JP2013142046A - Method of recovering raw material for slag phosphatic fertilizer - Google Patents

Method of recovering raw material for slag phosphatic fertilizer Download PDF

Info

Publication number
JP2013142046A
JP2013142046A JP2012001944A JP2012001944A JP2013142046A JP 2013142046 A JP2013142046 A JP 2013142046A JP 2012001944 A JP2012001944 A JP 2012001944A JP 2012001944 A JP2012001944 A JP 2012001944A JP 2013142046 A JP2013142046 A JP 2013142046A
Authority
JP
Japan
Prior art keywords
slag
raw material
recovering
dephosphorization
phosphate fertilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012001944A
Other languages
Japanese (ja)
Inventor
Susumu Mukawa
進 務川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012001944A priority Critical patent/JP2013142046A/en
Publication of JP2013142046A publication Critical patent/JP2013142046A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technology for recovering a raw material for a slag phosphatic fertilizer by concentrating the content of POin dephosphorization slag to a level of "not less than 3.0% citric acid-soluble phosphoric acid" with an easy and low-cost method.SOLUTION: A method of recovering a raw material for slag phosphatic fertilizer containing not less than 3.0% citric acid-soluble phosphoric acid from dephosphorization slag which is generated in dephosphorization treatment of hot metal, includes carbonation-treating dephosphorization slag while introducing the slag into water in which carbon dioxide gas is dissolved and agitating it to elute the 2CaO/SiOphase in the dephosphorization slag, recovering a solid residue, and then repeating the operation of the carbonation treatment of the solid residue multiple times. The phosphorus is recovered from the treatment water subjected to the treatment at least twice.

Description

本発明は、鉱さい燐酸肥料用原料回収方法に関するものである。   The present invention relates to a raw material recovery method for mineral phosphate fertilizer.

溶銑脱燐処理において発生する塩基度1.4〜2.5程度の脱燐スラグには、CaO、SiO、MgO、FeO、MnO、等の肥料成分が多く含まれており、これらの肥料成分は、従来から「鉱さいけい酸肥料」(ケイカル肥料)として、稲作用の他、畑作、牧草用として幅広く利用されている。 The dephosphorization slag having a basicity of about 1.4 to 2.5 generated in the hot metal dephosphorization treatment contains many fertilizer components such as CaO, SiO 2 , MgO, FeO, MnO, etc., and these fertilizer components Has been widely used as a “mineral acid fertilizer” (calcium fertilizer) for rice farming, field cropping and pasture use.

溶銑脱燐処理において発生する脱燐スラグには、その他、Pが含まれており、燐酸肥料としての活用への需要がある。近年、燐鉱石の枯渇問題や、諸外国における燐鉱石の囲い込みのため、燐資源が高騰しており、製鋼スラグ中に含有される燐が貴重な燐資源として見直されている観点からも、脱燐スラグ中に含有される燐の有効活用は急務である。 In addition, the dephosphorization slag generated in the hot metal dephosphorization treatment contains P 2 O 5 and there is a demand for utilization as a phosphoric acid fertilizer. In recent years, phosphorus resources have soared due to the problem of depletion of phosphate ore and the inclusion of phosphate ore in other countries. From the viewpoint that phosphorus contained in steelmaking slag has been reconsidered as a valuable phosphorus resource. Effective utilization of phosphorus contained in phosphorus slag is urgent.

ただし、肥料取締法に基づいて定められている肥料の工程規格では、「鉱さい燐酸肥料(製鋼鉱さいをいう)」との表記を行うための要件として、く溶性燐酸を3.0%以上含有することが定められているのに対し、通常、脱燐スラグ中のP含有量は3.0%未満に留まるため、脱燐スラグ中に含有される燐を「鉱さい燐酸肥料」として活用するためには、燐の濃縮が必要になる。 However, in the fertilizer process standard established based on the Fertilizer Control Law, it contains 3.0% or more of soluble phosphoric acid as a requirement for the notation "mineral phosphoric acid fertilizer" (referring to steelmaking ore). However, since the P 2 O 5 content in dephosphorized slag is usually less than 3.0%, the phosphorus contained in dephosphorized slag is used as “mineral phosphate fertilizer” To do so, it is necessary to concentrate phosphorus.

脱燐スラグ中のPを濃縮して回収する技術に関し、例えば、特許文献1には、製鋼スラグを炭酸溶解水で洗浄してカルシウムを除去した後、鉱酸(塩酸や硫酸等の無機酸)を用いて、カルシウム除去済みのスラグから燐を抽出し、抽出液を中和することにより、脱燐スラグ中のPを高純度の燐酸として回収する技術が開示されている。 Regarding the technology for concentrating and recovering P 2 O 5 in dephosphorized slag, for example, Patent Document 1 discloses that steelmaking slag is washed with carbonic acid-dissolved water to remove calcium, and then a mineral acid (such as hydrochloric acid or sulfuric acid). A technique for recovering P 2 O 5 in dephosphorized slag as high-purity phosphoric acid by extracting phosphorus from slag from which calcium has been removed using an inorganic acid) and neutralizing the extract is disclosed. .

しかし、鉱酸(塩酸や硫酸等の無機酸)を用いて、カルシウム除去済みのスラグから燐を抽出するという手法は、塩酸や硫酸等が高価で、かつ、取扱いも困難であるため、試薬コストや、設備コストが嵩み、「鉱さい燐酸肥料」の規定を満たす程度に濃縮すればよい「鉱さい燐酸肥料」の製造過程への適用には、実用性を欠くという問題があった。   However, the method of extracting phosphorus from slag from which calcium has been removed using a mineral acid (inorganic acid such as hydrochloric acid or sulfuric acid) is expensive because hydrochloric acid and sulfuric acid are expensive and difficult to handle. In addition, there is a problem that the equipment cost is high, and the application to the production process of “mineral phosphate fertilizer” which only needs to be concentrated to meet the requirements of “mineral phosphate fertilizer” lacks practicality.

特開2011−208277号公報JP 2011-208277 A

本発明の目的は前記の問題を解決し、低コストかつ簡易な手法で、脱燐スラグ中のP含有量を、「く溶性燐酸を3.0%以上含有する」レベルに濃縮して、鉱さい燐酸肥料用原料を回収する技術を提供することである。 The object of the present invention is to solve the above-mentioned problems, and to concentrate the P 2 O 5 content in the dephosphorized slag to a level of “containing at least 3.0% soluble phosphoric acid” by a low-cost and simple method. Thus, it is to provide a technique for recovering raw materials for slag phosphate fertilizer.

上記課題を解決するためになされた本発明の鉱さい燐酸肥料用原料回収方法は、溶銑の脱燐処理に伴い発生する脱燐スラグから、く溶性燐酸を3.0%以上含有する鉱さい燐酸肥料用原料を回収する方法であって、脱燐スラグを、炭酸ガスを溶解させた水中に投入して撹拌しながら炭酸化処理して、脱燐スラグ中の2CaO・SiO相を溶出するとともに、固体残渣を回収した後、該固体残渣を再度炭酸化処理する操作を複数回繰り返し、少なくとも、2回目以降の処理水から燐を回収することを特徴とするものである。 The raw material recovery method for mineral phosphite fertilizer of the present invention made to solve the above problems is for mineral phosphite fertilizer containing 3.0% or more of soluble phosphoric acid from dephosphorization slag generated by dephosphorization treatment of hot metal. A method of recovering a raw material, wherein dephosphorization slag is put into water in which carbon dioxide gas is dissolved and carbonized while stirring to elute the 2CaO.SiO 2 phase in the dephosphorization slag, and solid After the residue is collected, the operation of carbonating the solid residue again is repeated a plurality of times, and at least phosphorus is collected from the treated water after the second time.

請求項2記載の発明は、請求項1記載の鉱さい燐酸肥料用原料回収方法において、燐を固溶しているβ-2CaO・SiO相が溶出し始めた処理水から燐を回収することを特徴とするものである。 The invention according to claim 2 is the method for recovering raw materials for mineral phosphate fertilizer according to claim 1, wherein the phosphorus is recovered from the treated water from which the β-2CaO · SiO 2 phase in which the phosphorus is dissolved is started to elute. It is a feature.

請求項3記載の発明は、請求項1または2記載の鉱さい燐酸肥料用原料回収方法において、炭酸化処理後の固体残渣と、処理水から燐を回収した燐を合わせて燐酸肥料用原料とすることを特徴とするものである。   The invention according to claim 3 is the method for recovering raw materials for mineral phosphate fertilizer according to claim 1 or 2, wherein the solid residue after carbonation treatment and the phosphorus recovered from the treated water are combined to make a raw material for phosphate fertilizer. It is characterized by this.

請求項4記載の発明は、請求項1または2記載の鉱さい燐酸肥料用原料回収方法法において、炭酸化処理後の固体残渣は、製鉄原料として再利用することを特徴とするものである。   The invention according to claim 4 is characterized in that, in the raw material recovery method for mineral phosphate fertilizer according to claim 1 or 2, the solid residue after carbonation is reused as an iron-making raw material.

請求項5記載の発明は、請求項1〜4の何れかに記載の鉱さい燐酸肥料用原料回収方法において、脱燐スラグを2mmアンダーに粉砕処理後に炭酸化処理を行うことを特徴とするものである。   The invention according to claim 5 is characterized in that, in the raw material recovery method for mineral phosphoric acid fertilizer according to any one of claims 1 to 4, carbonation treatment is performed after pulverizing the dephosphorized slag under 2 mm. is there.

請求項6記載の発明は、請求項1〜4の何れかに記載の鉱さい燐酸肥料用原料回収方法において、脱燐スラグを2mmアンダーに粉砕処理しながら同時に炭酸化処理を行うことを特徴とするものである。   The invention according to claim 6 is characterized in that, in the raw material recovery method for mineral phosphate fertilizer according to any one of claims 1 to 4, carbonation treatment is simultaneously performed while pulverizing dephosphorization slag to under 2 mm. Is.

本発明は、スラグ中に存在する2CaO・SiO相には、Pを固溶しているβ相と固溶していないγ相が並存しており、炭酸化処理時には、Pを固溶していないγ相が優先的に分解するという、本願発明者により見出された新たな知見に基づいてなされたものである。 The present invention is 2CaO · SiO 2 phase present in the slag has coexist is γ-phase which is not dissolved with β-phase in solid solution with P 2 O 5, at the time of carbonation process, P 2 This is based on a new finding found by the present inventor that the γ phase not dissolved in O 5 is preferentially decomposed.

本発明によれば、脱燐スラグを、炭酸ガスを溶解させた水中に投入して撹拌しながら炭酸化処理して、脱燐スラグ中の2CaO・SiO相を溶出するとともに、固体残渣を回収した後、該固体残渣を再度炭酸化処理する操作を複数回繰り返し、少なくとも、2回目以降の処理水から燐を回収する、という簡易な手法で、高価で取り扱いの難しい鉱酸(塩酸や硫酸等の無機酸)を用いることなく、脱燐スラグ中のP含有量を、「く溶性燐酸を3.0%以上含有する」レベルに濃縮して、鉱さい燐酸肥料用原料を回収することができる。 According to the present invention, dephosphorization slag is poured into water in which carbon dioxide gas is dissolved and carbonized while stirring to elute the 2CaO.SiO 2 phase in the dephosphorization slag and collect a solid residue. After that, the operation of carbonating the solid residue again is repeated a plurality of times, and at least a simple technique of recovering phosphorus from the treated water after the second time, an expensive and difficult mineral acid (such as hydrochloric acid or sulfuric acid). The concentration of P 2 O 5 in the dephosphorized slag is concentrated to the level of “containing at least 3.0% soluble phosphoric acid” without using the inorganic acid), and the raw material for the mineral phosphate fertilizer is recovered. Can do.

本発明の概略説明図である。It is a schematic explanatory drawing of this invention. 炭酸化処理を5回繰り返し行う実施形態における装置構成の全体説明図である。It is the whole apparatus explanatory drawing in the embodiment which repeats carbonation processing 5 times. 炭酸化処理に先立って行う、脱燐スラグの前処理工程のフロー図である。It is a flowchart of the pre-processing process of dephosphorization slag performed prior to a carbonation process.

以下に本発明の好ましい実施形態を示す。   Preferred embodiments of the present invention are shown below.

図1には、本発明の概略説明図を示し、図2には、炭酸化処理を5回繰り返し行う実施形態における装置構成の全体説明図を示している。また、図3には、炭酸化処理に先立って行う、脱燐スラグの前処理工程のフロー図を示している。   FIG. 1 is a schematic explanatory diagram of the present invention, and FIG. 2 is an overall explanatory diagram of an apparatus configuration in an embodiment in which the carbonation treatment is repeated five times. FIG. 3 shows a flow chart of a dephosphorization slag pretreatment step performed prior to the carbonation treatment.

溶銑脱燐処理において発生した脱燐スラグは、図3に示すフローに従って、冷却・粉砕・地金分離・粉砕・篩い分けの各工程を経て、図1に示す炭酸化処理槽に投入される。炭酸化処理を効率よく行うために、脱燐スラグは、2mmアンダーに粉砕処理後に炭酸化処理槽に投入することが好ましい。   The dephosphorization slag generated in the hot metal dephosphorization process is fed into the carbonation treatment tank shown in FIG. 1 through the steps shown in FIG. 3 through the steps of cooling, crushing, metal separation, crushing, and sieving. In order to efficiently perform the carbonation treatment, it is preferable that the dephosphorization slag is put into a carbonation treatment tank after being pulverized under 2 mm.

炭酸化処理槽には、2mmアンダーに粉砕処理された脱燐スラグと水が投入され、下部からCOガスを吹き込みながら槽内の撹拌が行われる。 The carbonation tank is filled with dephosphorized slag and water pulverized under 2 mm, and the tank is agitated while CO 2 gas is blown from below.

撹拌に伴い、槽内では下記の反応により、脱燐スラグが溶出する。
With stirring, dephosphorization slag is eluted in the tank by the following reaction.

脱燐スラグ中のPは、主に、2CaO・SiO相に固溶され、更に、2CaO・SiO相には、Pを固溶しているβ相と固溶していないγ相が並存している。炭酸化処理時には、Pを固溶していないγ-2CaO・SiO相が優先的に分解するため、燐を固溶しているβ-2CaO・SiO相を主体とする固体残渣を回収すると、スラグ中のP濃度の増加が確認される。 P 2 O 5 of dephosphorization slag is mainly solid-dissolved 2CaO · SiO 2 phase, further, the 2CaO · SiO 2 phase, solid solution with β-phase in solid solution with P 2 O 5 Not γ phase coexists. During carbonation treatment, the γ-2CaO · SiO 2 phase not dissolved in P 2 O 5 is preferentially decomposed, so that a solid residue mainly composed of β-2CaO · SiO 2 phase in which phosphorus is dissolved. Is recovered, an increase in the concentration of P 2 O 5 in the slag is confirmed.

当該操作を複数回繰り返し、炭酸化処理の総時間が所定時間経過すると、炭酸化処理槽内では、燐を固溶しているβ-2CaO・SiO相の溶出が生じ始め、処理水中のP濃度が増加し始める。 When this operation is repeated a plurality of times and the total time of carbonation treatment elapses for a predetermined time, elution of β-2CaO.SiO 2 phase in which phosphorus is dissolved in the carbonation treatment tank starts to occur, and P in the treated water The 2 O 5 concentration begins to increase.

燐資源の有効活用の観点からは、処理水中に溶出したPは全て回収して再利用することが好ましい。ただし、本発明は、脱燐スラグ中に含有される燐を「鉱さい燐酸肥料」として活用するために、燐の濃縮を行うものであり、肥料取締法に基づいて定められている肥料の公定規格では、「鉱さい燐酸肥料(製鋼鉱さいをいう)」との表記を行うための要件として、く溶性燐酸を3.0%以上含有することが定められているため、P濃度が所定値以上となった処理水のみ回収して再利用を行っている。図2に示す実施形態では、前段の炭酸化処理槽1〜3では、処理水中に溶出したPの回収は行わず、前段の炭酸化処理槽4〜5において処理水中に溶出したPの回収を行っている。 From the viewpoint of effective utilization of phosphorus resources, it is preferable to recover and reuse all P 2 O 5 eluted in the treated water. However, the present invention concentrates phosphorus in order to utilize phosphorus contained in dephosphorized slag as “mineral phosphate fertilizer”, and is an official standard for fertilizers established based on the Fertilizer Control Law Then, since it is stipulated that 3.0% or more of soluble phosphoric acid is contained as a requirement for performing the notation “mineral phosphate fertilizer (refers to steelmaking ore)”, the P 2 O 5 concentration is a predetermined value. Only the treated water is recovered and reused. In the embodiment shown in FIG. 2, P 2 O 5 eluted in the treated water is not collected in the preceding carbonation treatment tanks 1 to 3, and P eluted in the treated water in the preceding carbonation treatment tanks 4 to 5. 2 O 5 is being recovered.

上記プロセスで回収したPは、炭酸化処理後の固体残渣と共に、あるいは単独で肥料製造の原料とすることができる。炭酸化処理を複数回繰り返し行い、スラグ中のP濃度が低下した固体残渣は、製鉄原料として再利用してもよい。 The P 2 O 5 recovered by the above process can be used alone or as a fertilizer production raw material together with the solid residue after carbonation treatment. The solid residue in which the carbonation treatment is repeated a plurality of times and the P 2 O 5 concentration in the slag is lowered may be reused as an iron-making raw material.

本願発明の実施例を示す。
本実施例に用いた溶銑脱燐スラグの組成を表1に示す。本スラグは、高炉溶銑を転炉形式の炉にスクラップとともに装入し、CaO源と酸素源を用い、攪拌を付与しつつ脱燐処理を行った際に生成したスラグを、脱燐処理終了後、溶銑を排出した後、炉内から排出されたスラグであり、これを冷却処理し、破砕後、磁選処理を行って大きな粒鉄分を除去した後のものである。
The Example of this invention is shown.
Table 1 shows the composition of the hot metal dephosphorization slag used in this example. This slag is prepared by charging blast furnace hot metal together with scrap into a converter-type furnace, using a CaO source and an oxygen source, and performing dephosphorization treatment while applying agitation. This is slag discharged from the furnace after discharging the hot metal, and after cooling, crushing, and performing magnetic separation to remove large iron particles.

(実施例1)
本スラグの一部を粉砕し、2mmアンダーとし、反応容器に装入してインペラーにて攪拌を付与しつつ、COを20%含む、室温に冷却された燃焼廃ガスを吹き込みながら炭酸化処理を行った。
Example 1
A part of this slag is pulverized, made under 2 mm, charged into a reaction vessel, stirred with an impeller, and carbonized while blowing combustion waste gas containing 20% CO 2 and cooled to room temperature. Went.

表1に示す組成のスラグのうち、5kgを水中に懸濁させ、処理を行った。予め20%COを含む排ガスを通じ、インペラー攪拌を付与した容器中の250Lの水中にスラグ試料を投入した。その後、60分間の処理を行った。一旦、スラグ試料をろ過、分離し、新たに準備した炭酸ガスを通じ、インペラー攪拌を行っている水250Lに投入し、更に60分間の処理を行った。はじめの処理で得られた水残渣中P濃度は0%であったが、更に、再び処理を行った後に得られた残渣中P濃度は4.66%であった。 Of the slag having the composition shown in Table 1, 5 kg was suspended in water for treatment. A slag sample was put into 250 L of water in a container provided with impeller stirring through an exhaust gas containing 20% CO 2 in advance. Then, the process for 60 minutes was performed. Once the slag sample was filtered and separated, the newly prepared carbon dioxide gas was added to 250 L of water with impeller agitation, and further treated for 60 minutes. Mizuzan渣中P 2 O 5 concentration obtained at the beginning of treatment was 0%, but further were again residue P 2 O 5 concentration obtained after processing is 4.66%.

(実施例2)
表1の組成のスラグを、250/5の水/スラグ比で30分間の処理を5回行った。その結果、最終スラグのP濃度は、5.69%であった。また、抽出液の残渣中のP濃度は3回目以降で、元のスラグP濃度(2.41%)より高くなった。この場合、これら3、4、5回目の液残渣と、処理後スラグを利用して肥料製造の原料とした。
(Example 2)
The slag having the composition shown in Table 1 was treated 5 times at a water / slag ratio of 250/5 for 30 minutes. As a result, the final slag had a P 2 O 5 concentration of 5.69%. Further, the P 2 O 5 concentration in the residue of the extract was higher than the original slag P 2 O 5 concentration (2.41%) after the third time. In this case, it was set as the raw material of fertilizer manufacture using these 3rd, 4th, 5th liquid residue and post-process slag.

上記のように、本発明によれば、脱燐スラグを、炭酸ガスを溶解させた水中に投入して撹拌しながら炭酸化処理を行って、燐を固溶していないγ-2CaO・SiO相を処理水中に溶出させ、燐を固溶しているβ-2CaO・SiO相を主体とする固体残渣を回収する、という簡易な手法で、高価で取り扱いの難しい鉱酸(塩酸や硫酸等の無機酸)を用いることなく、脱燐スラグ中のP含有量を、「く溶性燐酸を3.0%以上含有する」レベルに濃縮して、鉱さい燐酸肥料用原料を回収することができる。 As described above, according to the present invention, dephosphorization slag is poured into water in which carbon dioxide gas is dissolved, and carbonation is performed while stirring, so that γ-2CaO · SiO 2 in which phosphorus is not solid-dissolved. The mineral acid (hydrochloric acid, sulfuric acid, etc.) that is expensive and difficult to handle is simply obtained by eluting the phase into the treated water and recovering the solid residue mainly composed of β-2CaO · SiO 2 phase in which phosphorus is dissolved. The concentration of P 2 O 5 in the dephosphorized slag is concentrated to the level of “containing at least 3.0% soluble phosphoric acid” without using the inorganic acid), and the raw material for the mineral phosphate fertilizer is recovered. Can do.

Claims (6)

溶銑の脱燐処理に伴い発生する脱燐スラグから、く溶性燐酸を3.0%以上含有する鉱さい燐酸肥料用原料を回収する方法であって、
脱燐スラグを、炭酸ガスを溶解させた水中に投入して撹拌しながら炭酸化処理して、脱燐スラグ中の2CaO・SiO相を溶出するとともに、固体残渣を回収した後、該固体残渣を再度炭酸化処理する操作を複数回繰り返し、少なくとも、2回目以降の処理水から燐を回収することを特徴とする鉱さい燐酸肥料用原料回収方法。
A method of recovering a raw material for mineral slag phosphate fertilizer containing 3.0% or more of soluble phosphoric acid from dephosphorization slag generated by dephosphorization of hot metal,
The dephosphorized slag is put into water in which carbon dioxide gas is dissolved and carbonized while stirring to elute the 2CaO.SiO 2 phase in the dephosphorized slag and collect the solid residue. A method for recovering a raw material for slag phosphate fertilizer, characterized in that the operation of carbonating again is repeated a plurality of times, and phosphorus is recovered from at least the second and subsequent treated water.
燐を固溶しているβ-2CaO・SiO相が溶出し始めた処理水から燐を回収することを特徴とする請求項1記載の鉱さい燐酸肥料用原料回収方法。 2. The method for recovering raw materials for slag phosphate fertilizer according to claim 1, wherein phosphorus is recovered from the treated water from which the β-2CaO.SiO 2 phase in which phosphorus is dissolved is started to elute. 炭酸化処理後の固体残渣と、処理水から燐を回収した燐を合わせて燐酸肥料用原料とすることを特徴とする請求項1または2記載の鉱さい燐酸肥料用原料回収方法。   3. The method for recovering raw materials for slag phosphate fertilizer according to claim 1 or 2, wherein the solid residue after carbonation treatment and the phosphorus recovered from the treated water are combined into a raw material for phosphate fertilizer. 炭酸化処理後の固体残渣は、製鉄原料として再利用することを特徴とする請求項1または2記載の脱燐スラグからの鉱さい燐酸肥料用原料回収方法。   The solid residue after carbonation treatment is reused as an iron-making raw material. The method for recovering raw materials for mineral phosphate fertilizer from dephosphorized slag according to claim 1 or 2. 脱燐スラグを2mmアンダーに粉砕処理後に炭酸化処理を行うことを特徴とする請求項1〜4の何れかに記載の鉱さい燐酸肥料用原料回収方法。   The raw material recovery method for a mineral phosphate fertilizer according to any one of claims 1 to 4, wherein the dephosphorization slag is pulverized under 2 mm and then carbonized. 脱燐スラグを2mmアンダーに粉砕処理しながら同時に炭酸化処理を行うことを特徴とする請求項1〜4の何れかに記載の鉱さい燐酸肥料用原料回収方法。   The method for recovering raw materials for slag phosphate fertilizer according to any one of claims 1 to 4, wherein carbonation treatment is simultaneously performed while pulverizing the dephosphorized slag under 2 mm.
JP2012001944A 2012-01-10 2012-01-10 Method of recovering raw material for slag phosphatic fertilizer Pending JP2013142046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012001944A JP2013142046A (en) 2012-01-10 2012-01-10 Method of recovering raw material for slag phosphatic fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012001944A JP2013142046A (en) 2012-01-10 2012-01-10 Method of recovering raw material for slag phosphatic fertilizer

Publications (1)

Publication Number Publication Date
JP2013142046A true JP2013142046A (en) 2013-07-22

Family

ID=49038819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012001944A Pending JP2013142046A (en) 2012-01-10 2012-01-10 Method of recovering raw material for slag phosphatic fertilizer

Country Status (1)

Country Link
JP (1) JP2013142046A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708918A (en) * 2013-12-09 2014-04-09 山东金科天元生物肥料有限公司 Active medium trace element mineral fertilizer and preparation method thereof
JP2015140294A (en) * 2014-01-30 2015-08-03 Jfeスチール株式会社 Phosphoric acid fertilizer raw material, phosphoric acid fertilizer and manufacturing method therefor
WO2015114703A1 (en) 2014-01-28 2015-08-06 日新製鋼株式会社 Phosphorus and calcium collection method, and mixture produced by said collection method
WO2017163595A1 (en) * 2016-03-24 2017-09-28 日新製鋼株式会社 Method for eluting calcium from steel slag and method for recovering calcium from steel slag
US10287652B2 (en) 2015-03-23 2019-05-14 Nisshin Steel Co., Ltd. Method for recovering calcium-containing solid component from steelmaking slag and recovered solid component
WO2019107116A1 (en) * 2017-11-30 2019-06-06 日新製鋼株式会社 Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708918A (en) * 2013-12-09 2014-04-09 山东金科天元生物肥料有限公司 Active medium trace element mineral fertilizer and preparation method thereof
US9783418B2 (en) 2014-01-28 2017-10-10 Nisshin Steel Co., Ltd. Phosphorus and calcium collection method, and mixture produced by said collection method
WO2015114703A1 (en) 2014-01-28 2015-08-06 日新製鋼株式会社 Phosphorus and calcium collection method, and mixture produced by said collection method
KR20160093088A (en) 2014-01-28 2016-08-05 닛신 세이코 가부시키가이샤 Phosphorus and calcium collection method, and mixture produced by said collection method
CN105980326A (en) * 2014-01-28 2016-09-28 日新制钢株式会社 Phosphorus and calcium collection method, and mixture produced by said collection method
RU2618004C1 (en) * 2014-01-28 2017-05-02 Ниссин Стил Ко., Лтд. Method for phosphorus and calcium recovery, and mixture obtained by this method
JP2015140294A (en) * 2014-01-30 2015-08-03 Jfeスチール株式会社 Phosphoric acid fertilizer raw material, phosphoric acid fertilizer and manufacturing method therefor
US10287652B2 (en) 2015-03-23 2019-05-14 Nisshin Steel Co., Ltd. Method for recovering calcium-containing solid component from steelmaking slag and recovered solid component
RU2695173C2 (en) * 2015-03-23 2019-07-22 Ниссин Стил Ко., Лтд. Method of extracting a calcium-containing solid component from steel-smelting slag and a recovered solid component
CN108883984A (en) * 2016-03-24 2018-11-23 日新制钢株式会社 The method for making calcium recycle calcium from the method dissolved out in steelmaking slag and from steelmaking slag
WO2017163595A1 (en) * 2016-03-24 2017-09-28 日新製鋼株式会社 Method for eluting calcium from steel slag and method for recovering calcium from steel slag
RU2718879C1 (en) * 2016-03-24 2020-04-15 Ниссин Стил Ко., Лтд. Method of eluting calcium from steel-smelting slag and method of extracting calcium from steel-smelting slag
WO2019107116A1 (en) * 2017-11-30 2019-06-06 日新製鋼株式会社 Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag

Similar Documents

Publication Publication Date Title
JP2013142046A (en) Method of recovering raw material for slag phosphatic fertilizer
JP5569174B2 (en) Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphoric acid resource raw material
US20190078170A1 (en) Method for eluting calcium from steel slag and method for recovering calcium from steel slag
JP5560947B2 (en) Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphoric acid resource raw material
JP6263144B2 (en) Method for recovering solid component containing calcium from steelmaking slag, and recovered solid component
JP4913023B2 (en) Slag manufacturing method
JP2010168641A (en) Method for reclaiming iron and phosphorous from steelmaking slag
CN110551902B (en) Method for recycling fayalite type slag resources
WO2015114703A1 (en) Phosphorus and calcium collection method, and mixture produced by said collection method
JP5935770B2 (en) Method for producing phosphate resource raw material and phosphate fertilizer
CN103952515A (en) Method for recycling high-iron red mud as steelmaking slag former/dephosphorizing agent
CN101798637B (en) Chemical desulfurization method of vanadium residues of acid leaching
CN109207658B (en) Recycling method for phosphorus removal of biomass ash modified converter steel slag
CN109957657A (en) A method of from red mud simultaneously resource utilization iron, sodium, aluminium
CN114737066B (en) Method for extracting lithium from leaching residues of lithium ores
CN102212736B (en) Method for preparing niobium microalloy steel by using low-niobium molten iron
JP6969476B2 (en) Manufacturing method of high phosphorus content slag and slag fertilizer and phosphoric acid fertilizer
JP2015140294A (en) Phosphoric acid fertilizer raw material, phosphoric acid fertilizer and manufacturing method therefor
CN104071954A (en) Method of treating high-iron red mud by alkaline process for deep dealkalization and iron enrichment
JP5793842B2 (en) Method for separating phosphorus
CN106834749B (en) The method of Vanadium Concentrationin from v-bearing steel slag
JP5720497B2 (en) Method for recovering iron and phosphorus from steelmaking slag
CN109897934B (en) Method for improving efficient phosphorus enrichment effect in phosphorus-containing steel slag
JP7311683B1 (en) Method and system for combining copper slag recycling and CO2 mineralization with solid industrial waste
CN105671311A (en) Processing method of iron ore