible to efficiently separate phosphorus and slag by using high-concentration iron and simultaneously separating phosphorus from slag in a state where phosphorus is dissolved in iron. In order to efficiently separate the phosphorus, iron, and slag, it is desirable to reduce at a high temperature so that the iron produced by the reduction is in a molten state.

そこで、本発明の工程(A)(第1の工程)では、燐を含有する製鋼スラグを炭素、珪素、アルミニウム、炭化水素の中から選ばれる1種以上を含有する還元剤を用いて高温還元処理することにより、製鋼スラグ中の鉄酸化物及び燐酸化物を還元して燐含有溶融鉄(a)を生成させる。すなわち、この工程(A)では、製鋼スラグが、還元された燐を含有する溶融鉄(燐含有溶融鉄)と、その分の燐と鉄が取り除かれたスラグとに分離される。この高温還元処理は、製鋼スラグや還元剤を加熱しながら行う必要があるので、例えば、アーク炉、キュポラなどを用いて行われる。   Therefore, in the step (A) (first step) of the present invention, the steelmaking slag containing phosphorus is reduced at high temperature using a reducing agent containing one or more selected from carbon, silicon, aluminum and hydrocarbons. By processing, iron oxide and phosphorous oxide in steelmaking slag are reduced to produce phosphorus-containing molten iron (a). That is, in this step (A), the steelmaking slag is separated into molten iron containing reduced phosphorus (phosphorus-containing molten iron) and slag from which the phosphorus and iron have been removed. This high-temperature reduction treatment needs to be performed while heating the steelmaking slag and the reducing agent, and is performed using, for example, an arc furnace or a cupola.

ここで、生成される燐含有溶融鉄(a)の流動性が高いほど、燐含有溶融鉄とスラグの分離が促進されることから、この工程(A)では、(i)生成される燐含有溶融鉄(a)の融点を下げる、或いは、(ii)高温で処理を行う、という条件で処理することが望ましいが、いずれにしても1300℃以上で還元処理することが好ましい。   Here, the higher the fluidity of the produced phosphorus-containing molten iron (a), the more the separation of phosphorus-containing molten iron and slag is promoted. In this step (A), (i) the produced phosphorus-containing Although it is desirable to perform the treatment under the condition that the melting point of the molten iron (a) is lowered or (ii) the treatment is performed at a high temperature, in any case, the reduction treatment is preferably performed at 1300 ° C. or higher.

上記(i)の場合には、燐含有溶融鉄(a)に炭素を溶解させて溶銑とすることが好ましい。具体的には、炭素濃度が3質量%以上になると液相線温度が1300℃以下となることから、溶融鉄(溶銑)の炭素濃度が3質量%以上となるようにすることが好ましい。生成される溶融鉄に炭素を溶解させるには、還元剤として炭素を用いることが好ましい。このように溶融鉄(溶銑)の炭素濃度を高め、融点を下げることにより、通常、1300℃を少し超える程度の処理温度で溶融鉄の流動性が十分に確保され、燐含有溶融鉄とスラグの分離が促進される。   In the case of the above (i), it is preferable to dissolve the carbon in the phosphorus-containing molten iron (a) to form molten iron. Specifically, when the carbon concentration is 3% by mass or more, the liquidus temperature is 1300 ° C. or less. Therefore, the carbon concentration of molten iron (molten metal) is preferably 3% by mass or more. In order to dissolve carbon in the produced molten iron, it is preferable to use carbon as a reducing agent. By increasing the carbon concentration of the molten iron (hot metal) and lowering the melting point in this way, the fluidity of the molten iron is usually sufficiently secured at a processing temperature slightly exceeding 1300 ° C., and the phosphorus-containing molten iron and slag Separation is promoted.

また、(ii)の場合には、1300℃以上、より望ましくは1400℃以上で還元処理を行う。ただし、炭素分が少なく融点が高くなった場合には、還元処理を行う設備の負荷が大きくなることから、1550℃程度を処理温度の上限とすることが好ましい。   In the case of (ii), the reduction treatment is performed at 1300 ° C. or higher, more preferably 1400 ° C. or higher. However, when the carbon content is low and the melting point is high, the load on the equipment for performing the reduction treatment becomes large, so it is preferable to set the upper limit of the treatment temperature at about 1550 ° C.

この工程(A)で使用される還元剤、すなわち、炭素、珪素、アルミニウム、炭化水素の中から選ばれる1種以上を含有する還元剤としては、例えば、コークス、フェロシリコン、フェロアルミ、木炭、無煙炭、褐炭、タールピッチ、カーボンブラック、アルミ屑、廃プラスチック(炭化水素源)、メタン、プロパンなどの1種以上を用いることができる。   Examples of the reducing agent used in this step (A), that is, a reducing agent containing one or more selected from carbon, silicon, aluminum, and hydrocarbon include coke, ferrosilicon, ferroaluminum, charcoal, One or more types of anthracite, lignite, tar pitch, carbon black, aluminum scrap, waste plastic (hydrocarbon source), methane, propane, and the like can be used.

前記工程(A)で生成した燐含有溶融鉄(a)の燐濃度は、通常の高炉溶銑に較べて相当に高い。通常、燐含有製鋼スラグ中の燐及び鉄の質量比(P/Fe)は0.005〜0.075程度であるので、燐含有溶融鉄(a)の燐濃度は0.5〜7.5質量%程度となる。これに対して、高炉から出銑される高炉溶銑の燐濃度は0.1質量%程度である。したがって、工程(A)で生成した燐含有溶融鉄(a)の燐濃度を0.1質量%程度の高炉溶銑のレベルまで脱燐しないと、燐含有溶融鉄(a)の用途は限られたものとなり、場合によっては鉄源として利用できないこともあり得る。   The phosphorus concentration of the phosphorus-containing molten iron (a) produced in the step (A) is considerably higher than that of ordinary blast furnace hot metal. Usually, since the mass ratio (P / Fe) of phosphorus and iron in the phosphorus-containing steelmaking slag is about 0.005 to 0.075, the phosphorus concentration of the phosphorus-containing molten iron (a) is 0.5 to 7.5. It becomes about mass%. On the other hand, the phosphorus concentration of the blast furnace hot metal discharged from the blast furnace is about 0.1% by mass. Therefore, the application of the phosphorus-containing molten iron (a) is limited unless the phosphorus concentration of the phosphorus-containing molten iron (a) produced in the step (A) is dephosphorized to a blast furnace hot metal level of about 0.1% by mass. In some cases, it may not be used as an iron source.

そこで、本発明の工程(B)(第2の工程)では、前記工程(A)で生成した燐含有溶融鉄(a)をCaO系フラックスを用いて脱燐処理し、燐含有溶融鉄(a)中の燐が濃縮した脱燐スラグ(b)を生成させる。ここで、CaO系フラックスとしては、通常、生石灰などが用いられるが、ホタル石などのフッ素源を含有しないものが好ましい。この燐含有溶融鉄(a)の脱燐処理は、溶銑脱燐処理設備などを利用し、通常、CaO系フラックスとともに酸素源(酸素ガスなど)を添加することにより行われる。   Therefore, in the step (B) (second step) of the present invention, the phosphorus-containing molten iron (a) produced in the step (A) is dephosphorized using a CaO-based flux, and the phosphorus-containing molten iron (a ) To produce dephosphorization slag (b) enriched in phosphorus. Here, quick lime or the like is usually used as the CaO-based flux, but a CaO-based flux that does not contain a fluorine source such as fluorite is preferable. The phosphorus-containing molten iron (a) is dephosphorized using a hot metal dephosphorization facility or the like and is usually performed by adding an oxygen source (oxygen gas or the like) together with a CaO-based flux.

この工程(B)で生成する脱燐スラグ(b)は、燐と鉄とカルシウムが高濃度に共存し、通常、CaO分が10質量%以上、トータルFeが5質量%以上(一般には10質量%以上)、P分が10質量%以上含まれる複合酸化物である。また、後述するように、この複合酸化物は、Feが固溶したリン酸カルシウムを主要鉱物とする。 In the dephosphorization slag (b) produced in this step (B), phosphorus, iron and calcium coexist at a high concentration. Usually, the CaO content is 10 mass% or more, and the total Fe is 5 mass% or more (generally 10 mass). % Or more), and P 2 O 5 min is a composite oxide containing 10% by mass or more. Further, as will be described later, this composite oxide has calcium phosphate in which Fe is dissolved as a main mineral.

この脱燐スラグ(b)の組成の一例を、燐鉱石の鉱物の組成例とともに表1に示す。この脱燐スラグ(b)は、燐鉱石とほぼ同等の高い燐濃度を有する一方、トータルFeとMnOが高いことが燐鉱石と大きく異なる点であることが判る。   An example of the composition of this dephosphorization slag (b) is shown in Table 1 together with an example of the composition of the mineral of phosphate rock. It can be seen that this dephosphorization slag (b) has a high phosphorus concentration almost equal to that of the phosphate ore, but the high total Fe and MnO are greatly different from the phosphate ore.

工程(B)で生成した脱燐スラグ(b)は、Pを10質量%以上、通常は20質量%以上含有しており、燐鉱石の組成である3CaO・Pと同等レベルであるため、燐資源として十分に活用可能である。しかし、上述したように、この脱燐スラグ(b)にはトー
タルFeが5質量%以上(一般には10質量%以上)、マンガンが1質量%以上含まれており、燐資源としての用途によっては、この原料鉱物の形態のままでは利用し難い場合があることが判った。
Step dephosphorization slag generated in (B) (b) is, P 2 O 5 to 10% by mass or more, usually are contained more than 20 wt%, equivalent to 3CaO · P 2 O 5 having a composition of phosphate ore Because of its level, it can be used as a phosphorus resource. However, as described above, the dephosphorization slag (b) contains 5% by mass or more (generally 10% by mass or more) of total Fe and 1% by mass or more of manganese, depending on the use as a phosphorus resource. Therefore, it was found that there are cases where it is difficult to use the raw material mineral as it is.

そこで、上記脱燐スラグ(b)を湿式処理して燐と鉄を分離する方法について検討を行った。2体積%硫酸および2体積%水酸化ナトリウムを添加した水溶液中に脱燐スラグ(b)を投入し、常温で2時間撹拌処理した場合について、脱P率kと脱Fe率kFeを調べた結果の一例を、後述する表2に示す。2体積%硫酸による処理では、燐が溶解する条件では鉄とマンガンも溶解する傾向が見られた。一方、2体積%水酸化ナトリウムによる処理では、燐も鉄もほとんど溶解しなかった。 Therefore, a method for separating phosphorus and iron by wet-treating the dephosphorization slag (b) was examined. 2 vol% sulfuric acid and 2% by volume of sodium hydroxide was charged dephosphorization slag (b) was in the aqueous solution added, the case of 2 hours stirring treatment at room temperature, examined de P ratio k P and de Fe ratio k Fe An example of the results is shown in Table 2 described later. In the treatment with 2% by volume sulfuric acid, there was a tendency that iron and manganese were also dissolved under the condition that phosphorus was dissolved. On the other hand, the treatment with 2% by volume sodium hydroxide hardly dissolved phosphorus or iron.

上記脱燐スラグ(b)の鉱物相を調査した。そのXRDチャートの一例を、同様に後述する図1に示すが、この鉱物はリン酸カルシウムに鉄が部分的に固溶していることが判った。例えば、下水汚泥などの低濃度の強アルカリ抽出では、燐元素が分離したい対象と異なる鉱物相に存在するのに対して、脱燐スラグ(b)は分離対象の鉄と燐が同じ鉱物相に共存しているため、酸や低濃度のアルカリのような条件では燐の分離が進行しないものと推定された。そこで、酸の種類を有機酸に変化させて調査し、また反応状態を詳細に観察したところ、シュウ酸であれば一旦溶解した鉄やマンガンをシュウ酸鉄やシュウ酸マンガンと不溶化することを見出した。   The mineral phase of the dephosphorization slag (b) was investigated. An example of the XRD chart is similarly shown in FIG. 1 to be described later, and it has been found that this mineral has solid iron partly dissolved in calcium phosphate. For example, in strong alkaline extraction at low concentrations such as sewage sludge, phosphorus element exists in a different mineral phase from the target to be separated, whereas dephosphorized slag (b) has the same mineral phase in which iron and phosphorus to be separated are separated. Because of the coexistence, it was estimated that separation of phosphorus would not proceed under conditions such as acid or low-concentration alkali. Therefore, when the type of acid was changed to an organic acid and investigated, and the reaction state was observed in detail, it was found that once oxalic acid was dissolved, iron and manganese once dissolved were insolubilized with iron oxalate and manganese oxalate. It was.

このため本発明の工程(C)(第3の工程)は、工程(B)で生成した脱燐スラグ(b)を、(1)有機酸溶液または有機酸塩溶液と接触させ、(2)脱燐スラグ(b)中の燐、鉄、マンガンを前記溶液中に浸出させ、(3)鉄、マンガンの有機酸錯体または有機酸塩錯体を析出させ、(4)固液分離で鉄錯体、マンガン錯体を除去し、燐のみを分離する。   Therefore, in the step (C) (third step) of the present invention, the dephosphorization slag (b) produced in the step (B) is brought into contact with (1) an organic acid solution or an organic acid salt solution, and (2) Phosphorus, iron and manganese in dephosphorization slag (b) are leached into the solution, (3) an organic acid complex or an organic acid salt complex of iron and manganese is precipitated, and (4) an iron complex by solid-liquid separation, The manganese complex is removed and only phosphorus is separated.

脱燐スラグ(b)を有機酸溶液と接触させる状態としては、処理槽、タンク、カラムといった容器中に脱燐スラグ(b)を充填もしくはスラリー状にした状態や、脱燐スラグ(b)を積み重ねてヒープとした状態があげられる。   The dephosphorization slag (b) is brought into contact with the organic acid solution in a state where the dephosphorization slag (b) is filled or slurried in a vessel such as a treatment tank, a tank or a column, or the dephosphorization slag (b) is used. It can be stacked to form a heap.

また、脱燐スラグ(b)は、粒子径を小さくして、処理液との接触表面積を大きくすることが好ましい。粒子径は特に限定されないが、0.1mm〜10cmが好ましく、0.1mm〜5cmがより好ましく、0.1mm〜3cmがさらに好ましい。この範囲内であると、処理液が粒子と粒子との空隙を容易に流れることができ、接触表面積も確保することができる。   Further, it is preferable that the dephosphorization slag (b) has a small particle diameter and a large surface area in contact with the treatment liquid. Although a particle diameter is not specifically limited, 0.1 mm-10 cm are preferable, 0.1 mm-5 cm are more preferable, 0.1 mm-3 cm are further more preferable. Within this range, the treatment liquid can easily flow through the voids between the particles, and the contact surface area can be secured.

粒子径が10cmを超えると、比表面積が小さくなって、接触表面積が低下するため、
浸出速度・浸出効率が低下する。また、粒子径が0.1mm未満となると、処理液が流れにくくなるため、浸出速度・浸出効率が低下する。
When the particle diameter exceeds 10 cm, the specific surface area becomes small and the contact surface area decreases,
Leaching speed / efficiency decreases. On the other hand, when the particle diameter is less than 0.1 mm, the treatment liquid becomes difficult to flow, so that the leaching speed and the leaching efficiency are lowered.

粒子径を小さくする方法としては、ジョークラッシャ、転動ミル等を用いて破砕する方法を用いることができる。試料等の粒子径が上記範囲内である場合は、さらに破砕しなくてもよい。   As a method of reducing the particle diameter, a method of crushing using a jaw crusher, a rolling mill or the like can be used. When the particle diameter of a sample or the like is within the above range, it may not be further crushed.

有機酸としては、シュウ酸、クエン酸や酒石酸が、有機酸塩としては、シュウ酸塩、クエン酸塩や酒石酸塩、又は有機酸溶液をpH調整により得られる溶液が使用されるが、これらの酸と同等のものであれば、それに限定されるものではない。好ましくはシュウ酸である。   As the organic acid, oxalic acid, citric acid and tartaric acid are used, and as the organic acid salt, oxalate, citrate and tartrate, or a solution obtained by adjusting the pH of an organic acid solution is used. As long as it is equivalent to an acid, it is not limited thereto. Oxalic acid is preferred.

有機酸または有機酸塩の濃度は特に限定されないが、1体積%から5体積%が好ましい。1体積%より低い濃度では燐の浸出速度・浸出効率が低下し、5体積%より高い濃度では有機酸の濃度の効果が小さくなってくるので薬剤コストの上昇に見合った浸出速度・浸出効率が得られないからである。   The concentration of the organic acid or organic acid salt is not particularly limited, but is preferably 1% by volume to 5% by volume. If the concentration is lower than 1% by volume, the leaching rate and leaching efficiency of phosphorus will decrease. If the concentration is higher than 5% by volume, the effect of the concentration of organic acid will be reduced. It is because it cannot be obtained.

処理温度は特に限定しないが、常温から75℃が好ましい。温度が上げると、燐の浸出速度・浸出効率は高くなるが、同時に処理コストも高くなるからである。   The treatment temperature is not particularly limited, but is preferably from room temperature to 75 ° C. This is because when the temperature is increased, the leaching rate and leaching efficiency of phosphorus are increased, but at the same time, the processing cost is also increased.

固液分離の方法としては、沈降分離、膜分離、その他公知の方法を用いて行うことができる。   As a method of solid-liquid separation, precipitation separation, membrane separation, and other known methods can be used.

以上述べた本発明法によれば、燐を含有する製鋼スラグ(溶銑の脱燐処理により発生する脱燐スラグ、通常溶銑或いは脱燐が十分でない脱燐溶銑を転炉脱炭精錬した際に発生する転炉スラグなど)は、まず、工程(A)において、鉄酸化物及び燐酸化物が燐含有溶融鉄(a)として還元・回収され、次いで、前記燐含有溶融鉄(a)は工程(B)において脱燐処理され、この工程(B)で生成した脱燐スラグ(b)には、燐資源として分離するに十分な程度に燐が濃縮され、この燐は工程(C)において、溶解した燐が、不溶化しやすい鉄やマンガンと共存しなくなるため、燐資源としての有効利用が容易となり、リン酸原料、燐肥料原料、その他の燐鉱石を主原料とするプロセスの原料代替として用いることができる。   According to the method of the present invention described above, steel-making slag containing phosphorus (dephosphorization slag generated by dephosphorization of hot metal, generated when decarburizing and refining of dephosphorized hot metal, which is usually not enough or dephosphorized) In the converter slag, etc., first, in step (A), iron oxide and phosphorus oxide are reduced and recovered as phosphorus-containing molten iron (a), and then the phosphorus-containing molten iron (a) is converted into step (B). In the dephosphorization slag (b) produced in this step (B), phosphorus is concentrated to a degree sufficient to separate it as a phosphorus resource, and this phosphorus was dissolved in the step (C). Phosphorus does not coexist with iron and manganese, which are easily insolubilized, so it is easy to effectively use it as a phosphorus resource, and it can be used as a raw material substitute for processes using phosphoric acid raw materials, phosphorus fertilizer raw materials, and other phosphate rocks it can.

次に、本発明による燐の分離方法のうち、燐と鉄とカルシウムが高濃度で共存する複合酸化物から燐を分離する方法(さきに「発明の効果」で述べた本発明による第一の燐の分離方法)について説明する。   Next, among the methods for separating phosphorus according to the present invention, a method for separating phosphorus from a complex oxide in which phosphorus, iron and calcium coexist at high concentrations (the first method according to the present invention described in “Effects of the Invention”). A method for separating phosphorus will be described.

この方法は、上記工程(C)に相当する鉄と燐の湿式分離方法であるが、CaO分が10質量%以上、トータルFeが5質量%以上(一般には10質量%以上)、P分が10質量%以上含まれる複合酸化物を、有機酸溶液もしくは有機酸塩溶液と接触させ、複合酸化物中の燐を水溶液中に抽出するものである。この複合酸化物の代表例としては、上記工程(B)で生成した脱燐スラグ(b)が挙げられるが、これに限定されない。 This method is a wet separation method of iron and phosphorus corresponding to the above step (C), but the CaO content is 10 mass% or more, the total Fe is 5 mass% or more (generally 10 mass% or more), P 2 O A composite oxide containing 10% by mass or more of 5 minutes is brought into contact with an organic acid solution or an organic acid salt solution, and phosphorus in the composite oxide is extracted into an aqueous solution. A typical example of the composite oxide is, but not limited to, the dephosphorization slag (b) generated in the step (B).

さきに述べたように、燐鉱石から燐を湿式で分離する一般的な方法として、硫酸で処理する方法が知られているが、燐と鉄が共存する複合酸化物を硫酸で処理した場合、燐と鉄がFePOを生成して共沈してしまうため、燐を鉄から分離した状態で分離することができない。ここで、複合酸化物がFeを5質量%含む場合、P換算で約6質量%の燐がFePOを生成することになり、例えば、上記工程(B)で生成した脱燐スラグ(b)の場合では、燐の1/4〜1/6と鉄がFePOを生成して共沈してしまう。 As described above, as a general method for separating phosphorus from phosphate ore in a wet manner, a method of treating with phosphoric acid is known, but when a complex oxide in which phosphorus and iron coexist is treated with sulfuric acid, Since phosphorus and iron generate FePO 4 and coprecipitate, phosphorus cannot be separated from iron. Here, when the composite oxide contains 5% by mass of Fe, about 6% by mass of phosphorus in terms of P 2 O 5 generates FePO 4. For example, the dephosphorization slag generated in the step (B) above. In the case of (b), 1/4 to 1/6 of phosphorus and iron generate FePO 4 and coprecipitate.

一般に、複合酸化物はFeを10質量%以上含む場合が多く、例えば、上記工程(B)で生成した脱燐スラグ(b)がFeを10質量%以上含むとすると、燐の少なくとも1/2〜1/3、操業条件によって鉄が多く含まれてしまった場合にはそのほぼ全量が、鉄とFePOを生成して共沈してしまう。このため、本分離方法では、分離すべき燐とともに、鉄を比較的高濃度(トータルFe:5質量%以上、特に10質量%以上)に含む複合酸化物を処理の対象とする。 In general, the composite oxide often includes 10 mass% or more of Fe. For example, if the dephosphorization slag (b) generated in the step (B) includes 10 mass% or more of Fe, at least 1/2 of phosphorus. When a large amount of iron is contained depending on the operating conditions, almost the entire amount of iron is generated by coprecipitation with iron and FePO 4 . For this reason, in this separation method, the complex oxide containing iron in a relatively high concentration (total Fe: 5% by mass or more, particularly 10% by mass or more) together with phosphorus to be separated is treated.

上記のように鉄と燐とカルシウムが高濃度に共存する複合酸化物、なかでもFeが固溶したリン酸カルシウムを主要鉱物とする複合酸化物は、上述したように酸による処理では燐と鉄を分離することができず、また、低濃度のアルカリ金属水酸化物水溶液による処理では燐と鉄の溶解度が殆どないが、有機酸溶液または有機酸塩溶液で処理すると、燐と同時に溶解した鉄やマンガンが、鉄、マンガンの有機酸錯体または有機酸塩錯体として不溶化することにより両者を分離することが可能となる。これによって、燐は高濃度のリン酸溶液となり、不溶化しやすい鉄やマンガンと共存しなくなるため、燐資源としての有効利用が容易となり、リン酸原料、燐肥料原料、その他の燐鉱石を主原料とするプロセスの原料代替として用いることが可能となる。   As described above, complex oxides in which iron, phosphorus, and calcium coexist in high concentrations, especially complex oxides that contain calcium phosphate with a solid solution of Fe as the main mineral, are separated from phosphorus and iron when treated with acid as described above. In addition, in the treatment with a low concentration alkali metal hydroxide aqueous solution, there is almost no solubility of phosphorus and iron, but when treated with an organic acid solution or an organic acid salt solution, iron or manganese dissolved simultaneously with phosphorus However, it becomes possible to isolate | separate both by insolubilizing as an organic acid complex or organic acid salt complex of iron and manganese. As a result, phosphorous becomes a high-concentration phosphoric acid solution and does not coexist with iron and manganese that are easily insolubilized, making it easy to effectively use it as a phosphorous resource. Phosphoric acid raw material, phosphorus fertilizer raw material, and other phosphate rocks It can be used as a raw material substitute for the process.

250トンの製鋼スラグ(転炉スラグ、もしくは転炉スラグと溶銑脱燐スラグを1:1の質量比で混合したスラグ)、50トンの高炉溶銑、及び還元剤としてコークスをアーク炉に装入し、アークを発生させて製鋼スラグならびにコークスを加熱して、製鋼スラグの還元処理を実施した。なお、高炉溶銑は、溶湯を予め炉内に存在させて製鋼スラグを加熱することにより、製鋼スラグの還元を促進させるとともに、混合スラグの還元により生成する燐含有溶融鉄を迅速に取り込み、燐含有溶融鉄と製鋼スラグとの分離を促進させる目的で、装入したものである。30分間の還元処理により、予め装入した高炉溶銑とあわせて約100トンの高燐溶銑(燐含有溶融鉄(a))が得られた。   250 tons of steelmaking slag (converter slag, or slag in which converter slag and hot metal dephosphorization slag are mixed at a mass ratio of 1: 1), 50 tons of blast furnace hot metal, and coke as a reducing agent are charged into an arc furnace. The steelmaking slag and coke were heated by generating an arc to reduce the steelmaking slag. The blast furnace hot metal heats steelmaking slag by pre-existing molten metal in the furnace, thereby promoting the reduction of steelmaking slag and quickly taking in the phosphorus-containing molten iron produced by the reduction of the mixed slag. It is inserted for the purpose of promoting the separation of molten iron and steelmaking slag. About 100 tons of high phosphorus hot metal (phosphorus-containing molten iron (a)) was obtained by the reduction treatment for 30 minutes together with the previously charged blast furnace hot metal.

得られた高燐溶銑をアーク炉から溶銑鍋に出湯し、その後、炉内に残留する約200トンの製鋼スラグをスラグポットに排出した。得られた高燐溶銑の化学成分は、本発明例1では、炭素:4.3質量%、珪素:0.01質量%、マンガン:2.2質量%、燐:3.0質量%、硫黄:0.05質量%であった。   The obtained high phosphorus hot metal was discharged from an arc furnace into a hot metal ladle, and then about 200 tons of steelmaking slag remaining in the furnace was discharged into a slag pot. In the present invention example 1, the chemical components of the obtained high phosphorus hot metal were: carbon: 4.3% by mass, silicon: 0.01% by mass, manganese: 2.2% by mass, phosphorus: 3.0% by mass, sulfur : 0.05% by mass.

この高燐溶銑に対して、脱燐処理設備を用いて脱燐処理を施した。この脱燐処理により、高燐溶銑の燐濃度は0.1質量%まで減少することを確認した。   The high phosphorus hot metal was dephosphorized using a dephosphorization equipment. It was confirmed that the phosphorus concentration of the high phosphorus hot metal was reduced to 0.1% by mass by this dephosphorization treatment.

上記脱燐処理で発生した脱燐スラグの化学成分は、P:32質量%、CaO:36質量%、トータルFe:16質量%、MnO:4質量%であった。 The chemical components of the dephosphorization slag generated by the dephosphorization treatment were P 2 O 5 : 32% by mass, CaO: 36% by mass, total Fe: 16% by mass, and MnO: 4% by mass.

前記脱燐スラグを有機酸で処理することを目的として、1〜5体積%シュウ酸溶液とともに処理槽にいれて接触させた。脱燐スラグとシュウ酸溶液の割合は1:10とした。比較例として2体積%硫酸、2体積%水酸化ナトリウムを用いた。常温で2時間攪拌し、静置後、分離槽で固液分離を施した。処理液中の燐、鉄、マンガンを分析した。残渣はX線回折で溶解残渣成分ならびに新規生成成分を同定した。   In order to treat the dephosphorization slag with an organic acid, the dephosphorization slag was brought into contact with a 1 to 5% by volume oxalic acid solution in a treatment tank. The ratio of dephosphorization slag and oxalic acid solution was 1:10. As a comparative example, 2% by volume sulfuric acid and 2% by volume sodium hydroxide were used. The mixture was stirred at room temperature for 2 hours, allowed to stand, and then subjected to solid-liquid separation in a separation tank. Phosphorus, iron, and manganese in the treatment solution were analyzed. As for the residue, a dissolved residue component and a new product component were identified by X-ray diffraction.

脱燐スラグからの燐、鉄、マンガンのシュウ酸処理で浸出した割合を表2に示す。処理液中に燐は抽出されるが、鉄とマンガンの浸出率が低いことが確認された。これは、シュウ酸で溶解した鉄やマンガンがシュウ酸との錯体となって析出し、残渣に残留しているからである。残渣のX線回折図を図1に示す。図1の上段側がシュウ酸による浸出前の脱燐スラグのX線回析結果を、下段側は2体積%シュウ酸による浸出後の残渣のX線回析結果を示している。残渣には、鉄、マンガンがシュウ酸の錯体として検出されていることがわかる。   Table 2 shows the ratio of phosphorus, iron, and manganese leached from the dephosphorized slag by oxalic acid treatment. Although phosphorus was extracted from the treatment solution, it was confirmed that the leaching rate of iron and manganese was low. This is because iron or manganese dissolved in oxalic acid is precipitated as a complex with oxalic acid and remains in the residue. The X-ray diffraction pattern of the residue is shown in FIG. The upper side of FIG. 1 shows the X-ray diffraction result of dephosphorization slag before leaching with oxalic acid, and the lower side shows the X-ray diffraction result of the residue after leaching with 2% by volume oxalic acid. It can be seen that iron and manganese are detected as oxalic acid complexes in the residue.

一方、比較例である硫酸処理では燐と同時に鉄、マンガンが溶液中に抽出され、燐の分離はできなかった。また低濃度の水酸化ナトリウム処理では燐も抽出されなかった。
本発明例の処理後の燐含有溶液はリン酸原料、燐肥料原料、その他の燐鉱石を主原料とするプロセスの原料代替として利用できる。
On the other hand, in the sulfuric acid treatment as a comparative example, iron and manganese were extracted into the solution simultaneously with phosphorus, and phosphorus could not be separated. Moreover, phosphorus was not extracted by the low concentration sodium hydroxide treatment.
The phosphorus-containing solution after the treatment of the present invention example can be used as a raw material substitute for a process using a phosphoric acid raw material, a phosphorus fertilizer raw material, or other phosphate rock as a main raw material.

Figure 0005793842
Figure 0005793842

Claims (2)

質量%で、CaO分を10%以上、トータルFeを5%以上、P分を10%以上含む複合酸化物を、シュウ酸溶液と接触させ、複合酸化物中の燐を溶液中に抽出し、かつ、溶解した鉄やマンガンをシュウ酸との錯体として、沈殿分離することを特徴とする燐の分離方法。 By mass%, the CaO content of 10% or more, a total Fe 5% or more, a composite oxide containing P 2 O 5 minutes more than 10%, is contacted with oxalic San溶solution, a solution of phosphorus in the composite oxide A method for separating phosphorus, characterized in that the extracted iron and manganese are precipitated and separated as a complex with oxalic acid . 燐を含有する製鋼スラグを、炭素、珪素、アルミニウム、炭化水素のうちから選ばれる1種以上を含有する還元剤を用いて高温還元処理することにより、製鋼スラグ中の鉄酸化物及び燐酸化物を還元して燐含有溶融鉄を生成させる工程(A)と、該工程(A)で生成した燐含有溶融鉄を、CaO系フラックスを用いて脱燐処理する工程(B)と、該工程(B)で生成した、CaO分が10質量%以上、トータルFeが5質量%以上、P分が10質量%以上含まれる脱燐スラグを、シュウ酸溶液と接触させ、脱燐スラグ中の燐を水溶液中に抽出し、かつ、溶解した鉄やマンガンをシュウ酸との錯体として、沈殿分離する工程(C)を有することを特徴とする燐の分離方法。 Steelmaking slag containing phosphorus is subjected to a high-temperature reduction treatment using a reducing agent containing one or more selected from carbon, silicon, aluminum, and hydrocarbons, whereby iron oxide and phosphorous oxide in the steelmaking slag are reduced. Step (A) of reducing to produce phosphorus-containing molten iron, step (B) of dephosphorizing the phosphorus-containing molten iron produced in step (A) using a CaO-based flux, and step (B) produced in), CaO content of 10 mass% or more, the total Fe is 5 wt% or more, the dephosphorization slag P 2 O 5 minutes that contain more than 10 wt%, it is contacted with oxalic San溶liquid, dephosphorization slag A method for separating phosphorus, comprising the step (C) of extracting phosphorus in an aqueous solution and precipitating and separating dissolved iron or manganese as a complex with oxalic acid .
JP2010218310A 2010-09-29 2010-09-29 Method for separating phosphorus Active JP5793842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010218310A JP5793842B2 (en) 2010-09-29 2010-09-29 Method for separating phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218310A JP5793842B2 (en) 2010-09-29 2010-09-29 Method for separating phosphorus

Publications (2)

Publication Number Publication Date
JP2012072018A JP2012072018A (en) 2012-04-12
JP5793842B2 true JP5793842B2 (en) 2015-10-14

Family

ID=46168589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218310A Active JP5793842B2 (en) 2010-09-29 2010-09-29 Method for separating phosphorus

Country Status (1)

Country Link
JP (1) JP5793842B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884166B2 (en) * 2012-01-19 2016-03-15 Jfeスチール株式会社 Method for separating phosphorus
JP5907834B2 (en) * 2012-07-25 2016-04-26 新日鐵住金株式会社 Method for producing artificial phosphate rock
JP6011556B2 (en) * 2014-01-30 2016-10-19 Jfeスチール株式会社 Method for producing phosphate fertilizer raw material
CN109987749B (en) * 2019-04-28 2021-05-07 南京大学 Control method for promoting Fenton oxidation mediated by calcium and organic acid complex

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111310A (en) * 1997-06-10 1999-01-06 Ishikawajima Harima Heavy Ind Co Ltd Treatment of metal residue from ash-fusing oven
JP4491612B2 (en) * 2005-08-09 2010-06-30 国立大学法人 宮崎大学 Preparation of phosphorus-containing aqueous solution from livestock manure-based incineration ash, removal of heavy metals, and recovery method of hydroxyapatite and / or calcium hydrogen phosphate
JP4693128B2 (en) * 2007-03-13 2011-06-01 国立大学法人北海道大学 Phosphorus recovery method and phosphorus recovery system
JP2010132465A (en) * 2008-12-02 2010-06-17 Hiroshima Univ Method for recovering phosphorus from incineration ash of organic material and method for producing fertilizer
JP5332651B2 (en) * 2008-12-26 2013-11-06 Jfeスチール株式会社 Method for recovering iron and phosphorus from steelmaking slag

Also Published As

Publication number Publication date
JP2012072018A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5332651B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JP5569174B2 (en) Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphoric acid resource raw material
JP5560947B2 (en) Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphoric acid resource raw material
CN109022644B (en) Method for recovering slag desulfurization and dephosphorization in cooperation with ferrite in full-three-removal process
WO2015114703A1 (en) Phosphorus and calcium collection method, and mixture produced by said collection method
JP5935770B2 (en) Method for producing phosphate resource raw material and phosphate fertilizer
JP5793842B2 (en) Method for separating phosphorus
JP2010270378A (en) Method for recovering phosphorus from steelmaking slag
JP5594183B2 (en) Method for recovering iron and phosphorus from steelmaking slag and raw material for phosphate fertilizer
JP2013142046A (en) Method of recovering raw material for slag phosphatic fertilizer
JP5720497B2 (en) Method for recovering iron and phosphorus from steelmaking slag
KR101189182B1 (en) Method for separating vanadium from vanadium-containing melt
JP7311683B1 (en) Method and system for combining copper slag recycling and CO2 mineralization with solid industrial waste
JP5884166B2 (en) Method for separating phosphorus
JP5712747B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JP5829788B2 (en) Method for producing phosphoric acid resource raw material
JP5467939B2 (en) Steelmaking slag treatment method
JP5915711B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JP2019002060A (en) Method for separation and recovery of phosphorus from steelmaking slag
JP5533251B2 (en) Treatment method of copper removal slag
CN111748694A (en) Method for enriching and recovering vanadium resource in vanadium-rich slag
JP5748925B1 (en) Method for recovering phosphorus and calcium and mixture obtained by said recovery method
KR101863916B1 (en) Composition of Steelmaking Flux for Desulfurization and Deoxidation Using By-proudut of Magnesium Smelting Process and Waste By-product of Aluminum Smelting Process
Ye et al. Swerea MEFOS perspective on metal recovery from slags
JP2010207672A (en) Method of disposing of waste containing chromium

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5793842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250